Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

On composite formal power series
HTML articles powered by AMS MathViewer

by Jacques Chaumat and Anne-Marie Chollet PDF
Trans. Amer. Math. Soc. 353 (2001), 1691-1703 Request permission

Abstract:

Let $F$ be a holomorphic map from ${\mathbb {C}}^{n}$ to ${\mathbb {C}}^{n}$ defined in a neighborhood of $0$ such that $F(0)=0$. If the Jacobian determinant of $F$ is not identically zero, P. M. Eakin et G. A. Harris proved the following result: any formal power series such that ${\mathcal {A}}\circ F$ is analytic is itself analytic. If the Jacobian determinant of $F$ is identically zero, they proved that the previous conclusion is no more true.

The authors get similar results in the case of formal power series satifying growth conditions, of Gevrey type for instance. Moreover, the proofs here give, in the analytic case, a control of the radius of convergence of ${\mathcal {A}}$ by the radius of convergence of ${\mathcal {A}}\circ F$.

Résumé. Soit $F$ une application holomorphe de ${\mathbb {C}}^{n}$ dans ${\mathbb {C}}^{n}$ définie dans un voisinage de $0$ et vérifiant $F(0)=0$. Si le jacobien de $F$ n’est pas identiquement nul au voisinage de $0$, P.M. Eakin et G.A. Harris ont établi le résultat suivant: toute série formelle ${\mathcal {A}}$ telle que ${\mathcal {A}}\circ F$ est analytique est elle-même analytique. Si le jacobien de $F$ est identiquement nul, ils montrent que la conclusion précédente est fausse.

Les auteurs obtiennent des résultats analogues pour les séries formelles à croissance contrôlée, du type Gevrey par exemple. De plus, les preuves données ici permettent, dans le cas analytique, un contrôle du rayon de convergence de ${\mathcal {A}}$ par celui de ${\mathcal {A}}\circ F$.

References
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 13F25, 13J05, 32A05
  • Retrieve articles in all journals with MSC (2000): 13F25, 13J05, 32A05
Additional Information
  • Jacques Chaumat
  • Affiliation: U.M.R. C.N.R.S. 8628, Université Paris-Sud, Mathématiques - Bât. 425, 91405 Orsay Cedex, France
  • Email: jacques.chaumat@math.u-psud.fr
  • Anne-Marie Chollet
  • Affiliation: U.M.R. C.N.R.S. 8524, Université de Lille, U.F.R. de Mathématique,59655 Villeneuve D’Ascq Cedex, France
  • Email: chollet@aglae.univ-lille1.fr
  • Received by editor(s): December 12, 1997
  • Published electronically: January 2, 2001
  • © Copyright 2001 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 353 (2001), 1691-1703
  • MSC (2000): Primary 13F25, 13J05, 32A05
  • DOI: https://doi.org/10.1090/S0002-9947-01-02733-7
  • MathSciNet review: 1806723