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DERIVED EQUIVALENCE IN SL2(p2)

JOSEPH CHUANG

Abstract. We present a proof that Broué’s Abelian Defect Group Conjec-
ture is true for the principal p-block of the group SL2(p2). Okuyama has
independently obtained the same result using a different approach.

1. Introduction and preliminaries

Broué has posed a remarkable conjecture involving the derived categories of
blocks of finite groups with abelian defect groups [2]. In the case of principal blocks
this conjecture is particularly easy to state.

Conjecture 1 (Broué). Let K be an algebraically closed field of prime character-
istic p, let G be a finite group with an abelian Sylow p-subgroup P , and let H be the
normalizer of P in G. Then the principal blocks of KG and KH have equivalent
derived categories.

For good introductions to this conjecture, we suggest [3] and [8].
The purpose of this paper is to show that Broué’s conjecture is true for the group

G = SL2(p2). Okuyama has independently obtained this result using an extension
of the method he developed in [7]. We should also mention that the cases p = 2 and
p = 3 have already been handled in [13] and [7], respectively, and that the cases
p = 5 and p = 7 have been settled independently by Holloway.

The proof given here is made possible by a new method for constructing derived
equivalences due to Rickard (section 6 of [9]). We also rely heavily on calculations
of cohomology in Carlson’s paper [4].

We will be dealing with the following categories associated to a finite-dimensional
K-algebra Λ: mod(Λ), the category of finitely generated Λ-modules; stmod(Λ), the
stable category of finitely generated Λ-modules (in which the objects are the same
as in mod(Λ) and the morphisms are Λ-homomorphisms modulo those which fac-
tor through projective modules); and Db(mod(Λ)), the derived category of bounded
complexes of finitely generated Λ-modules. Viewing a module as a complex concen-
trated in degree zero defines a fully faithful functor from mod(Λ) to Db(mod(Λ));
we will often identify a Λ-module with its image in Db(mod(Λ)).

If Λ is a symmetric algebra (e.g. a block of a finite group algebra), then stmod(Λ)
is a triangulated category and may be identified with a quotient of Db(mod(Λ)) in
the following way [10]: the full subcategory P of Db(mod(Λ)) consisting of objects
isomorphic to bounded complexes of projective modules is a thick subcategory,
and the composition of the embedding mod(Λ)→ Db(mod(Λ)) and the projection
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Db(mod(Λ)) → Db(mod(Λ))/P factors through the functor mod(Λ) → stmod(Λ);
the resulting functor stmod(Λ)→ Db(mod(Λ))/P is an equivalence of triangulated
categories. We say that two objects of Db(mod(Λ)) are stably isomorphic if they
are isomorphic when viewed as objects of the quotient category Db(mod(Λ))/P .
For example, two corners of a distinguished triangle in Db(mod(Λ)) are stably
isomorphic if the third corner of the triangle lies in P .

If Λ and Γ are symmetric algebras we say they are Morita equivalent if their
module categories are equivalent, stably equivalent if their stable categories are
equivalent (as triangulated categories), and derived equivalent if their derived cate-
gories are equivalent (as triangulated categories). A stable equivalence stmod(Λ)→
stmod(Γ) is of Morita type if it is induced by an exact functor between the corre-
sponding module categories.

If we would like to prove that Λ and Γ are derived equivalent, one way to proceed
is to find a tilting complex T for Λ (an object of P satisfying certain conditions) and
show that Γ is isomorphic to the endomorphism ring of T ; this is part of Rickard’s
Morita theory for derived categories [11]. This approach was used for example by
Rickard to prove that Conjecture 1 holds for groups with cyclic Sylow p-subgroups
[10]. But this may not work well in more complicated cases: even if we have
constructed an appropriate tilting complex T , it may be very difficult to calculate
its endomorphism ring. Furthermore, we may not even know the structure of Γ
explicitly. Okuyama used a theorem of Linckelmann [6] to develop a way around
these problems in certain situations where one already has a stable equivalence of
Morita type between the algebras Λ and Γ; he was then able to verify Conjecture 1 in
a number of cases [7]. Partly in order to exploit Okuyama’s idea, Rickard extended
his theory, proving the following theorem.

Theorem 2 (Rickard [9]). Suppose Γ is a symmetric finite-dimensional K-algebra
and let X1, . . . , Xr be objects of Db(mod(Γ)) which generate Db(mod(Γ)) as a tri-
angulated category and such that, given n ≤ 0, the space

Hom(Xi, Xj [n])

is zero unless i = j and n = 0, in which case it is one-dimensional. Then there
exist a K-algebra Γ′ and an equivalence

Db(mod(Γ))→ Db(mod(Γ′))

sending X1, . . . , Xr to the simple Γ′-modules.

The application, explained by Rickard in [9], which makes use of Okuyama’s idea
is stated here as a corollary.

Corollary (Rickard). Suppose Λ and Γ are finite-dimensional K-algebras, with Γ
symmetric, and suppose there is a functor F : mod(Λ)→ mod(Γ) inducing a stable
equivalence. Let S1, . . . , Sr be the simple Λ-modules, and let X1, . . . , Xr be objects
of Db(mod(Γ)) satisfying the conditions of Theorem 2 and such that F(Si) and Xi

are stably isomorphic (for i = 1, . . . , r). Then Λ and Γ are derived equivalent.

Proof. By Theorem 2, we have aK-algebra Γ′ and an equivalence G : Db(mod(Γ))→
Db(mod(Γ′)) sending X1, . . . , Xr to the simple Γ′-modules. Composing the stable
equivalence stmod(Γ) → stmod(Γ′) induced by G (see Corollary 5.5 of [12]) with
the equivalence stmod(Λ)→ stmod(Γ) induced by F yields a stable equivalence of
Morita type stmod(Λ) → stmod(Γ′) sending the simple Λ-modules to the simple
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Γ′-modules. Thus, by Theorem 2.1 of [6], Λ and Γ′ are Morita equivalent, and it
follows that Λ and Γ are derived equivalent.

We now turn to the example under consideration. Let G be the group SL2(p2),
where we now assume that p is odd. We will follow closely the notation and meth-
ods of [4]. Let F be the field with p2 elements and let α be a generator of the
multiplicative group F ∗. In G let P be the subgroup of upper unipotent matrices
and let y be the diagonal matrix with diagonal entries α in the first row and α−1

in the second row. Then P is an elementary abelian p-group of order p2 and is a
Sylow p-subgroup of G. The normalizer of P in G is H = 〈y〉P .

Let σ be the Frobenius automorphism given by σ(β) = βp for all β ∈ F . The sim-
ple KG-modules are described as follows. Let V1 be the standard two-dimensional
(left) KG-module and let V2 = σ(V1). For i = 1, 2 and 0 ≤ t ≤ p−1, let V (t)

i be the
t-th symmetric power of Vi. Let b = (b1, b2) be a pair of integers with 0 ≤ bi ≤ p−1,
and let

Mb = V
(b1)
1 ⊗ V (b2)

2 .

Each simple module is isomorphic to Mb for a unique b. For example, M0,0 is
the trivial module and Mp−1,p−1 is the Steinberg module, which is simple and
projective. Mb lies in the principal block if and only if b ∈ I, where

I = {b : 0 ≤ bi ≤ p− 1, b 6= (p− 1, p− 1), and b1 + b2 is even}.

Note also that σ(Mb1,b2) is isomorphic to Mb2,b1 .
For any integer j, let Uj be the one-dimensional KH-module on which y acts by

multiplication by αj . Note that Uj only depends on j modulo p2 − 1. Each simple
KH-module is isomorphic to Uj for some j, and Uj lies in the principal block if
and only if j is even. The Frobenius automorphism σ preserves H , so it acts on
KH-modules as well: σ(Uj) is isomorphic to Upj .

Regarded as a KH-module, Mb has composition factors

{Um1+pm2 : −bi ≤ mi ≤ bi and mi ≡ bi mod 2},

counted with multiplicities, and it has a unique simple quotient, isomorphic to
U−b1−pb2 . Note that Uj ⊗ Mb lies in the principal block of KH if and only if
j+ b1 + b2 is even. In particular, Mb lies in the principal block of KH for all b ∈ I.

Let A and B be the principal blocks of KG and KH , respectively. Because the
Sylow subgroup P is a trivial intersection subgroup of G, restriction from A to
B induces a stable equivalence (see, e.g., Chapter 10 of [1]). Thus the following
result, which will be proved in the course of this paper, together with the Corollary
to Theorem 2 implies that Conjecture 1 is true for the group G = SL2(p2).

Theorem 3. There exist objects Zb in Db(mod(B)) indexed by b ∈ I such that

(1) for all b ∈ I, we have that Zb and Mb are stably isomorphic;
(2) for all b, c ∈ I and all n ≤ 0, the space

Hom(Zb, Zc[n])

is zero unless b = c and n = 0, in which case it is one-dimensional;
(3) the objects Zb generate Db(mod(B)) as a triangulated category.

Corollary. A and B are derived equivalent.
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Remark. For blocks of group algebras, there is an important strengthening of the
notion of derived equivalence, which is now usually called splendid Rickard equiv-
alence. This idea (at least for principal blocks) was introduced and argued for in
[13], where it was conjectured that in the situation of Broué’s conjecture, there
should be not only a derived equivalence but a splendid Rickard equivalence.

Carlson and Rouquier have proved that in certain situations one can deduce the
existence of a splendid Rickard equivalence from that of a derived equivalence. In
this paper we are in such a situation: as H/CG(P ) is a cyclic p′-group (of order
(p2 − 1)/2) acting freely on P , Corollary 4.4 of [5] applies, and we conclude that A
and B are splendidly Rickard equivalent.

2. An example: p = 5

In this section we describe the objects Zb in the case p = 5. We will not use this
explicit description to give a proof of Theorem 3, but we hope that familiarity with
the Zb in this case will leave the reader better prepared to tackle the general case.
The reader may also wish to make a comparison with the case p = 3 (a complete
exposition is given in section 6 of [9]), but it is not complicated enough to illustrate
some features of the construction given in the next section. For simplicity’s sake, we
will write K, 2, 4, . . . , 22 for the simple modules of B in place of U0, U2, U4, . . . , U22.
The restrictions to B of the 12 simple modules of A are described by the following
diagrams (in which the rows are Loewy layers).

M0,0 = K, M2,0 =
22
K
2
, M0,2 =

14
K
10
, M1,1 =

18
20 4

6
,

M4,0 =

20
22
K
2
4

, M0,4 =

4
14
K
10
20

,

M4,2 =

10
12 20

14 22 6
16 K 8

18 2 10
4 12

14

, M2,4 =

2
4 12

6 14 22
16 K 8

2 10 18
12 20

22

,

M2,2 =

12
14 22

16 K 8
2 10

12

, M3,3 =

6
8 16

10 18 2
12 20 4 12

22 6 14
8 16

18

,



DERIVED EQUIVALENCE IN SL2(p2) 2901

M3,1 =

16
18 2

20 4
22 6

8

, M1,3 =

8
10 18

20 4
6 14

16

.

To begin with, we set Z0,0 = M0,0, Z2,0 = M2,0, Z0,2 = M0,2, Z1,1 = M1,1, Z4,0 =
Ω2M4,0[2], Z0,4 = Ω2M0,4[2], Z4,2 = Ω3M4,2[3], Z2,4 = Ω3M2,4[3], Z2,2 = ΩM2,2[1],
and Z3,3 = ΩM3,3[1]. It is easy to see that Zb and Mb are stably isomorphic in
each of these cases; for example, Ω2M4,0[2] is quasi-isomorphic to the complex

· · · → 0→ Q1 → Q0 →M4,0 → 0→ · · · ,

with M4,0 in degree 0, obtained by truncating a minimal projective resolution of
M4,0 (as a B-module), and this complex is stably isomorphic to M4,0. We have
a good handle on these Zb because we can explicitly describe the structure of the
Heller translates involved, for example,

Ω2M4,0 =

6
8
10
12
14

, ΩM2,2 =

18 18
20 4 10 4

6 14 22 6
16 K 8

2 10
12

.

The remaining two objects, Z3,1 and Z1,3, are more difficult to describe because
each has nonzero homology in more than one degree (this does not happen in the
case p = 3). Consider ΩM3,1; its structure is given by the diagram

12
14 22

K 16 K 8
10 18 2 10

20 4 12
6 14

16

.

Let Q→ ΩM3,1 be a projective cover of ΩM3,1. Then Q is isomorphic to the direct
sum of a projective cover of K and a projective cover of 12. Define Z3,1 to be the
complex

· · · → 0→ Q′ → ΩM3,1 → 0→ · · · ,

with ΩM3,1 in degree −1, where Q′ → ΩM3,1 is the restriction of Q → ΩM3,1

to a submodule isomorphic to a projective cover of 12. Clearly Z3,1 is stably
isomorphic to ΩM3,1[1], and, reasoning as above, we see that ΩM3,1[1] is in turn
stably isomorphic to M3,1.

To complete our description of the objects Zb, we apply the Frobenius automor-
phism to Z3,1 to get Z1,3.

Let us now take a closer look at Z3,1. Its degree −1 homology is isomorphic
to U5 ⊗ M0,1, a nonsplit extension of K by 10, and its degree −2 homology is
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isomorphic to U3 ⊗M4,1, the structure of which is described by the diagram

18
20 4

22 6
K 8

2 10
12

We therefore have an exact sequence

0→ U3 ⊗M4,1[2]→ Z3,1 → U5 ⊗M0,1[1]→ 0

of complexes of B-modules. Consequently there exists a distinguished triangle

U5 ⊗M0,1 → U3 ⊗M4,1[2]→ Z3,1 →
in Db(mod(B)). This description of Z3,1 as one corner of a distinguished triangle
in which the other two corners are just shifts of modules will be important in
understanding the general construction which will be presented in the next section.

3. Construction of complexes

We now turn to the construction of the objects Zb in the general case (p any odd
prime). We begin with a few technical lemmas.

Lemma 4. Suppose i is 1 or 2, and suppose l and t are integers with 0 ≤ t < p−1.
Let j = l + pi−1(p + 1 + t) and j′ = l + pi−1(p − 1 − t). Then any non-zero
KH-homomorphism from Uj ⊗ V (p−1)

i to Uj′ ⊗ V (p−1)
i has cokernel isomorphic to

Ul ⊗ V (t)
i .

Proof. By Lemma 2.1 of [4], as a KH-module V
(p−1)
i is uniserial with pairwise

non-isomorphic composition factors. The same is true of the tensor product of any
simple KH-module with V

(p−1)
i . Thus the space of KH-homomorphisms between

any two such modules is at most one-dimensional. By Lemma 2.2 of [4], Ul ⊗ V (t)
i

is isomorphic to the cokernel of some non-zero homomorphism from Uj ⊗V (p−1)
i to

Uj′ ⊗ V (p−1)
i , and hence is isomorphic to the cokernel of any such homomorphism.

Lemma 5. Suppose t is a non-negative integer less than p− 1 and suppose h is a
positive integer. If h is even, then there is a distinguished triangle

Y −→Mp−1,t −→ Uh ⊗Mp−1,t[h] −→
in Db(mod(KH)), and if h is odd, then there is a distinguished triangle

Y −→Mp−1,t −→ Uh ⊗Mp−1,p−2−t[h] −→
in Db(mod(KH)), where in both cases Y is a bounded complex of projective modules
and Y −i = 0 for i ≥ h.

Proof. By Lemma 2.2 of [4] , there exists an exact sequence

. . . −→ X−2 δ−2

−−−→ X−1 δ−1

−−−→ X0 ε−−→ V
(t)

2 ,

where for s ≥ 0,

X−2s = Up(p−1−t+2ps) ⊗ V (p−1)
2 and X−(2s+1) = Up(p+1+t+2ps) ⊗ V (p−1)

2 .



DERIVED EQUIVALENCE IN SL2(p2) 2903

Let C be the kernel of δ−(h−1). Then

· · · // 0 //

��

X−(h−1) // · · · // X0 // 0 //

��

· · ·

· · · // 0 //

��

C // X−(h−1)

��

// · · · // X0 // 0 // · · ·

· · · // 0 // C // 0 // · · ·

is a short exact sequence of bounded complexes of KH-modules, and the middle
term is quasi-isomorphic to V

(t)
2 . After tensoring this sequence with the module

V
(p−1)
1 , the middle term is quasi-isomorphic to Mp−1,t, so in the derived category

we have a distinguished triangle

Y −→Mp−1,t −→ V
(p−1)

1 ⊗ C[h] −→,

where Y is a bounded complex of projective modules (because V (p−1)
1 ⊗ V (p−1)

2 is
projective) and Y −i = 0 for i ≥ h.
C is isomorphic to the cokernel of δ−(h+1) : X−(h+1) −→ X−h. If h is even, then

X−(h+1) = Uj ⊗ V (p−1)
2 and X−h = Uj′ ⊗ V (p−1)

2 ,

where j = p(p+1+ t+ph) and j′ = p(p−1− t+ph). Writing j = p2h+p(p+1+ t)
and j′ = p2h+ p(p− 1− t), and noting that Up2h = Uh, we see by Lemma 4 that C
is isomorphic to Uh ⊗ V (t)

2 . Thus the last term in the triangle above is isomorphic
to Uh ⊗Mp−1,t[h].

If on the other hand h is odd, then X−(h+1) and X−h are as above, but with
j = p(p − 1 − t + p(h + 1)) and j′ = p(p + 1 + t + p(h − 1)). We may rewrite
j = p2h + p(p + 1 + (p − 2 − t)) and j′ = p2h + p(p − 1 − (p − 2 − t)), so by
Lemma 4, C is isomorphic to Uh ⊗ V (p−2−t)

2 . Thus the last term in the triangle
above is isomorphic to Uh ⊗Mp−1,p−2−t[h].

Lemma 6. Suppose b1 and b2 are non-negative integers less than p−1. Then there
is an exact sequence of KH-modules

0 −→ Up ⊗Mp−2−b1,b2 −→ Up−1−b1 ⊗Mp−1,b2 −→Mb −→ 0.

Proof. By Lemma 2.1 of [4], there is an exact sequence

Uj ⊗ V (p−1)
1 −→ Uj′ ⊗ V (p−1)

1 −→ Up−1−b1 ⊗ V
(p−1)

1 −→ V
(b1)

1 −→ 0,

where j = p− 1− b1 + 2p and j′ = p+ 1 + b1. Since j = p+ (p+ 1 + (p− 2− b1))
and j′ = p+ (p− 1 − (p− 2 − b1)), the cokernel of the first homomorphism in the
sequence is isomorphic to Up ⊗ V (p−2−b1)

1 , by Lemma 4. Thus there is an exact
sequence

0 −→ Up ⊗ V (p−2−b1)
1 −→ Up−1−b1 ⊗ V

(p−1)
1 −→ V

(b1)
1 −→ 0.

Tensoring this with V
(b2)

2 gives the desired exact sequence.
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Now we construct the complexes Zb and show that the first assertion of Theo-
rem 3 holds. We begin by defining some subsets of the index set I. Let

I< = {b ∈ I : b1 + b2 < p− 1},
Ip−1 = {b ∈ I : b1 = p− 1 or b2 = p− 1},
I≥ = {b ∈ I : b1 + b2 ≥ p− 1, b1 6= p− 1, and b2 6= p− 1}.

I is the disjoint union of I<, Ip−1, and I≥. Given b ∈ I, we define Zb as follows:

• b ∈ I<: In this case simply define Zb = Mb. The condition that Zb and Mb

are stably isomorphic is trivially satisfied.
• b ∈ Ip−1 and b1 = p− 1: If b2 < (p− 1)/2, define

Zp−1,b2 = Ub2+2 ⊗Mp−1,b2 [b2 + 2];

and if b2 ≥ (p− 1)/2, define

Zp−1,b2 = Up−b2 ⊗Mp−1,p−2−b2 [p− b2].

Because b ∈ I, we have that b2 is even, and thus by lemma 5, Zp−1,b2 and
Mp−1,b2 are stably isomorphic. We remark that as Zp−1,b2 is concentrated
in a single degree, it is nothing but a shift of a certain Heller translate of
Mp−1,b2 ; for example, if b2 < (p− 1)/2, then

Zp−1,b2 = Ωb2+2Mp−1,b2 [b2 + 2].

Note that the set of complexes constructed here may be written collectively
as

{Us+2 ⊗Mp−1,s[s+ 2] : 0 ≤ s ≤ (p− 3)/2}.

• b ∈ Ip−1 and b2 = p − 1: Define Zb1,p−1 = σ(Zp−1,b1), using the previous
case. It is clear that Zb1,p−1 and Mb1,p−1 are stably isomorphic. The set of
complexes constructed here may be written collectively as

{Up(s+2) ⊗Ms,p−1[s+ 2] : 0 ≤ s ≤ (p− 3)/2}.

• b ∈ I≥ and b2 ≤ b1: By lemma 6, there is a distinguished triangle

Up ⊗Mp−2−b1,b2
f−−→ Up−1−b1 ⊗Mp−1,b2 −→Mb −→

in Db(mod(B)).
Let w = min{b2, p − 2 − b2}. Applying lemma 5 with t = b2 and h =

w+b1−p+3 (noting that h is even when w = b2 and odd when w = p−2−b2)
and then tensoring with Up−1−b1 , we obtain a distinguished triangle

Y −→ Up−1−b1 ⊗Mp−1,b2
g−−→ Uw+2 ⊗Mp−1,w[h] −→,

where Y is a bounded complex of projective modules and Y −i = 0 for i ≥ h.
Define Zb to be the third object in a distinguished triangle which contains

the composite of f and g:

Up ⊗Mp−2−b1,b2
g◦f−−−→ Uw+2 ⊗Mp−1,w[h] −→ Zb −→ .
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Then by the octahedral axiom there is a commutative diagram

Up ⊗Mp−2−b1,b2 // Up−1−b1 ⊗Mp−1,b2
//

��

Mb
//

��
Up ⊗Mp−2−b1,b2 // Uw+2 ⊗Mp−1,w[h] //

��

Zb //

��
Y [1]

��

Y [1]

��

where all the rows and columns are distinguished triangles. Since Y [1] is a
bounded complex of projective modules, the last column shows that Zb and
Mb are stably isomorphic.
• b ∈ I≥ and b1 < b2: Define Zb1,b2 = σ(Zb2,b1). Again it is clear that Zb and
Mb are stably isomorphic.

We wish to record for future reference some details in the next-to-last construc-
tion above.

Lemma 7. Suppose b ∈ I≥ and b2 ≤ b1. Then there exist distinguished triangles

Up ⊗Mp−2−b1,b2 −→ Uw+2 ⊗Mp−1,w[h] −→ Zb −→
and

Y −→Mb −→ Zb −→,
where w = min{b2, p− 2− b2}, h = w + b1 − p+ 3, and Y is a bounded complex of
projective modules such that Y −i = 0 for i ≥ h.

Remark. It is actually true that there is a derived equivalence of A and B which
respects the Frobenius actions on Db(mod(A)) and Db(mod(B)). To get this as a
corollary of Theorem 3, we need an additional condition on the objects Zb: that
σ(Zb1,b2) is isomorphic to Zb2,b1 for all b = (b1, b2) ∈ I. This is clear in our
construction of the Zb’s except when b ∈ I≥ and b1 = b2. In this case, h = 1 in the
first distinguished triangle in Lemma 7, and then from the associated long exact
sequence of homology groups we see that Zb has homology concentrated in degree
−1. As Zb and Mb are stably isomorphic, we may therefore take Zb to be Ω(Mb)[1],
which is stable under the Frobenius action.

4. Homomorphisms

We prepare for a proof of the second assertion of Theorem 3 by calculating some
cohomology groups of B-modules. We will need a version of Theorem 2.6 of [4].

Theorem 8 (Carlson). Suppose b, c ∈ I, and suppose j, j′, and r are integers with
r non-negative. Then the dimension of ExtrKH(Uj ⊗Mb, Uj′ ⊗Mc) is equal to the
number of triples (e, f, k) (where e = (e1, e2), f = (f1, f2), and k = (k1, k2) are
pairs of non-negative integers) satisfying the following conditions:

(1) 2e1 + 2e2 + f1 + f2 = r;
(2) for every i, fi is either 0 or 1;
(3) ei = fi = 0 whenever bi or ci is p− 1;
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(4) if fi = 0, then

max{0, ci − bi} ≤ ki ≤
{
ci if ei = 0,
min{ci, p− 2− bi} if ei > 0,

while if fi = 1 then

max{0, bi + ci + 2− p} ≤ ki ≤ min{bi, ci}.
(5) a(e, f, k) ≡ 0 mod (p2 − 1) where

a(e, f, k) = j′ − j − 2(pe1 + e2) +
2∑
i=1

pi−1(bi − ci + 2ki − fi(2bi + 2)).

Proof. The proof given by Carlson can be adapted with little alteration. The
restrictions of Uj and U ′j to P are trivial, so ExtrKP (Uj⊗Mb, Uj′⊗Mc) has K-basis
{θ(e, f, k)} indexed on triples (e, f, k) which satisfy conditions (1)-(4). A spectral
sequence argument identifies ExtrKH(Uj ⊗Mb, Uj′ ⊗Mc) with the K(H/P )-fixed
points of ExtrKP (Uj⊗Mb, Uj′⊗Mc). Because y acts on ExtrKP (Uj⊗Mb, Uj′⊗Mc) by
scaling the basis vector θ(e, f, k) by αa(e,f,k), a basis for ExtrKH(Uj⊗Mb, Uj′ ⊗Mc)
is indexed by triples (e, f, k) which in addition satisfy condition (5).

We will only provide proofs for a few parts of the following lemma, to give an
idea of the type of arguments involved; similar reasoning can be used to prove the
others.

Lemma 9. Suppose b, c ∈ I< and b′, c′ ∈ I≥ with b′2 ≤ b′1 and c′2 ≤ c′1; and
suppose s and t are non-negative integers less than or equal to (p − 3)/2. Let
w = min{b′2, p− 2− b′2} and h = w + b′1 − p+ 3. Then:

(1) HomB(Mb,Mc) = 0 if b 6= c and is one-dimensional if b = c.
(2) ExtrB(Mb, Up ⊗Mp−2−c′1,c′2) = 0 for r = 0 or r = 1.
(3) ExtrB(Us+2⊗Mp−1,s, Ut+2⊗Mp−1,t) = 0 whenever r ≤ t− s unless s = t and

r = 0, in which case it is one-dimensional.
(4) ExtrB(Up(s+2) ⊗Ms,p−1, Ut+2 ⊗Mp−1,t) = 0 whenever r ≤ t− s.
(5) ExtrB(Mb, Us+2 ⊗Mp−1,s) = 0 whenever r ≤ s+ 2.
(6) ExtrB(Mb′ , Us+2 ⊗Mp−1,s) = 0 whenever h < r ≤ s+ 2.
(7) ExtrB(Mb′ , Up(s+2) ⊗Ms,p−1) = 0 whenever h < r ≤ s+ 2.
(8) ExtrB(Up⊗Mp−2−b′1,b′2 , Us+2⊗Mp−1,s) = 0 whenever r ≤ min{h, s+2} unless

s = w and r = h in which case it is one-dimensional.
(9) ExtrB(Up ⊗Mp−2−b′1,b′2 , Up(s+2) ⊗Ms,p−1) = 0 whenever r ≤ min{h, s+ 2}

(10) HomB(Us+2 ⊗Mp−1,s, Up ⊗Mp−2−c′1,c′2) = 0.
(11) HomB(U1 ⊗Mb′1,p−2−b′2 , Up ⊗Mp−2−c′1,c′2) = 0.
(12) HomB(Up⊗Mp−2−b′1,b′2 , Up⊗Mp−2−c′1,c′2)=0 if b′ 6=c′, and is one-dimensional

if b′ = c′.
(13) HomB(Up(s+2) ⊗Ms,p−1, Up ⊗Mp−2−c′1,c′2) = 0.

Proof. (1) Suppose that (e, f, k) is a triple satisfying the conditions in Theorem 8
with r = 0 and j = j′ = 0. Condition (1) implies that e1 = e2 = f1 = f2 = 0.
Let γi = bi−ci+2ki. Then by condition (4) we have 0 = bi−ci+(0+ci−bi) ≤
γi ≤ bi − ci + 2ci = bi + ci, where the first inequality is an equality if and
only if bi = ci and ki = 0. We have γ1 + γ2 ≤ b1 + c1 + b2 + c2 ≤ 2(p − 2),
so either γ1 ≤ p− 2 or γ2 ≤ p− 2. Suppose the latter. In order for condition
(5) to be satisfied we need γ1 + pγ2 ≡ 0 mod (p2 − 1). But 0 ≤ γ1 + pγ2 ≤
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2(p−2) +p(p−2) < p2−1, so we must have γ1 +pγ2 = 0, which implies that
b1 = c1, b2 = c2, and k1 = k2 = 0.

If γ1 ≤ p− 2, we note that γ2 + pγ1 ≡ p(γ1 + pγ2) mod (p2 − 1) and that
p(γ1 + pγ2) ≡ 0 mod (p2− 1) if and only if γ1 + pγ2 ≡ 0 mod (p2− 1). Thus
we may use the argument above, interchanging the roles of γ1 and γ2.

(3) Suppose that (e, f, k) is a triple satisfying the conditions in Theorem 8 with
j = s+ 2, b = (p− 1, s), j′ = t+ 2, and c = (p− 1, t). Because b1 = p− 1, we
have e1 = f1 = 0, by condition (3). We divide the argument into two cases
according to the parity of r.

Suppose that r is even. Then by condition (1), we have r = 2e2 +f2, which
implies that f2 is even and therefore zero, by condition (2). Condition (4)
tells us that 0 ≤ k1 ≤ p−1 and t−s ≤ k2 ≤ t, and that t−s = k2 if and only if
s = t and k2 = 0. We have a = a(e, f, k) = (t−s−r)+2k1 +p(s−t+2k2) ≡ 0
mod (p2 − 1) by condition (5). Now a ≥ 0 + 2 · 0 + p(s − t + 2(t − s)) ≥ 0,
with equalities throughout if and only if s = t and r = e2 = k1 = k2 = 0.
This is in fact the only possibility, because a ≤ t + 2(p − 1) + p(s + t) ≤
(p− 3) + 2(p− 1) + p(p− 3) < p2 − 1.

Suppose on the other hand that r is odd. Then r = 2e2 + f2 implies that
f2 is odd and therefore that f2 = 1. By condition (4), we have 0 ≤ k1 ≤ p− 1
and 0 ≤ k2 ≤ s. Let γ = (t − s − r) + 2k1 + p(p − 2 − s − t + 2k2). Then
γ ≡ a(e, f, k) mod (p2−1), so by condition (5) we have γ ≡ 0 mod (p2−1).
Now γ ≥ 0 + 2 · 0 + p(p− 2− (p− 3) + 2 · 0) = p > 0, and, because r is odd,
s− t ≤ −1, so γ ≤ t+2(p−1)+p(p−2+s− t) ≤ (p−3)+2(p−1)+p(p−3) <
p2 − 1; we have arrived at a contradiction.

(5) Suppose that (e, f, k) is a triple satisfying the conditions in Theorem 8 with
j = 0, j = s+ 2, and c = (p− 1, s). Because c1 = p− 1, we have e1 = f1 = 0,
by condition (3). We divide the argument into two cases according to the
parity of r.

Suppose r is even. Then r = 2e2 and f2 = 0 by conditions (1) and (2).
Note that h ≥ 0. Thus r > 0 and e2 > 0 as well. By condition (4) we have
p − 1 − b1 ≤ k1 ≤ p − 1 and max{0, s− b2} ≤ k2 ≤ min{s, p− 2 − b2}, and
by condition (5) we have a = a(e, f, k) = (s + 2 − r) + b1 − (p − 1) + 2k1 +
p(b2 − s+ 2k2) ≡ 0 mod (p2 − 1). First note that

a ≥ 0 + b1 − (p− 1) + 2(p− 1− b1)

+ p(b2 − s+ 0 + (s− b2)) = (p− 1)− b1 > 0,

so we must have a ≥ p2 − 1. Now suppose that either b2 + s ≤ p − 3
or b2 − s + 2(p − 2 − b2) ≤ p − 3. Then b2 − s + 2k2 ≤ p − 3, so a ≤
(p−3)+2+(p−2)−(p−1)+2(p−1)+p(p−3)< p2−1, giving a contradiction.
Hence we must have b2 + s ≥ p− 2 and b2 − s+ 2(p− 2− b2) ≥ p− 2. These
two inequalities together imply that b2 + s = p − 2. We then also have
b1 ≤ p − 2 − b2 = s. Thus a ≤ s + 2 + s − (p − 1) + 2(p − 1) + p(b2 + s) =
2s+ 1− p+ p2 ≤ (p− 3) + 1− p+ p2 < p2− 1, which is again a contradiction.

Suppose instead that r is odd. Then r = 2e2 + 1 and f2 = 1 by conditions
(1) and (2). By condition (4) we have p− 1− b1 ≤ k1 ≤ p− 1 and

max{0, b2 + s+ 2− p} ≤ k2 ≤ min{b2, s}.
Let γ = (s + 2 − r) + b1 − (p − 1) + 2k1 + p(−b2 − s − 2 + p + 2k2). Then
γ ≡ a(e, f, k) mod (p2−1), so by condition (5) we have γ ≡ 0 mod (p2−1).
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Now γ ≥ 0 + (p − 1) − b1 + p · 0 > 0, so we must have γ ≥ p2 − 1. If
b2 = s, then b1 + s = b1 + b2 ≤ p − 2, so γ ≤ b1 + s + 2 − r + (p − 1) +
p(p − 2) ≤ (p − 2) + 2 − 1 + (p − 1) + p(p − 2) < p2 − 1, which gives a
contradiction. So we may assume that b2 6= s. Then 2k2 ≤ b2 + s − 1 and
γ ≤ (p − 3) + 2 + (p − 2) + (p − 1) + p(p − 3) < p2 − 1, which is also a
contradiction.

We now prove the second assertion of Theorem 3. Given b, c ∈ I and n ≤ 0, we
aim to show that the space Hom(Zb, Zc[n]) is zero unless b = c and n = 0, in which
case it is one-dimensional. Recall that if M and N are B-modules then

HomDb(mod(B))(M [i], N [j]) =

{
0 if j < i,

Extj−iB (M,N) if j ≥ i.

If b ∈ I< and c ∈ I<, then Zb is concentrated in degree zero and Zc[n] is
concentrated in degree −n. Hence if n < 0 then Hom(Zb, Zc[n]) = 0, and if n = 0
we may appeal to Lemma 9.1.

If b ∈ Ip−1 and c ∈ I<, then Zb is concentrated in some negative degree, while
Zc[n] is concentrated in degree −n ≥ 0.

Suppose b ∈ I≥ and c ∈ I<. We may assume that b2 ≤ b1, for if not we can apply
the Frobenius automorphism σ. By Lemma 7, there is a distinguished triangle

Up ⊗Mp−2−b1,b2 −→ Uw+2 ⊗Mp−1,w[h] −→ Zb −→,
where h > 0. Applying the functor Hom(−,Mc) to this triangle gives rise to a long
exact sequence, a segment of which is

Hom(Up ⊗Mp−2−b1,b2 ,Mc[n− 1]) −→ Hom(Zb,Mc[n])

−→ Hom(Uw+2 ⊗Mp−1,w[h],Mc[n]).

Because n − 1 < 0 and n < h, the first and third terms of this segment are zero;
thus the second term is zero as well.

If b ∈ I< and c ∈ Ip−1, then, applying σ if necessary, we may assume that
c1 = p− 1 and then use Lemma 9.5.

Suppose b ∈ Ip−1 and c ∈ Ip−1. We may assume that b1 = p− 1. If c1 = p− 1
we use Lemma 9.3, and if c2 = p− 1 we use Lemma 9.4.

Suppose b ∈ I≥ and c ∈ Ip−1. Applying σ if necessary, we may assume that
b2 ≤ b1. Suppose in addition that c1 = p− 1, so that Zc = Us+2 ⊗Mp−1,s[s + 2],
for some 0 ≤ s ≤ (p − 3)/2. Let w = min{b2, p − 2 − b2} and h = w + b1 − p + 3.
Note that 0 ≤ w ≤ (p− 3)/2. We divide the argument into three cases:
• s+ 2 + n < h: By Lemma 7 we have a distinguished triangle

Up ⊗Mp−2−b1,b2 −→ Uw+2 ⊗Mp−1,w[h] −→ Zb −→ .

Applying the functor Hom(−, Us+2⊗Mp−1,s[s+ 2]) to this triangle gives rise
to a long exact sequence, a segment of which is

Hom(Up ⊗Mp−2−b1,b2 , Us+2 ⊗Mp−1,s[s+ 2 + n− 1])

−→ Hom(Zb, Us+2 ⊗Mp−1,s[s+ 2 + n])

−→ Hom(Uw+2 ⊗Mp−1,w[h], Us+2 ⊗Mp−1,s[s+ 2 + n]).

The first term of this segment is zero by Lemma 9.8 because s+ 2 + n− 1 ≤
min{h, s+ 2}, and the third term is zero since s+ 2 + n < h; thus the second
term is zero as well.
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• s+ 2 + n = h: Arguing as in the previous case, we get an exact sequence

Hom(Up ⊗Mp−2−b1,b2 , Us+2 ⊗Mp−1,s[h− 1])

−→ Hom(Zb, Us+2 ⊗Mp−1,s[h])

−→ Hom(Uw+2 ⊗Mp−1,w[h], Us+2 ⊗Mp−1,s[h])

−→ Hom(Up ⊗Mp−2−b1,b2 , Us+2 ⊗Mp−1,s[h])

−→ Hom(Zb, Us+2 ⊗Mp−1,s[h+ 1]).

By Lemma 9.8, the first term is zero and the fourth term is zero unless s = w,
in which case it is one-dimensional. By Lemma 9.3, the third term is zero
unless s = w, in which case it is one-dimensional. The fifth term is zero by
the previous case. We conclude that the second term is zero, as desired.
• s+ 2 + n > h: By Lemma 7 we have a distinguished triangle

Y −→Mb −→ Zb −→,

where Y is a bounded complex of projective modules such that Y −i = 0 for
i ≥ h. Applying the functor Hom(−, Us+2 ⊗Mp−1,s[s + 2]) to this triangle
gives rise to a long exact sequence, a segment of which is

Hom(Y, Us+2 ⊗Mp−1,s[s+ 2 + n− 1])

−→ Hom(Zb, Us+2 ⊗Mp−1,s[s+ 2 + n])

−→ Hom(Mb, Us+2 ⊗Mp−1,s[s+ 2 + n]).

The first term is zero because Y is a bounded complex of projective modules,
Us+2 ⊗Mp−1,s[s+ 2 + n− 1] is concentrated in degree −(s+ 2 + n− 1), and
Y −(s+2+n−1) = 0. Since h < s+ 2 + n ≤ s+ 2, the third term is zero as well,
by Lemma 9.6. Thus we conclude that the second term is zero.

If instead c2 = p− 1, then an analogous argument works, using parts 9, 4, and 7 of
Lemma 9 in place of 8, 3, and 6.

We are now left with the case c ∈ I≥. As before, we may assume that c2 ≤ c1.
By Lemma 7, we have a distinguished triangle

Up ⊗Mp−2−c1,c2 −→ Uw+2 ⊗Mp−1,w[h] −→ Zc −→,

where w = min{c2, p− 2− c2} and h = w+ c1− p+ 3. Note that 0 ≤ w ≤ (p− 3)/2
and 0 < h ≤ w + 1.

Suppose first that b ∈ I<. Applying the functor Hom(Mb,−) to the triangle
above gives rise to a long exact sequence, a segment of which is

Hom(Mb, Uw+2 ⊗Mp−1,w[h+ n]) −→ Hom(Mb, Zc[n])

−→ Hom(Mb, Up ⊗Mp−2−c1,c2 [n+ 1]).

The first term is zero by Lemma 9.5 and the third term is zero by Lemma 9.2;
hence the second term is zero, as desired.

Now suppose that b ∈ Ip−1. Suppose further that b1 = p − 1, so we have that
Zb = Us+2 ⊗ Mp−1,s[s + 2] for some 0 ≤ s ≤ (p − 3)/2. Applying the functor
Hom(Us+2⊗Mp−1,s,−) to the triangle above gives rise to a long exact sequence, a
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segment of which is

Hom(Us+2 ⊗Mp−1,s[s+ 2], Uw+2 ⊗Mp−1,w[h+ n])

−→ Hom(Us+2 ⊗Mp−1,s[s+ 2], Zc[n])

−→ Hom(Us+2 ⊗Mp−1,s[s+ 2], Up ⊗Mp−2−c1,c2 [n+ 1]).

The first term is zero by Lemma 9.3 because h+n−(s+2) ≤ (w+1)+n−(s+2) ≤
w−s, and the third term is zero because n+1 < t+2; thus the second term is zero,
as desired. If instead b2 = p − 1, an analogous argument which uses Lemma 9.4
works.

Finally, suppose that b ∈ I≥. Applying the functor Hom(Zb,−) to the triangle
above gives rise to a long exact sequence, a segment of which is

Hom(Zb, Uw+2 ⊗Mp−1,w[h+ n]) −→ Hom(Zb, Zc[n])

−→ Hom(Zb, Up ⊗Mp−2−c1,c2 [n+ 1])

−→ Hom(Zb, Uw+2 ⊗Mp−1,w[h+ n+ 1]).

The last term may be rewritten as

Hom(Zb, Uw+2 ⊗Mp−1,w[w + 2][h− (w + 1) + n]),

which we see is zero by noting that h − (w + 1) + n ≤ 0 and applying a previous
case (b ∈ I≥ and c ∈ Ip−1). The first term is zero by a similar argument. Hence
it suffices to show that Hom(Zb, Up ⊗Mp−2−c1,c2 [n + 1]) = 0 for all n ≤ 0 unless
n = 0 and b = c, in which case it is one-dimensional. Suppose now that b2 ≤ b1.
By Lemma 7, there is a distinguished triangle

Up ⊗Mp−2−b1,b2 −→ Uw+2 ⊗Mp−1,w[h] −→ Zb −→
where w = min{b2, p − 2 − b2} and h = w + b1 − p + 3. Applying the functor
Hom(−, Up ⊗ Mp−2−c1,c2) to this triangle gives rise to a long exact sequence, a
segment of which is

Hom(Uw+2 ⊗Mp−1,w[h], Up ⊗Mp−2−c1,c2 [n])

−→ Hom(Up ⊗Mp−2−b1,b2 , Up ⊗Mp−2−c1,c2 [n])

−→ Hom(Zb, Up ⊗Mp−2−c1,c2 [n+ 1])

−→ Hom(Uw+2 ⊗Mp−1,w[h], Up ⊗Mp−2−c1,c2 [n+ 1]).

If n < 0, then, remembering that h > 0, it is clear that the second and fourth
terms are zero, and thus that the third term is zero, as desired. Finally if n = 0,
then the first term is clearly zero, the fourth term is zero by Lemma 9.10, and by
Lemma 9.12 the second term is zero unless b = c, in which case it is one-dimensional.
It follows as desired that the third term is zero unless b = c, in which case it is
one-dimensional.

If instead b1 < b2, a similar argument using parts 11 and 13 of Lemma 9 works.

5. Generation

Our final task is to show that the last statement of Theorem 3 holds. We take Z
to be the full triangulated subcategory of Db(mod(B)) generated by the complexes
Zb.

Lemma 10. Z contains the following modules:
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(1) Mb, whenever b ∈ I<;
(2) Up ⊗Mp−2−b1,b2 , whenever b ∈ I≥ and b2 ≤ b1;
(3) U1 ⊗Mb1,p−2−b2 , whenever b ∈ I≥ and b1 ≤ b2;
(4) Up+1 ⊗Ms,s, whenever 0 ≤ s ≤ (p− 3)/2.

Proof. If b ∈ I<, then Mb = Zb is in Z, so part (1) is proved. If b ∈ I≥ and b2 ≤ b1,
then by Lemma 7 there is a distinguished triangle

Up ⊗Mp−2−b1,b2 −→ Uw+2 ⊗Mp−1,w[h] −→ Zb −→,
where 0 ≤ w ≤ (p − 3)/2. The last term is in Z and the second term is as well,
being a translate of Zc for some c ∈ Ip−1; hence the first term is in Z, which proves
part (2). Part (3) is proved similarly: apply σ to the triangle above.

Finally, we prove part (4). Applying part (2) with b1 = b2 = p− 2− s, we have
that Up⊗Ms,p−2−s is in Z. Next, we use Lemma 6 with b1 = s and b2 = p− 2− s.
Applying σ to the resulting exact sequence and then tensoring with Up, we get a
distinguished triangle

Up+1 ⊗Ms,s −→ Up(s+2) ⊗Ms,p−1 −→ Up ⊗Mp−2−s,s −→ .

We have just seen that the last term is in Z, and the second term is in Z because it
is a translate of Zc for some c ∈ Ip−1; hence the first term is in Z, as desired.

Let J be the set of pairs d = (d1, d2) of integers satisfying the following condi-
tions:

1. −(p− 1) < d1 + d2 ≤ p− 1;
2. d1 + d2 is even;
3. d1 and d2 are either both non-negative or both non-positive.

It is easy to see that for any even integer j there exists d ∈ J such that j ≡ d1 +pd2

modulo p2 − 1; this implies that any simple B-module is isomorphic to Ud1+pd2 for
some d ∈ J .

For d ∈ J , let f(d) = min{|d1|, |d2|}. Define a partial order � on J as follows:
if d = (d1, d2) and d′ = (d′1, d

′
2) are distinct elements of J , then set d ≺ d′ if and

only if one of the following conditions is met:
1. f(d) < f(d′);
2. f(d) = f(d′) and |d1 + d2| < |d′1 + d′2|;
3. f(d) = f(d′) and |d1 + d2| = |d′1 + d′2| and d1 and d2 are both non-negative.
To prove that the complexes Zb generate Db(mod(B)) as a triangulated category,

it suffices to show that every simple B-module is in Z. We shall do this by proving
that Ud1+pd2 is in Z for each d ∈ J , inducting on the partial order �. The only
element of J minimal with respect to � is (0, 0), and U0+p·0 = U0 = M(0,0) is in
Z, by Lemma 10.1, so we may assume that d ∈ J and d 6= (0, 0). The argument
divides into four cases:
• d1, d2 < 0: We have (−d1,−d2) ∈ I<, so by Lemma 10.1, Z contains
M−d1,−d2. The composition factors of M−d1,−d2 consist of the simple modules
Um1+pm2 , where (m1,m2) runs over pairs of integers satisfying di ≤ mi ≤ −di
and mi ≡ di mod 2. So in particular Ud1+pd2 is a composition factor of
M−d1,−d2. We will now show that every other composition factor of M−d1,−d2

is in Z; it will follow that Ud1+pd2 is in Z. To that end, let m be a pair
(m1,m2) of integers such that di ≤ mi ≤ −di and mi ≡ di mod 2 for
i = 1, 2, and m 6= (d1, d2). We aim to find an m′ = (m′1,m

′
2) in J such
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that m′1 + pm′2 = m1 + pm2 and m′ ≺ d, for then by induction we will have
that Um1+pm2 is in Z.

If m1 and m2 are either both non-negative or both non-positive, then
m ∈ J . Moreover, f(m) ≤ f(d) and |m1 + m2| ≤ |d1 + d2|, with equalities
occurring only if m1 = −d1 and m2 = −d2. Hence m ≺ d.

If m1 is positive, m2 is negative, and |m1| > |m2|, let m′1 = m1 − p and
m′2 = m2 + 1. Then m′1 + pm′2 = m1 + pm2; in addition m′1 ≤ 0, m′2 ≤ 0, and
m′1 +m′2 = m1 +m2−(p−1) > −(p−1), so m′ = (m′1,m

′
2) ∈ J . Furthermore

f(m′) ≤ |m2 + 1| < |m2| ≤ f(d), so m′ ≺ d.
If m1 is positive, m2 is negative, and |m1| ≤ |m2|, let m′1 = m1 − 1 and

m′2 = m2 + p. Then m′1 + pm′2 = m1 + pm2; in addition m′1 ≥ 0, m′2 ≥ 0, and
m′1 + m′2 = m1 + m2 + p − 1 ≤ p − 1, so m′ = (m′1,m

′
2) ∈ J . Furthermore

f(m′) ≤ |m1 − 1| < |m1| ≤ f(d), so m′ ≺ d.
If m1 is negative and m2 is positive, we split the argument into the cases

|m1| ≥ |m2| and |m1| < |m2|. These may be handled as above.
• d1, d2 ≥ 0 and d1 = d2 > 0: Let s = d1 − 1. Then d1 + d2 ≤ p − 1 implies

that 0 ≤ s ≤ (p − 3)/2. By Lemma 10.4, Z contains Up+1 ⊗ Ms,s. The
composition factors of Up+1 ⊗Ms,s consist of the simple modules Um1+pm2 ,
where (m1,m2) runs over pairs of integers satisfying −s+ 1 ≤ mi ≤ s+ 1 and
mi ≡ s+ 1 for i = 1, 2. Thus Ud1+pd2 is a composition factor of Up+1 ⊗Ms,s,
and by an argument similar to that for the previous case, one can show that
every other composition factor is in Z.
• d1, d2 ≥ 0 and d1 < d2: By Lemma 10.2 with b1 = p− 2− d1 and b2 = d2− 1,

we have that Up ⊗Md1,d2−1 is in Z. One can show, as above, that Um1+pm2

is a composition factor of this module, while any other composition factor is
in Z.
• d1, d2 ≥ 0 and d1 > d2: Using Lemma 10.3, one can show that Z contains
U1 ⊗Md1−1,d2 , and then argue as in previous cases.
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