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SPECTRAL LIFTING IN BANACH ALGEBRAS AND
INTERPOLATION IN SEVERAL VARIABLES

GELU POPESCU

Abstract. Let A be a unital Banach algebra and let J be a closed two-sided
ideal of A. We prove that if any invertible element of A/J has an invertible
lifting in A, then the quotient homomorphism Φ : A → A/J is a spectral
interpolant. This result is used to obtain a noncommutative multivariable
analogue of the spectral commutant lifting theorem of Bercovici, Foiaş, and
Tannenbaum. This yields spectral versions of Sarason, Nevanlinna–Pick, and
Carathéodory type interpolation for F∞n ⊗̄B(K), the WOT-closed algebra gen-
erated by the spatial tensor product of the noncommutative analytic Toeplitz
algebra F∞n and B(K), the algebra of bounded operators on a finite dimen-
sional Hilbert space K. A spectral tangential commutant lifting theorem in
several variables is considered and used to obtain a spectral tangential version
of the Nevanlinna-Pick interpolation for F∞n ⊗̄B(K).

In particular, we obtain interpolation theorems for matrix-valued bounded
analytic functions on the open unit ball of Cn, in which one bounds the spectral
radius of the interpolant and not the norm.

1. Introduction and preliminaries

Let D denote the unit disc in the complex plane, let z1, . . . , zk ∈ D be given dis-
tinct points, and F1, . . . , Fk be complex m×m matrices. The classical Nevanlinna–
Pick problem [N], [P] consists in finding necessary and sufficient conditions for
the existence of an analytic m ×m matrix-valued function F (z) with F (zj) = Fj
(1 ≤ j ≤ k) and such that ‖F‖∞ ≤ 1.

Motivated by problems in control engineering, such as the design of feedback
control systems in the presence of parameter uncertainty, Bercovici, Foiaş, and
Tannenbaum proved in [BFT] a spectral generalization of the commutant lifting
theorem [SzF1], and obtained a spectral version of the Nevanlinna–Pick problem,
in which the infinity norm is replaced by

ρ(F ) := sup{‖F (z)‖sp : z ∈ D}
(‖A‖sp denotes the spectral radius of an operator A).

The tangential Nevanlinna–Pick problem considered by Fedcina [F] is to find
F ∈ H∞(D) ⊗ Cm with F (zj)uj = vj , j = 1, . . . , k, and ‖F‖∞ ≤ 1, where zj ∈ D
and uj , vj ∈ Cm are prescribed. The spectral tangential Nevanlinna–Pick interpo-
lation problem, considered by Bercovici and Foiaş [BF], is to find such an F for
which ρ(F ) < 1. This type of interpolation was also motivated by certain control
engineering applications.
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In this paper we find noncommutative multivariable analogues of the above-
mentioned results obtained by Bercovici, Foiaş, and Tannenbaum (see [BFT] and
[BF]) for the noncommutative analytic Toeplitz algebra F∞n . In particular, we
obtain interpolation results (see Corollary 3.7 and Corollary 4.3) for matrix-valued
bounded analytic functions on the open unit ball of Cn, in which one bounds the
spectral radius of the interpolant and not the norm.

We expect these results to play a role in multivariable control and systems theory,
as it does in the case n = 1. We mention the papers [BV] and [B] for recent results
in multivariable linear systems.

We need to recall some facts concerning the noncommutative analytic Toeplitz
algebra F∞n and its connection with the function theory on the open unit ball of Cn.
Let F 2(Hn) = C1⊕

⊕
m≥1H

⊗m
n be the full Fock space on n generators, where Hn

is an n-dimensional complex Hilbert space with orthonormal basis {e1, e2, . . . , en} if
n is finite, and {e1, e2, . . . } if n =∞. For each i = 1, 2, . . . , define the left creation
operator by Siξ := ei ⊗ ξ, ξ ∈ F 2(Hn).

We shall denote by P the set of all p ∈ F 2(Hn) which are finite sums of tensor
monomials. Define F∞n as the set of all g ∈ F 2(Hn) such that

‖g‖∞ := sup{‖g ⊗ p‖F 2(Hn) : p ∈ P , ‖p‖F 2(Hn) ≤ 1} <∞.

We denote by An the closure of P in (F∞n , ‖ · ‖∞). The Banach algebra F∞n (resp.
An) can be viewed as a noncommutative analogue of the Hardy space H∞(D) (resp.
disc algebra A(D)); when n = 1 they coincide.

In [Po7, Theorem 3.1] we proved that An is completely isometrically isomorphic
to the norm-closed algebra generated by any sequence V1, . . . , Vn of isometries with
V1V

∗
1 + · · ·+ VnV

∗
n ≤ I, and the identity. It follows from [Po5, Theorem 4.3] that

the noncommutative analytic Toeplitz algebra F∞n can be identified with the WOT-
closed algebra generated by the left creation operators S1, . . . Sn, and the identity.
The algebras F∞n and An were introduced by the author in [Po3] in connection
with a noncommutative von Neumann inequality, and have been studied in several
papers [Po2], [Po5], [Po6], [Po7], [Po9], [ArPo1], and recently in [DP1], [DP2],
[ArPo2], [DP3], and [Po8].

We established a strong connection between the algebra F∞n and the function
theory on the open unit ball Bn of Cn through the noncommutative von Neumann
inequality [Po3] (see also [Po5], [Po7], and [Po9]). In particular, we proved that
there is a completely contractive homomorphism

Φ : F∞n → H∞(Bn), f(S1, . . . , Sn) 7→ f(λ1, . . . , λn),

where (λ1, . . . , λn) ∈ Bn. A characterization of the analytic functions in the range
of the map Φ was obtained in [ArPo2] and [DP3]. W. Arveson proved that Φ is not
surjective [Arv] and the functions in its range are the multipliers of a certain func-
tion Hilbert space. In [ArPo2], [DP3], it was proved that F∞n / ker Φ is an operator
algebra which can be identified with W∞n := PF 2

s
F∞n |F 2

s
, the compression to the

symmetric Fock space F 2
s ⊆ F 2(Hn). In [Po8], [Po9], [Arv], [ArPo2], [DP3], [AMc],

and [BTV], a good case is made that the appropriate commutative multivariable
analogue of H∞(D) is the algebra W∞n , which is the WOT-closed algebra gener-
ated by Bi := PF 2

s
Si|F 2

s
, i = 1, . . . , n, and the identity. In this paper, we provide

further evidence that F∞n (resp. W∞n ) is a noncommutative (resp. commutative)
multivariate analogue of H∞(D).
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Let A be a unital Banach algebra and denote by Inv(A) the group of invertible
elements of A. Given a ∈ A, we define the A-spectral radius of a by setting

ρA(a) := inf{‖xax−1‖ : x ∈ Inv(A)}.

Since the spectral radius of a ∈ A is ‖a‖sp = limn→∞ ‖an‖1/n, it is clear that
‖a‖sp = ‖xax−1‖sp for any x ∈ Inv(A). Now, it is easy to see that

‖a‖sp ≤ ρA(a) ≤ ‖a‖,

for any a ∈ A. Note that if A = B(H) (or A is any C∗-subalgebra of B(H)) then
‖a‖sp = ρA(a) (see [R]). There are some other examples of Banach algebras such
that ‖a‖sp = ρA(a) for any a ∈ A. It was proved in [BFT] that this equality holds
if A is the commutant of an isometry (resp. normal operator) on a Hilbert space.

Let A,B be unital Banach algebras, and Φ : A → B be a unital contractive
homomorphism. We say that Φ is a quotient interpolant if

‖b‖ = inf{‖a‖ : a ∈ A,Φ(a) = b}

for any b ∈ B. We say that b ∈ B with ρB(b) < 1 has a spectral lifting if there
exists a ∈ A such that Φ(a) = b and ρA(a) < 1. The homomorphism Φ is called a
spectral interpolant if any b ∈ B has a spectral lifting.

Problem. Let Φ : A → B be a unital contractive homomorphism which is also a
quotient interpolant. When is Φ a spectral interpolant ?

We show, in Section 2, that this problem has a positive answer if Inv(B) ⊆
Φ(Inv(A)). This relation holds, for example, if the group of invertible elements of
B is connected (in particular, if B is finite dimensional or equal to B(H)).

The results of Section 2 are used in Section 3 to obtain a noncommutative
multivariable analogue (see Theorem 3.1) of the spectral commutant lifting theo-
rem of Bercovici-Foiaş-Tannenbaum. This yields spectral versions of Sarason ([S]),
Nevanlinna–Pick , and Carathéodory type interpolation for F∞n ⊗̄B(K), the WOT-
closed algebra generated by the spatial tensor product of the noncommutative an-
alytic Toeplitz algebra F∞n and B(K), the algebra of bounded operators on a finite
dimensional Hilbert space K.

In Section 4, we obtain a spectral tangential commutant lifting theorem in several
variables (see Theorem 4.1). This leads to a spectral tangential Nevanlinna-Pick
interpolation for F∞n ⊗̄B(K) (see Theorem 4.2).

Problems concerning the optimal solutions to these spectral interpolation prob-
lems in several variables, and explicit algorithm for finding the optimal interpolants
will be considered in a future paper.

We would like to thank the referee for helpful comments on the results of this
paper.

2. Spectral lifting in Banach algebras

The notation and definitions from Section 1 are used throughout the paper.
Let A,B be unital Banach algebras and let Φ : A → B be a unital contractive
homomorphism. We call Φ a norm preserving interpolant if for any b ∈ B there
exists a ∈ A such that Φ(a) = b and ‖a‖ = ‖b‖. Notice that any norm preserving
interpolant is a quotient interpolant. Examples of norm preserving interpolants will
be presented in Section 3.
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Theorem 2.1. Let A,B be unital Banach algebras and let Φ : A → B be a unital
contractive homomorphism with the property that Inv(B) ⊆ Φ(Inv(A)) and

‖b‖ = inf{‖a‖ : a ∈ A,Φ(a) = b}
for any b ∈ B. Then

ρB(b) = inf{ρA(a) : a ∈ A,Φ(a) = b}(2.1)

for any b ∈ B. In particular, Φ is a spectral interpolant.

Proof. Let b ∈ B and a ∈ A with Φ(a) = b. Since Φ is a contractive homomorphism
and Φ(Inv(A)) ⊆ Inv(B) we have

ρA(a) = inf{‖waw−1‖ : w ∈ Inv(A)}
≥ inf{‖Φ(waw−1)‖ : w ∈ Inv(A)}
= inf{‖Φ(w)bΦ(w)−1‖ : w ∈ Inv(A)}
≥ inf{‖zbz−1‖ : z ∈ Inv(B)}
= ρB(b).

Therefore,

ρB(b) ≤ inf{ρA(a) : a ∈ A,Φ(a) = b}.
Now, let ε > 0 and choose z ∈ Inv(B) such that

‖zbz−1‖ ≤ ρB(b) +
ε

2
.(2.2)

Since zbz−1 ∈ B, according to the hypothesis, for any ε > 0, there exists d ∈ A
such that

Φ(d) = zbz−1 and ‖d‖ ≤ ‖zbz−1‖+
ε

2
.(2.3)

Since Φ(Inv(A)) ⊇ Inv(B), we find w ∈ Inv(A) such that Φ(w) = z. Notice that
y := w−1dw ∈ A and

Φ(y) = Φ(w)−1Φ(d)Φ(w) = z−1(zbz−1)z = b.

Now, using (2.2) and (2.3), we infer that

ρA(y) ≤ ‖wyw−1‖ = ‖d‖ ≤ ‖zbz−1‖+
ε

2
≤ ρA(b) + ε.

Therefore,

ρB(b) ≥ inf{ρA(a) : a ∈ A, φ(a) = b}.
Using relation (2.1), it is easy to see that if b ∈ B, then ρB(b) < 1 if and only if there
exists a ∈ A such that Φ(a) = b and ρA(a) < 1. This completes the proof. �
Corollary 2.2. Let A,B be unital Banach algebras such that the group Inv(B) is
connected. Let Φ : A → B be a unital contractive homomorphism which is also a
quotient interpolant. Then Φ is a spectral interpolant.

Proof. Let us prove that

Φ(Inv(A)) = Inv(B).(2.4)

The inclusion Φ(Inv(A)) ⊆ Inv(B) is clear. Conversely, let x ∈ Inv(B). Since Inv(B)
is connected, it is well known that

x = exp(z1) · · · exp(zk)
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for some z1, . . . , zk ∈ B. Due to the hypothesis, there exist w1, . . . , wk ∈ A such
that Φ(wi) = zi, i = 1, . . . , k. Denote y := exp(w1) · · · exp(wk) ∈ Inv(A) and
notice that Φ(y) = exp(Φ(w1)) · · · exp(Φ(wk)) = x. Hence Φ(Inv(A)) ⊇ Inv(B) and
(2.4) holds. �

Remark 2.3. If B is a finite dimensional algebra, then Inv(B) = exp(B), hence
Inv(B) is connected.

Corollary 2.4. Let A be a unital Banach algebra and let J be a closed two-sided
ideal of A. If any invertible element of A/J has an invertible lifting in A, then the
quotient homomorphism Φ : A → A/J is a spectral interpolant, i.e., ρA/J(a+J) < 1
if and only if there exists b ∈ a+ J such that ρA(b) < 1.

Proof. Apply Theorem 2.1 to the quotient homomorphism Φ. �

Let us remark that, in general, there are invertible elements inA/J which can not
be lifted to invertible elements in A. For example, if π : B(H2)→ B(H2)/K(H2)
is the quotient homomorphism into the Calkin algebra, and S is the unilateral shift
on the Hardy space H2, then π(S) is invertible and there is no invertible operator
T ∈ B(H2) such that π(T ) = π(S).

An important particular case, when Corollary 2.4 can be applied, is when the
quotient algebra A/J is finite dimensional. Applications of this result will be con-
sidered in the next section.

3. Noncommutative spectral commutant lifting and interpolation

Let F+
n be the unital free semigroup on n generators s1, . . . , sn, and let e be its

neutral element. For any σ := si1 · · · sik ∈ F+
n we define its length |σ| := k, and

|e| = 0. On the other hand, if Ti ∈ B(H), i = 1, . . . , n, we denote Tσ := Ti1 · · ·Tik
and Te := IH.

Let us recall from [Po1], [Po2], and [Po4] some results concerning the non-
commutative dilation theory for n-tuples of operators. A sequence of operators
T := [T1, . . . , Tn], Ti ∈ B(H), i = 1, . . . , n, is called contractive (or row contraction)
if T1T

∗
1 + · · ·+ TnT

∗
n ≤ IH. We say that a sequence of isometries V := [V1, . . . , Vn]

on a Hilbert space K ⊇ H is a minimal isometric dilation of T if the following
properties are satisfied:

(i) V1V
∗

1 + · · ·+ VnV
∗
n ≤ IK;

(ii) V ∗i |H = T ∗i , i = 1, . . . , n;
(iii) K =

∨
α∈F+

n
VαH.

The minimal isometric dilation of T is uniquely determined up to an isomorphism.
We need to recall the noncommutative commutant lifting theorem [Po4] (see [SzF1],
[SzF2], [DMP] for the classical case).

Let T := [T1, . . . , Tn] be a contractive sequence of operators on a Hilbert space
H and let V := [V1, . . . , Vn] be its minimal isometric dilation on a Hilbert K ⊇ H.
If X ∈ B(H) and XTi = TiX for any i = 1, . . . , n, then there exists X∞ ∈ B(K)
satisfying the following properties:

(i) X∞Vi = ViX∞, for any i = 1, . . . , n;
(ii) X∗∞|H = X∗;
(iii) ‖X∞‖ = ‖X‖.
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Let T := [T1, . . . , Tn] be a row contraction with Ti ∈ B(H) and let V :=
[V1, . . . , Vn] be its minimal isometric dilation on a Hilbert space K ⊇ H. Let
X ∈ {T1, . . . , Tn}′, and denote

Dil(X) := {Y ∈ {V1, . . . , Vn}′ : PHY = XPH},
where PH is the orthogonal projection on H. According to the noncommutative
commutant lifting, we have Dil(X) 6= ∅.

In what follows we obtain a noncommutative multivariable analogue of the spec-
tral commutant lifting theorem of Bercovici-Foiaş-Tannenbaum [BFT].

Theorem 3.1. Let T := [T1, . . . , Tn] be a contractive sequence of operators on a
Hilbert space H and let V := [V1, . . . , Vn] be its minimal isometric dilation on a
Hilbert space K ⊇ H. If H is finite dimensional and K 	 H is hyperinvariant for
{V1, . . . , Vn}, then

ρ{T1,...,Tn}′(X) = inf{ρ{V1,...,Vn}′(Y ) : Y ∈ Dil(X)}
for any X ∈ {T1, . . . , Tn}′.
Proof. Let Φ : {V1, . . . , Vn}′ → {T1, . . . , Tn}′ be defined by Φ(Y ) := PHY |H.
Since K 	 H is hyperinvariant for {V1, . . . , Vn}, we have Y ∗(H) ⊆ H for any
Y ∈ {V1, . . . , Vn}′. Since V := [V1, . . . , Vn] is the minimal isometric dilation of
T , we have V ∗i |H = T ∗i , i = 1, . . . , n. Now, it is easy to see that

(PHY |H)Ti = Ti(PHY |H) for any i = 1, 2, . . . , n.

Therefore, the mapping Φ is well-defined. On the other hand, sinceK	H is hyperin-
variant for {V1, . . . , Vn}, we infer that Φ is a unital contractive homomorphism, and
Φ(Y ) = X is equivalent to PHY = XPH. According to the noncommutative com-
mutant lifting theorem, for any X ∈ {T1, . . . , Tn}′ there exists Y ∈ {V1, . . . , Vn}′
such that PHY = XPH and ‖Y ‖ = ‖X‖. Therefore, Φ is a norm preserving
interpolant. Since H is finite dimensional, the algebra {T1, . . . , Tn}′ is finite di-
mensional. Applying Theorem 2.1 and Remark 2.3, in the particular case when
A := {V1, . . . , Vn}′ and B := {T1, . . . , Tn}′, the result follows. �
Corollary 3.2. Let T := [T1, . . . , Tn] be a contractive sequence of operators on a
Hilbert space H and let V := [V1, . . . , Vn] be its minimal isometric dilation on a
Hilbert space K ⊇ H. If H is finite dimensional and K 	 H is hyperinvariant for
{V1, . . . , Vn}, then, given X ∈ {T1, . . . , Tn}′, ρ{T1,...,Tn}′(X) < 1 if and only if there
exists Y ∈ Dil(X) such that ρ{V1,...,Vn}′(Y ) < 1 .

In what follows, we use the noncommutative spectral commutant lifting theorem
to obtain spectral versions of Sarason, Nevanlinna–Pick, and Carathéodory type
interpolation for F∞n ⊗̄B(K), the WOT-closed algebra generated by the spatial ten-
sor product of the noncommutative analytic Toeplitz algebra F∞n and B(K). In
particular, we obtain interpolation results for matrix-valued analytic functions on
the open unit ball of Cn, in which one bounds the spectral radius of the interpolant.

According to Theorem 1.2 from [Po6], the commutant of F∞n , which we denote
by R∞n , is equal to U∗F∞n U , where U is the unitary operator on F 2(Hn) defined
by U(ei1 ⊗ ei2 ⊗ · · · ⊗ eik) = eik ⊗ · · · ⊗ ei2 ⊗ ei1 . Moreover, the commutant of R∞n
is equal to F∞n .

A complete description of the invariant subspace structure of F∞n was obtained
in [Po2, Theorem 2.2] (even in a more general setting). A subspace N of F 2(Hn)
is invariant under S1, . . . , Sn if and only if N =

⊕
λ∈Λ U

∗ϕλU [F 2(Hn)], for some
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family {ϕλ ∈ F∞n : λ ∈ Λ} of isometries with orthogonal ranges (see also [Po6] and
[DP1]). Let us remark that M ⊆ F 2(Hn) is hyperinvariant for {S1, . . . , Sn}, i.e.,
invariant for {S1, . . . , Sn}′, if and only if UM is invariant for {S1, . . . , Sn}.
Theorem 3.3. Let K be a finite dimensional Hilbert space and let N ⊆ F 2(Hn) be
a finite dimensional subspace with the property that N and UN are invariant under
S∗1 , . . . , S

∗
n. Then X ∈ B(N ⊗ K) commutes with each PNSi|N ⊗ IK, i = 1, . . . , n,

and

ρPNR∞n |N ⊗̄B(K)(X) < 1

if and only there exists Ψ ∈ R∞n ⊗̄B(K) such that

PN⊗KΨ = XPN⊗K and ρR∞n ⊗̄B(K)(Ψ) < 1.

Proof. According to [Po8], we have

B := {PNSi|N ⊗ IK, i = 1, . . . , n}′ = PN⊗K(R∞n ⊗̄B(K))|N⊗K.
Notice that B is a finite dimensional algebra. Let A := R∞n ⊗̄B(K) and define
Φ : A → B by Φ(Y ) = PN⊗KY |N⊗K. Since S∗i (UN ) ⊆ UN for any i = 1, . . . , n,
and {S1 ⊗ IK, . . . , Sn ⊗ IK}′ = R∞n ⊗̄B(K), it is easy to see that [F 2(Hn) ⊗ K] 	
[N ⊗ K] is hyperinvariant for {S1 ⊗ IK, . . . , Sn ⊗ IK} and the mapping Φ is a
unital contractive homomorphism. Since N is invariant under S∗1 , . . . , S∗n, it is
clear that the operator matrix [PNS1|N , . . . , PNSn|N ] is a C0-row contraction and
its minimal isometric dilation is [S1, . . . , Sn] (see [Po1]). Therefore, the minimal
isometric dilation of [PNS1|N ⊗ IK, . . . , PNSn|N ⊗ IK] is [S1 ⊗ IK, . . . , Sn ⊗ IK].
According to the noncommutative commutant lifting theorem, for any X ∈ B there
exists Ψ ∈ R∞n ⊗̄B(K), such that PN⊗KΨ = XPN⊗K and ‖X‖ = ‖Ψ‖. Therefore,
Φ(Ψ) = X and Φ is a norm preserving interpolant. Applying Corollary 3.2, the
result follows. �

Notice that the element Ψ in Theorem 3.3 satisfies ‖Ψ‖sp ≤ ρR∞n ⊗̄B(K)(Ψ) < 1.
It would be nice to know if ρR∞n ⊗̄B(K)(Ψ) = ‖Ψ‖sp for any Ψ ∈ R∞n ⊗̄B(K). This
equality holds if n = 1 (see [BFT]).

Let us remark that the finite dimensionality hypothesis can be dropped in The-
orem 3.3 for those subspaces N and K for which one can prove that any invertible
element f ∈ PNR∞n |N ⊗̄B(K) can be lifted to an invertible element g ∈ R∞n ⊗̄B(K),
i.e., PN⊗Kg|N⊗K = f . We do not have yet any nontrivial example when this lifting
property holds and N , K are infinite dimensional.

Let J be a WOT-closed, two-sided ideal of F∞n and define J(1) := {Ψ(1) : Ψ ∈ J}
andNJ := F 2(Hn)	J(1)}. Let us remark thatNJ and UNJ are invariant subspaces
under S∗i , i = 1, . . . , n, therefore, Theorem 3.3 works in the case when dimNJ <∞.

Corollary 3.4. Let K be a finite dimensional Hilbert space and let J be a WOT-
closed two-sided ideal of F∞n such that dimNJ <∞. Then the quotient homomor-
phism

Φ : F∞n ⊗̄B(K)→ F∞n ⊗̄B(K)/(J⊗̄B(K))

is a spectral interpolant.

Proof. According to [ArPo2], the quotient algebra F∞n ⊗̄B(K)/(J⊗̄B(K)) is com-
pletely isometrically isomorphic to PNJF∞n |NJ ⊗̄B(K), which is finite dimensional.
Using Theorem 3.3, we infer that Φ is a spectral interpolant. The proof is com-
plete. �
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It will be interesting to see if this result remains true if NJ is infinite dimensional
(at least for some particular cases, if not in general). The obstruction in the infinite
dimensional case seems to be the lifting of the invertible elements of a quotient
algebra A/J to invertible elements of A (see Section 2 for an example). In the
finite dimensional case, Corollary 3.4 leads to our spectral interpolation results for
F∞n (see Theorem 3.6 and Theorem 3.8).

Let F 2
s (Hn) be the symmetric Fock space and W∞n be the WOT-closed algebra

generated by Bi := PF 2
s (Hn)Si|F 2

s (Hn), i = 1, . . . , n, and the identity. This algebra
has been studied in [Po9], [Arv], [ArPo2], [DP3]. The following theorem can be
seen as a spectral version of Sarason’s interpolation theorem for H∞(D) (see [S]),
in a commutative and multivariable setting.

Theorem 3.5. Let E ⊆ F 2
s (Hn) be a finite dimensional invariant subspace under

B∗1 , . . . , B
∗
n and let K be a finite dimensional Hilbert space. Then f ∈ B(E ⊗ K)

commutes with each PEBi|E ⊗ IK, i = 1, . . . , n, and

ρPE⊗K(W∞n ⊗̄B(K))|E⊗K(f) < 1

if and only if there exists g ∈ W∞n ⊗̄B(K) such that

PE⊗Kg|E⊗K = f and ρW∞n ⊗̄B(K)(g) < 1.

Proof. Since F 2
s (Hn) is invariant under each S∗i , i = 1, . . . , n, it is easy to see that E

has the same property. Taking into account that W∞n is the compression of F∞n to
the symmetric Fock space, one can see that f commutes with PE⊗K(Si⊗IK)|E⊗K. As
in the proof of Theorem 3.3, using the noncommutative commutant lifting theorem,
we find φ ∈ F∞n ⊗̄B(K) such that PE⊗K(U∗⊗ IK)φ(U ⊗ I)|E⊗K = f and ‖f‖ = ‖φ‖.
Hence, PE⊗Kφ|E⊗K = f . Setting g := PF 2

s (Hn)⊗Kφ|F 2
s (Hn)⊗K ∈ W∞n ⊗̄B(K), we

have PE⊗Kg|E⊗K = f and ‖f‖ ≤ ‖g‖ ≤ ‖φ‖ = ‖f‖. This shows that ‖f‖ = ‖g‖.
Define A := W∞n ⊗̄B(K), B := PE⊗K(W∞n ⊗̄B(K))|E⊗K and let Φ : A → B be
defined by Φ(g) := PE⊗K(g)E⊗K. We just proved that Φ is a unital contractive
homomorphism and also a norm preserving interpolant. Now, the result follows by
applying the results of Section 2 in our setting. �

Let us remark that a result similar to Corollary 3.4 holds for the algebra W∞n ⊗̄
B(K).

In what follows we obtain a spectral version of Nevanlinna-Pick interpolation for
the noncommutative analytic Toeplitz algebra F∞n (see [ArPo2], [DP3], and [Po8]).
As mentioned in the first section, there exists a unital contractive homomorphism

Ψ : F∞n ⊗̄B(K)→ H∞(Bn)⊗̄B(K)

defined by [Ψ(f)](λ) := f(λ), λ ∈ Bn.

Theorem 3.6. Let K be a finite dimensional Hilbert space, Wj ∈ B(K), and
λj , j = 1, . . . , k, be distinct elements in Bn. Then there exists Φ ∈ F∞n ⊗̄B(K)
such that

ρF∞n ⊗̄B(K)(Φ) < 1 and Φ(λj) = Wj , j = 1, . . . , k,

if and only if there exist invertible operators Mj ∈ B(K), j = 1, . . . , k, such that[
IK − (MiWiM

−1
i )(MjWjM

−1
j )∗

1− 〈λi, λj〉

]
1≤i,j≤k

> 0.(3.1)
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Proof. Let λj := (λj1, . . . , λjn) ∈ Bn, j = 1, . . . , k. For any α := sj1sj2 . . . sjm in
F+
n , let λjα := λjj1λjj2 . . . λjjm and λe := 1. Define zλj ∈ F 2(Hn) by setting

zλj :=
∑
α∈F+

n

λjαeα, j = 1, 2, . . . , k.

Let N := span{zλj : j = 1, . . . , k} and X ∈ B(N ⊗K) be defined by

X∗(zλj ⊗ h) := zλj ⊗W ∗j h, h ∈ K.(3.2)

Notice that S∗i zλj = λjizλj for any i = 1, . . . , n; j = 1, . . . , k. Hence, the
subspaces N and UN are invariant under each S∗i , i = 1, . . . , n. Define Ti ∈
B(N ⊗K) by Ti := PNSi|N ⊗ IK. Since zλ1 , . . . , zλk are linearly independent, the
operator X ∈ B(N ⊗K) given by (3.2) is well defined.

Notice that XTi = TiX for any i = 1, . . . , k. Indeed,

T ∗i X
∗(zλj ⊗ h) = T ∗i (zλj ⊗W ∗j h) = S∗i zλj ⊗W ∗j h

= λjizλj ⊗W ∗j h
and

X∗T ∗i (zλj ⊗ h) = X∗(λjizλj ⊗ h) = λjizλj ⊗W ∗j h.
Applying Theorem 3.3, we infer that

ρ{T1,...,Tn}′(X) < 1(3.3)

if and only there exists Φ ∈ F∞n ⊗̄B(K) such that

PN⊗K(U∗ ⊗ I)Φ(U ⊗ I) = XPN⊗K and ρF∞n ⊗̄B(K)(Φ) < 1.(3.4)

Since [F 2(Hn)⊗K]	 [N ⊗K] is hyperinvariant for {S1⊗ IK, . . . , Sn⊗ IK}, the first
relation in (3.4) is equivalent to

PN⊗K(U∗ ⊗ I)Φ(U ⊗ I)|N⊗K = X.(3.5)

Since U(zλj ) = zλj , j = 1, . . . , k, and 〈φ, zλi〉 = φ(λi) for any φ :=
∑

α∈F+
n
aαeα in

F 2(Hn), it is easy to see that

〈(U∗ ⊗ I)Φ(U⊗I)(zλj ⊗ h), zλj ⊗ h′〉
= 〈zλj , zλj 〉〈Φ(λj)h, h′〉 = 〈X(zλj ⊗ h), zλj ⊗ h′〉
= 〈Φ(zλj ⊗ h), zλj ⊗ h′〉 = 〈zλj , zλj 〉〈Wjh, h

′〉.

for any j = 1, . . . , k, and h, h′ ∈ K. This shows that (3.5) holds if and only if
Φ(λj) = Wj for any j = 1, . . . , k. Notice that relation (3.3) holds if and only if
there exists M ∈ Inv({T1, . . . , Tn}′) such that ‖MXM−1‖ < 1. It is easy to see that
M∗(zλj ⊗ h) = zλj ⊗M∗j h, h ∈ K, for some invertible operators Mj ∈ B(K), j =
1, . . . , k. On the other hand, notice that

M∗−1X∗M∗(zλj ⊗ h) = zλj ⊗ (MjWjM
−1
j )∗h

and ‖MXM−1‖ < 1 is equivalent to IN⊗K − (MXM−1)(MXM−1)∗ > 0, which is
equivalent to (3.1). This completes the proof. �

Let us remark that the inequality (3.1) can be replaced with

ρPNF∞n |N ⊗̄B(K)(X) < 1.(3.6)
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In the particular case when n = 1, we find again Theorem 4 from [BFT]. As
mentioned in [BFT], since PNF∞n |N ⊗̄B(K) is finite dimensional, conditions of type
(3.6) can be checked using computer algorithms.

Corollary 3.7. Let K be a finite dimensional Hilbert space, Wj ∈ B(K), and
λj , j = 1, . . . , k, be distinct elements in Bn. If there exist invertible operators
Mj ∈ B(K), j = 1, . . . , k, such that[

IK − (MiWiM
−1
i )(MjWjM

−1
j )∗

1− 〈λi, λj〉

]
1≤i,j≤k

> 0,

then there exists f ∈ H∞(Bn)⊗̄B(K) such that

f(λj) = Wj , j = 1, . . . , k, and sup
λ∈Bn

‖f(λ)‖sp < 1.

Proof. Using Theorem 3.6, we find f ∈ F∞n ⊗̄B(K) such that f(λj) = Wj , i =
1, . . . , k, and ρF∞n ⊗̄B(K)(f) < 1. As in the proof of Theorem 2.1, we infer that

‖Ψ(f)‖sp ≤ ρH∞(Bn)⊗̄B(K)(Ψ(f)) ≤ ρF∞n ⊗̄B(K)(f) < 1.

On the other hand, similarly to [BFT, Proposition 3], one can prove that

‖Ψ(f)‖sp = sup
λ∈Bn

‖f(λ)‖sp.

This completes the proof. �

Let Pm be the set of all polynomials in F 2(Hn) of degree ≤ m, and let P∞m :=
{p(S1, . . . , Sn) : p ∈ Pm}. Let J∞>m be the WOT-closed two-sided ideal of F∞n
generated by {Sα : α ∈ F+

n , |α| = m+ 1}. The following result is a spectral version
of the noncommutative Carathéodory interpolation problem for F∞n (see [Po6] and
[Po8]).

Theorem 3.8. Let K be a finite dimensional Hilbert space and let p ∈ P∞m ⊗̄B(K).
Then there exists Φ ∈ F∞n ⊗̄B(K) with

ρF∞n ⊗̄B(K)(Φ) < 1

such that Φ = p+ g for some g ∈ J∞>m⊗̄B(K) if and only if

ρC [PPm⊗K(U∗ ⊗ I)p(U ⊗ I)|Pm⊗K] < 1(3.7)

where C := PPm⊗K(R∞n ⊗̄B(K))|Pm⊗K.

Proof. Let N := Pm and X := PPm⊗K(U∗ ⊗ I)p(U ⊗ I)|Pm⊗K. Notice that X
commutes with each PPmSi|Pm ⊗ IK, i = 1, . . . , n, and Pm = UPm is invariant
under each S∗1 , . . . , S

∗
n. According to Theorem 3.3, relation (3.7) holds if and only

if there exists Φ ∈ F∞n ⊗̄B(K) with PPm⊗K(U∗ ⊗ I)Φ(U ⊗ I) = XPPm⊗K and
ρF∞n ⊗̄B(K)(Φ) < 1. Hence, we infer that

PPm⊗K(U∗ ⊗ I)(Φ− p)(U ⊗ I)|Pm⊗K = 0.(3.8)

On the other hand, every element f ∈ F∞n ⊗̄B(K) has a unique Fourier expansion
f ∼

∑
α∈F+

n
Sα ⊗W(α) determined by

f(1⊗ h) =
∑
α∈F+

n

eα ⊗W(α)h ∈ F 2(Hn)⊗K,
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where W(α) ∈ B(K) are given by 〈W(α)h, k〉 = 〈f(1 ⊗ h), eα ⊗ k〉 for any h, k ∈ K,
and α ∈ F+

n (see [Po8]). Using now relation (3.8), one can easily see that g :=
Φ− p ∈ J∞>m⊗̄B(K). This completes the proof. �

Using Theorem 3.5, one can obtain a version of Theorem 3.8 for the algebra
W∞n ⊗̄B(K), in a similar manner. We leave this task to the reader.

4. Spectral tangential commutant lifting in several variables

Let T := [T1, . . . , Tn] be a row contraction with Ti ∈ B(H), and V := [V1, . . . , Vn]
be its minimal isometric dilation on a Hilbert space K ⊇ H. Let M ⊆ H be an
invariant subspace under each T ∗i , i = 1, . . . , n, and X ∈ B(H) be such that
XH ⊆M and

(PMTi|M)X = XTi, for any i = 1, . . . , n.(4.1)

According to the noncommutative commutant lifting theorem, there exists Y ∈
{V1, . . . , Vn}′ with PMY = XPH. Define

DilM(X) := {Y ∈ {V1, . . . , Vn}′ : PMY = XPH}
and

ρM,{T1,...,Tn}′(X) := inf{‖PZ∗MZ−1XZ‖ : Z ∈ Inv({T1, . . . , Tn}′)}.
Notice that if M = H, then ρM,{T1,...,Tn}′(X) = ρ{T1,...,Tn}′(X).

In what follows we extend the spectral tangential commutant lifting theorem of
Bercovici and Foiaş [BF] to our noncommutative multivariable setting.

Theorem 4.1. Let T := [T1, . . . , Tn] be a contractive sequence of operators on a
Hilbert space H and let V := [V1, . . . , Vn] be its minimal isometric dilation on a
Hilbert space K ⊇ H. If H is finite dimensional, K 	 H is hyperinvariant for
{V1, . . . , Vn}, and M ⊆ H is an invariant subspace under each T ∗i , i = 1, . . . , n,
then, for every X ∈ B(H) such that XH ⊆ M and (PMTi|M)X = XTi, i =
1, . . . , n, we have

ρM,{T1,...,Tn}′(X) = inf{ρ{V1,...,Vn}′(Y ) : Y ∈ DilM(X)}.(4.2)

Proof. Denote the right hand side of (4.2) by t. Let ε > 0 and choose Y ∈ DilM(X)
such that ρ{V1,...,Vn}′(Y ) < t+ ε. Hence, there is W ∈ Inv({V1, . . . , Vn}′) such that
‖W−1YW‖ < t+ ε. Since K 	H is hyperinvariant for {V1, . . . , Vn}, we infer that
PHWPH = PHW . Let Z := PHW |H and notice that Z ∈ Inv({T1, . . . , Tn}′) and

Z−1 = PHW
−1|H.(4.3)

The subspace M∗ := Z∗M is invariant under each T ∗i , i = 1, . . . , n, and satisfies
M∗ = H	 Z−1(H	M). Hence, we deduce the relations

PM∗Z
−1 = PM∗Z

−1PM and PMZ = PMZPM∗ .(4.4)

Since Y ∈ DilM(X) and K	H is hyperinvariant for {V1, . . . , Vn}, we can use (4.4)
and (4.3) to infer that

‖PM∗Z−1XZ‖ = ‖PM∗Z−1(PMY |H)Z‖ = ‖PM∗Z−1(PHY |H)Z‖
= ‖PM∗(PHW−1|H)(PHY |H)(PHW |H)‖ ≤ ‖PH(W−1YW )|H‖
≤ ‖W−1YW‖ < t+ ε.

Since ε > 0, we deduce that ρM,{T1,...,Tn}′(X) ≤ t.
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Now, let us prove the converse. Let ε > 0 and choose Z ∈ Inv({T1, . . . , Tn}′)
such that

‖PM∗Z−1XZ‖ ≤ ρM,{T1,...,Tn}′(X) + ε.(4.5)

Since {T1, . . . , Tn}′ is finite dimensional, we use Theorem 2.1 and Remark 2.3
when Φ : {V1, . . . , Vn}′ → {T1, . . . , Tn}′ and Φ(W ) = PHW |H, to find W ∈
Inv({V1, . . . , Vn}′) such that Z = PHW |H. Denote X∗ := PM∗Z

−1XZ and no-
tice that

(PM∗Ti|M∗)X∗ = X∗Ti, i = 1, . . . , n.(4.6)

Indeed, since M∗ is invariant under each T ∗i , i = 1, . . . , n, we have PM∗TiPM∗ =
PM∗Ti, i = 1, . . . , n. Using this relation together with (4.1) and (4.4), we infer
that, for any i = 1, . . . , n,

X∗Ti = PM∗Z
−1XZTi = PM∗Z

−1XTiZ

= PM∗Z
−1(PMTi|M)XZ = PM∗Z

−1TiXZ

= PM∗TiZ
−1XZ = PM∗TiPM∗Z

−1XZ

= PM∗TiX∗.

According to (4.6), the noncommutative commutant lifting theorem, and relation
(4.5), we find Y∗ ∈ DilM∗(X∗) satisfying

‖Y∗‖ = ‖X∗‖ ≤ ρM,{T1,...,Tn}′(X) + ε.(4.7)

Set Y := WY∗W
−1 and let us show that Y ∈ DilM(X). Notice that

X = PMZX∗Z
−1.(4.8)

Indeed, using (4.4), we have

PMZX∗Z
−1 = PMZ(PM∗Z

−1XZ)Z−1 = PMZPM∗Z
−1X

= PMZZ
−1X = PMX = X.

Since PM∗Y∗ = X∗PH, Z−1 = PHW
−1|H, and Y (K 	 H) ⊆ K 	 H, we can use

relation (4.8) to obtain

XPH = PMZX∗Z
−1PH = PMZPM∗Y∗Z

−1PH

= PMZPHY∗Z
−1PH = PM(PHZ|H)(PHY∗|H)(PHW−1|H)PH

= PM(PHWY∗W
−1|H)PH = PMY PH = PMY.

According to (4.7), we have ‖W−1YW‖ = ‖Y∗‖ ≤ ρM,{T1,...,Tn}′ + ε. Hence
ρ{V1,...,Vn}′(Y ) ≤ ρM,{T1,...,Tn}′(X)+ε and t ≤ ρM,{T1,...,Tn}′(X)+ε. This completes
the proof. �

The following result is a spectral version of the tangential Nevanlinna-Pick in-
terpolation problem for F∞n (see [Po8]).

Theorem 4.2. Let λj , j = 1, . . . , k, be distinct elements in Bn and let K be a finite
dimensional Hilbert space. If u1, . . . , uk, v1, . . . , vk ∈ K with ui 6= 0, j = 1, . . . , k,
and δ > 0, then there exists Φ ∈ F∞n ⊗̄B(K) such that

Φ(λj)∗uj = vj , j = 1, . . . , k, and ρF∞n ⊗̄B(K)(Φ) < δ
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if and only if there exist invertible operators Zj ∈ B(K), j = 1, . . . , k, such that[
〈δZjuj, δZiui〉 − 〈Zjvj , Zivi〉

1− 〈λj , λi〉

]
1≤i,j≤k

> 0.(4.9)

Proof. Let N := span{zλj : j = 1, . . . , k} and M := Czλ1 ⊗ u1 + · · · + Czλk ⊗ uk
be a subspace of N ⊗ K. Define X({λj}, {uj}, {vj}) ∈ B(N ⊗ K,M) by set-
ting X({λj}, {uj}, {vj})∗(zλj ⊗ uj) := zλj ⊗ vj , j = 1, . . . , k. For each i =
1, . . . , n, define Ti := PNSi|N ⊗ IK and notice that T ∗i X

∗ = X∗T ∗i |M, where
X := X({λj}, {uj}, {vj}). Hence, XTi = PMTiX for any i = 1, . . . , n.

As in the proof of Theorem 3.3, the minimal isometric dilation of the sequence
[T1, . . . , Tn] is [S1⊗IK, . . . , Sn⊗IK] and [F 2(Hn)⊗K]	[N⊗K] is hyperinvariant for
{S1⊗ IK, . . . , Sn⊗ IK}. SinceM⊆ N ⊗K is invariant under each T ∗i , i = 1, . . . , n,
we can apply Theorem 4.1 and infer that

ρM,{T1,...,Tn}′(X) = inf{ρ{S1⊗IK,...,Sn⊗IK}′(Y ) : Y ∈ DilM(X)}.

Since {S1 ⊗ IK, . . . , Sn ⊗ IK}′ = U∗F∞n U⊗̄B(K), we can see that

ρM,{T1,...,Tn}′(X) < δ(4.10)

if and only if there exists Φ ∈ F∞n ⊗̄B(K) such that ρF∞n ⊗̄B(K)(Φ) < δ and

PM(U∗ ⊗ I)Φ(U ⊗ I) = XPN⊗K.(4.11)

Notice that

〈PM(U∗ ⊗ I)Φ(U ⊗ I)(zλi ⊗ k), zλj ⊗ uj)〉 = 〈Φ(zλi ⊗ k), zλj ⊗ uj)〉
= 〈zλi , zλj 〉〈Φ(λj)k, uj〉
= 〈zλi , zλj 〉〈k,Φ(λj)∗uj〉

and 〈X(zλi ⊗ k), zλj ⊗ uj〉 = 〈zλi , zλj 〉〈k, vj〉 for any k ∈ K and i, j = 1, . . . , k.
Therefore, the relation (4.11) holds if and only if Φ(λj)∗uj = vj , j = 1, . . . , k. On
the other hand, if Z ∈ {T1, . . . , Tn}′ then

Z∗(zλj ⊗ k) = zλj ⊗ Zjk, k ∈ K,(4.12)

for some Zj ∈ B(K), j = 1, . . . , k. Notice that Z is invertible if and only if
Zj is invertible for any j = 1, . . . , k. Moreover, using the definition of X =
X({λj}, {uj}, {vj}) and (4.12), we have

Z∗X∗({λj}, {uj}, {vj})Z∗−1|Z∗M = X∗({λj}, {Zjuj}, {Zjvj}).
Therefore,

ρM,{T1,...,Tn}′(X) = inf{‖X({λj}, {Zjuj}, {Zjvj})‖ : Zj ∈ B(K) are invertible}
and relation (4.10) holds if and only if there exist invertible operators Zj ∈ B(K)
such that ‖X({λj}, {Zjuj}, {Zjvj})‖ < δ. This inequality is equivalent to

δ2I −X({λj}, {Zjuj}, {Zjvj})X∗({λj}, {Zjuj}, {Zjvj}) > 0,

which is equivalent to (4.9). This completes the proof. �

We remark that (4.9) can be replaced by relation (4.10). As a consequence of
Theorem 4.2, when the distinct elements in Bn are λj , j = 1, . . . , k, we infer the
following spectral tangential interpolation result for matrix-valued bounded analytic
functions in the unit ball of Cn.
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Corollary 4.3. Let λj , j = 1, . . . , k, be distinct elements in Bn and let K be a finite
dimensional Hilbert space. If u1, . . . , uk, v1, . . . , vk ∈ K with ui 6= 0, j = 1, . . . , k,
δ > 0, and there exist invertible operators Zj ∈ B(K), j = 1, . . . , k, such that[

〈δZjuj, δZiui〉 − 〈Zjvj , Zivi〉
1− 〈λi, λj〉

]
1≤i,j≤k

> 0,

then there exists F ∈ H∞(Bn)⊗̄B(K) such that

sup
λ∈Bn

‖F (λ)‖sp < δ and F (λj)uj = vj , j = 1, . . . , k.

Let us make some remarks on the dependence of ρM,{T1,...,Tn}′(X) on the given
interpolation data. For each m = 1, . . . , k, we define

ρm := inf{‖X({λj}mj=1, {Zjuj}mj=1, {Zjvj}mj=1)‖ : Zj ∈ B(K) are invertible}.
A multivariable analogue of [BF, Proposition 4] holds. More precisely, one can prove
that if uk and vk are linearly independent, then ρk−1 = ρk. Indeed, suppose that
ρk−1 < ρk. Using Theorem 4.2, we find Φ ∈ F∞n ⊗̄B(K) such that ρF∞n ⊗̄B(K)(Φ) <
ρk and Φ(λj)∗uj = vj , j = 1, . . . , k − 1. We may suppose that Φ(λk)∗ /∈ CIK
because, otherwise, we can replace Φ by Φ + Ψ for some Ψ ∈ F∞n ⊗̄B(K) satisfying
Φ(λj) = 0, j = 1, . . . , k − 1, and Ψ(λk) /∈ CIK. Since we can choose Ψ with very
small norm we have ρF∞n ⊗̄B(K)(Φ + Ψ) < ρk.

Therefore, since Φ(λk)∗ /∈ CIK, there exist linearly independent vectors u and v
such that Φ(λk)∗u = v. Since uk, vk are linearly independent, we can find Zk ∈ B(K)
invertible with Zkuk = u and Zkvk = v. Hence, we infer that ρk ≤ ρF∞n ⊗̄B(K)(Φ) <
ρk, which is a contradiction. Since ρk−1 ≤ ρk, we must have ρk−1 = ρk. This shows
that in Theorem 4.2 we can assume, without loss of generality, that vj = µjuj, for
some µj ∈ C, µj 6= 0, j = 1, . . . , k. Similarly to [BF, Proposition 5], one can show
that if k ≤ dimK, then

ρk = max{|µ1|, . . . , |µk|}.
The case when the number of dependent vector pairs (uj , vj) exceeds the dimension
of K, and the problem of optimal solutions will be considered in a future paper.
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