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S∞ REPRESENTATIONS AND COMBINATORIAL IDENTITIES

AMITAI REGEV

Abstract. For various probability measures on the space of the infinite stan-
dard Young tableaux we study the probability that in a random tableau, the
(i, j)th entry equals a given number n. Beside the combinatorics of finite stan-
dard tableaux, the main tools here are from the Vershik-Kerov character theory
of S∞. The analysis of these probabilities leads to many explicit combinatorial
identities, some of which are related to hypergeometric series.

0. Introduction

Let Sn denote the symmetric group of the permutations on n letters, and S∞
the group of all finitary permutations on a countable set. Let Par(n) denote the
partitions of n. The famous work of Frobenius and A. Young show how the character
theory of Sn is determined by Par(n).

The classical works of Thoma [T] and, more recently of Vershik and Kerov (the
VK-theory, reviewed in Section 2) [VK1], [VK2], [VK3] show how the character the-
ory of S∞ is determined by the Young graph Y . The vertices of Y are

⋃∞
n=0 Par(n);

its edges are the pairs (λ, µ) ∈ Par(n) × Par(n + 1) such that the diagram of µ is
obtained from λ by adding one box. Infinite paths in Y correspond to infinite
standard tableaux.

In the VK-theory, the characters of S∞ are described in terms of probability
measures on the space of the infinite paths in Y (see Section 2). These measures
form a convex set. The extreme points in this set are called “ergodic” measures
and are related to the VK extended Schur functions (see (4.0.2)).

In addition, Kerov, Olshanski and Vershik recently discovered a two-parameter
family of measures Mu,v with some remarkable properties [K], [O], [KOV]. The
measures Mu,v are deformations of the so-called Plancherel measure.

The projective analogues are discussed in Part II.
In this work we indicate a certain method of applying the VK-theory, and its

projective analogue, to deduce combinatorial identities. After proving the general
theorems (3.1 and 10.1), we calculate explicitly several typical special cases.

The main problem studied in Part I is the following: Given a probability measure
M on the space of the infinite standard tableaux, given a fixed box (i, j) ∈ Z2

+ and
n ∈ Z+, what is then the probability P

M

(
T (i, j) = n

)
that the (i, j) entry in a

random infinite standard tableau is equal to n?
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The answer is given, in the form of a formula, in Theorem 3.1.a. That formula
involves the measure M and the number dµ of standard tableaux of shape µ. Ex-
plicit formulas are known for computing dµ. Together with the formulas for the
ergodic and the Mu,v measures, they yield explicit formulas for the probabilities
P
M

(
T (i, j) = n

)
. Each such measure M has a corresponding subset R

M
⊆ Z2

+ of
the M -reachable boxes (see (2.5)), and for (i, j) ∈ R

M
we obtain the identity∑

n≥0

P
M

(T (i, j) = n) = 1 .(∗)

Thus, to every such measure M and a box (i, j) ∈ R
M

there corresponds the
identity (∗). The left hand side of (∗) is an i+ j− 2 multisum. When M is ergodic
or Mu,v, the left hand side of (∗) can be computed, yielding an explicit identity.
For example, the measures Mu,v and the box (2,1) yield the identity (9.1.1), which
is closely related to the Gauss summation formula for 2F1.

A large portion of the first part of this paper is devoted to the explicit compu-
tation of some cases of the identities (∗).

In addition, for the Plancherel measure, computer experiments lead to the dis-
covery of the following remarkable phenomenon: for any n ∈ Z+,

P
(
T (3, 1) = n

)
= P

(
T (2, 2) = n+ 1

)
(see Proposition 8.2).

A computer proof was first given by D. Zeilberger [Z]. The proof given here is due
to I.G. Macdonald [M1]. So far, no similar phenomenon has been observed between
other boxes or for other measures.

Part II of this work is the “projective” analogue of Part I.
Projective representations were introduced and studied by I. Schur. The theory

of the projective representations of Sn appeared in Schur’s fundamental paper [S].
Now, an exact analogue of the VK-theory for the projective representations of
S∞ exists. It is mostly due to M. Nazarov [N] (see also [I]) and is reviewed in
Section 10. The projective ergodic measures are given by the extended Schur P -
functions. The projective analogues of the measures Mu,v are the measures Mx

which were discovered by Borodin [B].
In the projective theory the strict partitions SPar(n) replace Par(n). Accord-

ingly, the Young graph Y is now replaced by the Schur-Young subgraph SY ,
spanned by

⋃
n≥0 SPar(n). Diagrams λ are replaced by shifted diagrams sh(λ)

and dλ by gλ, the number of standard tableaux of shifted shape sh(λ).
In Part II we analyze the probability P

M

(
T (i, j) = n

)
on the space of the infinite

shifted standard tableaux. There are corresponding ergodic measures, given by
extended Schur P -functions (Section 11) and the family of measures Mx which
replaces Mu,v here (Section 12). These measures are again deformations of the
corresponding projective Plancherel measure.

As in Part I, we calculate the “projective” probabilities P
M

(
T (i, j) = n

)
, then,

for (i, j) reachable, deduce the identity∑
n

PM
(
T (i, j) = n

)
= 1 .(p, ∗)

Again, a large portion of Part II is devoted to the computation of explicit (p, ∗)-
identities. For example, in Section 12 we calculate the (p, ∗)-Mx-identity corre-
sponding to the box (i, i) (the shifted analogue of (i, 1)). For the box (2,2) this is,
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again, closely related to 2F1 (see (12.2.1)), while for a general (i, i) that identity is
closely related to higher (multivariate) hypergeometric series.

Thanks are due to Anna Melnikov for her help with the computer experiments,
and to Grigori Olshanski for his very essential and generous help in many parts of
this work.

1. The Main Results

Theorem 3.1 and its projective analogue 10.1 below are the main general theo-
rems here (Section 5 indicates other such theorems). These theorems involve general
probability measures on the space of infinite Young tableaux, and they are applied
below with two specific families of such measures, yielding a variety of combinato-
rial identities. A large part of this work concerns the explicit computation of some
of these identities.

Here is a description of these theorems and of the various identities — and their
locations in this paper.

Theorem 3.1 is a source for infinitely many identities: for each reachable “box”
(i, j) ∈ Z2

+ it gives the general identity
∞∑
n=1

∑
µ∈H′(i−1,j−1,n−1)

dµπ
(
sµ+(i,j)

)
= 1 .(∗)

Here

H ′(k, `,m) = {µ ` m | µk ≤ `+ 1 and µk+1 = `}

(this is the set of partitions µ ` m to which the box (k + 1, ` + 1) can be added,
yielding the partition µ+(k + 1, `+ 1)). dµ is the number of standard tableaux of
shape µ; µ+(i, j) is µ with the box (i, j) added; sλ is the Schur function; Λ is the
algebra of symmetric functions over R [M], and π : Λ→ R is any linear functional
satisfying the three conditions in (2.7). By the Vershik-Kerov (VK-) theory about
the characters of S∞, such functionals π correspond to “central” measures on the
space of the infinite standard tableaux (see Section 2).

Once dµ and π(sλ) are calculated, and the reachable box (i, j) is fixed, (∗) yields
an explicit identity. There are several well known formulas for dµ — see (3.1.1),
(3.1.2) and (3.1.3). For certain families of functionals π there are explicit formulas
for calculating π(sλ). In Sections 4, 6, 7, 8 and 9 we study (∗) in detail for two
specific families of functionals π: one corresponding to the “ergodic” measures
M(α;β) in the VK-theory, and the other to the measures Mu,v below. In general
these identities become more involved as i+ j increases.

The simplest such π’s arise from the (so-called) Plancherel measures. Many
explicit cases of (∗)-identities are calculated from such π’s: see (4.2.1), (4.2.1′),
(7.3.2), (7.3.4), (7.3.5), (8.2.2), (8.2.4) and (8.2.5).

The (∗)-identities of the ergodic and of the Mu,v measures are deformations
of the (∗)-“Plancherel” identities. Special cases of the (∗)-ergodic identities are
q-analogues of the (∗)-Plancherel identities: see Theorem 4.1.b, (6.1.2), (6.1.4),
(6.1.6), (6.1.6′), (6.2.1)–(6.2.4), (7.2.1), (7.2.2), (7.2.2′), (7.3.1), (7.3.2), (7.3.3),
(7.3.4) and (7.3.5).

Some special cases of the (∗)-Mu,v identities are calculated in Section 9, including
those cases corresponding to the boxes (i, j) = (k + 1, 1). Here, the relation to
multivariate hypergeometric series is apparent. The (i, j) = (2, 1)-identity (9.1.1)
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is closely related and can be deduced (also) from Gauss summation formula for 2F1.
The (k+1, 1)-identities with k ≥ 2, (9.2.1) and (9.3.1), seem more involved, having
the square of the Vandermonde as a factor in them.

Part II (Sections 10–12) is the projective analogue of the first part. The projec-
tive analogue of the VK-theory, due mainly to Nazarov [N], is reviewed and applied.
Theorem 10.1.c gives the projective analogue of (∗): for reachable (i, j),

∞∑
n=1

∑
µ∈SH′(i−1,j−1,n−1)

gµπ
(
Pµ+(i,j)

)
= 1 .(p, ∗)

Here SH ′(k, `,m) = {µ ` m is strict | µk ≥ ` − k + 2 ≥ 2 and µk+1 ≥ ` − k},
gµ is the number of standard tableaux of shifted shape µ, Pλ are the Schur P -
functions, and π is a certain linear functional π : Γ → R, where Γ ⊆ Λ is spanned
by {Pλ | λ strict}.

The structure of Part II is similar to that of the first part. Here gµ is calculated by
Schur’s formula (10.1.1), and π

(
Pµ+(i,j)

)
is calculated for two families of measures

M , “ergodic” and Mx, with corresponding functional M ↔ π. Theorem 10.3.b is
the ergodic case, while Theorem 10.5.b is the Mx case of (p, ∗). Both of these cases
are deformations of the Plancherel case, given by Theorem 10.4.b.

In the ergodic case, explicit formulas for Pλ(x1, . . . , xn) in terms of Schur func-
tions are known when `(λ) equals n or n − 1 [M, III, 8, Ex. 2]. Because of
this restriction, the examples of the (p, ∗)-ergodic identities here are given only for
(i, j) ∈ Z2

+ such that i ≤ j ≤ i+2. These are the identities calculated in Section 11.
Theorem 10.5.b allows, in principle, an explicit calculation of the (p, ∗)-Mx-

identity for any box (k, `) where k ≤ `. Examples of such identities are given in
Section 12. For brevity, only the boxes (k, k) are studied in general: see (12.1.1)
and (12.1.2). Similar to (9.1.1), the box (2,2) (which is the projective — or shifted
— analogue of the box (2,1)) yields the identity (12.2.1) — which also follows from
the Gauss summation formula for 2F1. Note that the same is also true for the box
(2,3) (shifted analogue of (2,2)): see (12.3.1). For higher (k, k), (12.1.1) is related
to higher hypergeometric functions.

The proofs of the key theorems 3.1 and 10.1 are obtained from the study of
various probabilities on the infinite Young graph Y in the ordinary case, and on
the subgraph of the strict partitions in the projective case.

Finally, notice the remarkable phenomenon exhibited in Proposition 8.2.

2. A Summary of the Vershik-Kerov Theory

Below is a brief summary of some of the main results of the Vershik-Kerov (VK-)
theory which are needed here [VK1], [VK2], [VK3].

2.1. Notation for partitions [M]. `(µ) = the number of nonzero parts in µ.
|µ| = the sum of the parts of µ; we also write µ ` |µ|.
We identify partitions and Young diagrams.
For two Young diagrams µ and λ, we write µ ↗ λ if µ is contained in λ and

their difference λ/µ consists of a single box.

2.2. Definition of the Young graph Y . Its vertices are arbitrary partitions =
Young diagrams, including the zero partition = the empty diagram. Its edges are
couples µ↗ λ. The graph is connected.

Let Yn stand for the nth floor of Y , i.e., the set of λ’s with |λ| = n.
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2.3. Paths. Assume that each edge µ↗ λ is oriented from µ to λ.
A path in Y is an oriented path, i.e., a sequence λ0 ↗ λ1 ↗ · · · , finite or infinite.
A finite path µ = λ0 ↗ λ1 ↗ · · · ↗ λk = λ is the same as a standard Young

tableau of the skew shape λ/µ. In particular, if µ = ∅, then a finite path from ∅ to
λ is the same as a standard tableau of the shape λ.

Given λ, let Tab(λ) be the set of all standard tableaux of the shape λ, i.e., of
the paths from ∅ to λ. We set dλ = dimλ = |Tab(λ)|. Let Tabn be the union of
all the sets Tab(λ) with |λ| = n; this is a finite set. There is a natural projection
Tabn+1 → Tabn (in terms of tableaux, we delete the box containing n+ 1; in terms
of paths, we delete the last edge).

Using these projections, we form the projective limit space

Tab = lim
←

Tabn , n→∞ ,

whose elements are called infinite tableaux .
By the very definition, an element T ∈ Tab is an infinite path in the graph Y ,

starting at ∅,
T = ∅ ↗ λ1 ↗ λ2 ↗ · · · .

Clearly, ∅ ⊂ λ1 ⊂ λ2 ⊂ · · · , and we denote by D(T ) the union of the diagrams
λk. This is an infinite Young diagram, i.e., a subset of {1, 2, . . .}× {1, 2, . . .} = Z2

+

such that if a box (i, j) is contained in D(T ), then D(T ) also contains all the boxes
(i′, j′) with i′ ≤ i, j′ ≤ j.

The space Tab is endowed with the projective limit topology. Since all the sets
Tabn are finite, Tab is a compact totally disconnected topological space.

2.4. Cylindrical sets. Given τ ∈ Tabn, we denote by Cyl(τ) the pull-back image
of τ under the natural projection Tab → Tabn. This is an open and closed subset
of Tab. It is called the cylindrical set with base τ . Clearly, Cyl(τ) consists of all
the infinite paths in Y whose first n links are the edges of τ .

2.5. Measures on paths and reachable boxes. We shall deal with probability
measures on the space Tab. Given such a measure M , we shall look at (Tab,M) as
a probability space and examine certain random variables defined on it.

A box (i, j) is called reachable (with respect to M) if it is contained in D(T ) for
almost all T . This means that a random path passes through (i, j) with probability
1. The set of all M -reachable boxes is an infinite Young diagram. Let D(M) denote
the set of the M -reachable points: D(M) ⊆ Z2

+.
Each T ∈ Tab can be viewed as a function T (i, j) from the boxes (i, j) ∈ D(T )

to the numbers 1, 2, . . . . If (i, j) is a reachable box, then the function T 7→ T (i, j)
is defined almost everywhere.

2.6. Central measures. A probability measure M on Tab is called central if for
any diagram λ, all the cylindrical sets Cyl(τ) with τ ∈ Tab(λ) have the same mass.

2.7. Positive functionals. Let Λ stand for the algebra of symmetric functions
over the base field R, and let {sλ} be the basis of Λ formed by the Schur functions
[M].

Proposition. There is a bijective correspondence M ↔ π between the central mea-
sures M on Tab and the linear functionals π : Λ→ R satisfying the following three
conditions:
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• π(1) = 1;
• π factors through the algebra Λ/(s(1) − 1)Λ;
• π(sλ) ≥ 0 for any λ.
Under this correspondence, for any λ and any τ ∈ Tab(λ),

M
(
Cyl(τ)

)
= π(sλ) .

2.8. Ergodic measures. The central measures form a convex set. Its extreme
points are called ergodic (central) measures.

2.9. Theorem [VK3]. In terms of the correspondence M ↔ π, M is ergodic if
and only if π is multiplicative, i.e., π(fg) = π(f)π(g) for any f, g ∈ Λ.

2.10. Thoma’s simplex. Let Ω be the set of pairs ω = (α, β) of weakly decreasing
sequences of nonnegative real numbers, α = (α1 ≥ α2 ≥ · · · ≥ 0), β = (β1 ≥ β2 ≥
· · · ≥ 0), such that

∞∑
i=1

(αi + βi) ≤ 1 .

The set Ω is equipped with the topology of coordinatewise convergence. With
respect to this topology, it is a compact topological space.

We set

γ = 1−
∞∑
i=1

(αi + βi) .

Note that γ is not a continuous function of ω.
The set Ω is an infinite-dimensional simplex, called Thoma’s simplex .

2.11. Extended symmetric functions. Let C(Ω) be the Banach algebra of con-
tinuous real-valued functions on Ω. There exists an algebra morphism Λ → C(Ω)
which factors through Λ/(s(1) − 1)Λ and determines an embedding of the latter
algebra into C(Ω) with closed image.

This morphism f 7→ f̃ is defined as follows: Recall [M], [I] that Λ coincides with
the polynomial algebra R[p1, p2, . . . ], where p1, p2, . . . are Newton power sums.
Given ω = (α, β) ∈ Ω, let us specialize:

p1 7→ p̃1(ω) = 1 ,

pk 7→ p̃k(ω) =
∞∑
i=1

αki + (−1)k−1
∑

βki , k ≥ 2 .

Then we obtain an algebra morphism f 7→ f̃(ω) from Λ to R. Since p̃1(ω),
p̃2(ω), p̃3(ω), . . . are continuous in ω, we get that f̃(ω) is continuous in ω for any
f ∈ Λ.

The continuous function f̃ ∈ C(Ω) obtained in this way is called the extended
version of f ∈ Λ. (Note that the function ω 7→

∑
αi +

∑
βi is not continuous on

Ω.)
In particular, the functions s̃λ(ω) are called extended Schur functions .
In Sec. 4 we indicate how to compute s̃λ(ω) explicitly.
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2.12. Description of central measures.

Theorem. (1) There exists a bijective correspondence M ↔ P between the central
measures M on Tab and the probability measures P on Ω, characterized by the
following property: For any λ, and each τ ∈ Tab(λ),

M
(
Cyl(τ)

)
=
∫

Ω

s̃λ(ω)P (dω) .

(2) Under the bijection M ↔ P , the ergodic central measures M correspond to
the Dirac delta measures on Ω, i.e., to points ω ∈ Ω:

M
(
Cyl(τ)

)
= s̃λ(ω) .

2.13. The diagram attached to an ergodic measure. Let M be the ergodic
measure corresponding to a point ω = (α, β) ∈ Ω. Then there exists an infinite
diagram D = D(ω) of the M reachable points such that D(T ) = D for almost all
(with respect to M) paths T ∈ Tab. This diagram looks as follows.

Proposition. (i) If there exist k, ` ∈ {0, 1, 2, . . .}, k + ` ≥ 1, such that αk+1 =
αk+2 = · · · = β`+1 = β`+2 = · · · = γ = 0,

αk > 0 , β` > 0 ,

then D(ω) is a hook shape:

D(ω) =
{

(i, j) | i ≤ k or j ≤ `
}
.

(ii) Otherwise (i.e., if all αi’s are strictly positive or all βi’s are strictly positive
or γ is strictly positive) D(ω) coincides with the whole set {1, 2, . . .} × {1, 2, . . .}.

3. Applications of the Ordinary S∞-Representations

The main result here is Theorem 3.1. To formulate it, we introduce additional
notations.

Let M be a probability measure on Tab. Let Z+ = {1, 2, . . .}. Given i, j, n ∈ Z+,
denote

Tab
(
T (i, j) = n

)
=
{
T ∈ Tab | T (i, j) = n

}
and define

P
M

(
T (i, j) = n

)
= M

(
Tab

(
T (i, j) = n

))
,

the M probability that a random T ∈ Tab satisfies T (i, j) = n. Denote Tab(i, j) =⋃
n≥1 Tab

(
T (i, j) = n

)
, the set of tableaux such that the corresponding diagrams

contain the box (i.j). This is a disjoint union; hence

M
(
Tab(i, j)

)
=
∑
n≥1

P
M

(
T (i, j) = n

)
.

By definition, (i, j) ∈ Z2
+ is reachable if and only if M

(
Tab(i, j)

)
= 1.

Let µ ` n− 1, ν ` n be such that ν/µ is the box (i, j), then write ν = µ+(i, j).
Denote

H ′(i− 1, j − 1, n− 1) =
{

(µ1, µ2, . . . ) ` n− 1 | µi−1 ≥ j and µi = j − 1
}
.

If µ ∈ H ′(i − 1, j − 1, n − 1), then ν = µ+(i, j) = (µ1, . . . , µi−1, µi + 1, µi+1, . . . )
is a partition. Conversely, let Tν be a finite standard tableau of shape ν ` n, with
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n in the (i, j) box. Deleting n from Tν gives a standard tableau Tµ of shape µ,
µ ∈ H ′(i− 1, j − 1, n− 1), and ν = µ+(i, j).

We can now formulate

Theorem 3.1. Fix i, j, n ∈ Z+. Let M be a central measure on Tab with corre-
sponding M ↔ π, π : Λ→ R (see 2.7). Then

(a)

P
M

(
T (i, j) = n

)
=

∑
µ∈H′(i−1,j−1,n−1)

dµπ(sµ+(i,j)) .

By summing over all n ≥ 1, we obtain
(b)

∞∑
n=1

∑
µ∈H′(i−1,j−1,n−1)

dµπ(sµ+(i,j)) = M
(
Tab(i, j)

)
.

In particular, if (i, j) is M -reachable, the right-hand side equals 1 and we obtain
(c) If (i, j) is M -reachable, then

∞∑
n=1

∑
µ∈H′(i−1,j−1,n−1)

dµπ(sµ+(i,j)) = 1 .

To state Theorem 3.1 more explicitly requires some additional notations and
explicit formulas for dλ. We list three such formulas:

The Young-Frobenius formula. Let µ = (µ1, . . . , µk), pr = µr + k− r, 1 ≤ r ≤
k. Then

dµ =
|µ|!V (p)

p!
,(3.1.1)

where V (p) =
∏
r<r′(pr − pr′) and p! =

∏
r pr!.

The hook formula. For x = (r, s) ∈ µ, h(x) = µr + µ′s − r − s + 1 is the
corresponding hook number. Denote H(µ) =

∏
x∈µ h(x); then

dµ =
|µ|!
H(µ)

.(3.1.2)

dµ in (k, `)-Frobenius-type coordinates. Let H0(k, `) ⊆ H(k, `) denote the
partitions containing the box (k, `) but not (k + 1, ` + 1): H0(k, `) = {µ | µk ≥
`, µk+1 ≤ `}. Given µ ∈ H0(k, `), let

pr = µr + k − `− r , 1 ≤ r ≤ k , qs = µ′s + `− k − s , 1 ≤ s ≤ ` .
Thus (p | q) = (p1, . . . , pk | q1, . . . , q`) are the (k, `)-(Frobenius-)type coordinates
of µ, where p = (p1 > · · · > pk ≥ 0), q = (q1 > · · · > q` ≥ 0). Trivially,
|µ| =

∑
pr +

∑
qs + 1

2

[
k + ` − (k − `)2

]
. Note that (p | q) = µ ∈ H ′(k, `, |µ|) if

and only if pk, q` ≥ 1. In that case µ+(k + 1, `+ 1) is also a partition, denoted by
µ+(k + 1, `+ 1) = (p | q)+.

For µ = (p | q) in H0(k, `) the previous two formulas for dµ imply that

dµ = d(p|q) =
|µ|!V (p)V (q)

p!q!
∏
r,s(pr + qs + 1)

,(3.1.3)

where V (p) =
∏
r<r′(pr − pr′), V (q) =

∏
s<s′(qs − qs′), p! =

∏
pr! and q! =

∏
qs!.

We can now restate
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Theorem 3.1.c. Denote k = i− 1 and ` = j − 1. Then∑
p1>···>pk≥1
q1>···>q`≥1

|(p | q)|!V (p)V (q)
p!q!

∏
r,s(pr + qs + 1)

π(s(p|q)+) = 1 ,

where, again,

|(p | q)| =
k∑
r=1

pr +
∑̀
s=1

qs +
1
2
[
k + `− (k − `)2

]
,

V (p) =
∏
r<r′(pr − pr′), V (q) =

∏
s<s′(qs − qs′), p! =

∏
r pr! and q! =

∏
s qs!.

The proof of Theorem 3.1 follows from Lemmas 3.3–3.5 below.
Let µ ` n. Define A(µ) =

⋃
τ∈Tab(µ) Cyl(τ) (a disjoint union), i.e., A(µ) is the

subset of Tab of the paths that go through µ : A(µ) = {λ0 ↗ λ1 ↗ · · · | λn = µ}.

Lemma 3.3. Let µ ` n. Let M be a central measure on Tab, with M ↔ π,
π : Λ→ R (see (2.7)). Then M

(
A(µ)

)
= dµπ(sµ).

Proof. Indeed,

M
(
A(µ)

)
=

∑
τ∈Tab(µ)

M
(
Cyl(τ)

)
=

∑
τ∈Tab(µ)

π(sµ) = dµπ(sµ) .

Given µ↗ ν, µ ` n− 1, ν ` n, let

A(µ↗ ν) = {λ0 ↗ λ1 ↗ · · · | λn−1 = µ and λn = ν} ,

the (infinite) paths passing through both µ and ν.

Lemma 3.4. Let µ↗ ν and let M be a central measure on Tab, with correspond-
ing M ↔ π, π : Λ→ R. Then

M
(
A(µ↗ ν)

)
= dµπ(sν) .

Proof. Let τ ∈ Tab(µ) : τ = λ0 ↗ λ1 ↗ · · · ↗ λn−1 = µ. Then τ uniquely defines
τ+ ∈ Tab(ν) via τ+ = λ0 ↗ λ1 ↗ · · · ↗ λn−1 ↗ λn = ν. Thus A(µ ↗ ν) =⋃
τ∈Tab(µ) Cyl(τ+), a disjoint union. Since τ+ ∈ Tab(ν), therefore M

(
Cyl(τ+)

)
=

π(sν). Thus

M
(
A(µ↗ ν)

)
=

∑
τ∈Tab(µ)

M
(
Cyl(τ+)

)
=

∑
τ∈Tab(µ)

π(sν) = dµπ(sν) .

Given µ↗ ν, let Tab(µ↗ ν) = {λ0 ↗ λ1 ↗ · · · ↗ µ↗ ν} ⊆ Tab(ν). Note that
A(µ↗ ν) =

⋃
τ∈Tab(µ↗ν) Cyl(τ), a disjoint union.

Lemma 3.5. With the above notations,

Tab
(
T (i, j) = n

)
=

⋃
µ∈H′(i−1,j−1,n−1)

A
(
µ↗ µ+(i, j)

)
,

a disjoint union.
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Proof. The inclusion ⊇ is obvious. Conversely, let T ∈ Tab with T (i, j) = n. By
standardness, the integers 1, 2, . . . , n−1 in the (infinite) tableau T form a standard
subtableau Tn−1 of shape µ, where µ ∈ H ′(i− 1, j− 1, n− 1). Adding the cell (i, j)
to Tn−1 — with n in it — gives Tn, the standard tableau of shape µ+(i, j), and
obviously

T ∈ A
(
µ↗ µ+(i, j)

)
.

The proof of Theorem 3.1 now easily follows from Lemma 3.5 by applying the
central measure M . Note that by definition,

M
(
Tab

(
T (i, j) = n

))
= P

M

(
T (i, j) = n

)
,

and by Lemma 3.4

M
(
A
(
µ↗ µ+(i, j)

))
= dµπ(sµ+(i,j)) .

4. Two Families of Measures

We begin with a more explicit description of the functions s̃λ(α;β) (see (2.11)),
(α;β) = ω ∈ Ω, hence, by Theorem 2.12.2, of the ergodic measures Mω on Tab.
Denote

s̃λ(α;β) = s̃λ(α;β; γ) and M(α;β) = M(α;β;γ) ,

where γ = 1−
∑

i(αi + βj); then

M(α;β;γ)

(
Cyl(τ)

)
= s̃λ(α;β; γ)

for any τ ∈ Tab(λ). Also

M(α;β;γ) ↔ π(α;β;γ) : Λ→ R : π(α;β;γ)(sλ) = s̃λ(α;β; γ) .

The extended “complete” symmetric functions h̃n(α;β; γ) are introduced via the
generating function

∞∑
n=0

h̃n(α;β; γ)zn = eγz
∞∏
i=1

1 + βiz

1− αiz
.(4.0.1)

The extended Schur functions are given by a Jacobi-Trudi type formula:

s̃µ(α;β; γ) = det
(
h̃µi−i+j(α;β; γ)

)
.(4.0.2)

As a corollary of Theorem 3.1.c we obtain

Theorem 4.1. Let ω = (α;β) ∈ Ω (2.10). Then
(a)

P
M(α;β;γ)

(
T (i, j) = n

)
=

∑
µ∈H′(i−1,j−1,n−1)

dµs̃µ+(i,j)(α;β; γ) .

If (i, j) is M(α;β;γ)-reachable (see (2.13)), then
(b)

∞∑
n=1

∑
µ∈H′(i−1,j−1,n−1)

dµs̃µ+(i,j)(α;β; γ) = 1 ,
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or, more explicitly, with (k, `) = (i− 1, j − 1),∑
p1>···>pk≥1
q1>···>q`≥1

|(p | q)|!V (p)V (q)
p!q!

∏
r,s(pr + qs + 1)

s̃(p|q)+(α;β; γ) = 1 .

The Plancherel measure M(0;0;1). Let α1 = β1 = 0; then by (4.0.1) we have
h̃n(0; 0; 1) = 1

n! , and hence, by (4.0.2) and by [J, 19.5],

s̃µ(0; 0; 1) =
1

H(µ)
=

dµ
|µ|! ,(4.1.1)

where H(µ) is the product of the hook numbers of µ.

In the VK-terminology, M(0;0;1) is called the Plancherel measure. It is the limit
of M(α;β;γ), where all αi, βi → 0.

Theorem 4.1 clearly implies

Corollary 4.2. (a)

P
M(0;0;1)

(
T (i, j) = n

)
=

∑
µ∈H′(i−1,j−1,n−1)

dµ

H
(
µ+(i, j)

) .
(b) By (2.13) D

(
M(0;0;1)

)
= Z2

+, and hence for any (i, j) ∈ Z2
+

∞∑
n=1

∑
µ∈H′(i−1,j−1,n−1)

dµ

H
(
µ+(i, j)

) = 1 .(4.2.1)

Denote (i − 1, j − 1) = (k, `) and let µ = (p | q) in the (k, `) coordinates (see
(3.1.3)). By an easy calculation, H(µ+) = H(µ)

(∏k
r=1

pr+1
pr

)(∏`
s=1

qs+1
qs

)
, and

since dµ = |(p|q)!
H(µ) , clearly

dµ
H(µ+)

=
|(p | q)|!V 2(p)V 2(q)

(p!)2(q!)2
∏
r,s(pr + qs + 1)2

(
k∏
r=1

pr
pr + 1

)(∏̀
s=1

qs
qs + 1

)
.(4.2.2)

Both parts of Corollary 4.2 are given explicitly by (4.2.2). For example, Corollary
4.2.b becomes:

For any k, ` ≥ 0, ∑
p1>···>pk≥1
q1>···>q`≥1

|(p | q)|!V 2(p)V 2(q)

(p!)2(q!)2
∏k
r=1

∏`
s=1(pr + qs + 1)2

×
(

k∏
r=1

pr
pr + 1

)(∏̀
s=1

qs
qs + 1

)
= 1

(4.2.1′)

where (p | q) =
∑

r pr +
∑

s qs + 1
2

[
(k + `− (k − `)2

]
.

The Plancherel measure M(0;0;1) is revisited in Section 8. See also (6.1.8).

The non-ergodic central measures Mu,v ([K], [O], [KOV]). Given u, v ∈ C,
Mu,v is given by Mu,v ↔ πu,v : Λ→ R (see (2.7)), where

πu,v(sµ) =
∏

(i,j)∈µ
(u+ j − i)(v + j − i) dµ

uv(uv + 1) · · · (uv + n− 1)n!
,(4.3.1)

where |µ| = n.
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The parameters u, v should satisfy one of the following two conditions:
1. u = v ∈ C is a non-integer.
2. u, v ∈ (m,m+ 1) for some m ∈ Z (hence again u, v /∈ Z).

The reachable boxes are D(Mu,v) = Z2
+. In the limit, as u = v tends to infinity,

Mu,v(µ) → M(0;0;1)(µ). Thus, both M(α;β;γ) and Mu,v are deformations of the
Plancherel measure M(0;0;1).

Similarly to Theorem 4.1, we have

Theorem 4.3. Let u = v ∈ C− Z or u, v ∈ (m,m+ 1) for some m ∈ Z. Then:
(a)

PMu,v
(
T (i, j) = n

)
=

∑
µ∈H′(i−1,j−1,n−1)

dµ

H
(
µ+(i, j)

) × ∏x∈µ+(i,j)

[
(u + c(x))(v + c(x))

]
uv(uv + 1) · · · (uv + n− 1)

.

(b) Since D(Mu,v) = Z2
+, for any (i, j) ∈ Z2

+

∞∑
n=1

∑
µ∈H′(i−1,j−1,n−1)

dµ

H
(
µ+(i, j)

) × ∏x∈µ+(i,j)

[
(u+ c(x))(v + c(x))

]
uv(uv + 1) · · · (uv + n− 1)

= 1

(here c(x) is the content of x [M], [I]: c(k, `) = `− k).

Denote (z)n = z(z + 1) · · · (z + n − 1), the Pochhammer symbol. Let (k, `) =
(i− 1, j − 1) and µ = (p | q) in the (k, `) coordinates. A simple calculation shows
that ∏

x∈µ+(i,j)

(
u+ c(x)

)
=

(u+ `− k)
∏k
r=1(u− r + 1)pr−k+`+r

∏`
s=1(u− qs − k + `)qs+k−`+s∏k

r=1(u− r + 1)`
.

If we combine this with (4.2.2), Theorem 4.3.b becomes: Let k, ` ≥ 0, u, v ∈ C,
u = v or u, v ∈ (m,m+ 1), m ∈ Z. Then∑

p1>···>pk≥1
q1>···>q`≥1

|(p | q)|! V 2(p)V 2(q)

(p!)2(q!)2
∏k
r=1

∏`
s=1(pr + qs + 1)2

(
k∏
r=1

pr
pr + 1

)

×
(∏̀
s=1

qs
qs + 1

)
f(u)f(v)∏k

r=1

[
(u− r + 1)`(v − r + 1)`

]
(uv)|(p|q)|+1

= 1 ,

(4.3.2)

where

f(w) = (w + `− k)
k∏
r=1

[
(w − r + 1)pr−k+`+r

] ∏̀
s=1

[
(w − qs − k + `)qs+k−`+s

]
and where |(p | q)| =

∑
r pr +

∑
s qs + 1

2

[
k + `− (k − `)2

]
.

In Sections 6 and 7 it is shown that certain specializations of Theorem 4.1 produce
q-analogues of the “Plancherel” identities, given by Corollary 4.2. Examples of
explicit identities produced by Theorem 4.3 are given in Section 8, identities which
are different kind of deformations of the “Plancherel” identities.
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5. Extensions to Probability of Joint Events

Similar to PM
(
T (i, j) = n

)
, it is possible to define the probability of two events:

P
M

(
T (i, j) = m and T (a, b) = n

)
, m < n ,

and similarly for more events.
By arguments similar to those in the proof of Theorem 3.1 one proves

Theorem 5.1. Fix i, j, a, b,m, n ∈ Z, m < n. Let M be a central measure on Tab
with corresponding M ↔ π, π : Λ→ R. Then

P
M

(
T (i, j) = m and T (a, b) = n

)
=

∑
µ∈H′(i−1,j−1,m−1)

∑
µ+(i,j)⊆λ∈H′(a−1,b−1,n−1)

dµdλ/µ+(i,j)π(sλ+(a,b)) .

(5.1.1)

Analogous theorems can be proved for more events.

Remark 5.2. A conditional reachability for the box (a, b) can be defined by the
equation

PM
(
T (i, j) = m

)
=
∞∑
n=1

PM
(
T (i, j) = m and T (a, b) = n

)
.(5.2.1)

In some cases of such reachability, and when dλ/µ+(i,j) can be calculated ef-
fectively, Theorem 5.1 yields explicit identities. For brevity, we consider only the
following example:

P
M

(
T (i, j) = ij and T (i, j + 1) = n

)
(or P

M

(
T (i, j) = ij and T (i+ 1, j) = n)

)
,

where M = M(0;0;1) and P = P
M(0;0;1)

.

First, H ′(i − 1, j − 1, ij − 1) = {µ}, where µ+(i, j) = (ji), and P
(
T (i, j) = ij

)
can easily be calculated by Corollary 4.2.b. Next, apply Theorem 5.1. Notice that
here λ/

(
µ+(i, j)

)
is a disjoint union of two ordinary diagrams, say η ∪ θ, and

dλ/µ+(i,j) = dη∪θ =
(
|η|+ |θ|
|η|

)
dηdθ .

Finally, apply (5.2.1) to deduce the identity. The essence of this calculation is given
in Figure 1.

Here are a few low cases:

Example 5.3. (i, j) = (1, 2). Here P
(
T (1, 2) = 2

)
= 1

2 and we deduce the two
identities

∞∑
n=1

n−1∑
a=0

(
n
a

)
(n− a− 1)!a!(n− a+ 1)(a+ 2)(n+ 2)

=
1
2

(5.3.1)

and

∞∑
v=3

∞∑
n=0

∞∑
a=0

(
n
a

)
(n+ v − a− 3)!a!(n+ v − a− 1)(a+ 2)(n+ v)

=
1
2
.(5.3.2)
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1,...,ij-1

ij+1,ij+2,...,v-1

vij

Figure 1.

(i, j) = (1, 3). Now P
(
T (1, 3) = 3

)
= 1

6 and, for example, one identity deduced
here is

∞∑
n=2

n∑
c=0

[
n−c

2

]∑
b=0

(
n
c

)
(n− c)!(n− c− 2b+ 1)2

g(n, b, c)
=

1
6
,(5.3.3)

g(n, b, c) = (b+ 1)!(n− b− c+ 2)!c!(c+ 2)(b− 1)!(n− b− c)!(b+ c+ 2)(n− b+ 3).

6. Application I: M = M(α;0;0)

Here, and in the next three sections, Theorem 3.1 is applied in some special cases,
and we shall see that it yields certain explicit summation-identities. We study first
a special case of the ergodic measure M(α;β;γ).

Fix m and let ωm = (α; 0; 0) be the following points in the Thoma simplex:
γ = 0, β1 = β2 = · · · = 0, αm > 0 and αm+1 = αm+2 = · · · = 0. Then
the reachable points of M = M(α;0;0) are D(M) =

{
(i, j) ∈ Z2

+ | i ≤ m
}

, and
s̃λ(α;β; γ) = sλ(α1, . . . , αm) is the ordinary Schur function. Specialize α1, . . . , αm

as follows: Let 0 < q < 1, r =
[∑m

i=1 q
i−1
]−1 = 1−q

1−qm , and let αi = rqi−1,
1 ≤ i ≤ m, and αm+1 = 0. Note that

lim
m→∞

ωm = (α; 0; 0) ,
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where αi = (1 − q)qi−1, i = 1, 2, . . . , and every (i, j) ∈ Z2
+ is reachable. Recall

the definitions of h(x), of c(x) and also of n(λ) =
∑

i≥1

(
λ′i
2

)
[M], [I]. Applying

Theorem 3.1 and [M, Ex. I.3.1], we deduce

Proposition 6.1. Let 0 < q < 1, r = 1−q
1−qm , αi = rqi−1, 1 ≤ i ≤ m, αm+1 = β1 =

γ = 0. Then, for any j,
(a)

P
M(α;0;0)

(T (i, j) = u) =
∑

µ∈H′(i−1,j−1,u−1)

dµ

(
1− q

1− qm

)u
qn(µ+(i,j))

×
∏

x∈µ+(i,j)

1− qm+c(x)

1− qh(x)

(6.1.1)

(note that the last factor equals zero unless, also, µ+(i, j) ∈ H(m, 0, u)). Since
(i, j) is M(α;0;0) reachable, hence

∞∑
u=1

∑
µ∈H′(i−1,j−1,u−1)

dµ

(
1− q

1− qm

)u
qn(µ+(i,j))

×
∏

x∈µ+(i,j)

1− qm+c(x)

1− qh(x)
= 1 .

(6.1.2)

(b) Letting m→∞ in (6.1.1), we obtain

P
M(α;0;0)

(
T (i, j) = u

)
=

∑
µ∈H′(i−1,j−1,u−1)

dµ(1 − q)uqn(µ+(i,j))
∏

x∈µ+(i,j)

1
1− qh(x)

.
(6.1.3)

Also
∞∑
u=1

∑
µ∈H′(i−1,j−1,u−1)

dµ(1− q)uqn(µ+(i,j))
∏

x∈µ+(i,j)

1
1− qh(x)

= 1(6.1.4)

(see the Remark, below).
(c) Since

sλ
( 1
m
, · · · , 1

m

)
︸ ︷︷ ︸

m

=
(

1
m

)|λ|∏
x∈λ

m+ c(x)
h(x)

[M], [I], by substituting α1 = · · · = αm = 1
m (αm+1 = β1 = γ = 0) we obtain from

Theorem 4.1

PM(α;0;0)

(
T (i, j) = u

)
=

∑
µ∈H′(i−1,j−1,u−1)

dµ

(
1
m

)u ∏
x∈µ+(i,j)

m+ c(x)
h(x)

(6.1.5)

and
∞∑
u=1

∑
µ∈H′(i−1,j−1,u−1)

dµ

H
(
µ+(i, j)

) ( 1
m

)u ∏
x∈µ+(i,j)

(
m+ c(x)

)
= 1 .(6.1.6)
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Note that (6.1.5) is obtained from (6.1.1) by formally letting q → 1. If in (6.1.1)
PM(α;0;0)

u→∞−−−→ 0 uniformly, independent of q, then the limit q → 1 exists and
gives — again — (6.1.6).

(d) Letting q → 1 in (b) or m → ∞ in (c) or q → 1 and m → ∞ in (a), we
obtain

P
M(α;0;0)

(
T (i, j) = u

)
=

∑
µ∈H′(i−1,j−1,u−1)

dµ

H
(
µ+(i, j)

) .(6.1.7)

Hence
∞∑
u=1

∑
µ∈H′(i−1,j−1,u−1)

dµ

H
(
µ+(i, j)

) = 1 ,(6.1.8)

just like (4.2.1), (4.2.1′).

Remark. Any extended Schur function is continuous on the Thoma simplex. So, if
a sequence of points, say, ωm tends to a limit point ω in the topology of the Thoma
simplex, then the corresponding values converge too. Identity (6.1.4) is obtained
by applying Theorem 3.1.c to the ergodic measure M(α;0;0), α as above. One could
also deduce (6.1.4) directly from (6.1.2) by letting m→∞, provided one can prove
directly that such a limit exists.

By applying the (k, `) = (i − 1, j − 1) type coordinates, it is possible to rewrite
the above formulas, and, in particular, part (c), more explicitly. Here, for example,
is the case i = k + 1 and j = 1 (` = 0). Now µ = (p | φ) = (p), p1 > · · · > pk ≥ 1,
|µ| =

∑
r pr −

(
k
2

)
,
∏
x∈µ+(k+1,1)

(
m+ c(x)

)
=
∏k
r=1(m− r + 1)pr−k+r, and dµ

H(µ+)

is obtained from (4.2.2) with ` = 0. Thus∑
p1>···>pk≥1

|(p)|!V 2(p)
p!

[
k∏
r=1

pr
pr + 1

](
1
m

) k∏
r=1

(m− r + 1)pr=k+r = 1 ,(6.1.6′)

where |(p)| =
∑

r pr −
(
k
2

)
.

Clearly, (a) is a q-analogue of (c), while (b) is a q-analogue of (d). Note also
that as m → ∞ and q → 1, all αi → 0, while all βi = 0 by definition. We shall
see in Proposition 8.1 that P

M(0;0;1)

(
T (i, j) = u

)
is the right hand side of (6.1.7);

hence we shall deduce (6.1.8) again from the case (0; 0; 1). Thus, in a sense, the
case (α; 0; 0) (or (0;β; 0)) here is a q-analogue of the case (0; 0; 1).

Example 6.2. When i = 2 and j = 1, (6.1.2) becomes
∞∑
u=2

(
1− q

1− qm

)u
q

∏u−2
k=−1(1 − qm+k)

(1− q)(1− qu)
∏u−2
`=1 (1− q`)

= 1 ,(6.2.1)

(6.1.4) yields
∞∑
u=2

(1 − q)uq 1
(1 − q)(1− qu)

∏u−2
`=1 (1− q`)

= 1 ,(6.2.2)

while (6.1.6) (or formally q → 1 in (6.2.2)) implies that
∞∑
u=2

(
1
m

)u (m− 1)m · · · (m+ u− 2)
(u − 2)!u

= 1 .(6.2.3)
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Finally, (6.1.8) (i.e., m→∞, q → 1 in (6.2.1)) yields

∞∑
u=2

1
(u− 2)!u

= 1(6.2.4)

(which is easy to verify, since 1
(u−2)!u = 1

(u−1)! −
1
u! ). Thus, (6.2.1)–(6.2.3) are

generalizations, and q-analogue generalizations of (6.2.4).

Similar examples can be calculated for any (i, j) ∈ N2. However, the identities
corresponding to (i, j) ∈ N2 become much more complicated as i+ j increases.

7. Application II: M = M(α;β;0)

Here we let γ = 0 and (α;β; γ) = (α;β; 0) ≡ (α;β) = (α1, . . . , αi;β1, . . . , βj)
(i.e., αi+1 = βj+1 = 0). The M(α;β;0) reachable points are

{
(a, b) | a ≤ i, b ≤ j

}
(2.13). Again, for each (i, j) ∈ N2 we deduce identities with (“double”) q-analogues.

Note that if µ ∈ H ′(i − 1, j − 1, u − 1), then µ+ = µ+(i, j) ⊇ Ri,j , the i × j
rectangle. Thus µ+(i, j) defines the two partitions,

ν(µ+) = (µ1 − j, . . . , µi−1 − j, 0) and η(µ+) = (µ′1 − i, . . . , µ′j−1 − i, 0) .

Since here s̃λ(α;β; 0) = sλ(α1, . . . , αi;β1, . . . , βj) are the super (or hook) Schur
functions, by [BR, Theorem 6.20] (or by a special case of the Sergeev-Pragacz
formula [M, I.3], and since µ+ ⊇ Ri,j ,

sµ+(i,j)(α1, . . . , αi;β1, . . . , βj)

=

[
i∏

k=1

j∏
`=1

(αk + β`)

]
sν(µ+)(α1, . . . , αi)sη(µ+)(β1, . . . , βj) .

Now let 0 < p, q < 1, r =
(∑i−1

k=0 p
k +

∑j−1
`=0 q

`
)−1

, and substitute αk = rpk−1, 1 ≤
k ≤ i, and β` = rq`−1, 1 ≤ ` ≤ j. Thus

∑
k≥1(αk + βk) = 1; hence γ = 0. Clearly,

sν(r, rp, . . . , rpi−1) = r|ν|sν(1, p, . . . , pi−1), and similarly for sη(r, rq, . . . , rqj−1).
Applying [M, Ex. I.3.1], we obtain the value of sµ+(α;β). Combined with Theorems
3.1.a, this implies

Proposition 7.1. Let 0 < p, q < 1, r =
[∑i−1

k=0 p
k +

∑j−1
`=0 q

`
]−1

, γ = 0, and let

(α;β) = (r, rp, . . . , rpi−1; r, rq, . . . , rqj−1) as above. Then
(a)

PM(α;β;0)

(
T (i, j) = u

)
=

∑
µ∈H′(i−1,j−1,u−1)

dµr
u

[
i−1∏
k=0

j−1∏
`=0

(pk + q`)

]

× pn(ν)qn(η)

 ∏
x∈ν(µ+)

1− pi+c(x)

1− ph(x)

 ∏
x∈η(µ+)

1− qj+c(x)

1− qh(x)

 .

(7.1.1)
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(b) As in Proposition 6.1.c, let (α;β) =
(

1
i+j , . . . ,

1
i+j ; 1

i+j , . . . ,
1
i+j

)
, or for-

mally let p, q → 1 in (7.1.1). Then

P
M(α;β;0)

(
T (i, j) = u

)
=

∑
µ∈H′(i−1,j−1,u−1)

dµ

(
1

i+ j

)u
2ij

×

 ∏
x∈ν(µ+)

i+ c(x)
h(x)

 ∏
x∈η(µ+)

j + c(x)
h(x)

 .

(7.1.2)

Again, n(λ), h(x) and c(x) are given in [M, I.1].
Clearly, (7.1.1) is a (“double”) q-analogue of (7.1.2). By (2.13) the box (i, j)

is M(α;β;0)-reachable. Hence, by Theorem 3.1.c (i.e., by summing over all u’s in
(7.1.1) and in (7.1.2)) we obtain

Proposition 7.2. In the notations of Proposition 7.1,
(a)

∞∑
u=1

∑
µ∈H′(i−1,j−1,u−1)

dµr
u

[
i−1∏
k=0

j−1∏
`=0

(pk + q`)

]
pn(ν(µ+))

× qn(η(µ+))

 ∏
x∈ν(µ+)

1− pi+c(x)

1− ph(x)

 ∏
x∈η(µ+)

1− qj+c(x)

1− qh(x)

 = 1 .

(7.2.1)

(b) From (7.1.2) (or formally letting p, q → 1 in (a)), we obtain
∞∑
u=1

∑
µ∈H′(i−1,j−1,u−1)

dµ

(
1

i+ j

)u
2ij

×

 ∏
x∈ν(µ+)

i+ c(x)
h(x)

 ∏
x∈η(µ+)

j + c(x)
h(x)

 = 1 .

(7.2.2)

Note that (7.2.2) is obtained from (7.2.1) by formally letting p, q → 1. Thus,
again, (7.2.1) is a double (or p-) q analogue of (7.2.2).

Let (i, j) = (k + 1, ` + 1) and rewrite (7.2.2) with the (k, `) coordinates as
follows (compare with (4.3.2) and (6.1.6′)). First, the summation

∑
u

∑
µ··· becomes∑

p1>···>pk≥1
q1>···>q`≥1

. Now

dµ = d(p|q) =
|(p | q)|!V (p)V (q)

p!q!
∏
r,s(pr + qs + 1)

,

where |(p | q)| =
∑k

r=1 pr +
∑`

s=1 qs + 1
2

[
k + `− (k − `)2

]
,

1
H
(
ν(µ+)

) =
V (p)
p!

(
pr

pr + 1

)
,

1
H
(
ν(µ+)

) =
V (q)
q!

∏
s

(
qs

qs + 1

)
,

∏
x∈ν(µ+)

(
i + c(x)

)
=

∏
x∈ν(µ+)

(
k + 1 + c(x)

)
=

k∏
r=1

(k + 2− r)pr−k+r
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and ∏
x∈η(µ+)

(
j + c(x)

)
=
∏̀
s=1

(` + 2− s)qs−`+s .

Thus, (7.2.2) now reads as follows:

Proposition 7.2.b′.

∑
p1>···>pk≥1
q1>···>q`≥1

|(p | q)|!V 2(p)V 2(q)

(p!)2(q!)2
∏k
r=1

∏`
s=1(pr + qs + 1)

(
k∏
r=1

pr
pr + 1

)(∏̀
s=1

qs
qs + 1

)

×
(

1
k + ` + 2

)|(p|q)|+1

2(k+1)(`+1)

(
k∏
r=1

(k + 2− r)pr−k+r

)

×
(∏̀
s=1

(` + 2− s)qs−`+s

)
= 1 .

(7.2.2′)

Some special cases. By symmetry, the cases (i, j) and (j, i) are the same. The
case i = j = 1 being trivial, we first consider
i = 2, j = 1: Here (7.2.1) specializes to

∞∑
u=2

(
1

p+ 2

)u
2(1 + p)

1− pu−1

1− p = 1 ,(7.3.1)

while (7.2.2) (or p→ 1 in (7.3.1)) becomes
∞∑
u=2

(
1
3

)u
(u− 1) =

1
4
,(7.3.2)

which can easily be verified directly.
i = j = 2: By (7.2.1),

∞∑
k=0

∞∑
`=0

(
k+`+ 2
k + 1

)(
1

2 + p+ q

)k+`+4

(1 + 1)(1 + q)(p+ 1)(p+ q)

×
(

1− pk+1

1− p

)(
1− q`+1

1− q

)
= 1 ,

(7.3.3)

and by (7.2.2) (or by p, q → 1 in (7.3.3))
∞∑
k=0

∞∑
`=0

(
k+`+ 2
k + 1

)(
1
4

)k+`

(k + 1)(`+ 1) = 16 .(7.3.4)

i = 3, j = 2: Here (7.2.1) implies a p, q identity of a type similar to, but more
involved than (7.3.3), while (7.2.2) implies the identity

∞∑
k=0

∞∑
`=0

∞∑
m=0

(k + 2`+m+ 5)!(k + 1)2(k + `+ 2)
`!m!(k + `+ 2)!(`+m+ 3)(k + `+m+ 4)

(
1
5

)k+2`+m

=
56

25
= 488.28125 .

(7.3.5)
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8. Application III: M = M(0;0;1)

We now examine more closely some special cases, arising from the Plancherel
measure M(0;0;1). It is shown below that the probabilities in (8.2.1) and (8.2.3)
below possess a remarkable property.

Example 8.1.

(3,1): i = 3, j = 1 (or i = 1, j = 3). By Corollary 4.2,

P
M(0;0;1)

(
T (3, 1) = u

)
=

[
u−3

2

]∑
k=0

(u − 1)!(u− 2k − 2)2

k!(k + 2)!(u− k − 2)!(u − k)!
;(8.2.1)

hence (also by (6.1.8))

∞∑
u=3

[
u−3

2

]∑
k=0

(u− 1)!(u− 2k − 2)2

k!(k + 2)!(u − k − 2)!(u− k)!
= 1 .(8.2.2)

(2,2): i = j = 2. By Corollary 4.2,

P
M(0;0;1)

(
T (2, 2) = u

)
=

u−4∑
k=0

(u − 2)!
k!(k + 2)!(u− k − 4)!(u− k − 2)!(u− 1)

;(8.2.3)

hence (or by (6.1.8))
∞∑
u=4

u−4∑
k=0

(u− 2)!
k!(k + 2)!(u− k − 4)!(u− k − 2)!(u− 1)

= 1 .(8.2.4)

(4,1): i = 4, j = 1 or i = 1, j = 4. Here we deduce from Corollary 4.2 (or from
(6.1.8)) that

∞∑
a=0

∞∑
b=0

∞∑
c=0

f(a, b, c) = 1 ,(8.2.5)

where

f(a, b, c) =
A

B × C ,

A = (a+ 2b+ 3c+ 3)!(b+ 1)2(a+ 1)2(a+ b+ 2)2 ,

B = c!(c+ 1)!(b + c+ 1)!(b+ c+ 2)!(a+ b+ c+ 2)!(a+ b+ c+ 3)! ,

C = (c+ 2)(b+ c+ 3)(a+ b+ c+ 4) .

Computer experiments lead us to observe the following rather remarkable phe-
nomenon:

Proposition 8.2. For all u ≥ 1 (i.e., u ≥ 3),

P
M(0;0;1)

(
T (3, 1) = u

)
= P

M(0;0;1)

(
T (2, 2) = u+ 1

)
.

(So far, no similar phenomenon has been observed between other entries or for
other measures.)

Comparing (8.2.1) with (8.2.3) for u even and for u odd, we see that Proposition
8.2 is equivalent to the following two “binomial” identities:
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Lemma 8.3. (1)

n−2∑
k=0

(
2n
k

)(
2n
k + 2

)
(n− k − 1)2 = n

n−2∑
k=0

(
2n− 1
k

)(
2n− 1
k + 2

)
.(8.3.1)

(2)

n−1∑
k=0

(
2n+ 1
k

)(
2n+ 1
k + 2

)
(2n− 2k − 1)2

= (2n+ 1)
2n−2∑
k=0

(
2n
k

)(
2n
k + 2

)
.

(8.3.2)

Proof (I.G. Macdonald). The first proof of 8.3 was a computer proof, given by D.
Zeilberger (and Shalosh B. Ekhad) [Z]. Here are the main steps of a “human” proof,
due to I.G. Macdonald (private letter). We verify, for example, (8.3.1). Note first
that, on both sides,

∑n−2
k=0 can be replaced by 1

2

∑2n−2
k=0 . Evaluate the coefficient of

t2n−3 in (1 + t)4n−2 = (1 + t)2n−1(1 + t)2n−1 to conclude that

2n−3∑
k=0

(
2n− 1
k

)(
2n− 1
k + 2

)
=
(

4n− 2
2n− 3

)
.

This simplifies the right hand side of (8.3.1). Now simplify the left hand side:
expand (n− k − 1)2 = (n− 1)2 − 2nk + k(k + 2), so that the left hand side is

1
2
[
(n− 1)2A− 2nB + C

]
with corresponding A, B and C, which simplify by similar arguments. For example,

B =
2n−2∑
k=0

k

(
2n
k

)(
2n
k + 2

)
= 2n

2n−2∑
k=0

(
2n− 1
k − 1

)(
2n

2n−k − 2

)
= 2n

[
the coefficient of t2n−3 in (1 + t)4n−1 = (1 + t)2n−1(1 + t)2n

]
= 2n

(
4n− 1
2n− 3

)
.

After simplifying A, B and C, it is easy to verify that the left hand side equals the
right hand side.

8.1. Probability of congruences. Given q, r ∈ N and M , we consider

PM
(
T (i, j) ≡ r (mod q)

)
,

the M -probability that T (i, j) ≡ r (mod q).
Trivially, PM

(
T (i, j) = u

)
= 0 if u < ij. Therefore we can replace 0 ≤ r < q by

ij ≤ r < ij + q; then clearly,

PM
(
T (i, j) ≡ r (mod q)

)
=
∞∑
k=0

PM
(
T (i, j) = kq + r

)
.(8.4.1)

Below we consider two examples, both in the case M = M(0;0;1) and with (i, j) =
(1, 2).
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8.1.1. Example: (i, j) = (1, 2) (or (i, j) = (2, 1)). Let 2 ≤ r < 2 + q; then

P
M(0;0;1)

(
T (1, 2) ≡ r (mod q)

)
=
∞∑
k=0

1
(qk + r − 2)!(qk + r)

.(8.4.2)

This follows since, by Proposition 8.1, P
M(0;0;1)

(
T (1, 2) = u

)
= 1

(u−2)!u . Since
1

(u−2)!u = 1
(u−1)! −

1
u! , this implies that for q = 2

P
M(0;0;1)

(
T (1, 2) ≡ 1 (mod 2)

)
=

1
e
,(8.4.3)

a phenomenon which was observed in [R].
For q = 3 the corresponding probabilities are

P
M(0;0;1)

(
T (1, 2) ≡ 2 (mod 3)

)
=

2
3
√
e

[
cos

(√
3

2
− π

3

)
− cos

(√
3

2
+
π

3

)]
,

(8.4.4)

P
M(0;0;1)

(
T (1, 2) ≡ 3 (mod 3)

)
= 1− 2

3
√
e

[
cos

(√
3

2

)
+ cos

(√
3

2
− π

2

)]
,

and

P
M(0;0;1)

(
T (1, 2) ≡ 4 (mod 3)

)
=

2
3
√
e

[
cos

(√
3

2

)
− cos

(√
3

2
+
π

2

)]
.

9. Examples of Some Mu,v-Identities

Theorem 4.3.b is applied for an explicit calculation of the Mu,v-identity corre-
sponding to the box (k + 1, 1), k arbitrary, and to (2,2).
k = 1 (i.e., the box (2, 1)): Theorem 4.3.b implies that∑

n≥2

1
(n− 2)!n

(u − 1)n(v − 1)n
(uv)n

= 1 .(9.1.1)

A priori, (9.1.1) holds if u = v ∈ C or u, v ∈ (m,m+ 1) for some m ∈ Z. However,
using a summation formula of Gauss, we show that (9.1.1) holds for (u, v) in a much
larger domain in C2: 0 ≥ v ∈ Z or Re(uv) > Re(u) + Re(v) (G. Olshanski):

Since 1
(n−2)!n = 1

(n−1)! −
1
n! , the left hand side of (9.1.1) can be rewritten as

(u− 1)(v − 1)
uv

∑
n≥2

(u)n−1(v)n−1

(uv + 1)n−1(n− 1)!
−
∑
n≥2

(u − 1)n(v − 1)n
(uv)nn!

.

Now apply the Gauss formula∑
n≥0

(a)n(b)n
(c)nn!

=
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b) ,

where 0 ≥ b ∈ Z or Re(c) > Re(a) + Re(b), apply Γ(z+ 1) = zΓ(z), and notice that
the summations above start with n ≥ 2. The proof of (9.1.1) follows.

Recall that, given m = (m1, . . . ,mk),

V (m) = V (m1, . . . ,mk) =
∏

1≤i<j≤k
(mi −mj) .
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k = 2: Here Theorem 4.3.b implies that∑
m1,m2≥0

(2)m1+m2V
2(m)(u)m1(u)m2(v)m1(v)m2

m1!m2!(3)m1(3)m2(uv + 2)m1+m2

=
8uv(uv + 1)

(u− 1)(u− 2)(v − 1)(v − 2)
,

(9.2.1)

at least when u = v ∈ C or u, v ∈ (M,M + 1), M ∈ Z.
k ≥ 3: The Mu,v-identity corresponding to the box (k + 1, 1) is∑

m1,... ,mk≥0

(
|m| − 1

2k(k − 3)
)
!V 2(m)

∏k
i=1

[
(u + 2− k)mi(v + 2− k)mi

]∏k
i=1

[
mi!(3)mi

]
(uv)|m|− 1

2k(k−3)+1

=
2kk!

∏k−2
i=1

[
(u+ 2− k)i(v + 2− k)i

]
(u− k)(u − k + 1)(v − k)(v − k + 1)

,

(9.3.1)

at least when u = v or u, v ∈ (M,M + 1), M ∈ Z. Here |m| = m1 + · · ·+mk.
Notice that without the factor V 2(m), the left hand side (of (9.2.1) and) of

(9.3.1) is one of the multivariate hypergeometric series, evaluated at (1, . . . , 1).
As an additional example, we also give the case of
The box (2,2): Let u = v ∈ C or u, v ∈ (M,M + 1), M ∈ Z. Let

p(k, n) =
(n− 2)!

k!(k + 2)!(n− k − 4)!(n− k − 2)!(n− 1)

(compare with (8.2.3)) and let

g(u, k, n) = (u)k+2(u − n+ k + 3)n−k−2 ;

then

P
Mu,v

(
T (2, 2) = n

)
=
n−4∑
k=0

p(k, n)g(u, k, n)g(v, k, n)
(uv)n

and
∞∑
n=4

n−4∑
k=0

p(k, n)g(u, k, n)g(v, k, n)
(uv)n

= 1 .(9.4.1)

10. The Analogous Projective Theory

A partition is strict if all its parts are distinct. These partitions span the Schur-
Young subgraph SY of Y . In the theory of the projective representations of Sn and
of S∞, SY replaces Y . An exact analogue of the VK-theory exists for SY , and is
mostly due to Nazarov [N] (see also Ivanov [I]).

Here Tab is replaced by STab ⊂ Tab, the infinite paths T in SY . A strict
partition λ now corresponds both to its ordinary and to its shifted Young diagram
[M, III], [HH]. We continue to identify λ with its ordinary diagram, and will denote
by sh(λ) its shifted diagram. For example,

x x x x x

(5, 2, 1) ≡ x x

x
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and
x x x x x

sh(5, 2, 1) ≡ x x

x

Each infinite path T ∈ STab now corresponds, in an obvious way, to an infinite
shifted standard tableau.

The algebra Λ of the symmetric functions is replaced here by its subalgebra Γ,
spanned, for example, by the Schur P functions {Pλ | λ strict} [M, III, 8]. Here dλ
is replaced by gλ, the number of standard tableaux of (shifted) shape sh(λ).

Theorem (Schur. See [M, III, 8]). Let λ = (λ1, . . . , λk) ` n, λ1 > λ2 > · · · >
λk ≥ 0. Then

gλ =
n!

λ1! · · ·λk!

∏
1≤i<j≤k

(λi − λj)
(λi + λj)

.(10.1.1)

Let λ ` n be strict. There is an obvious bijection between paths

φ = λ0 ↗ λ1 ↗ · · · ↗ λn = λ

and standard tableaux of shape sh(λ). Denote by STab(λ) all such paths, i.e., all
such standard tableaux of shape sh(λ): |STab(λ)| = gλ.
S-cylindrical sets are defined in analogy to the Y case: given λ ` n strict and

τ ∈ STab(λ), SCyl(τ) are the infinite paths in STab with first n links equal to τ .
The definition of central measures on STab is analogous (is central if for any strict
λ, all the S-cylindrical sets SCyl(τ), τ ∈ STab(λ), have the same mass).

Proposition (see [N], [I]). There is a bijective correspondence M ↔ π between the
central measures M on STab and the linear functionals π : Γ → R satisfying the
following conditions:
• π(1) = 1.
• π factors through the algebra Γ/(s(1) − 1)Γ. Note that s(1) = P(1).
• π(Pλ) ≥ 0 for any strict λ.
Under this correspondence, for any strict λ and any τ ∈ STab(Pλ)

M
(
SCyl(τ)

)
= π(Pλ) .

Shifted analogues (of the Y case) are now introduced in an obvious way:
S(Z2

+) =
{

(i, j) ∈ Z2
+ | i ≤ j

}
(analogue of Z2

+).
The shifted diagram SD(T ) ⊆ S(Z2

+) of T ∈ STab (analogue of D(T )).
SP

M

(
T (i, j) = n

)
, whereM is a central measure on STab, (i, j) ∈ S(Z2

+), n ∈ Z+

(analogue of P
M

(
T (i, j) = n

)
).

STab(i, j) =
{
T ∈ STab | (i, j) ∈ SD(T )

}
,

M
(
STab(i, j)

)
=
∑
n≥1

SP
M

(
T (i, j) = n

)
.

Call (i, j) ∈ S(Z2
+) M -reachable if M

(
STab(i, j)

)
= 1.

Given ` ≥ k, H ′(k, `, n) is now replaced by SH ′(k, `, n) =
{

(λ1, λ2, . . . ) ` n |
λ1 > λ2 > · · · , λk ≥ ` − k + 2 and λk+1 = ` − k

}
. Note that if µ ∈ SH ′(k, `, n),

then µ+(k, `) = (µ1, . . . , µk, µk+1 + 1, µk+2, . . . ) is also a strict partition.
In exact analogy with Theorem 3.1 we have here
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Theorem 10.1. Let (i, j) ∈ S(Z2
+), n ∈ Z+. Let M be a central measure on STab

with corresponding M ↔ π, π : Γ→ R. Then
(a)

SP
M

(
T (i, j) = n

)
=

∑
µ∈SH′(i−1,j−1,n−1)

gµπ
(
Pµ+(i,j)

)
.

By summing over all n ≥ 1 we obtain
(b)

∞∑
n=1

∑
µ∈SH′(i−1,j−1,n−1)

gµπ
(
Pµ+(i,j)

)
= M

(
STab(i, j)

)
.

(c) In particular, if (i, j) is M reachable, then
∞∑
n=1

∑
µ∈SH′(i−1,j−1,n−1)

gµπ
(
Pµ+(i,j)

)
= 1 .

Similarly to the ordinary theory, we now study two special families of central
measures M on STab. One family is the ergodic measures M(α;γ), and the second
is a remarkable one parameter family of measures

{
Mx | x ∈ R+ ∪ {∞}

}
.

The measure M(α;γ). Here α is α1 ≥ α2 ≥ · · · ≥ 0 with
∑∞

i=1 αi ≤ 1, and
γ = 1−

∑∞
i=1 αi. To define M(α;γ) we need the functions P̃λ(α; γ) which generalize

the Schur P functions Pλ(x) : P̃λ(α; 0) = Pλ(α). The P̃λ(α; γ)’s are implicitly given
as combinations of the functions s̃λ(α; 0; γ).

To compute P̃λ(α; γ), start with q̃k = qk(α; γ): these are given by

Q̃(t) = 1 +
∞∑
k=1

q̃kt
k = e2γt

∏
i

1 + αit

1− αit
(10.1.2)

(compare with [M, III, (8.1)]). Since Q̃(t)Q̃(−t) = 1, follow [M, III, 8], replacing
qr = qr(x) by q̃r = q̃r(α; γ). Then Q̃λ = Pf(M̃λ), the Pfaffian of the matrix
M̃λ = (Q̃(λi,λj)) [M, III, (8.11)]. Here Q̃(r,s) = q̃r q̃s + 2

∑s
i=1(−1)iq̃r+iq̃s−i [M, III,

(8.10)].
Finally, P̃λ = 2−`(λ)Q̃λ [M, III, (8.7)].

The ergodic measure. M(α;γ) is given by its corresponding functional

M(α;γ) ↔ π(α;γ) : Γ→ R ,

π(α;γ)(Pλ) = P̃λ(α; γ) .

Reachable boxes. (i) If there exist k ∈ Z+ such that αk+1 = · · · = γ = 0, αk > 0,
then the reachable boxes are the shifted k-strip

{
(i, j) | i ≤ k, i ≤ j

}
.

(ii) Otherwise (i.e. if all αi are strictly positive or if γ > 0), the reachable boxes
are S(Z2

+).

Let λ ` n be strict. Note that
gλ

n!
=

1∏
x∈sh(λ) hD(λ)(x)
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in the sense of [M, III, 8, Ex. 12] (with the correction D(λ) = (λ1, λ2, . . . | λ1 −
1, λ2 − 1, . . . ). In fact, if D(λ) = (λ1 − 1, λ2 − 1, . . . | λ1, λ2, . . . ), then

2−`(λ)gλ

n!
=

1∏
x∈sh(λ) hD(λ)(x)

) .

Thus, the projective analogue of (4.1.1), and of [J, 19.5], is

Theorem 10.2. Let α = 0. Then γ = 1, and

P̃λ(0; 1) =
2n−`(λ)gλ

n!
,

where |λ| = n. This is the Plancherel measure on STab.

Proof. Show that Q̃λ(0; 1) = 2ngλ

n! by following the steps mentioned above.
First, by (10.1.2) with α = 0, we have q̃r = 2r

r! ; consequently

Q̃(r,s) =
2r

r!
2s

s!
+ 2

s∑
i=1

(−1)i
2r+i

(r + i)!
ss−i

(s− i)! .

Standard “binomial” calculations give

Q̃(r,s) =
2r+s

r!s!
× (r − s)

(r + s)
.

Now write λ = (λ1, . . . , λ2m), λ1 > · · · > λ2m ≥ 0; then

M̃λ =
(

2λi+λj

λi!λj !
× (λi − λj)

(λi + λj)

)
1≤i,j≤2m

.

Note that the ith row of M̃λ is divisible by 2λi

λi!
, and the jth column by 2λj

λj !
. Hence

det(M̃λ) =

∏
i,j

2λi

λi!
2λj

λj !

 det
(
λi − λj
λi + λj

)
=
(

2n

λ1! · · ·λ2m!

)2

det
(
λi − λj
λi + λj

)
.

Thus

Pf(M̃λ) =
2n

λ1! · · ·λ2m!
Pf
(λi − λj
λi + j

)
.

It is well known that

Pf
(λi − λj
λi + λj

)
=
∏
i<j

(λi − λj
λi + λj

)
,

and the proof now follows from a formula for gλ [M, III, 8, Ex. 12, (2)].

From Theorem 10.1 we now deduce

Theorem 10.3. For the ergodic measure M(α;γ)

(a)

SP
M(α;γ)

(
T (i, j) = n

) ∑
µ∈SH′(i−1,j−1,n−1)

gµP̃µ+(i,j)(α; γ) .

(b) If (i, j) ∈ S(Z2
+) is M(α;γ) reachable, then
∞∑
n=1

∑
µ∈SH′(i−1,j−1,n−1)

gµP̃µ+(i,j)(α; γ) = 1 .
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In the special case (α; γ) = (0; 1) Theorems 10.1 and 10.2 imply

Theorem 10.4. Let (i, j) ∈ S(Z2
+). Then

(a)

SP
M(0;1)

(
T (i, j) = n

)
=

∑
µ∈SH′(i−1,j−1,n−1)

gµ2n−`(µ
+(i,j))gµ

+(i,j)

n!
.

Hence, since any (i, j) is reachable,
(b)

∞∑
n=1

∑
µ∈SH′(i−1,j−1,n−1)

gµ2n−`(µ
+(i,j))gµ

+(i,j)

n!
= 1 .

Clearly, Theorem 10.3 is a certain deformation of Theorem 10.4.
Similarly to the measures Mu,v ↔ πu,v (4.3.1), there exists here a remarkable

one parameter family of (non-ergodic) central measures Mx. These were discovered
in [B], and are given, on strict partitions λ ` n, by Mx ↔ πx,

πx(Pλ) =
2n−`(λ)gλ

n!
×
∏

(i,j)∈shλ

[
(j − i)(j − i+ 1) + x

]
x(x + 2)(x+ 4) · · ·

(
x+ 2(n− 1)

) .(10.1.3)

Here x ∈ R+∪{∞} and λ is interpreted as a shifted diagram. When λ is interpreted
as an ordinary diagram, Mx is given by

πx(Pλ) =
2n−`(λ)gλ

n!
×

∏
(i,j)∈λ

[
(j − 1)j + x

]
x(x + 2)(x+ 4) · · ·

(
x+ 2(n− 1)

) .(10.1.4)

The reachable boxes of Mx comprise the whole of S(Z2
+).

Note that when x = ∞, the “x factor” equals 1; hence M∞ = M(0;1) is the
Plancherel measure. Thus Mx are (again) deformations of the Plancherel measure.

From Theorem 10.1 we deduce

Theorem 10.5. Interpret µ as an ordinary diagram. For any (k, `) ∈ S(Z2
+)

(a)

SPMx

(
T (k, `) = n

)
=

∑
µ∈SH′(k−1,`−1,n−1)

2n−`(µ
+)gµgµ

+

n!

×
∏

(i,j)∈µ+

[
(j − 1)j + x

]
x(x + 2) · · ·

(
x+ 2(n− 1)

) .
Hence, since (k, `) is reachable,

(b)
∞∑
n=1

∑
µ∈SH′(k−1,`−1,n−1)

2n−`(µ
+)gµgµ

+

n!

×
∏

(i,j)∈µ+

[
(j − 1)j + x

]
x(x + 2) · · ·

(
x+ 2(n− 1)

) = 1 .

(10.2.1)

Here x ∈ R+ ∪ {∞}, µ+ = µ+(k, `), and in “(i, j) ∈ µ+”, µ+ is interpreted as an
ordinary (not shifted) diagram. Clearly, Theorem 10.4 is the case x =∞ here.
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Theorems 10.3, 10.4 and 10.5 can be made more explicit by applying formula
(10.1.1) for gλ. This is done in Sections 11 and 12, where several special cases are
treated.

Extensions to the probability of joint events. Let j ≥ i, s ≥ r and n > m,
and consider the probability SP

M

(
T (i, j) = m and T (r, s) = n

)
, and similarly for

more events. In complete analogy with Theorem 5.1, we now have

Theorem 10.6. Let M be a central measure on STab, (i, j), (r, s) ∈ S(Z2
+), m <

n ∈ Z+. Then

SP
M

(
T (i, j) = m and T (r, s) = n

)
=

∑
µ∈SH′(i−1,j−1,m−1)

∑
µ+(i,j)⊆λ∈SH′(r−1,s−1,n−1)

gµgλ/µ
+(i,j)π

(
λ+(r, s)

)
.

Here gλ/µ
+(k,`) is the number of standard tableaux of shifted skew shape λ/µ+(k, `).

The “shifted” analogue of Remark 5.2 would lead to many new identities. For
brevity, no examples of such identities are given here.

11. Applications IV: M = M(α;0)

To apply Theorem 10.3.b when γ = 0, we shall need an explicit formula for
Pλ(α1, . . . , αm).

Fix i ∈ Z+ and let (i, j) ∈ S(Z2
+). Let m = i or m = i + 1, with α1 ≥ · · · ≥

αm ≥ 0, α1 + · · ·+ αm = 1, αm+1 = γ = 0: m is the number of variables in Pλ(α).
Let M(α;0) be the corresponding ergodic measure. Then (i, j) is M(α;0) reachable
and Theorem 10.3.b applies.

Let u ∈ Z+, µ ∈ SH ′(i− 1, j − 1, u− 1) and µ+ = µ+(i, j). Then the decompo-
sition

Pµ+(α) = sµ+−δ(α)αδ(α)(11.1.1)

holds, provided `(µ+) equals m or m− 1 [M, III, 8, Ex. 2]. Here δ = (m− 1,m−
2, . . . , 1, 0).

Claim. Let i ≤ j ≤ i + 1, m = i or m = i + 1. Then (11.1.1) holds. Indeed, if
µ ∈ SH ′(i− 1, j − 1, n− 1), then `(µ+) = i (equals m or m− 1).

Claim. Let j = i + 2, m = i + 1. Then again (11.1.1) holds, since in that case,
`(µ+) = i or `(µ+) = i+ 1.

However, if j ≥ i+ 3, then `(µ+) = i for some µ’s and `(µ+) = j − 1 ≥ i+ 2 for
other µ’s in SH ′(i− 1, j − 1, n− 1). Hence (11.1.1) might be false.

Therefore, explicit identities are deduced here from Theorem 10.3.b only for
(i, j) ∈ S(Z2

+), i ≤ j ≤ i + 2.
Obviously, Theorem 10.3.b now implies

Theorem 11.1. Let (i, j) ∈ S(Z2
+).

(a) Let i ≤ j ≤ i+ 2. Then
∞∑
u=1

∑
µ∈SH′(i−1,j−1,u−1)

gµsµ+−δ(α1, . . . , αi+1)sδ(α1, . . . , αi+1) = 1 .

Here α1 ≥ · · · ≥ αi+1 ≥ 0, α1 + · · ·+ αi+1 = 1 and δ = (i, i− 1, . . . , 1, 0).
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(b) Let i ≤ j ≤ i+ 1. Then, in addition,

∞∑
u=1

∑
µ∈SH′(i−1,j−1,u−1)

gµsµ+−δ(α1, . . . , αi)sδ(α1, . . . , αi) = 1 .

Here α1 ≥ · · · ≥ αi, α1 + · · ·+ αi = 1 and δ = (i− 1, . . . , 1, 0).

Similarly to Section 6, specialize αt = rqt−1, 1 ≤ t ≤ i + 1, where 0 < q < 1
and r = 1 + q + · · · + qi = 1−q

1−qi+1 . Thus, r → 1
i+1 when q → 1. For x ∈ λ,

denote Rλ(x) = 1−qi+1+c(x)

1−qh(x) (again, c(x) is the “content”, h(x) the “hook number”
of x ∈ λ). By Theorem 11.1a and [M, I.3, Ex. 1], for 1 ≤ i ≤ j ≤ i + 2 and
δ = (i, . . . , 1, 0),

∞∑
u=1

(
1− q

1− qi+1

)u ∑
µ∈SH′(i−1,j−1,u−1)

gµqn(µ+)

×

 ∏
x∈µ+−δ

Rµ+−δ(x)

[∏
x∈δ

Rδ(x)

]
= 1 .

(11.2.1)

Substitute α1 = · · · = αi+1 = 1
i+1 in Theorem 11.1a (or, formally, let q → 1 in

(11.2.1)), then deduce that

∞∑
u=1

(
1

i+ 1

)u ∑
µ∈SH′(i−1,j−1,u−1)

gµ

×

 ∏
x∈µ+−δ

i+ 1 + c(x)
h(x)

[∏
x∈δ

i+ 1 + c(x)
h(x)

]
= 1 ,

and since
∏
x∈δ

i+1+c(x)
h(x) = 2

(
i+1
2

)
, deduce that:

If 1 ≤ i ≤ j ≤ i+ 1 and δ = (i, . . . , 1, 0), then

∞∑
u=1

(
1

i+ 1

)u ∑
µ∈SH′(i−1,j−1,u−1)

gµ
∏

x∈µ+−δ

i+ 1 + c(x)
h(x)

= 2
−
(
i+1

2

)
.(11.2.2)

Clearly, (11.2.1) is a q analogue of (11.2.2).
Similar identities can be derived for 1 ≤ i ≤ j ≤ i + 1, with m = i replacing

m = i+ 1 in the above summands.
As before, (11.2.2) can be made more explicit by analyzing gµ and i+1+c(x)

h(x) .
Here is

The case i = j, m = i+ 1: µ ∈ SH ′(i− 1, j − 1, u− 1) implies

µ = (µ1, . . . , µi−1) , µ1 > · · · > µi−1 ≥ 2 , µ+(i, i) = (µ1, . . . , µi−1, 1) .
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Let pr = µr − 2, 1 ≤ r ≤ i− 1. Then (11.2.2) becomes

∑
p1>···>pi−1≥0

(
1

i+ 1

)|p|+2i−1 (|p|+ 2i− 2)!V 2(p)∏i−1
r=1

[
pr!(pr + 2)!

]∏
1≤r<s≤i−1(pr + ps + 2)

×
i−1∏
r=1

(i+ 2− r)pr+r−i+1 = 2
−
(
i+1
2

)
(11.2.3)

(because of the factor V 2(p) =
∏
r<s(pr − ps)2, the condition “p1 > · · · > pi−1”

can be replaced by “p1 ≥ · · · ≥ pi−1”.
As before, |p| = p1 + · · ·+ pi−1 and (a)n = a(a+ 1) · · · (a+ n− 1).
The case i = j = m is omitted for brevity.
Below we list a few (low) case examples of (11.2.1), (11.2.2) and (11.2.3).
i = j = 2, m = 3: By (11.2.3)

∞∑
u=3

(
1
3

)u (u− 1)(u− 2)
2

= 2−3 ,

which can be verified directly. A q-analogue can be obtained from (11.2.1).
i = j = 3, m = 4: By (11.2.3)

∞∑
u=6

(
1
4

)u [u−6
2

]∑
b=0

(
u− 2
b+ 1

)
(b+ 1)(u− b− 4)(u− b− 3)(u− 2b− 5)2 =

3
16

.

When j = i + 1 = 3 and j = i + 1 = 4, both cases m = i and m = i + 1 of
Theorem 11.1 are calculated below.
j = i+ 1 = 3: By the m = i-analogue of (11.2.1) we deduce the identity

∞∑
u=5

(u− 3)
(

1
1 + q

)u−1

q2 1− qu−4

1− q = 1(11.3.1)

and by the m = i-analogue of (11.2.2) (or, formally, q → 1 in (11.3.1)),

∞∑
u=5

(u− 3)(u− 4)
(

1
2

)u−4

= 1

(which can be verified directly).
j = i+ 1 = m = 3: Deduce that

∞∑
u=5

(u− 3)
(

1− q
1− q3

)u
q

(1 − qu−2)(1 − qu−4)
(1− q)2

× (1− q2)(1 − q4)
(1− q)2

= 1 ,(11.3.2)

and (q → 1)

∞∑
u=5

(u− 2)(u− 3)(u− 4)
(

1
3

)u
=

1
8

(can be verified directly).
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j = i+ 1 = 4, m = 3: Get

∞∑
u=9

(
1− q
1− q3

)u [u−3
2

]∑
b=1

(
u− 1
b

)
(u− 2b− 2)(b− 1)(u− b− 3)

(u− 2)(b+ 1)

× qb+4 (1− qb−2)(1 − qu−2b−2)(1 − qu−b−4)
(1 − q)2(1− q2)

× (1− q2)(1− q4)
(1− q)2

= 1

(11.4.1)

and (q → 1)

∞∑
u=9

(
1
3

)u [u−3
2

]∑
b=1

(
u− 1
b

)
× (u− 2b− 2)2(b− 1)(u− b− 3)(b − 2)(u− b− 4)

(u− 2)(b+ 1)
=

1
4
.

(11.4.2)

j = i+ 1 = m = 4: The q analogue is left for the reader. By (11.2.2) (which is
“q → 1” of that q analogue),

∞∑
u=9

(
1
4

)u [u−2
2

]∑
b=3

(
u− 1
b+ 1

)
× (u− 2b− 2)2b(b− 1)(b− 2)(u− b− 2)(u− b− 3)(u− b− 4)

(u− 2)(u− b− 1)
=

3
32

.

(11.4.3)

j = i+ 2 = 4, m = i+ 1 = 3: Here α = (α1, α2, α3). From (11.2.1) we deduce
that

∞∑
u=7

(
1− q
1− q3

)u(
u− 1

2

)
(u − 5)f(q, u) = 1 ,(11.5.1)

where

f(q, u) =
q3(1− q3)(1 − q2)(1− q4)(1− qu−3)(1− qu−6)

2(u− 1)(1− q)5

+
q5(u− 6)(1− q2)(1− q4)(1 − qu−5)(1 − qu−7)

3(u− 2)(1− q)4

and by (11.2.2) (i.e., q → 1)
∞∑
u=7

(
1
3

)u (
u− 1

2

)
(u− 5)

×
[

12(u− 3)(u− 6)
(u− 1)

+
8(u− 5)(u− 6)(u − 7)

3(u− 2)

]
= 1 .

(11.5.2)

12. Applications V: M = Mx

Applying Theorem 10.5.b, we calculate the general case (k, `) = (m+ 1,m+ 1),
m arbitrary, as well as a few other low cases.

Proposition 12.1. Let u, v ∈ C satisfy u + v = 1 and uv ∈ R+. Let m ∈ Z+.
Then
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(a)

1
m!

∞∑
µ1,... ,µm=1

|µ|!
(µ!)2

[
m∏
r=1

µr − 1
µr + 1

] ∏
1≤r<s≤m

µr − µs
µr + µs

2

× uv (
∏m
r=1(u)µr ) (

∏m
s=1(v)µs)(

uv
2

)
|µ|+1

= 2m+1 ,

(12.1.1)

(b)

1
m!

∞∑
µ1,... ,µm=1

2|µ|+1|µ|!
(µ!)2

[
m∏
r=1

µr − 1
µr + 1

] ∏
1≤r<s≤m

µr − µs
µr + µs

2

= 2m+1 .(12.1.2)

Here |µ| = µ1 + · · ·+ µm and µ! = µ1! · · ·µm!.

Proof. When x =∞ the x-factor in (10.2.1) equals 1, and part (b) will follow from

the values of 2n−`(µ
+)gµgµ

+

n! given below (n = |µ|+ 1).
To prove (a), note first that in (10.2.1) the summation

∑
n

∑
µ∈SH′(m,m,n−1) can

be replaced by
∑

µ1>···>µm≥2, µ = (µ1, . . . , µm), µ+ = (µ1, . . . , µm, 1), `(µ+) =
m+ 1 and |µ| = µ1 + · · ·+ µm = n− 1.

Denote uv = 2x and let 2x replace x in (10.2.1); then deduce that∑
µ1>···>µm≥2

2−(m+1)gµgµ
+

(|µ|+ 1)!
×
(∏m

r=1

∏µr
s=1

[
(s− 1)s+ 2x]

)
2x

(x)|µ|+1
= 1 .

By (10.1.1), for such µ = (µ1, . . . , µm)

gµgµ
+

(|µ|+ 1)!
=
|µ|!

(µ!)2

[
m∏
r=1

µr − 1
µr + 1

] ∏
1≤r<s≤m

µr − µs
µr + µs

2

.

By symmetry and because of the factors µr − 1 and µr − µs, the summation∑
µ1>···>µm≥2, in both (a) and (b), can now be replaced by

1
m!

∞∑
µ1,... ,µm=1

.

This proves (b).
Let c = s− 1. Since u+ v = 1 and uv = 2x, (c+ u)(c+ v) = (s− 1)s+ 2x. Thus

µr∏
s=1

[
(s− 1)s+ 2x

]
=

µr−1∏
c=0

[
(c+ u)(c+ v)

]
= (u)µr (v)µr .

This completes the proof of (a).

Example 12.1. Let m = 1 in the above. Then (12.1.2) yields the identity
∞∑
n=3

n− 2
n!

2n = 4 ,

which is obvious. Here (12.1.1) gives the identity
∞∑
n=3

(n− 2)
n!

uv(u)n−1(v)n−1(
uv
2

)
n

= 4 ,(12.2.1)
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u+ v = 1, uv ∈ R+, which is not that obvious.
The following argument, due to G. Olshanski, shows that (12.2.1) follows from

the Gauss summation formula for 2F1:
Let q be the left hand side of (12.2.1); then

q =
∞∑
n=3

1
(n− 1)!

(u)n−1(v)n−1uv(
uv
2

)
n

− 2
∞∑
n=3

1
n!

(u)n−1(v)n−1uv(
uv
2

)
n

=
uv(
uv
2

) ∞∑
k=0

(u)k(v)k
k!
(
uv
2 + 1

)
i

− 2uv
(u− 1)(v − 1)

∞∑
n=3

(u − 1)n(v − 1)n
n!
(
uv
2

)
n

.

Note that (u − 1)(v − 1) = uv − (u + v) + 1 = uv. The proof now follows from
the Gauss summation formula for 2F1 (compare with (9.1.1)).

Example 12.3. The box (k, `) = (2, 3). By Theorem 10.4.b or 10.5.b with x =∞,
∞∑
n=5

(n− 1)(n− 3)(n− 4)2n

n!
= 8

(easy to verify directly). Similarly to Example 12.2, deduce here the identity
∞∑
n=5

(n− 1)(n− 3)(n− 4)
n!

(u)n−2(v)n−2(
uv
2 + 2

)
n−2

= 2(12.3.1)

for u, v ∈ C satisfying u+ v = 1 and uv ∈ R+.

Similarly to Example 12.2, it is now possible to derive (12.3.1) from the Gauss
summation formula for 2F1 (expand (n−1)(n−3)(n−4)

n! = 1
(n−3)!−

5
(n−2)! + 12

(n−1)!−
12
n! ,

then proceed as in Example 12.2).

Remark. The box (1, `): Since SH ′(0, `− 1, n− 1) has ≤
(
`
2

)
elements, (10.2.1)

implies that the sum of a certain number ≤
(
`
2

)
of rational functions (in x) equals

1. Each such identity can easily be verified algebraically. For example,
The box (1, 3) yields the trivial identity 2(x+6)

3(x+4) + x
3(x+4) = 1.
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