SPECTRAL LIFTING IN BANACH ALGEBRAS AND INTERPOLATION IN SEVERAL VARIABLES

GELU POPESCU

Abstract

Let \mathcal{A} be a unital Banach algebra and let J be a closed two-sided ideal of \mathcal{A}. We prove that if any invertible element of \mathcal{A} / J has an invertible lifting in \mathcal{A}, then the quotient homomorphism $\Phi: \mathcal{A} \rightarrow \mathcal{A} / J$ is a spectral interpolant. This result is used to obtain a noncommutative multivariable analogue of the spectral commutant lifting theorem of Bercovici, Foiaş, and Tannenbaum. This yields spectral versions of Sarason, Nevanlinna-Pick, and Carathéodory type interpolation for $F_{n}^{\infty} \bar{\otimes} B(\mathcal{K})$, the WOT-closed algebra generated by the spatial tensor product of the noncommutative analytic Toeplitz algebra F_{n}^{∞} and $B(\mathcal{K})$, the algebra of bounded operators on a finite dimensional Hilbert space \mathcal{K}. A spectral tangential commutant lifting theorem in several variables is considered and used to obtain a spectral tangential version of the Nevanlinna-Pick interpolation for $F_{n}^{\infty} \bar{\otimes} B(\mathcal{K})$.

In particular, we obtain interpolation theorems for matrix-valued bounded analytic functions on the open unit ball of \mathbb{C}^{n}, in which one bounds the spectral radius of the interpolant and not the norm.

1. Introduction and preliminaries

Let \mathbb{D} denote the unit disc in the complex plane, let $z_{1}, \ldots, z_{k} \in \mathbb{D}$ be given distinct points, and F_{1}, \ldots, F_{k} be complex $m \times m$ matrices. The classical NevanlinnaPick problem N, P consists in finding necessary and sufficient conditions for the existence of an analytic $m \times m$ matrix-valued function $F(z)$ with $F\left(z_{j}\right)=F_{j}$ $(1 \leq j \leq k)$ and such that $\|F\|_{\infty} \leq 1$.

Motivated by problems in control engineering, such as the design of feedback control systems in the presence of parameter uncertainty, Bercovici, Foias, and Tannenbaum proved in BFT a spectral generalization of the commutant lifting theorem [SzF1], and obtained a spectral version of the Nevanlinna-Pick problem, in which the infinity norm is replaced by

$$
\rho(F):=\sup \left\{\|F(z)\|_{\mathrm{sp}}: z \in \mathbb{D}\right\}
$$

$\left(\|A\|_{\text {sp }}\right.$ denotes the spectral radius of an operator $\left.A\right)$.
The tangential Nevanlinna-Pick problem considered by Fedcina $[\mathrm{F}]$ is to find $F \in H^{\infty}(\mathbb{D}) \otimes \mathbb{C}^{m}$ with $F\left(z_{j}\right) u_{j}=v_{j}, j=1, \ldots, k$, and $\|F\|_{\infty} \leq 1$, where $z_{j} \in \mathbb{D}$ and $u_{j}, v_{j} \in \mathbb{C}^{m}$ are prescribed. The spectral tangential Nevanlinna-Pick interpolation problem, considered by Bercovici and Foiaş [BF], is to find such an F for which $\rho(F)<1$. This type of interpolation was also motivated by certain control engineering applications.

[^0]In this paper we find noncommutative multivariable analogues of the abovementioned results obtained by Bercovici, Foiaş, and Tannenbaum (see BFT] and $[\mathrm{BF}]$) for the noncommutative analytic Toeplitz algebra F_{n}^{∞}. In particular, we obtain interpolation results (see Corollary 3.7 and Corollary 4.3) for matrix-valued bounded analytic functions on the open unit ball of \mathbb{C}^{n}, in which one bounds the spectral radius of the interpolant and not the norm.

We expect these results to play a role in multivariable control and systems theory, as it does in the case $n=1$. We mention the papers $[B V]$ and $[B$ for recent results in multivariable linear systems.

We need to recall some facts concerning the noncommutative analytic Toeplitz algebra F_{n}^{∞} and its connection with the function theory on the open unit ball of \mathbb{C}^{n}. Let $F^{2}\left(H_{n}\right)=\mathbb{C} 1 \oplus \bigoplus_{m \geq 1} H_{n}^{\otimes m}$ be the full Fock space on n generators, where H_{n} is an n-dimensional complex Hilbert space with orthonormal basis $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ if n is finite, and $\left\{e_{1}, e_{2}, \ldots\right\}$ if $n=\infty$. For each $i=1,2, \ldots$, define the left creation operator by $S_{i} \xi:=e_{i} \otimes \xi, \xi \in F^{2}\left(H_{n}\right)$.

We shall denote by \mathcal{P} the set of all $p \in F^{2}\left(H_{n}\right)$ which are finite sums of tensor monomials. Define F_{n}^{∞} as the set of all $g \in F^{2}\left(H_{n}\right)$ such that

$$
\|g\|_{\infty}:=\sup \left\{\|g \otimes p\|_{F^{2}\left(H_{n}\right)}: p \in \mathcal{P},\|p\|_{F^{2}\left(H_{n}\right)} \leq 1\right\}<\infty
$$

We denote by \mathcal{A}_{n} the closure of \mathcal{P} in $\left(F_{n}^{\infty},\|\cdot\|_{\infty}\right)$. The Banach algebra F_{n}^{∞} (resp. \mathcal{A}_{n}) can be viewed as a noncommutative analogue of the Hardy space $H^{\infty}(\mathbb{D})$ (resp. disc algebra $A(\mathbb{D})$); when $n=1$ they coincide.

In [Po7, Theorem 3.1] we proved that \mathcal{A}_{n} is completely isometrically isomorphic to the norm-closed algebra generated by any sequence V_{1}, \ldots, V_{n} of isometries with $V_{1} V_{1}^{*}+\cdots+V_{n} V_{n}^{*} \leq I$, and the identity. It follows from [Po5, Theorem 4.3] that the noncommutative analytic Toeplitz algebra F_{n}^{∞} can be identified with the WOTclosed algebra generated by the left creation operators $S_{1}, \ldots S_{n}$, and the identity. The algebras F_{n}^{∞} and \mathcal{A}_{n} were introduced by the author in [Po3] in connection with a noncommutative von Neumann inequality, and have been studied in several papers [Po2], [Po5], [Po6], [Po7], Po9], ArPo1], and recently in [DP1], [DP2], [ArPo2], DP3], and [Po8].

We established a strong connection between the algebra F_{n}^{∞} and the function theory on the open unit ball \mathbb{B}_{n} of \mathbb{C}^{n} through the noncommutative von Neumann inequality Po 3] (see also Po5], Po7], and [Po9]). In particular, we proved that there is a completely contractive homomorphism

$$
\Phi: F_{n}^{\infty} \rightarrow H^{\infty}\left(\mathbb{B}_{n}\right), \quad f\left(S_{1}, \ldots, S_{n}\right) \mapsto f\left(\lambda_{1}, \ldots, \lambda_{n}\right)
$$

where $\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{B}_{n}$. A characterization of the analytic functions in the range of the map Φ was obtained in [ArPo2] and [DP3]. W. Arveson proved that Φ is not surjective $[\mathrm{Arv}]$ and the functions in its range are the multipliers of a certain function Hilbert space. In [ArPo2], DP3], it was proved that $F_{n}^{\infty} / \operatorname{ker} \Phi$ is an operator algebra which can be identified with $\mathcal{W}_{n}^{\infty}:=\left.P_{F_{s}^{2}} F_{n}^{\infty}\right|_{F_{s}^{2}}$, the compression to the symmetric Fock space $F_{s}^{2} \subseteq F^{2}\left(H_{n}\right)$. In Po8, Po9, Arv, ArPo2, DP3], AMc, and [BTV], a good case is made that the appropriate commutative multivariable analogue of $H^{\infty}(\mathbb{D})$ is the algebra \mathcal{W}_{n}^{∞}, which is the WOT-closed algebra generated by $B_{i}:=\left.P_{F_{s}^{2}} S_{i}\right|_{F_{s}^{2}}, i=1, \ldots, n$, and the identity. In this paper, we provide further evidence that $\stackrel{S}{n}_{n}^{\infty}$ (resp. \mathcal{W}_{n}^{∞}) is a noncommutative (resp. commutative) multivariate analogue of $H^{\infty}(\mathbb{D})$.

Let \mathcal{A} be a unital Banach algebra and denote by $\operatorname{Inv}(\mathcal{A})$ the group of invertible elements of \mathcal{A}. Given $a \in \mathcal{A}$, we define the \mathcal{A}-spectral radius of a by setting

$$
\rho_{\mathcal{A}}(a):=\inf \left\{\left\|x a x^{-1}\right\|: x \in \operatorname{Inv}(\mathcal{A})\right\}
$$

Since the spectral radius of $a \in \mathcal{A}$ is $\|a\|_{\mathrm{sp}}=\lim _{n \rightarrow \infty}\left\|a^{n}\right\|^{1 / n}$, it is clear that $\|a\|_{\mathrm{sp}}=\left\|x a x^{-1}\right\|_{\mathrm{sp}}$ for any $x \in \operatorname{Inv}(\mathcal{A})$. Now, it is easy to see that

$$
\|a\|_{\mathrm{sp}} \leq \rho_{\mathcal{A}}(a) \leq\|a\|
$$

for any $a \in \mathcal{A}$. Note that if $\mathcal{A}=B(\mathcal{H})$ (or \mathcal{A} is any C^{*}-subalgebra of $B(\mathcal{H})$) then $\|a\|_{\mathrm{sp}}=\rho_{\mathcal{A}}(a)($ see $[\mathrm{R}])$. There are some other examples of Banach algebras such that $\|a\|_{\mathrm{sp}}=\rho_{\mathcal{A}}(a)$ for any $a \in \mathcal{A}$. It was proved in [BFT] that this equality holds if \mathcal{A} is the commutant of an isometry (resp. normal operator) on a Hilbert space.

Let \mathcal{A}, \mathcal{B} be unital Banach algebras, and $\Phi: \mathcal{A} \rightarrow \mathcal{B}$ be a unital contractive homomorphism. We say that Φ is a quotient interpolant if

$$
\|b\|=\inf \{\|a\|: a \in \mathcal{A}, \Phi(a)=b\}
$$

for any $b \in \mathcal{B}$. We say that $b \in \mathcal{B}$ with $\rho_{\mathcal{B}}(b)<1$ has a spectral lifting if there exists $a \in \mathcal{A}$ such that $\Phi(a)=b$ and $\rho_{\mathcal{A}}(a)<1$. The homomorphism Φ is called a spectral interpolant if any $b \in \mathcal{B}$ has a spectral lifting.

Problem. Let $\Phi: \mathcal{A} \rightarrow \mathcal{B}$ be a unital contractive homomorphism which is also a quotient interpolant. When is Φ a spectral interpolant?

We show, in Section 2, that this problem has a positive answer if $\operatorname{Inv}(\mathcal{B}) \subseteq$ $\Phi(\operatorname{Inv}(\mathcal{A}))$. This relation holds, for example, if the group of invertible elements of \mathcal{B} is connected (in particular, if \mathcal{B} is finite dimensional or equal to $B(\mathcal{H})$).

The results of Section 2 are used in Section 3 to obtain a noncommutative multivariable analogue (see Theorem 3.1) of the spectral commutant lifting theorem of Bercovici-Foiaş-Tannenbaum. This yields spectral versions of Sarason ($[\mathbf{S}]$), Nevanlinna-Pick, and Carathéodory type interpolation for $F_{n}^{\infty} \bar{\otimes} B(\mathcal{K})$, the WOTclosed algebra generated by the spatial tensor product of the noncommutative analytic Toeplitz algebra F_{n}^{∞} and $B(\mathcal{K})$, the algebra of bounded operators on a finite dimensional Hilbert space \mathcal{K}.

In Section 4, we obtain a spectral tangential commutant lifting theorem in several variables (see Theorem 4.1). This leads to a spectral tangential Nevanlinna-Pick interpolation for $F_{n}^{\infty} \bar{\otimes} B(\mathcal{K})$ (see Theorem 4.2).

Problems concerning the optimal solutions to these spectral interpolation problems in several variables, and explicit algorithm for finding the optimal interpolants will be considered in a future paper.

We would like to thank the referee for helpful comments on the results of this paper.

2. Spectral lifting in Banach algebras

The notation and definitions from Section 1 are used throughout the paper. Let \mathcal{A}, \mathcal{B} be unital Banach algebras and let $\Phi: \mathcal{A} \rightarrow \mathcal{B}$ be a unital contractive homomorphism. We call Φ a norm preserving interpolant if for any $b \in \mathcal{B}$ there exists $a \in \mathcal{A}$ such that $\Phi(a)=b$ and $\|a\|=\|b\|$. Notice that any norm preserving interpolant is a quotient interpolant. Examples of norm preserving interpolants will be presented in Section 3.

Theorem 2.1. Let \mathcal{A}, \mathcal{B} be unital Banach algebras and let $\Phi: \mathcal{A} \rightarrow \mathcal{B}$ be a unital contractive homomorphism with the property that $\operatorname{Inv}(\mathcal{B}) \subseteq \Phi(\operatorname{Inv}(\mathcal{A}))$ and

$$
\|b\|=\inf \{\|a\|: a \in \mathcal{A}, \Phi(a)=b\}
$$

for any $b \in \mathcal{B}$. Then

$$
\begin{equation*}
\rho_{\mathcal{B}}(b)=\inf \left\{\rho_{\mathcal{A}}(a): a \in \mathcal{A}, \Phi(a)=b\right\} \tag{2.1}
\end{equation*}
$$

for any $b \in \mathcal{B}$. In particular, Φ is a spectral interpolant.
Proof. Let $b \in \mathcal{B}$ and $a \in \mathcal{A}$ with $\Phi(a)=b$. Since Φ is a contractive homomorphism and $\Phi(\operatorname{Inv}(\mathcal{A})) \subseteq \operatorname{Inv}(\mathcal{B})$ we have

$$
\begin{aligned}
\rho_{\mathcal{A}}(a) & =\inf \left\{\left\|w a w^{-1}\right\|: w \in \operatorname{Inv}(\mathcal{A})\right\} \\
& \geq \inf \left\{\left\|\Phi\left(w a w^{-1}\right)\right\|: w \in \operatorname{Inv}(\mathcal{A})\right\} \\
& =\inf \left\{\left\|\Phi(w) b \Phi(w)^{-1}\right\|: w \in \operatorname{Inv}(\mathcal{A})\right\} \\
& \geq \inf \left\{\left\|z b z^{-1}\right\|: z \in \operatorname{Inv}(\mathcal{B})\right\} \\
& =\rho_{\mathcal{B}}(b) .
\end{aligned}
$$

Therefore,

$$
\rho_{\mathcal{B}}(b) \leq \inf \left\{\rho_{\mathcal{A}}(a): a \in \mathcal{A}, \Phi(a)=b\right\}
$$

Now, let $\epsilon>0$ and choose $z \in \operatorname{Inv}(\mathcal{B})$ such that

$$
\begin{equation*}
\left\|z b z^{-1}\right\| \leq \rho_{\mathcal{B}}(b)+\frac{\epsilon}{2} \tag{2.2}
\end{equation*}
$$

Since $z b z^{-1} \in \mathcal{B}$, according to the hypothesis, for any $\epsilon>0$, there exists $d \in \mathcal{A}$ such that

$$
\begin{equation*}
\Phi(d)=z b z^{-1} \text { and }\|d\| \leq\left\|z b z^{-1}\right\|+\frac{\epsilon}{2} \tag{2.3}
\end{equation*}
$$

Since $\Phi(\operatorname{Inv}(\mathcal{A})) \supseteq \operatorname{Inv}(\mathcal{B})$, we find $w \in \operatorname{Inv}(\mathcal{A})$ such that $\Phi(w)=z$. Notice that $y:=w^{-1} d w \in \mathcal{A}$ and

$$
\Phi(y)=\Phi(w)^{-1} \Phi(d) \Phi(w)=z^{-1}\left(z b z^{-1}\right) z=b
$$

Now, using (2.2) and (2.3), we infer that

$$
\rho_{\mathcal{A}}(y) \leq\left\|w y w^{-1}\right\|=\|d\| \leq\left\|z b z^{-1}\right\|+\frac{\epsilon}{2} \leq \rho_{\mathcal{A}}(b)+\epsilon
$$

Therefore,

$$
\rho_{\mathcal{B}}(b) \geq \inf \left\{\rho_{\mathcal{A}}(a): a \in \mathcal{A}, \phi(a)=b\right\} .
$$

Using relation (2.1), it is easy to see that if $b \in \mathcal{B}$, then $\rho_{\mathcal{B}}(b)<1$ if and only if there exists $a \in \mathcal{A}$ such that $\Phi(a)=b$ and $\rho_{\mathcal{A}}(a)<1$. This completes the proof.

Corollary 2.2. Let \mathcal{A}, \mathcal{B} be unital Banach algebras such that the group $\operatorname{Inv}(\mathcal{B})$ is connected. Let $\Phi: \mathcal{A} \rightarrow \mathcal{B}$ be a unital contractive homomorphism which is also a quotient interpolant. Then Φ is a spectral interpolant.

Proof. Let us prove that

$$
\begin{equation*}
\Phi(\operatorname{Inv}(\mathcal{A}))=\operatorname{Inv}(\mathcal{B}) \tag{2.4}
\end{equation*}
$$

The inclusion $\Phi(\operatorname{Inv}(\mathcal{A})) \subseteq \operatorname{Inv}(\mathcal{B})$ is clear. Conversely, let $x \in \operatorname{Inv}(\mathcal{B})$. Since $\operatorname{Inv}(\mathcal{B})$ is connected, it is well known that

$$
x=\exp \left(z_{1}\right) \cdots \exp \left(z_{k}\right)
$$

for some $z_{1}, \ldots, z_{k} \in \mathcal{B}$. Due to the hypothesis, there exist $w_{1}, \ldots, w_{k} \in \mathcal{A}$ such that $\Phi\left(w_{i}\right)=z_{i}, i=1, \ldots, k$. Denote $y:=\exp \left(w_{1}\right) \cdots \exp \left(w_{k}\right) \in \operatorname{Inv}(\mathcal{A})$ and notice that $\Phi(y)=\exp \left(\Phi\left(w_{1}\right)\right) \cdots \exp \left(\Phi\left(w_{k}\right)\right)=x$. Hence $\Phi(\operatorname{Inv}(\mathcal{A})) \supseteq \operatorname{Inv}(\mathcal{B})$ and (2.4) holds.

Remark 2.3. If \mathcal{B} is a finite dimensional algebra, then $\operatorname{Inv}(\mathcal{B})=\exp (\mathcal{B})$, hence $\operatorname{Inv}(\mathcal{B})$ is connected.

Corollary 2.4. Let \mathcal{A} be a unital Banach algebra and let J be a closed two-sided ideal of \mathcal{A}. If any invertible element of \mathcal{A} / J has an invertible lifting in \mathcal{A}, then the quotient homomorphism $\Phi: \mathcal{A} \rightarrow \mathcal{A} / J$ is a spectral interpolant, i.e., $\rho_{\mathcal{A} / J}(a+J)<1$ if and only if there exists $b \in a+J$ such that $\rho_{\mathcal{A}}(b)<1$.

Proof. Apply Theorem 2.1 to the quotient homomorphism Φ.
Let us remark that, in general, there are invertible elements in \mathcal{A} / J which can not be lifted to invertible elements in \mathcal{A}. For example, if $\pi: B\left(H^{2}\right) \rightarrow B\left(H^{2}\right) / K\left(H^{2}\right)$ is the quotient homomorphism into the Calkin algebra, and S is the unilateral shift on the Hardy space H^{2}, then $\pi(S)$ is invertible and there is no invertible operator $T \in B\left(H^{2}\right)$ such that $\pi(T)=\pi(S)$.

An important particular case, when Corollary 2.4 can be applied, is when the quotient algebra A / J is finite dimensional. Applications of this result will be considered in the next section.

3. Noncommutative spectral Commutant Lifting and interpolation

Let \mathbb{F}_{n}^{+}be the unital free semigroup on n generators s_{1}, \ldots, s_{n}, and let e be its neutral element. For any $\sigma:=s_{i_{1}} \cdots s_{i_{k}} \in \mathbb{F}_{n}^{+}$we define its length $|\sigma|:=k$, and $|e|=0$. On the other hand, if $T_{i} \in B(\mathcal{H}), i=1, \ldots, n$, we denote $T_{\sigma}:=T_{i_{1}} \cdots T_{i_{k}}$ and $T_{e}:=I_{\mathcal{H}}$.

Let us recall from Po1, Po2, and [Po4 some results concerning the noncommutative dilation theory for n-tuples of operators. A sequence of operators $\mathcal{T}:=\left[T_{1}, \ldots, T_{n}\right], T_{i} \in B(\mathcal{H}), i=1, \ldots, n$, is called contractive (or row contraction) if $T_{1} T_{1}^{*}+\cdots+T_{n} T_{n}^{*} \leq I_{\mathcal{H}}$. We say that a sequence of isometries $\mathcal{V}:=\left[V_{1}, \ldots, V_{n}\right]$ on a Hilbert space $\mathcal{K} \supseteq \mathcal{H}$ is a minimal isometric dilation of \mathcal{T} if the following properties are satisfied:
(i) $V_{1} V_{1}^{*}+\cdots+V_{n} V_{n}^{*} \leq I_{\mathcal{K}}$;
(ii) $\left.V_{i}^{*}\right|_{\mathcal{H}}=T_{i}^{*}, i=1, \ldots, n$;
(iii) $\mathcal{K}=\bigvee_{\alpha \in \mathbb{F}_{n}^{+}} V_{\alpha} \mathcal{H}$.

The minimal isometric dilation of \mathcal{T} is uniquely determined up to an isomorphism. We need to recall the noncommutative commutant lifting theorem [Po4] (see [SzF1, SzF2, DMP for the classical case).

Let $\mathcal{T}:=\left[T_{1}, \ldots, T_{n}\right]$ be a contractive sequence of operators on a Hilbert space \mathcal{H} and let $\mathcal{V}:=\left[V_{1}, \ldots, V_{n}\right]$ be its minimal isometric dilation on a Hilbert $\mathcal{K} \supseteq \mathcal{H}$. If $X \in B(\mathcal{H})$ and $X T_{i}=T_{i} X$ for any $i=1, \ldots, n$, then there exists $X_{\infty} \in B(\mathcal{K})$ satisfying the following properties:
(i) $X_{\infty} V_{i}=V_{i} X_{\infty}$, for any $i=1, \ldots, n$;
(ii) $\left.X_{\infty}^{*}\right|_{\mathcal{H}}=X^{*}$;
(iii) $\left\|X_{\infty}\right\|=\|X\|$.

Let $\mathcal{T}:=\left[T_{1}, \ldots, T_{n}\right]$ be a row contraction with $T_{i} \in B(\mathcal{H})$ and let $\mathcal{V}:=$ $\left[V_{1}, \ldots, V_{n}\right]$ be its minimal isometric dilation on a Hilbert space $\mathcal{K} \supseteq \mathcal{H}$. Let $X \in\left\{T_{1}, \ldots, T_{n}\right\}^{\prime}$, and denote

$$
\operatorname{Dil}(X):=\left\{Y \in\left\{V_{1}, \ldots, V_{n}\right\}^{\prime}: P_{\mathcal{H}} Y=X P_{\mathcal{H}}\right\}
$$

where $P_{\mathcal{H}}$ is the orthogonal projection on \mathcal{H}. According to the noncommutative commutant lifting, we have $\operatorname{Dil}(X) \neq \emptyset$.

In what follows we obtain a noncommutative multivariable analogue of the spectral commutant lifting theorem of Bercovici-Foiaş-Tannenbaum [BFT].

Theorem 3.1. Let $\mathcal{T}:=\left[T_{1}, \ldots, T_{n}\right]$ be a contractive sequence of operators on a Hilbert space \mathcal{H} and let $\mathcal{V}:=\left[V_{1}, \ldots, V_{n}\right]$ be its minimal isometric dilation on a Hilbert space $\mathcal{K} \supseteq \mathcal{H}$. If \mathcal{H} is finite dimensional and $\mathcal{K} \ominus \mathcal{H}$ is hyperinvariant for $\left\{V_{1}, \ldots, V_{n}\right\}$, then

$$
\rho_{\left\{T_{1}, \ldots, T_{n}\right\}^{\prime}}(X)=\inf \left\{\rho_{\left\{V_{1}, \ldots, V_{n}\right\}^{\prime}}(Y): Y \in \operatorname{Dil}(X)\right\}
$$

for any $X \in\left\{T_{1}, \ldots, T_{n}\right\}^{\prime}$.
Proof. Let $\Phi:\left\{V_{1}, \ldots, V_{n}\right\}^{\prime} \rightarrow\left\{T_{1}, \ldots, T_{n}\right\}^{\prime}$ be defined by $\Phi(Y):=\left.P_{\mathcal{H}} Y\right|_{\mathcal{H}}$. Since $\mathcal{K} \ominus \mathcal{H}$ is hyperinvariant for $\left\{V_{1}, \ldots, V_{n}\right\}$, we have $Y^{*}(\mathcal{H}) \subseteq \mathcal{H}$ for any $Y \in\left\{V_{1}, \ldots, V_{n}\right\}^{\prime}$. Since $\mathcal{V}:=\left[V_{1}, \ldots, V_{n}\right]$ is the minimal isometric dilation of \mathcal{T}, we have $\left.V_{i}^{*}\right|_{\mathcal{H}}=T_{i}^{*}, i=1, \ldots, n$. Now, it is easy to see that

$$
\left(\left.P_{\mathcal{H}} Y\right|_{\mathcal{H}}\right) T_{i}=T_{i}\left(\left.P_{\mathcal{H}} Y\right|_{\mathcal{H}}\right) \quad \text { for any } i=1,2, \ldots, n
$$

Therefore, the mapping Φ is well-defined. On the other hand, since $\mathcal{K} \ominus \mathcal{H}$ is hyperinvariant for $\left\{V_{1}, \ldots, V_{n}\right\}$, we infer that Φ is a unital contractive homomorphism, and $\Phi(Y)=X$ is equivalent to $P_{\mathcal{H}} Y=X P_{\mathcal{H}}$. According to the noncommutative commutant lifting theorem, for any $X \in\left\{T_{1}, \ldots, T_{n}\right\}^{\prime}$ there exists $Y \in\left\{V_{1}, \ldots, V_{n}\right\}^{\prime}$ such that $P_{\mathcal{H}} Y=X P_{\mathcal{H}}$ and $\|Y\|=\|X\|$. Therefore, Φ is a norm preserving interpolant. Since \mathcal{H} is finite dimensional, the algebra $\left\{T_{1}, \ldots, T_{n}\right\}^{\prime}$ is finite dimensional. Applying Theorem 2.1 and Remark 2.3, in the particular case when $\mathcal{A}:=\left\{V_{1}, \ldots, V_{n}\right\}^{\prime}$ and $\mathcal{B}:=\left\{T_{1}, \ldots, T_{n}\right\}^{\prime}$, the result follows.

Corollary 3.2. Let $\mathcal{T}:=\left[T_{1}, \ldots, T_{n}\right]$ be a contractive sequence of operators on a Hilbert space \mathcal{H} and let $\mathcal{V}:=\left[V_{1}, \ldots, V_{n}\right]$ be its minimal isometric dilation on a Hilbert space $\mathcal{K} \supseteq \mathcal{H}$. If \mathcal{H} is finite dimensional and $\mathcal{K} \ominus \mathcal{H}$ is hyperinvariant for $\left\{V_{1}, \ldots, V_{n}\right\}$, then, given $X \in\left\{T_{1}, \ldots, T_{n}\right\}^{\prime}, \rho_{\left\{T_{1}, \ldots, T_{n}\right\}^{\prime}}(X)<1$ if and only if there exists $Y \in \operatorname{Dil}(X)$ such that $\rho_{\left\{V_{1}, \ldots, V_{n}\right\}^{\prime}}(Y)<1$.

In what follows, we use the noncommutative spectral commutant lifting theorem to obtain spectral versions of Sarason, Nevanlinna-Pick, and Carathéodory type interpolation for $F_{n}^{\infty} \bar{\otimes} B(\mathcal{K})$, the WOT-closed algebra generated by the spatial tensor product of the noncommutative analytic Toeplitz algebra F_{n}^{∞} and $B(\mathcal{K})$. In particular, we obtain interpolation results for matrix-valued analytic functions on the open unit ball of \mathbb{C}^{n}, in which one bounds the spectral radius of the interpolant.

According to Theorem 1.2 from [P6], the commutant of F_{n}^{∞}, which we denote by R_{n}^{∞}, is equal to $U^{*} F_{n}^{\infty} U$, where U is the unitary operator on $F^{2}\left(H_{n}\right)$ defined by $U\left(e_{i_{1}} \otimes e_{i_{2}} \otimes \cdots \otimes e_{i_{k}}\right)=e_{i_{k}} \otimes \cdots \otimes e_{i_{2}} \otimes e_{i_{1}}$. Moreover, the commutant of R_{n}^{∞} is equal to F_{n}^{∞}.

A complete description of the invariant subspace structure of F_{n}^{∞} was obtained in [Po2, Theorem 2.2] (even in a more general setting). A subspace \mathcal{N} of $F^{2}\left(H_{n}\right)$ is invariant under S_{1}, \ldots, S_{n} if and only if $\mathcal{N}=\bigoplus_{\lambda \in \Lambda} U^{*} \varphi_{\lambda} U\left[F^{2}\left(H_{n}\right)\right]$, for some
family $\left\{\varphi_{\lambda} \in F_{n}^{\infty}: \lambda \in \Lambda\right\}$ of isometries with orthogonal ranges (see also Po6 and DP1]). Let us remark that $\mathcal{M} \subseteq F^{2}\left(H_{n}\right)$ is hyperinvariant for $\left\{S_{1}, \ldots, S_{n}\right\}$, i.e., invariant for $\left\{S_{1}, \ldots, S_{n}\right\}^{\prime}$, if and only if $U \mathcal{M}$ is invariant for $\left\{S_{1}, \ldots, S_{n}\right\}$.
Theorem 3.3. Let \mathcal{K} be a finite dimensional Hilbert space and let $\mathcal{N} \subseteq F^{2}\left(H_{n}\right)$ be a finite dimensional subspace with the property that \mathcal{N} and $U \mathcal{N}$ are invariant under $S_{1}^{*}, \ldots, S_{n}^{*}$. Then $X \in B(\mathcal{N} \otimes \mathcal{K})$ commutes with each $\left.P_{\mathcal{N}} S_{i}\right|_{\mathcal{N}} \otimes I_{\mathcal{K}}, i=1, \ldots, n$, and

$$
\rho_{\left.P_{\mathcal{N}} R_{n}^{\infty}\right|_{\mathcal{N}} \bar{\otimes} B(\mathcal{K})}(X)<1
$$

if and only there exists $\Psi \in R_{n}^{\infty} \bar{\otimes} B(\mathcal{K})$ such that

$$
P_{\mathcal{N} \otimes \mathcal{K}} \Psi=X P_{\mathcal{N} \otimes \mathcal{K}} \quad \text { and } \quad \rho_{R_{n}^{\infty} \bar{\otimes} B(\mathcal{K})}(\Psi)<1
$$

Proof. According to Po8, we have

$$
\mathcal{B}:=\left\{\left.P_{\mathcal{N}} S_{i}\right|_{\mathcal{N}} \otimes I_{\mathcal{K}}, i=1, \ldots, n\right\}^{\prime}=\left.P_{\mathcal{N} \otimes \mathcal{K}}\left(R_{n}^{\infty} \bar{\otimes} B(\mathcal{K})\right)\right|_{\mathcal{N} \otimes \mathcal{K}}
$$

Notice that \mathcal{B} is a finite dimensional algebra. Let $\mathcal{A}:=R_{n}^{\infty} \bar{\otimes} B(\mathcal{K})$ and define $\Phi: \mathcal{A} \rightarrow \mathcal{B}$ by $\Phi(Y)=\left.P_{\mathcal{N} \otimes \mathcal{K}} Y\right|_{\mathcal{N} \otimes \mathcal{K}}$. Since $S_{i}^{*}(U \mathcal{N}) \subseteq U \mathcal{N}$ for any $i=1, \ldots, n$, and $\left\{S_{1} \otimes I_{\mathcal{K}}, \ldots, S_{n} \otimes I_{\mathcal{K}}\right\}^{\prime}=R_{n}^{\infty} \bar{\otimes} B(\mathcal{K})$, it is easy to see that $\left[F^{2}\left(H_{n}\right) \otimes \mathcal{K}\right] \ominus$ $[\mathcal{N} \otimes \mathcal{K}]$ is hyperinvariant for $\left\{S_{1} \otimes I_{\mathcal{K}}, \ldots, S_{n} \otimes I_{\mathcal{K}}\right\}$ and the mapping Φ is a unital contractive homomorphism. Since \mathcal{N} is invariant under $S_{1}^{*}, \ldots, S_{n}^{*}$, it is clear that the operator matrix $\left[\left.P_{\mathcal{N}} S_{1}\right|_{\mathcal{N}}, \ldots,\left.P_{\mathcal{N}} S_{n}\right|_{\mathcal{N}}\right]$ is a C_{0}-row contraction and its minimal isometric dilation is $\left[S_{1}, \ldots, S_{n}\right]$ (see Po1). Therefore, the minimal isometric dilation of $\left[\left.P_{\mathcal{N}} S_{1}\right|_{\mathcal{N}} \otimes I_{\mathcal{K}}, \ldots,\left.P_{\mathcal{N}} S_{n}\right|_{\mathcal{N}} \otimes I_{\mathcal{K}}\right]$ is $\left[S_{1} \otimes I_{\mathcal{K}}, \ldots, S_{n} \otimes I_{\mathcal{K}}\right]$. According to the noncommutative commutant lifting theorem, for any $X \in \mathcal{B}$ there exists $\Psi \in R_{n}^{\infty} \bar{\otimes} B(\mathcal{K})$, such that $P_{\mathcal{N} \otimes \mathcal{K}} \Psi=X P_{\mathcal{N} \otimes \mathcal{K}}$ and $\|X\|=\|\Psi\|$. Therefore, $\Phi(\Psi)=X$ and Φ is a norm preserving interpolant. Applying Corollary 3.2, the result follows.

Notice that the element Ψ in Theorem 3.3 satisfies $\|\Psi\|_{\mathrm{sp}} \leq \rho_{R_{n}^{\infty} \bar{\otimes} B(\mathcal{K})}(\Psi)<1$. It would be nice to know if $\rho_{R_{n}^{\infty} \bar{\otimes} B(\mathcal{K})}(\Psi)=\|\Psi\|_{\mathrm{sp}}$ for any $\Psi \in R_{n}^{\infty} \bar{\otimes} B(\mathcal{K})$. This equality holds if $n=1$ (see [BFT]).

Let us remark that the finite dimensionality hypothesis can be dropped in Theorem 3.3 for those subspaces \mathcal{N} and \mathcal{K} for which one can prove that any invertible element $\left.f \in P_{\mathcal{N}} R_{n}^{\infty}\right|_{\mathcal{N}} \bar{\otimes} B(\mathcal{K})$ can be lifted to an invertible element $g \in R_{n}^{\infty} \bar{\otimes} B(\mathcal{K})$, i.e., $\left.P_{\mathcal{N} \otimes \mathcal{K}} g\right|_{\mathcal{N} \otimes \mathcal{K}}=f$. We do not have yet any nontrivial example when this lifting property holds and \mathcal{N}, \mathcal{K} are infinite dimensional.

Let J be a WOT-closed, two-sided ideal of F_{n}^{∞} and define $J(1):=\{\Psi(1): \Psi \in J\}$ and $\left.\mathcal{N}_{J}:=F^{2}\left(H_{n}\right) \ominus J(1)\right\}$. Let us remark that \mathcal{N}_{J} and $U \mathcal{N}_{J}$ are invariant subspaces under $S_{i}^{*}, i=1, \ldots, n$, therefore, Theorem 3.3 works in the case when $\operatorname{dim} \mathcal{N}_{J}<\infty$.

Corollary 3.4. Let \mathcal{K} be a finite dimensional Hilbert space and let J be a WOTclosed two-sided ideal of F_{n}^{∞} such that $\operatorname{dim} \mathcal{N}_{J}<\infty$. Then the quotient homomorphism

$$
\Phi: F_{n}^{\infty} \bar{\otimes} B(\mathcal{K}) \rightarrow F_{n}^{\infty} \bar{\otimes} B(\mathcal{K}) /(J \bar{\otimes} B(\mathcal{K}))
$$

is a spectral interpolant.
Proof. According to ArPo2, the quotient algebra $F_{n}^{\infty} \bar{\otimes} B(\mathcal{K}) /(J \bar{\otimes} B(\mathcal{K}))$ is completely isometrically isomorphic to $\left.P_{\mathcal{N}_{J}} F_{n}^{\infty}\right|_{\mathcal{N}_{J}} \bar{\otimes} B(\mathcal{K})$, which is finite dimensional. Using Theorem 3.3, we infer that Φ is a spectral interpolant. The proof is complete.

It will be interesting to see if this result remains true if \mathcal{N}_{J} is infinite dimensional (at least for some particular cases, if not in general). The obstruction in the infinite dimensional case seems to be the lifting of the invertible elements of a quotient algebra \mathcal{A} / J to invertible elements of \mathcal{A} (see Section 2 for an example). In the finite dimensional case, Corollary 3.4 leads to our spectral interpolation results for F_{n}^{∞} (see Theorem 3.6 and Theorem 3.8).

Let $F_{s}^{2}\left(H_{n}\right)$ be the symmetric Fock space and \mathcal{W}_{n}^{∞} be the WOT-closed algebra generated by $B_{i}:=\left.P_{F_{s}^{2}\left(H_{n}\right)} S_{i}\right|_{F_{s}^{2}\left(H_{n}\right)}, i=1, \ldots, n$, and the identity. This algebra has been studied in [Po9], Arv], ArPo2], DP3]. The following theorem can be seen as a spectral version of Sarason's interpolation theorem for $H^{\infty}(\mathbb{D})$ (see $[\underline{S}$), in a commutative and multivariable setting.
Theorem 3.5. Let $\mathcal{E} \subseteq F_{s}^{2}\left(H_{n}\right)$ be a finite dimensional invariant subspace under $B_{1}^{*}, \ldots, B_{n}^{*}$ and let \mathcal{K} be a finite dimensional Hilbert space. Then $f \in B(\mathcal{E} \otimes \mathcal{K})$ commutes with each $\left.P_{\mathcal{E}} B_{i}\right|_{\mathcal{E}} \otimes I_{\mathcal{K}}, i=1, \ldots, n$, and

$$
\rho_{\left.P_{\mathcal{E} \otimes \mathcal{K}}\left(\mathcal{W}_{n}^{\infty} \bar{\otimes} B(\mathcal{K})\right)\right|_{\mathcal{\varepsilon} \otimes \mathcal{K}}(f)<1.10 .}
$$

if and only if there exists $g \in \mathcal{W}_{n}^{\infty} \bar{\otimes} B(\mathcal{K})$ such that

$$
\left.P_{\mathcal{E} \otimes \mathcal{K}} g\right|_{\mathcal{E} \otimes \mathcal{K}}=f \quad \text { and } \quad \rho_{\mathcal{W}_{n}^{\infty} \bar{\otimes} B(\mathcal{K})}(g)<1
$$

Proof. Since $F_{s}^{2}\left(H_{n}\right)$ is invariant under each $S_{i}^{*}, i=1, \ldots, n$, it is easy to see that \mathcal{E} has the same property. Taking into account that \mathcal{W}_{n}^{∞} is the compression of F_{n}^{∞} to the symmetric Fock space, one can see that f commutes with $\left.P_{\mathcal{E} \otimes \mathcal{K}}\left(S_{i} \otimes I_{\mathcal{K}}\right)\right|_{\mathcal{E} \otimes \mathcal{K}}$. As in the proof of Theorem 3.3, using the noncommutative commutant lifting theorem, we find $\phi \in F_{n}^{\infty} \bar{\otimes} B(\mathcal{K})$ such that $\left.P_{\mathcal{E} \otimes \mathcal{K}}\left(U^{*} \otimes I_{\mathcal{K}}\right) \phi(U \otimes I)\right|_{\mathcal{E} \otimes \mathcal{K}}=f$ and $\|f\|=\|\phi\|$. Hence, $\left.P_{\mathcal{E} \otimes \mathcal{K}} \phi\right|_{\mathcal{E} \otimes \mathcal{K}}=f$. Setting $g:=\left.P_{F_{s}^{2}\left(H_{n}\right) \otimes \mathcal{K} \phi}\right|_{F_{s}^{2}\left(H_{n}\right) \otimes \mathcal{K}} \in \mathcal{W}_{n}^{\infty} \bar{\otimes} B(\mathcal{K})$, we have $\left.P_{\mathcal{E} \otimes \mathcal{K}} g\right|_{\mathcal{E} \otimes \mathcal{K}}=f$ and $\|f\| \leq\|g\| \leq\|\dot{\phi}\|=\|f\|$. This shows that $\|f\|=\|g\|$. Define $\mathcal{A}:=\mathcal{W}_{n}^{\infty} \bar{\otimes} B(\mathcal{K}), \mathcal{B}:=\left.P_{\mathcal{E} \otimes \mathcal{K}}\left(\mathcal{W}_{n}^{\infty} \bar{\otimes} B(\mathcal{K})\right)\right|_{\mathcal{E} \otimes \mathcal{K}}$ and let $\Phi: \mathcal{A} \rightarrow \mathcal{B}$ be defined by $\Phi(g):=P_{\mathcal{E} \otimes \mathcal{K}}(g)_{\mathcal{E} \otimes \mathcal{K}}$. We just proved that Φ is a unital contractive homomorphism and also a norm preserving interpolant. Now, the result follows by applying the results of Section 2 in our setting.

Let us remark that a result similar to Corollary 3.4 holds for the algebra $\mathcal{W}_{n}^{\infty} \bar{\otimes}$ $B(\mathcal{K})$.

In what follows we obtain a spectral version of Nevanlinna-Pick interpolation for the noncommutative analytic Toeplitz algebra F_{n}^{∞} (see ArPo2, DP3, and Po8). As mentioned in the first section, there exists a unital contractive homomorphism

$$
\Psi: F_{n}^{\infty} \bar{\otimes} B(\mathcal{K}) \rightarrow H^{\infty}\left(\mathbb{B}_{n}\right) \bar{\otimes} B(\mathcal{K})
$$

defined by $[\Psi(f)](\lambda):=f(\lambda), \lambda \in \mathbb{B}_{n}$.
Theorem 3.6. Let \mathcal{K} be a finite dimensional Hilbert space, $W_{j} \in B(\mathcal{K})$, and $\lambda_{j}, j=1, \ldots, k$, be distinct elements in \mathbb{B}_{n}. Then there exists $\Phi \in F_{n}^{\infty} \bar{\otimes} B(\mathcal{K})$ such that

$$
\rho_{F_{n}^{\infty} \bar{\otimes} B(\mathcal{K})}(\Phi)<1 \quad \text { and } \quad \Phi\left(\lambda_{j}\right)=W_{j}, j=1, \ldots, k,
$$

if and only if there exist invertible operators $M_{j} \in B(\mathcal{K}), j=1, \ldots, k$, such that

$$
\begin{equation*}
\left[\frac{I_{\mathcal{K}}-\left(M_{i} W_{i} M_{i}^{-1}\right)\left(M_{j} W_{j} M_{j}^{-1}\right)^{*}}{1-\left\langle\lambda_{i}, \lambda_{j}\right\rangle}\right]_{1 \leq i, j \leq k}>0 \tag{3.1}
\end{equation*}
$$

Proof. Let $\lambda_{j}:=\left(\lambda_{j 1}, \ldots, \lambda_{j n}\right) \in \mathbb{B}_{n}, j=1, \ldots, k$. For any $\alpha:=s_{j_{1}} s_{j_{2}} \ldots s_{j_{m}}$ in \mathbb{F}_{n}^{+}, let $\lambda_{j \alpha}:=\lambda_{j j_{1}} \lambda_{j j_{2}} \ldots \lambda_{j j_{m}}$ and $\lambda_{e}:=1$. Define $z_{\lambda_{j}} \in F^{2}\left(H_{n}\right)$ by setting

$$
z_{\lambda_{j}}:=\sum_{\alpha \in \mathbb{F}_{n}^{+}} \bar{\lambda}_{j \alpha} e_{\alpha}, \quad j=1,2, \ldots, k
$$

Let $\mathcal{N}:=\operatorname{span}\left\{z_{\lambda_{j}}: j=1, \ldots, k\right\}$ and $X \in B(\mathcal{N} \otimes \mathcal{K})$ be defined by

$$
\begin{equation*}
X^{*}\left(z_{\lambda_{j}} \otimes h\right):=z_{\lambda_{j}} \otimes W_{j}^{*} h, \quad h \in \mathcal{K} \tag{3.2}
\end{equation*}
$$

Notice that $S_{i}^{*} z_{\lambda_{j}}=\bar{\lambda}_{j i} z_{\lambda_{j}}$ for any $i=1, \ldots, n ; j=1, \ldots, k$. Hence, the subspaces \mathcal{N} and $U \mathcal{N}$ are invariant under each $S_{i}^{*}, i=1, \ldots, n$. Define $T_{i} \in$ $B(\mathcal{N} \otimes \mathcal{K})$ by $T_{i}:=\left.P_{\mathcal{N}} S_{i}\right|_{\mathcal{N}} \otimes I_{\mathcal{K}}$. Since $z_{\lambda_{1}}, \ldots, z_{\lambda_{k}}$ are linearly independent, the operator $X \in B(\mathcal{N} \otimes \mathcal{K})$ given by (3.2) is well defined.

Notice that $X T_{i}=T_{i} X$ for any $i=1, \ldots, k$. Indeed,

$$
\begin{aligned}
T_{i}^{*} X^{*}\left(z_{\lambda_{j}} \otimes h\right) & =T_{i}^{*}\left(z_{\lambda_{j}} \otimes W_{j}^{*} h\right)=S_{i}^{*} z_{\lambda_{j}} \otimes W_{j}^{*} h \\
& =\bar{\lambda}_{j i} z_{\lambda_{j}} \otimes W_{j}^{*} h
\end{aligned}
$$

and

$$
X^{*} T_{i}^{*}\left(z_{\lambda_{j}} \otimes h\right)=X^{*}\left(\bar{\lambda}_{j i} z_{\lambda_{j}} \otimes h\right)=\bar{\lambda}_{j i} z_{\lambda_{j}} \otimes W_{j}^{*} h
$$

Applying Theorem 3.3, we infer that

$$
\begin{equation*}
\rho_{\left\{T_{1}, \ldots, T_{n}\right\}^{\prime}}(X)<1 \tag{3.3}
\end{equation*}
$$

if and only there exists $\Phi \in F_{n}^{\infty} \bar{\otimes} B(\mathcal{K})$ such that

$$
\begin{equation*}
P_{\mathcal{N} \otimes \mathcal{K}}\left(U^{*} \otimes I\right) \Phi(U \otimes I)=X P_{\mathcal{N} \otimes \mathcal{K}} \quad \text { and } \quad \rho_{F_{n}^{\infty} \bar{\otimes} B(\mathcal{K})}(\Phi)<1 \tag{3.4}
\end{equation*}
$$

Since $\left[F^{2}\left(H_{n}\right) \otimes \mathcal{K}\right] \ominus[\mathcal{N} \otimes \mathcal{K}]$ is hyperinvariant for $\left\{S_{1} \otimes I_{\mathcal{K}}, \ldots, S_{n} \otimes I_{\mathcal{K}}\right\}$, the first relation in (3.4) is equivalent to

$$
\begin{equation*}
\left.P_{\mathcal{N} \otimes \mathcal{K}}\left(U^{*} \otimes I\right) \Phi(U \otimes I)\right|_{\mathcal{N} \otimes \mathcal{K}}=X \tag{3.5}
\end{equation*}
$$

Since $U\left(z_{\lambda_{j}}\right)=z_{\lambda_{j}}, j=1, \ldots, k$, and $\left\langle\phi, z_{\lambda_{i}}\right\rangle=\phi\left(\lambda_{i}\right)$ for any $\phi:=\sum_{\alpha \in \mathbb{F}_{n}^{+}} a_{\alpha} e_{\alpha}$ in $F^{2}\left(H_{n}\right)$, it is easy to see that

$$
\begin{aligned}
\left\langle\left(U^{*} \otimes I\right) \Phi(U \otimes I)\right. & \left.\left(z_{\lambda_{j}} \otimes h\right), z_{\lambda_{j}} \otimes h^{\prime}\right\rangle \\
& =\left\langle z_{\lambda_{j}}, z_{\lambda_{j}}\right\rangle\left\langle\Phi\left(\lambda_{j}\right) h, h^{\prime}\right\rangle=\left\langle X\left(z_{\lambda_{j}} \otimes h\right), z_{\lambda_{j}} \otimes h^{\prime}\right\rangle \\
& =\left\langle\Phi\left(z_{\lambda_{j}} \otimes h\right), z_{\lambda_{j}} \otimes h^{\prime}\right\rangle=\left\langle z_{\lambda_{j}}, z_{\lambda_{j}}\right\rangle\left\langle W_{j} h, h^{\prime}\right\rangle
\end{aligned}
$$

for any $j=1, \ldots, k$, and $h, h^{\prime} \in \mathcal{K}$. This shows that (3.5) holds if and only if $\Phi\left(\lambda_{j}\right)=W_{j}$ for any $j=1, \ldots, k$. Notice that relation (3.3) holds if and only if there exists $M \in \operatorname{Inv}\left(\left\{T_{1}, \ldots, T_{n}\right\}^{\prime}\right)$ such that $\left\|M X M^{-1}\right\|<1$. It is easy to see that $M^{*}\left(z_{\lambda_{j}} \otimes h\right)=z_{\lambda_{j}} \otimes M_{j}^{*} h, h \in \mathcal{K}$, for some invertible operators $M_{j} \in B(\mathcal{K}), j=$ $1, \ldots, k$. On the other hand, notice that

$$
M^{*-1} X^{*} M^{*}\left(z_{\lambda_{j}} \otimes h\right)=z_{\lambda_{j}} \otimes\left(M_{j} W_{j} M_{j}^{-1}\right)^{*} h
$$

and $\left\|M X M^{-1}\right\|<1$ is equivalent to $I_{\mathcal{N} \otimes \mathcal{K}}-\left(M X M^{-1}\right)\left(M X M^{-1}\right)^{*}>0$, which is equivalent to (3.1). This completes the proof.

Let us remark that the inequality (3.1) can be replaced with

$$
\begin{equation*}
\rho_{P_{\mathcal{N}} F_{n}^{\infty} \mid \mathcal{N} \bar{\otimes} B(\mathcal{K})}(X)<1 . \tag{3.6}
\end{equation*}
$$

In the particular case when $n=1$, we find again Theorem 4 from BFT]. As mentioned in BFT , since $\left.P_{\mathcal{N}} F_{n}^{\infty}\right|_{\mathcal{N}} \bar{\otimes} B(\mathcal{K})$ is finite dimensional, conditions of type (3.6) can be checked using computer algorithms.

Corollary 3.7. Let \mathcal{K} be a finite dimensional Hilbert space, $W_{j} \in B(\mathcal{K})$, and $\lambda_{j}, j=1, \ldots, k$, be distinct elements in \mathbb{B}_{n}. If there exist invertible operators $M_{j} \in B(\mathcal{K}), j=1, \ldots, k$, such that

$$
\left[\frac{I_{\mathcal{K}}-\left(M_{i} W_{i} M_{i}^{-1}\right)\left(M_{j} W_{j} M_{j}^{-1}\right)^{*}}{1-\left\langle\lambda_{i}, \lambda_{j}\right\rangle}\right]_{1 \leq i, j \leq k}>0
$$

then there exists $f \in H^{\infty}\left(\mathbb{B}_{n}\right) \bar{\otimes} B(\mathcal{K})$ such that

$$
f\left(\lambda_{j}\right)=W_{j}, j=1, \ldots, k, \quad \text { and } \quad \sup _{\lambda \in \mathbb{B}_{n}}\|f(\lambda)\|_{\mathrm{sp}}<1
$$

Proof. Using Theorem 3.6, we find $f \in F_{n}^{\infty} \bar{\otimes} B(\mathcal{K})$ such that $f\left(\lambda_{j}\right)=W_{j}, i=$ $1, \ldots, k$, and $\rho_{F_{n}^{\infty} \bar{\otimes} B(\mathcal{K})}(f)<1$. As in the proof of Theorem 2.1, we infer that

$$
\|\Psi(f)\|_{\mathrm{sp}} \leq \rho_{H^{\infty}\left(\mathbb{B}_{n}\right) \bar{\otimes} B(\mathcal{K})}(\Psi(f)) \leq \rho_{F_{n}^{\infty} \bar{\otimes} B(\mathcal{K})}(f)<1
$$

On the other hand, similarly to [BFT Proposition 3], one can prove that

$$
\|\Psi(f)\|_{\mathrm{sp}}=\sup _{\lambda \in \mathbb{B}_{n}}\|f(\lambda)\|_{\mathrm{sp}}
$$

This completes the proof.
Let \mathcal{P}_{m} be the set of all polynomials in $F^{2}\left(H_{n}\right)$ of degree $\leq m$, and let $\mathcal{P}_{m}^{\infty}:=$ $\left\{p\left(S_{1}, \ldots, S_{n}\right): p \in \mathcal{P}_{m}\right\}$. Let $J_{>m}^{\infty}$ be the WOT-closed two-sided ideal of F_{n}^{∞} generated by $\left\{S_{\alpha}: \alpha \in \mathbb{F}_{n}^{+},|\alpha|=m+1\right\}$. The following result is a spectral version of the noncommutative Carathéodory interpolation problem for F_{n}^{∞} (see [Po6] and [Po8]).

Theorem 3.8. Let \mathcal{K} be a finite dimensional Hilbert space and let $p \in \mathcal{P}_{m}^{\infty} \bar{\otimes} B(\mathcal{K})$. Then there exists $\Phi \in F_{n}^{\infty} \bar{\otimes} B(\mathcal{K})$ with

$$
\rho_{F_{n}^{\infty} \bar{\otimes} B(\mathcal{K})}(\Phi)<1
$$

such that $\Phi=p+g$ for some $g \in J_{>m}^{\infty} \bar{\otimes} B(\mathcal{K})$ if and only if

$$
\begin{equation*}
\rho_{\mathcal{C}}\left[\left.P_{\mathcal{P}_{m} \otimes \mathcal{K}}\left(U^{*} \otimes I\right) p(U \otimes I)\right|_{\mathcal{P}_{m} \otimes \mathcal{K}}\right]<1 \tag{3.7}
\end{equation*}
$$

where $\mathcal{C}:=\left.P_{\mathcal{P}_{m} \otimes \mathcal{K}}\left(R_{n}^{\infty} \bar{\otimes} B(\mathcal{K})\right)\right|_{\mathcal{P}_{m} \otimes \mathcal{K}}$.
Proof. Let $\mathcal{N}:=\mathcal{P}_{m}$ and $X:=\left.P_{\mathcal{P}_{m} \otimes \mathcal{K}}\left(U^{*} \otimes I\right) p(U \otimes I)\right|_{\mathcal{P}_{m} \otimes \mathcal{K}}$. Notice that X commutes with each $\left.P_{\mathcal{P}_{m}} S_{i}\right|_{\mathcal{P}_{m}} \otimes I_{\mathcal{K}}, i=1, \ldots, n$, and $\mathcal{P}_{m}=U \mathcal{P}_{m}$ is invariant under each $S_{1}^{*}, \ldots, S_{n}^{*}$. According to Theorem 3.3, relation (3.7) holds if and only if there exists $\Phi \in F_{n}^{\infty} \bar{\otimes} B(\mathcal{K})$ with $P_{\mathcal{P}_{m} \otimes \mathcal{K}}\left(U^{*} \otimes I\right) \Phi(U \otimes I)=X P_{\mathcal{P}_{m} \otimes \mathcal{K}}$ and $\rho_{F_{n}^{\infty} \bar{\otimes} B(\mathcal{K})}(\Phi)<1$. Hence, we infer that

$$
\begin{equation*}
\left.P_{\mathcal{P}_{m} \otimes \mathcal{K}}\left(U^{*} \otimes I\right)(\Phi-p)(U \otimes I)\right|_{\mathcal{P}_{m} \otimes \mathcal{K}}=0 \tag{3.8}
\end{equation*}
$$

On the other hand, every element $f \in F_{n}^{\infty} \bar{\otimes} B(\mathcal{K})$ has a unique Fourier expansion $f \sim \sum_{\alpha \in \mathbb{F}_{n}^{+}} S_{\alpha} \otimes W_{(\alpha)}$ determined by

$$
f(1 \otimes h)=\sum_{\alpha \in \mathbb{F}_{n}^{+}} e_{\alpha} \otimes W_{(\alpha)} h \in F^{2}\left(H_{n}\right) \otimes \mathcal{K}
$$

where $W_{(\alpha)} \in B(\mathcal{K})$ are given by $\left\langle W_{(\alpha)} h, k\right\rangle=\left\langle f(1 \otimes h), e_{\alpha} \otimes k\right\rangle$ for any $h, k \in \mathcal{K}$, and $\alpha \in \mathbb{F}_{n}^{+}$(see $[\mathrm{Po8}]$). Using now relation (3.8), one can easily see that $g:=$ $\Phi-p \in J_{>m}^{\infty} \bar{\otimes} B(\mathcal{K})$. This completes the proof.

Using Theorem 3.5, one can obtain a version of Theorem 3.8 for the algebra $\mathcal{W}_{n}^{\infty} \bar{\otimes} B(\mathcal{K})$, in a similar manner. We leave this task to the reader.

4. Spectral tangential commutant lifting in several variables

Let $\mathcal{T}:=\left[T_{1}, \ldots, T_{n}\right]$ be a row contraction with $T_{i} \in B(\mathcal{H})$, and $\mathcal{V}:=\left[V_{1}, \ldots, V_{n}\right]$ be its minimal isometric dilation on a Hilbert space $\mathcal{K} \supseteq \mathcal{H}$. Let $\mathcal{M} \subseteq \mathcal{H}$ be an invariant subspace under each $T_{i}^{*}, i=1, \ldots, n$, and $X \in B(\mathcal{H})$ be such that $X \mathcal{H} \subseteq \mathcal{M}$ and

$$
\begin{equation*}
\left(\left.P_{\mathcal{M}} T_{i}\right|_{\mathcal{M}}\right) X=X T_{i}, \text { for any } i=1, \ldots, n \tag{4.1}
\end{equation*}
$$

According to the noncommutative commutant lifting theorem, there exists $Y \in$ $\left\{V_{1}, \ldots, V_{n}\right\}^{\prime}$ with $P_{\mathcal{M}} Y=X P_{\mathcal{H}}$. Define

$$
\operatorname{Dil}_{\mathcal{M}}(X):=\left\{Y \in\left\{V_{1}, \ldots, V_{n}\right\}^{\prime}: P_{\mathcal{M}} Y=X P_{\mathcal{H}}\right\}
$$

and

$$
\rho_{\mathcal{M},\left\{T_{1}, \ldots, T_{n}\right\}^{\prime}}(X):=\inf \left\{\left\|P_{Z^{*} \mathcal{M}} Z^{-1} X Z\right\|: Z \in \operatorname{Inv}\left(\left\{T_{1}, \ldots, T_{n}\right\}^{\prime}\right)\right\}
$$

Notice that if $\mathcal{M}=\mathcal{H}$, then $\rho_{\mathcal{M},\left\{T_{1}, \ldots, T_{n}\right\}^{\prime}}(X)=\rho_{\left\{T_{1}, \ldots, T_{n}\right\}^{\prime}}(X)$.
In what follows we extend the spectral tangential commutant lifting theorem of Bercovici and Foiass $[\mathrm{BF}]$ to our noncommutative multivariable setting.

Theorem 4.1. Let $\mathcal{T}:=\left[T_{1}, \ldots, T_{n}\right]$ be a contractive sequence of operators on a Hilbert space \mathcal{H} and let $\mathcal{V}:=\left[V_{1}, \ldots, V_{n}\right]$ be its minimal isometric dilation on a Hilbert space $\mathcal{K} \supseteq \mathcal{H}$. If \mathcal{H} is finite dimensional, $\mathcal{K} \ominus \mathcal{H}$ is hyperinvariant for $\left\{V_{1}, \ldots, V_{n}\right\}$, and $\mathcal{M} \subseteq \mathcal{H}$ is an invariant subspace under each $T_{i}^{*}, i=1, \ldots, n$, then, for every $X \in B(\mathcal{H})$ such that $X \mathcal{H} \subseteq \mathcal{M}$ and $\left(\left.P_{\mathcal{M}} T_{i}\right|_{\mathcal{M}}\right) X=X T_{i}, \quad i=$ $1, \ldots, n$, we have

$$
\begin{equation*}
\rho_{\mathcal{M},\left\{T_{1}, \ldots, T_{n}\right\}^{\prime}}(X)=\inf \left\{\rho_{\left\{V_{1}, \ldots, V_{n}\right\}^{\prime}}(Y): Y \in \operatorname{Dil}_{\mathcal{M}}(X)\right\} \tag{4.2}
\end{equation*}
$$

Proof. Denote the right hand side of (4.2) by t. Let $\epsilon>0$ and choose $Y \in \operatorname{Dil}_{\mathcal{M}}(X)$ such that $\rho_{\left\{V_{1}, \ldots, V_{n}\right\}^{\prime}}(Y)<t+\epsilon$. Hence, there is $W \in \operatorname{Inv}\left(\left\{V_{1}, \ldots, V_{n}\right\}^{\prime}\right)$ such that $\left\|W^{-1} Y W\right\|<t+\epsilon$. Since $\mathcal{K} \ominus \mathcal{H}$ is hyperinvariant for $\left\{V_{1}, \ldots, V_{n}\right\}$, we infer that $P_{\mathcal{H}} W P_{\mathcal{H}}=P_{\mathcal{H}} W$. Let $Z:=\left.P_{\mathcal{H}} W\right|_{\mathcal{H}}$ and notice that $Z \in \operatorname{Inv}\left(\left\{T_{1}, \ldots, T_{n}\right\}^{\prime}\right)$ and

$$
\begin{equation*}
Z^{-1}=\left.P_{\mathcal{H}} W^{-1}\right|_{\mathcal{H}} \tag{4.3}
\end{equation*}
$$

The subspace $\mathcal{M}_{*}:=Z^{*} \mathcal{M}$ is invariant under each $T_{i}^{*}, i=1, \ldots, n$, and satisfies $\mathcal{M}_{*}=\mathcal{H} \ominus Z^{-1}(\mathcal{H} \ominus \mathcal{M})$. Hence, we deduce the relations

$$
\begin{equation*}
P_{\mathcal{M}_{*}} Z^{-1}=P_{\mathcal{M}_{*}} Z^{-1} P_{\mathcal{M}} \text { and } P_{\mathcal{M}} Z=P_{\mathcal{M}} Z P_{\mathcal{M}_{*}} . \tag{4.4}
\end{equation*}
$$

Since $Y \in \operatorname{Dil}_{\mathcal{M}}(X)$ and $\mathcal{K} \ominus \mathcal{H}$ is hyperinvariant for $\left\{V_{1}, \ldots, V_{n}\right\}$, we can use (4.4) and (4.3) to infer that

$$
\begin{aligned}
\left\|P_{\mathcal{M}_{*}} Z^{-1} X Z\right\| & =\left\|P_{\mathcal{M}_{*}} Z^{-1}\left(\left.P_{\mathcal{M}} Y\right|_{\mathcal{H}}\right) Z\right\|=\left\|P_{\mathcal{M}_{*}} Z^{-1}\left(\left.P_{\mathcal{H}} Y\right|_{\mathcal{H}}\right) Z\right\| \\
& =\left\|P_{\mathcal{M}_{*}}\left(\left.P_{\mathcal{H}} W^{-1}\right|_{\mathcal{H}}\right)\left(\left.P_{\mathcal{H}} Y\right|_{\mathcal{H}}\right)\left(\left.P_{\mathcal{H}} W\right|_{\mathcal{H}}\right)\right\| \leq\left\|\left.P_{\mathcal{H}}\left(W^{-1} Y W\right)\right|_{\mathcal{H}}\right\| \\
& \leq\left\|W^{-1} Y W\right\|<t+\epsilon .
\end{aligned}
$$

Since $\epsilon>0$, we deduce that $\rho_{\mathcal{M},\left\{T_{1}, \ldots, T_{n}\right\}^{\prime}}(X) \leq t$.

Now, let us prove the converse. Let $\epsilon>0$ and choose $Z \in \operatorname{Inv}\left(\left\{T_{1}, \ldots, T_{n}\right\}^{\prime}\right)$ such that

$$
\begin{equation*}
\left\|P_{\mathcal{M}_{*}} Z^{-1} X Z\right\| \leq \rho_{\mathcal{M},\left\{T_{1}, \ldots, T_{n}\right\}^{\prime}}(X)+\epsilon \tag{4.5}
\end{equation*}
$$

Since $\left\{T_{1}, \ldots, T_{n}\right\}^{\prime}$ is finite dimensional, we use Theorem 2.1 and Remark 2.3 when $\Phi:\left\{V_{1}, \ldots, V_{n}\right\}^{\prime} \rightarrow\left\{T_{1}, \ldots, T_{n}\right\}^{\prime}$ and $\Phi(W)=\left.P_{\mathcal{H}} W\right|_{\mathcal{H}}$, to find $W \in$ $\operatorname{Inv}\left(\left\{V_{1}, \ldots, V_{n}\right\}^{\prime}\right)$ such that $Z=\left.P_{\mathcal{H}} W\right|_{\mathcal{H}}$. Denote $X_{*}:=P_{\mathcal{M}_{*}} Z^{-1} X Z$ and notice that

$$
\begin{equation*}
\left(\left.P_{\mathcal{M}_{*}} T_{i}\right|_{\mathcal{M}_{*}}\right) X_{*}=X_{*} T_{i}, \quad i=1, \ldots, n \tag{4.6}
\end{equation*}
$$

Indeed, since \mathcal{M}_{*} is invariant under each $T_{i}^{*}, i=1, \ldots, n$, we have $P_{\mathcal{M}_{*}} T_{i} P_{\mathcal{M}_{*}}=$ $P_{\mathcal{M}_{*}} T_{i}, i=1, \ldots, n$. Using this relation together with (4.1) and (4.4), we infer that, for any $i=1, \ldots, n$,

$$
\begin{aligned}
X_{*} T_{i} & =P_{\mathcal{M}_{*}} Z^{-1} X Z T_{i}=P_{\mathcal{M}_{*}} Z^{-1} X T_{i} Z \\
& =P_{\mathcal{M}_{*}} Z^{-1}\left(\left.P_{\mathcal{M}} T_{i}\right|_{\mathcal{M}}\right) X Z=P_{\mathcal{M}_{*}} Z^{-1} T_{i} X Z \\
& =P_{\mathcal{M}_{*}} T_{i} Z^{-1} X Z=P_{\mathcal{M}_{*}} T_{i} P_{\mathcal{M}_{*}} Z^{-1} X Z \\
& =P_{\mathcal{M}_{*}} T_{i} X_{*}
\end{aligned}
$$

According to (4.6), the noncommutative commutant lifting theorem, and relation (4.5), we find $Y_{*} \in \operatorname{Dil}_{\mathcal{M}_{*}}\left(X_{*}\right)$ satisfying

$$
\begin{equation*}
\left\|Y_{*}\right\|=\left\|X_{*}\right\| \leq \rho_{\mathcal{M},\left\{T_{1}, \ldots, T_{n}\right\}^{\prime}}(X)+\epsilon \tag{4.7}
\end{equation*}
$$

Set $Y:=W Y_{*} W^{-1}$ and let us show that $Y \in \operatorname{Dil}_{\mathcal{M}}(X)$. Notice that

$$
\begin{equation*}
X=P_{\mathcal{M}} Z X_{*} Z^{-1} \tag{4.8}
\end{equation*}
$$

Indeed, using (4.4), we have

$$
\begin{aligned}
P_{\mathcal{M}} Z X_{*} Z^{-1} & =P_{\mathcal{M}} Z\left(P_{\mathcal{M}_{*}} Z^{-1} X Z\right) Z^{-1}=P_{\mathcal{M}} Z P_{\mathcal{M}_{*}} Z^{-1} X \\
& =P_{\mathcal{M}} Z Z^{-1} X=P_{\mathcal{M}} X=X
\end{aligned}
$$

Since $P_{\mathcal{M}_{*}} Y_{*}=X_{*} P_{\mathcal{H}}, Z^{-1}=\left.P_{\mathcal{H}} W^{-1}\right|_{\mathcal{H}}$, and $Y(\mathcal{K} \ominus \mathcal{H}) \subseteq \mathcal{K} \ominus \mathcal{H}$, we can use relation (4.8) to obtain

$$
\begin{aligned}
X P_{\mathcal{H}} & =P_{\mathcal{M}} Z X_{*} Z^{-1} P_{\mathcal{H}}=P_{\mathcal{M}} Z P_{\mathcal{M}_{*}} Y_{*} Z^{-1} P_{\mathcal{H}} \\
& =P_{\mathcal{M}} Z P_{\mathcal{H}} Y_{*} Z^{-1} P_{\mathcal{H}}=P_{\mathcal{M}}\left(\left.P_{\mathcal{H}} Z\right|_{\mathcal{H}}\right)\left(\left.P_{\mathcal{H}} Y_{*}\right|_{\mathcal{H}}\right)\left(\left.P_{\mathcal{H}} W^{-1}\right|_{\mathcal{H}}\right) P_{\mathcal{H}} \\
& =P_{\mathcal{M}}\left(\left.P_{\mathcal{H}} W Y_{*} W^{-1}\right|_{\mathcal{H}}\right) P_{\mathcal{H}}=P_{\mathcal{M}} Y P_{\mathcal{H}}=P_{\mathcal{M}} Y .
\end{aligned}
$$

According to (4.7), we have $\left\|W^{-1} Y W\right\|=\left\|Y_{*}\right\| \leq \rho_{\mathcal{M},\left\{T_{1}, \ldots, T_{n}\right\}^{\prime}}+\epsilon$. Hence $\rho_{\left\{V_{1}, \ldots, V_{n}\right\}^{\prime}}(Y) \leq \rho_{\mathcal{M},\left\{T_{1}, \ldots, T_{n}\right\}^{\prime}}(X)+\epsilon$ and $t \leq \rho_{\mathcal{M},\left\{T_{1}, \ldots, T_{n}\right\}^{\prime}}(X)+\epsilon$. This completes the proof.

The following result is a spectral version of the tangential Nevanlinna-Pick interpolation problem for F_{n}^{∞} (see [Po8]).

Theorem 4.2. Let $\lambda_{j}, j=1, \ldots, k$, be distinct elements in \mathbb{B}_{n} and let \mathcal{K} be a finite dimensional Hilbert space. If $u_{1}, \ldots, u_{k}, v_{1}, \ldots, v_{k} \in \mathcal{K}$ with $u_{i} \neq 0, j=1, \ldots, k$, and $\delta>0$, then there exists $\Phi \in F_{n}^{\infty} \bar{\otimes} B(\mathcal{K})$ such that

$$
\Phi\left(\lambda_{j}\right)^{*} u_{j}=v_{j}, j=1, \ldots, k, \quad \text { and } \quad \rho_{F_{n}^{\infty} \bar{\otimes} B(\mathcal{K})}(\Phi)<\delta
$$

if and only if there exist invertible operators $Z_{j} \in B(\mathcal{K}), j=1, \ldots, k$, such that

$$
\begin{equation*}
\left[\frac{\left\langle\delta Z_{j} u_{j}, \delta Z_{i} u_{i}\right\rangle-\left\langle Z_{j} v_{j}, Z_{i} v_{i}\right\rangle}{1-\left\langle\lambda_{j}, \lambda_{i}\right\rangle}\right]_{1 \leq i, j \leq k}>0 \tag{4.9}
\end{equation*}
$$

Proof. Let $\mathcal{N}:=\operatorname{span}\left\{z_{\lambda_{j}}: j=1, \ldots, k\right\}$ and $\mathcal{M}:=\mathbb{C} z_{\lambda_{1}} \otimes u_{1}+\cdots+\mathbb{C} z_{\lambda_{k}} \otimes u_{k}$ be a subspace of $\mathcal{N} \otimes \mathcal{K}$. Define $X\left(\left\{\lambda_{j}\right\},\left\{u_{j}\right\},\left\{v_{j}\right\}\right) \in B(\mathcal{N} \otimes \mathcal{K}, \mathcal{M})$ by setting $X\left(\left\{\lambda_{j}\right\},\left\{u_{j}\right\},\left\{v_{j}\right\}\right)^{*}\left(z_{\lambda_{j}} \otimes u_{j}\right):=z_{\lambda_{j}} \otimes v_{j}, j=1, \ldots, k$. For each $i=$ $1, \ldots, n$, define $T_{i}:=\left.P_{\mathcal{N}} S_{i}\right|_{\mathcal{N}} \otimes I_{\mathcal{K}}$ and notice that $T_{i}^{*} X^{*}=\left.X^{*} T_{i}^{*}\right|_{\mathcal{M}}$, where $X:=X\left(\left\{\lambda_{j}\right\},\left\{u_{j}\right\},\left\{v_{j}\right\}\right)$. Hence, $X T_{i}=P_{\mathcal{M}} T_{i} X$ for any $i=1, \ldots, n$.

As in the proof of Theorem 3.3, the minimal isometric dilation of the sequence $\left[T_{1}, \ldots, T_{n}\right]$ is $\left[S_{1} \otimes I_{\mathcal{K}}, \ldots, S_{n} \otimes I_{\mathcal{K}}\right]$ and $\left[F^{2}\left(H_{n}\right) \otimes \mathcal{K}\right] \ominus[\mathcal{N} \otimes \mathcal{K}]$ is hyperinvariant for $\left\{S_{1} \otimes I_{\mathcal{K}}, \ldots, S_{n} \otimes I_{\mathcal{K}}\right\}$. Since $\mathcal{M} \subseteq \mathcal{N} \otimes \mathcal{K}$ is invariant under each $T_{i}^{*}, i=1, \ldots, n$, we can apply Theorem 4.1 and infer that

$$
\rho_{\mathcal{M},\left\{T_{1}, \ldots, T_{n}\right\}^{\prime}}(X)=\inf \left\{\rho_{\left\{S_{1} \otimes I_{\mathcal{K}}, \ldots, S_{n} \otimes I_{\mathcal{K}}\right\}^{\prime}}(Y): Y \in \operatorname{Dil}_{\mathcal{M}}(X)\right\}
$$

Since $\left\{S_{1} \otimes I_{\mathcal{K}}, \ldots, S_{n} \otimes I_{\mathcal{K}}\right\}^{\prime}=U^{*} F_{n}^{\infty} U \bar{\otimes} B(\mathcal{K})$, we can see that

$$
\begin{equation*}
\rho_{\mathcal{M},\left\{T_{1}, \ldots, T_{n}\right\}^{\prime}}(X)<\delta \tag{4.10}
\end{equation*}
$$

if and only if there exists $\Phi \in F_{n}^{\infty} \bar{\otimes} B(\mathcal{K})$ such that $\rho_{F_{n}^{\infty} \bar{\otimes} B(\mathcal{K})}(\Phi)<\delta$ and

$$
\begin{equation*}
P_{\mathcal{M}}\left(U^{*} \otimes I\right) \Phi(U \otimes I)=X P_{\mathcal{N} \otimes \mathcal{K}} \tag{4.11}
\end{equation*}
$$

Notice that

$$
\begin{aligned}
\left.\left\langle P_{\mathcal{M}}\left(U^{*} \otimes I\right) \Phi(U \otimes I)\left(z_{\lambda_{i}} \otimes k\right), z_{\lambda_{j}} \otimes u_{j}\right)\right\rangle & \left.=\left\langle\Phi\left(z_{\lambda_{i}} \otimes k\right), z_{\lambda_{j}} \otimes u_{j}\right)\right\rangle \\
& =\left\langle z_{\lambda_{i}}, z_{\lambda_{j}}\right\rangle\left\langle\Phi\left(\lambda_{j}\right) k, u_{j}\right\rangle \\
& =\left\langle z_{\lambda_{i}}, z_{\lambda_{j}}\right\rangle\left\langle k, \Phi\left(\lambda_{j}\right)^{*} u_{j}\right\rangle
\end{aligned}
$$

and $\left\langle X\left(z_{\lambda_{i}} \otimes k\right), z_{\lambda_{j}} \otimes u_{j}\right\rangle=\left\langle z_{\lambda_{i}}, z_{\lambda_{j}}\right\rangle\left\langle k, v_{j}\right\rangle$ for any $k \in \mathcal{K}$ and $i, j=1, \ldots, k$. Therefore, the relation (4.11) holds if and only if $\Phi\left(\lambda_{j}\right)^{*} u_{j}=v_{j}, j=1, \ldots, k$. On the other hand, if $Z \in\left\{T_{1}, \ldots, T_{n}\right\}^{\prime}$ then

$$
\begin{equation*}
Z^{*}\left(z_{\lambda_{j}} \otimes k\right)=z_{\lambda_{j}} \otimes Z_{j} k, \quad k \in \mathcal{K} \tag{4.12}
\end{equation*}
$$

for some $Z_{j} \in B(\mathcal{K}), j=1, \ldots, k$. Notice that Z is invertible if and only if Z_{j} is invertible for any $j=1, \ldots, k$. Moreover, using the definition of $X=$ $X\left(\left\{\lambda_{j}\right\},\left\{u_{j}\right\},\left\{v_{j}\right\}\right)$ and (4.12), we have

$$
\left.Z^{*} X^{*}\left(\left\{\lambda_{j}\right\},\left\{u_{j}\right\},\left\{v_{j}\right\}\right) Z^{*-1}\right|_{Z^{*} \mathcal{M}}=X^{*}\left(\left\{\lambda_{j}\right\},\left\{Z_{j} u_{j}\right\},\left\{Z_{j} v_{j}\right\}\right)
$$

Therefore,

$$
\rho_{\mathcal{M},\left\{T_{1}, \ldots, T_{n}\right\}^{\prime}}(X)=\inf \left\{\left\|X\left(\left\{\lambda_{j}\right\},\left\{Z_{j} u_{j}\right\},\left\{Z_{j} v_{j}\right\}\right)\right\|: Z_{j} \in B(\mathcal{K}) \text { are invertible }\right\}
$$

and relation (4.10) holds if and only if there exist invertible operators $Z_{j} \in B(\mathcal{K})$ such that $\left\|X\left(\left\{\lambda_{j}\right\},\left\{Z_{j} u_{j}\right\},\left\{Z_{j} v_{j}\right\}\right)\right\|<\delta$. This inequality is equivalent to

$$
\delta^{2} I-X\left(\left\{\lambda_{j}\right\},\left\{Z_{j} u_{j}\right\},\left\{Z_{j} v_{j}\right\}\right) X^{*}\left(\left\{\lambda_{j}\right\},\left\{Z_{j} u_{j}\right\},\left\{Z_{j} v_{j}\right\}\right)>0
$$

which is equivalent to (4.9). This completes the proof.
We remark that (4.9) can be replaced by relation (4.10). As a consequence of Theorem 4.2, when the distinct elements in \mathbb{B}_{n} are $\bar{\lambda}_{j}, j=1, \ldots, k$, we infer the following spectral tangential interpolation result for matrix-valued bounded analytic functions in the unit ball of \mathbb{C}^{n}.

Corollary 4.3. Let $\lambda_{j}, j=1, \ldots, k$, be distinct elements in \mathbb{B}_{n} and let \mathcal{K} be a finite dimensional Hilbert space. If $u_{1}, \ldots, u_{k}, v_{1}, \ldots, v_{k} \in \mathcal{K}$ with $u_{i} \neq 0, j=1, \ldots, k$, $\delta>0$, and there exist invertible operators $Z_{j} \in B(\mathcal{K}), j=1, \ldots, k$, such that

$$
\left[\frac{\left\langle\delta Z_{j} u_{j}, \delta Z_{i} u_{i}\right\rangle-\left\langle Z_{j} v_{j}, Z_{i} v_{i}\right\rangle}{1-\left\langle\lambda_{i}, \lambda_{j}\right\rangle}\right]_{1 \leq i, j \leq k}>0
$$

then there exists $F \in H^{\infty}\left(\mathbb{B}_{n}\right) \bar{\otimes} B(\mathcal{K})$ such that

$$
\sup _{\lambda \in \mathbb{B}_{n}}\|F(\lambda)\|_{s p}<\delta \quad \text { and } \quad F\left(\lambda_{j}\right) u_{j}=v_{j}, j=1, \ldots, k
$$

Let us make some remarks on the dependence of $\rho_{\mathcal{M},\left\{T_{1}, \ldots, T_{n}\right\}^{\prime}}(X)$ on the given interpolation data. For each $m=1, \ldots, k$, we define

$$
\rho_{m}:=\inf \left\{\left\|X\left(\left\{\lambda_{j}\right\}_{j=1}^{m},\left\{Z_{j} u_{j}\right\}_{j=1}^{m},\left\{Z_{j} v_{j}\right\}_{j=1}^{m}\right)\right\|: Z_{j} \in B(\mathcal{K}) \text { are invertible }\right\}
$$

A multivariable analogue of [BF, Proposition 4] holds. More precisely, one can prove that if u_{k} and v_{k} are linearly independent, then $\rho_{k-1}=\rho_{k}$. Indeed, suppose that $\rho_{k-1}<\rho_{k}$. Using Theorem 4.2, we find $\Phi \in F_{n}^{\infty} \bar{\otimes} B(\mathcal{K})$ such that $\rho_{F_{n}^{\infty} \bar{\otimes} B(\mathcal{K})}(\Phi)<$ ρ_{k} and $\Phi\left(\lambda_{j}\right)^{*} u_{j}=v_{j}, j=1, \ldots, k-1$. We may suppose that $\Phi\left(\lambda_{k}\right)^{*} \notin \mathbb{C} I_{\mathcal{K}}$ because, otherwise, we can replace Φ by $\Phi+\Psi$ for some $\Psi \in F_{n}^{\infty} \bar{\otimes} B(\mathcal{K})$ satisfying $\Phi\left(\lambda_{j}\right)=0, j=1, \ldots, k-1$, and $\Psi\left(\lambda_{k}\right) \notin \mathbb{C} I_{\mathcal{K}}$. Since we can choose Ψ with very small norm we have $\rho_{F_{n}^{\infty} \bar{\otimes} B(\mathcal{K})}(\Phi+\Psi)<\rho_{k}$.

Therefore, since $\Phi\left(\lambda_{k}\right)^{*} \notin \mathbb{C} I_{\mathcal{K}}$, there exist linearly independent vectors u and v such that $\Phi\left(\lambda_{k}\right)^{*} u=v$. Since u_{k}, v_{k} are linearly independent, we can find $Z_{k} \in B(\mathcal{K})$ invertible with $Z_{k} u_{k}=u$ and $Z_{k} v_{k}=v$. Hence, we infer that $\rho_{k} \leq \rho_{F_{n}^{\infty} \bar{\otimes} B(\mathcal{K})}(\Phi)<$ ρ_{k}, which is a contradiction. Since $\rho_{k-1} \leq \rho_{k}$, we must have $\rho_{k-1}=\rho_{k}$. This shows that in Theorem 4.2 we can assume, without loss of generality, that $v_{j}=\mu_{j} u_{j}$, for some $\mu_{j} \in \mathbb{C}, \mu_{j} \neq 0, j=1, \ldots, k$. Similarly to [BF, Proposition 5], one can show that if $k \leq \operatorname{dim} \mathcal{K}$, then

$$
\rho_{k}=\max \left\{\left|\mu_{1}\right|, \ldots,\left|\mu_{k}\right|\right\} .
$$

The case when the number of dependent vector pairs $\left(u_{j}, v_{j}\right)$ exceeds the dimension of \mathcal{K}, and the problem of optimal solutions will be considered in a future paper.

References

[AMc] J. Agler and J.E. Mc Carthy, Nevanlinna-Pick kernels and localization, preprint (1997). CMP 2000:17
[ArPo1] A. Arias and G. Popescu, Factorization and reflexivity on Fock spaces, Integr. Equat. Oper.Th. 23 (1995), 268-286.
[ArPo2] A. Arias and G. Popescu, Noncommutative interpolation and Poisson transforms, Israel J. Math. 115 (2000), 205-234.
[Arv] W.B. Arveson, Subalgebras of C^{*}-algebras III: Multivariable operator theory, Acta Math. 181 (1998), 159-228. MR 2000e:47013
[BTV] J.A. Ball, T.T.Trent, and V. Vinnikov, Interpolation and commutant lifting for multipliers on reproducing kernel Hilbert spaces, preprint (1999).
[BV] J.A. Ball and V. Vinnikov, Multivariable linear systems, scattering, unitary dilations and operator theory for row contractions, preprint (1999).
[B] J.A. Ball, Linear systems, operator model theory and scattering: multivariable generalizations, preprint (1999).
[BFT] H. Bercovici, C. Foias, and A. Tannenbaum, A spectral commutant lifting theorem, Trans. Amer. Math. Soc. 325 (1991), 741-763. MR 91j:47006
[BF] H. Bercovici and C. Foias, On spectral tangential Nevanlinna-Pick interpolation, J.Math. Anal.Appl. 155 (1991), 156-176. MR 92d:47020
[DP1] K.R. Davidson and D. Pitts, Invariant subspaces and hyper-reflexivity for free semigroup algebras, Proc. London Math.Soc., 78 (1999), 401-430.
[DP2] K.R. Davidson and D. Pitts, The algebraic structure of non-commutative analytic Toeplitz algebras, Math. Ann. 311 (1998), 275-303. MR 20001e:47082
[DP3] K.R. Davidson and D. Pitts, Nevanlinna-Pick interpolation for noncommutative analytic Toeplitz algebras, Integr. Equat. Oper.Th. 31 (1998), 321-337. MR 2000g:47016
[DMP] R.G. Douglas, P.S. Muhly and C. Pearcy, Lifting commuting operators, Michigan Math.J. 15 (1968), 385-395. MR 38:5046
[F] I.P. Fedcina, A description of of the solutions of the Nevanlinna-Pick tangent problem, Akad. Nauk. Armjan. SSR Dokl. 60 (1975), 37-42. MR 52:5974
[N] R. Nevanlinna, Über beschränkte Functionen, die in gegebenen Punkten vorgeschribene Werte annehmen, Ann. Acad. Sci. Fenn. Ser A 13 (1919), 7-23.
[P] G. Pick, Über die Beschränkungen analytischer Functionen, welche durch vorgegebene Functionswerte bewirkt werden, Math. Ann. 77 (1916), 7-23.
[Po1] G. Popescu, Isometric dilations for infinite sequences of noncommuting operators, Trans. Amer.Math.Soc. 316 (1989), 523-536. MR 90c:47006
[Po2] G. Popescu, Characteristic functions for infinite sequences of noncommuting operators, J.Operator Theory 22 (1989), 51-71. MR 91m:47012
[Po3] G. Popescu, Von Neumann inequality for $\left(B(H)^{n}\right)_{1}$, Math.Scand. 68 (1991), 292-304. MR 92k:47073
[Po4] G. Popescu, On intertwining dilations for sequences of noncommuting operators, J.Math. Anal.Appl. 167 (1992), 382-402. MR 93e:47012
[Po5] G. Popescu, Functional calculus for noncommuting operators, Michigan Math. J. 42 (1995), 345-356. MR 96k:47025
[Po6] G. Popescu, Multi-analytic operators on Fock spaces, Math. Ann. 303 (1995), 31-46. MR 96k:47049
[Po7] G. Popescu, Noncommutative disc algebras and their representations, Proc. Amer. Math. Soc. 124 (1996), 2137-2148. MR 96k:47077
[Po8] G. Popescu, Interpolation problems in several variables, J.Math Anal.Appl. 227 (1998), 227-250. MR 99i:47028
[Po9] G. Popescu, Poisson transforms on some C^{*}-algebras generated by isometries, J. Funct. Anal. 161 (1999), 27-61. MR 2000m:46117
[R] G.C. Rota, On models for linear operators, Comm.Pure Appl.Math. 13 (1960), 469-472. MR 22:2898
[S] D. Sarason, Generalized interpolation in H^{∞}, Trans. AMS 127 (1967), 179-203. MR 34:8193
[SzF1] B.Sz.-Nagy, C. Foias, Dilation des commutants d'operateurs, C.R.Acad.Sci. Paris, Serie A 266 (1968), 493-495. MR 38:5049
[SzF2] B.Sz.-Nagy, C. Foiaş, Harmonic analysis on operators on Hilbert space, North-Holland, Amsterdam (1970). MR 43:947

Division of Mathematics and Statistics, The University of Texas at San Antonio, San Antonio, Texas 78249

E-mail address: gpopescu@math.utsa.edu

[^0]: Received by the editors December 22, 1998 and, in revised form, October 4, 1999.
 2000 Mathematics Subject Classification. Primary 47L25, 47A57, 47A20; Secondary 30E05.
 Partially supported by NSF Grant DMS-9531954.

