THE HIT PROBLEM FOR THE DICKSON ALGEBRA

NGUYỄN H. V. HƯNG AND TRẦN NGỌC NAM
Dedicated to Professor Franklin P. Peterson on the occasion of his 70th birthday

Abstract

Let the $\bmod 2$ Steenrod algebra, \mathcal{A}, and the general linear group, $G L\left(k, \mathbb{F}_{2}\right)$, act on $P_{k}:=\mathbb{F}_{2}\left[x_{1}, \ldots, x_{k}\right]$ with $\left|x_{i}\right|=1$ in the usual manner. We prove the conjecture of the first-named author in Spherical classes and the algebraic transfer, (Trans. Amer. Math Soc. 349 (1997), 3893-3910) stating that every element of positive degree in the Dickson algebra $D_{k}:=$ $\left(P_{k}\right)^{G L\left(k, \mathbb{F}_{2}\right)}$ is \mathcal{A}-decomposable in P_{k} for arbitrary $k>2$. This conjecture was shown to be equivalent to a weak algebraic version of the classical conjecture on spherical classes, which states that the only spherical classes in $Q_{0} S^{0}$ are the elements of Hopf invariant one and those of Kervaire invariant one.

1. Introduction

Let $P_{k}:=\mathbb{F}_{2}\left[x_{1}, \ldots, x_{k}\right]$ be the polynomial algebra over (the field of two elements) \mathbb{F}_{2} in k variables, each of degree 1 . The general linear group $G L_{k}:=$ $G L\left(k, \mathbb{F}_{2}\right)$ acts on P_{k} in the usual manner. Dickson proves in [1] that the ring of invariants, $D_{k}:=\left(P_{k}\right)^{G L_{k}}$, is also a polynomial algebra $D_{k} \cong \mathbb{F}_{2}\left[Q_{k, k-1}, \ldots, Q_{k, 0}\right]$, where $Q_{k, s}$ denotes the Dickson invariant of degree $2^{k}-2^{s}$. It can be defined by the inductive formula

$$
Q_{k, s}=Q_{k-1, s-1}^{2}+V_{k} \cdot Q_{k-1, s}
$$

where, by convention, $Q_{k, k}=1, Q_{k, s}=0$ for $s<0$ and

$$
V_{k}=\prod_{\lambda_{j} \in \mathbb{F}_{2}}\left(\lambda_{1} x_{1}+\cdots+\lambda_{k-1} x_{k-1}+x_{k}\right)
$$

Let \mathcal{A} be the mod 2 Steenrod algebra. The usual action of \mathcal{A} on P_{k} commutes with that of $G L_{k}$. So D_{k} is an \mathcal{A}-module. One of the authors has been interested in the homomorphism

$$
j_{k}: \mathbb{F}_{2} \otimes\left(P_{k}\right)^{G L_{k}} \rightarrow\left(\mathbb{F}_{2} \otimes P_{\mathcal{A}}\right)^{G L_{k}},
$$

which is induced by the identity map on P_{k} (see [3]). Observing that j_{1} is an isomorphism and j_{2} is a monomorphism, he sets up the following
Conjecture 1.1 (Nguyễn H. V. Hu'ng [3]). $j_{k}=0$ in positive degrees for $k>2$.
Let D_{k}^{+}and \mathcal{A}^{+}denote respectively the submodules of D_{k} and \mathcal{A} consisting of all elements of positive degree. Then Conjecture 1.1 is equivalent to $D_{k}^{+} \subset \mathcal{A}^{+} \cdot P_{k}$

[^0]for $k>2$ (see [3). In other words, it predicts that every $G L_{k}$-invariant element of positive degree is hit by the Steenrod algebra acting on P_{k} for $k>2$.

Conjecture 1.1 is related to the hit problem of determination of $\mathbb{F}_{2} \otimes P_{k}$. This problem has first been studied by F. Peterson [9], R. Wood [14], W. Singer [12], and S. Priddy [10], who show its relationships to several classical problems in cobordism theory, modular representation theory, Adams spectral sequence for the stable homotopy of spheres, and stable homotopy type of classifying spaces of finite groups. The tensor product $\mathbb{F}_{2} \otimes P_{k}$ has explicitly been computed for $k \leq 3$. The cases $k=1$ and 2 are not difficult, while the case $k=3$ is complicated and was solved by M. Kameko [8]. It seems unlikely that a very explicit description of $\mathbb{F}_{2} \otimes P_{k}$ for general k will appear in the near future. There is also another approach, ${ }^{\mathcal{A}}$ the qualitative one, to the problem. By this we mean giving conditions on elements of P_{k} to show that they go to zero in $\mathbb{F}_{2} \otimes P_{k}$, i.e. belong to $\mathcal{A}^{+} \cdot P_{k}$. Peterson's conjecture, which was established by Wood [14], claims that $\mathbb{F}_{2} \otimes P_{\mathcal{A}}=0$ in degree d such that $\alpha(d+k)>k$. Here $\alpha(n)$ denotes the number of ones in the dyadic expansion of n. Recently, W. Singer, K. Monks, and J. Silverman have refined the method of R . Wood to show that many more monomials in P_{k} are in $\mathcal{A}^{+} \cdot P_{k}$. (See Silverman [11] and its references.) Conjecture 1.1 presents a large family, whose elements are predicted to be in $\mathcal{A}^{+} \cdot P_{k}$.

In [3], one of the authors proves the equivalence of Conjecture 1.1 and a weak algebraic version of the conjecture on spherical classes stating that: There are no spherical classes in $Q_{0} S^{0}$ except the elements of Hopf invariant one and those of Kervaire invariant one. He also gives two proofs of Conjecture 1.1 for the case $k=3$. In this paper, we establish this conjecture for every $k>2$. That Conjecture 1.1 is no longer valid for $k=1$ and 2 is respectively an exposition of the existence of Hopf invariant one classes and Kervaire invariant one classes. We have

Main Theorem. $D_{k}^{+} \subset \mathcal{A}^{+} \cdot P_{k}$ for $k>2$.
Recently, F. Peterson and R. Wood privately informed us that they had proved the theorem for $k=4$ and probably for $k=5$. The readers are referred to [4] and [5] for some problems, which are closely related to the main theorem. Additionally, the problem of determination of $\mathbb{F}_{2} \underset{\mathcal{A}}{\otimes} D_{k}$ and its applications have been studied by Hu'ng and Peterson 6], 7].

The paper contains five sections. Section 2 is a preparation on the action of the Steenrod squares on the Dickson algebra. We prove the main theorem in Section 3 by means of two lemmata, which are later shown in Section 4 and Section 5 respectively.

2. Preliminaries

The action of the Steenrod squares on D_{k} is explicitly described as follows.
Theorem 2.1 ([2]).

$$
S q^{i}\left(Q_{k, s}\right)= \begin{cases}Q_{k, r} & \text { for } i=2^{s}-2^{r}, r \leq s \\ Q_{k, r} Q_{k, t} & \text { for } i=2^{k}-2^{t}+2^{s}-2^{r}, r \leq s<t \\ Q_{k, s}^{2} & \text { for } i=2^{k}-2^{s} \\ 0 & \text { otherwise. }\end{cases}
$$

From now on, we denote $Q_{k, s}$ by Q_{s} for brevity. We get

$$
S q^{a}\left(Q_{s}\right)= \begin{cases}Q_{s-1} & \text { if } a=2^{s-1} \\ 0 & \text { if } 0<a<2^{s-1} \text { or } 2^{s} \leq a<2^{k-1}\end{cases}
$$

for $0 \leq s<k$. Combining this with the Cartan formula, one obtains
Corollary 2.2. (a) $S q^{a}\left(Q_{s} R\right)=Q_{s} S q^{a}(R)$ if $0<a<2^{s-1}$,
(b) $S q^{a}\left(Q_{0} R\right)=Q_{0} S q^{a}(R)$ if $0<a<2^{k-1}$
for any polynomial $R \in P_{k}$.
Let $I_{n}(n \geq 0)$ be the right ideal of \mathcal{A} generated by the operations $S q^{2^{i}}$ for $i=0, \ldots, n$.

Definition 2.3. Suppose $R_{1}, R_{2} \in P_{k}$. Then we write $R_{1} \equiv R_{2}\left(\bmod I_{n}\right)$ if $R_{1}+R_{2}$ belongs to $I_{n} \cdot P_{k}$. By convention, $R_{1} \equiv R_{2}\left(\bmod I_{n}\right)$ means $R_{1}=R_{2}$ for $n<0$.

This is an equivalence relation.
Lemma 2.4. (a) $S q^{1}\left(R_{1}\right) R_{2} \equiv R_{1} S q^{1}\left(R_{2}\right)\left(\bmod I_{0}\right)$,
(b) $S q^{2}\left(R_{1}\right) R_{2} \equiv R_{1} S q^{2}\left(R_{2}\right)\left(\bmod I_{1}\right)$
for any polynomials $R_{1}, R_{2} \in P_{k}$.
Proof. (a) From the Cartan formula $S q^{1}\left(R_{1}\right) R_{2}+R_{1} S q^{1}\left(R_{2}\right)=S q^{1}\left(R_{1} R_{2}\right)$, we get (a) by Definition 2.3
(b) We have

$$
\begin{aligned}
S q^{2}\left(R_{1} R_{2}\right)= & S q^{2}\left(R_{1}\right) R_{2}+S q^{1}\left(R_{1}\right) S q^{1}\left(R_{2}\right)+R_{1} S q^{2}\left(R_{2}\right) \\
& (\text { by the Cartan formula) } \\
\equiv & S q^{2}\left(R_{1}\right) R_{2}+R_{1} S q^{1} S q^{1}\left(R_{2}\right)+R_{1} S q^{2}\left(R_{2}\right)\left(\bmod I_{0}\right) \\
& (\text { by Part }(\mathrm{a})) \\
\equiv & S q^{2}\left(R_{1}\right) R_{2}+R_{1} S q^{2}\left(R_{2}\right)\left(\bmod I_{0}\right) \\
& \left(\text { since } S q^{1} S q^{1}=0\right)
\end{aligned}
$$

Hence, $S q^{2}\left(R_{1}\right) R_{2}+R_{1} S q^{2}\left(R_{2}\right) \in I_{1} \cdot P_{k}$ and (b) follows.
Lemma 2.5. Let $R \in P_{k}(k \geq 1)$. If $S q^{1}(R)=0$ and all the monomials of R are of positive degree, then $R \equiv 0\left(\bmod I_{0}\right)$.
Proof. The lemma is proved by induction on k. For $k=1$, it is easy to see that all the monomials of R are of even degree. Since $x_{1}^{2 n}=S q^{1}\left(x_{1}^{2 n-1}\right)$ for $n>0$, the lemma is proved. Let $k>1$ and suppose inductively that the lemma holds for polynomials in $k-1$ variables. Let us write

$$
R=\sum_{0 \leq i \leq 2 n} x_{1}^{i} R_{i}
$$

for some positive integer n and some polynomials $R_{i}(0 \leq i \leq 2 n)$ in $k-1$ variables x_{2}, \ldots, x_{k}. We get

$$
\begin{aligned}
S q^{1}(R)= & \sum_{0 \leq i \leq 2 n} x_{1}^{i} S q^{1}\left(R_{i}\right)+\sum_{\substack{0 \leq i \leq 2 n \\
i \text { odd }}} x_{1}^{i+1} R_{i} \\
= & S q^{1}\left(R_{0}\right)+\sum_{\substack{0 \leq i \leq 2 n \\
i \text { odd }}} x_{1}^{i} S q^{1}\left(R_{i}\right) \\
& +\sum_{\substack{0 \leq i \leq 2 n \\
i \text { odd }}} x_{1}^{i+1}\left[S q^{1}\left(R_{i+1}\right)+R_{i}\right] .
\end{aligned}
$$

Since $S q^{1}(R)=0$, we have $S q^{1}\left(R_{0}\right)=0$ and $S q^{1}\left(R_{i+1}\right)=R_{i}$ for $0 \leq i \leq 2 n, i$ odd. Therefore,

$$
\begin{aligned}
R & =\sum_{\substack{0 \leq i \leq 2 n \\
i}} x_{1}^{i} R_{i}+\sum_{\substack{0 \leq i \leq 2 n \\
i \\
i}} x_{1}^{i} S q^{1}\left(R_{i+1}\right) \\
& =R_{0}+\sum_{\substack{0 \leq i \leq 2 n \\
i<d d}}\left[x_{1}^{i+1} R_{i+1}+x_{1}^{i} S q^{1}\left(R_{i+1}\right)\right] \\
& =R_{0}+S q^{1}\left(\sum_{\substack{\leq i \leq 2 n \\
0 \leq i o d d}} x_{1}^{i} R_{i+1}\right) \\
& \equiv R_{0}\left(\bmod I_{0}\right) \\
& \equiv 0\left(\bmod I_{0}\right) \quad \text { (by the inductive hypothesis). }
\end{aligned}
$$

The lemma is proved.
This lemma immediately implies that if all monomials of $R \in P_{k}$ are of positive degree, then $R^{2} \equiv 0\left(\bmod I_{0}\right)$.

Corollary 2.6. Let $k>1$ and suppose S is a non-empty subset of $\{0, \ldots, k-1\}$ such that $1 \notin S$. Then

$$
Q R^{2} \equiv 0\left(\bmod I_{0}\right)
$$

where $Q=\prod_{s \in S} Q_{s}$ and R is an arbitrary polynomial in P_{k}.
Proof. As $k>1$ and $1 \notin S$, one gets $S q^{1}(Q)=0$. This implies $S q^{1}\left(Q R^{2}\right)=0$. Thus $Q R^{2} \equiv 0\left(\bmod I_{0}\right)$ by Lemma 2.5. The corollary is proved.

3. Proof of the Main Theorem

Let Q be a non-zero Dickson monomial. If $Q \neq 1$, it can be written as

$$
Q=\prod_{0 \leq i \leq n} A_{i}^{2^{i}}
$$

where n is some non-negative integer and A_{i} is some Dickson monomial dividing $\prod_{0 \leq s<k} Q_{s}$ for $i=0, \ldots, n$ with $A_{n} \neq 1$.
$0 \leq s<k$
Indeed, suppose $Q=\prod Q_{s}^{\alpha_{s}}$. Sin
Indeed, suppose $Q=\prod_{0 \leq s<k} Q_{s}^{\alpha_{s}}$. Since $Q \neq 1$, there exists at least one $\alpha_{s} \neq 0$.
Consider the 2 -adic expansions of all the non-zero α_{s}^{\prime} s:

$$
\alpha_{s}=\sum_{0 \leq i \leq n(s)} \alpha_{s i} 2^{i}
$$

where $\alpha_{s n(s)}=1$. Now denoting

$$
\begin{aligned}
n & :=\max _{\substack{\alpha_{s} \neq 0, 0 \leq \leq<k}} n(s), \\
\alpha_{s i} & :=0 \text { if } n(s)<i \leq n(0 \leq s<k), \\
A_{i} & :=\prod_{0 \leq s<k} Q_{s}^{\alpha_{s i}}(0 \leq i \leq n),
\end{aligned}
$$

one can easily check that $Q=\prod_{0 \leq i \leq n} A_{i}^{2^{i}}$ and each A_{i} divides $\prod_{0 \leq s<k} Q_{s}$. Moreover, there exists an integer r such that $0 \leq r<k, \alpha_{r} \neq 0$ and $n=n(r)$. Then $A_{n}=\prod_{0 \leq s<k} Q_{s}^{\alpha_{s n}}$ is divisible by $Q_{r}^{\alpha_{r n}}=Q_{r}^{\alpha_{r n(r)}}=Q_{r}$, so $A_{n} \neq 1$.

Definition 3.1. (i) We call n the height of Q. The monomial $A_{i}^{2^{i}}=A_{i}(Q)^{2^{i}}$ is called the i th cut of Q. It is said to be full if A_{i} is divisible by $\prod_{0<s<k} Q_{s}$. The monomial Q is called full if its cuts are all full.
(ii) A Dickson monomial is called a based cut if it is the 0th cut of some $Q \neq 0$ and $\neq 1$.
The main theorem is proved at the end of this section by means of the following two lemmata, whose proofs will be given in the last two sections.

Lemma A. Let $k>2$ and suppose R is an arbitrary polynomial in P_{k}.
(a) If $Q=\prod_{0 \leq i \leq n} A_{i}^{2^{i}} \neq 1$ and it is not full, then $Q R^{2^{n+1}} \in \mathcal{A}^{+} \cdot P_{k}$.
(b) If $Q=\prod_{0 \leq i \leq n} A_{i}^{2^{i}}$ is full, then $Q S q^{2^{m+n+1}}\left(R^{2^{n+1}}\right) \in \mathcal{A}^{+} . P_{k}$ for $0 \leq m<k-1$.

Lemma B. Suppose $k>2$. If A is a full based cut, then $A \equiv 0\left(\bmod I_{1}\right)$.
Proof of the Main Theorem. Suppose $Q=\prod_{0 \leq i \leq n} A_{i}^{2^{i}}$ is a Dickson monomial with $A_{n} \neq 1$.

If Q is not full, then applying Lemma $\mathrm{A}(\mathrm{a})$ with $R=1$, one gets $Q \in \mathcal{A}^{+} \cdot P_{k}$.
If Q is full and $n=0$, then Q is the full based cut of itself. So using Lemma B, one obtains $Q \equiv 0\left(\bmod I_{1}\right)$. In particular, $Q \in \mathcal{A}^{+} \cdot P_{k}$.

If Q is full and $n>0$, then A_{n} is the full based cut of itself. By Lemma B , one has $A_{n}=S q^{1}\left(R_{1}\right)+S q^{2}\left(R_{2}\right)$, with some $R_{1}, R_{2} \in P_{k}$. Noting that $Q^{\prime}=\prod_{0 \leq i<n} A_{i}^{2^{i}}$ is also full with the height $n-1$, one can apply Lemma $\mathrm{A}(\mathrm{b})$ to it and get

$$
\begin{aligned}
Q^{\prime} S q^{2^{n}}\left(R_{1}^{2^{n}}\right) & =\prod_{0 \leq i<n} A_{i}^{2^{i}} S q^{2^{n}}\left(R_{1}^{2^{n}}\right) \in \mathcal{A}^{+} \cdot P_{k} \\
Q^{\prime} S q^{2^{n+1}}\left(R_{2}^{2^{n}}\right) & =\prod_{0 \leq i<n} A_{i}^{2^{i}} S q^{2^{n+1}}\left(R_{2}^{2^{n}}\right) \in \mathcal{A}^{+} \cdot P_{k} .
\end{aligned}
$$

(It should be noted that $1<k-1$.) Hence

$$
Q=\prod_{0 \leq i<n} A_{i}^{2^{i}} \cdot A_{n}^{2^{n}}=\prod_{0 \leq i<n} A_{i}^{2^{i}}\left[S q^{2^{n}}\left(R_{1}^{2^{n}}\right)+S q^{2^{n+1}}\left(R_{2}^{2^{n}}\right)\right] \in \mathcal{A}^{+} \cdot P_{k}
$$

The proof is completed.

4. Proof of Lemma A

In this section, we prove Lemma A by using Lemma 4.1 and Lemma 4.2
Lemma 4.1. Suppose k, m, j are integers satisfying $k>2,0 \leq m<k-1$ and $0<j \leq 2^{m}$. Let Q be a full Dickson monomial of height n and B any Dickson monomial of $S q^{2^{n+1} j}(Q)$. Suppose $B=\prod_{0 \leq i \leq p} B_{i}^{2^{i}}$, with $B_{i}^{2^{i}}$ the ith cut of B and $B_{p} \neq 1$. We have
(a) $p \geq n$,
(b) If $B^{\prime}=\prod_{0 \leq i \leq n} B_{i}^{2^{i}} \neq 1$, then it is not full.

Proof. (a) Suppose to the contrary that $p<n$. We get

$$
\begin{aligned}
\operatorname{deg} Q+2^{n+1} j & =\operatorname{deg}\left(\prod_{0 \leq i \leq p} B_{i}^{2^{i}}\right) \\
& \leq\left(\sum_{0 \leq i \leq p} 2^{i}\right) \operatorname{deg}\left(\prod_{0 \leq s<k} Q_{s}\right) \\
& \leq\left(2^{n}-1\right) \operatorname{deg}\left(\prod_{0 \leq s<k} Q_{s}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{deg} Q+2^{n+1} j & >\operatorname{deg} Q \\
& \geq\left(\sum_{0 \leq i \leq n} 2^{i}\right) \operatorname{deg}\left(\prod_{0<s<k} Q_{s}\right) \quad(\text { since } Q \text { is full }) \\
& =\left(2^{n+1}-1\right) \operatorname{deg}\left(\prod_{0<s<k} Q_{s}\right) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\left(2^{n}-1\right) \operatorname{deg}\left(\prod_{0 \leq s<k} Q_{s}\right) & >\left(2^{n+1}-1\right) \operatorname{deg}\left(\prod_{0<s<k} Q_{s}\right), \\
\left(2^{n}-1\right) \operatorname{deg} Q_{0} & >2^{n} \operatorname{deg}\left(\prod_{0<s<k} Q_{s}\right), \\
\operatorname{deg} Q_{0} & >\operatorname{deg}\left(\prod_{0<s<k} Q_{s}\right) .
\end{aligned}
$$

The last inequality is false for every $k>2$. This contradiction shows part (a).
(b) Suppose to the contrary that $\prod_{0 \leq i \leq n} B_{i}^{2^{i}}$ is full. Then

$$
\begin{aligned}
\operatorname{deg} Q+2^{n+1} j & =\operatorname{deg}\left(\prod_{0 \leq i \leq p} B_{i}^{2^{i}}\right) \\
& \equiv \operatorname{deg}\left(\prod_{0 \leq i \leq n} B_{i}^{2^{i}}\right)\left(\bmod 2^{n+1}\right) \\
\operatorname{deg} Q-\operatorname{deg}\left(\prod_{0 \leq i \leq n} B_{i}^{2^{i}}\right) & \equiv 0\left(\bmod 2^{n+1}\right) \\
\sum_{0 \leq i \leq n} 2^{i}\left(\operatorname{deg} A_{i}-\operatorname{deg} B_{i}\right) & \equiv 0\left(\bmod 2^{n+1}\right)
\end{aligned}
$$

It is easy to see that $\operatorname{deg} A_{i}-\operatorname{deg} B_{i}=\varepsilon_{i} \operatorname{deg} Q_{0}$, with $\varepsilon_{i} \in\{0,1,-1\}$. Furthermore, if $\varepsilon_{i}=0$, then $A_{i}=B_{i}$. So $\sum_{0 \leq i \leq n} 2^{i} \varepsilon_{i} \operatorname{deg} Q_{0} \equiv 0\left(\bmod 2^{n+1}\right)$. It should be noted that $\operatorname{deg} Q_{0}=2^{k}-1$ has no common divisor with 2^{n+1}. So $\sum_{0 \leq i \leq n} 2^{i} \varepsilon_{i} \equiv 0$ $\left(\bmod 2^{n+1}\right)$. This implies $\varepsilon_{i}=0$ for $i=0, \ldots, n$. In other words, $A_{i}=B_{i}$ for

$$
\begin{aligned}
& i=0, \ldots, n \text { and } Q=\prod_{0 \leq i \leq n} B_{i}^{2^{i}} . \text { We have } \\
& \qquad \begin{aligned}
\operatorname{deg} Q+2^{n+1} j & =\operatorname{deg}\left(\prod_{0 \leq i \leq n} B_{i}^{2^{i}}\right)+\operatorname{deg}\left(\prod_{n<i \leq p} B_{i}^{2^{i}}\right) \\
& =\operatorname{deg} Q+\operatorname{deg}\left(\prod_{n<i \leq p} B_{i}^{2^{i}}\right) \\
2^{n+1} j & =\operatorname{deg}\left(\prod_{n<i \leq p} B_{i}^{2^{i}}\right) \geq \operatorname{deg} B_{p}^{2^{p}}
\end{aligned}
\end{aligned}
$$

Since $j>0$, we get $\operatorname{deg} B=\operatorname{deg} Q+2^{n+1} j>\operatorname{deg} Q$, so $p>n$. Hence

$$
\operatorname{deg} B_{p}^{2^{p}} \geq \operatorname{deg} B_{p}^{2^{n+1}} \geq \operatorname{deg} Q_{k-1}^{2^{n+1}}=2^{n+1} \cdot 2^{k-1}
$$

It implies $j \geq 2^{k-1}$. Combining this and the fact $2^{k-1}>2^{m} \geq j$, we obtain $j>j$. This contradiction comes from the hypothesis that B^{\prime} is full. Therefore, the lemma is proved.

Lemma 4.2. Let $A \neq 1$ be an unfull based cut. Denote by s the smallest integer $s \geq 1$ such that $Q_{s} \nmid A$. If $s>1$, then there exists for every $R \in P_{k}$ an expansion

$$
A R^{2}=S q^{2^{s-1}}\left(R_{1}\right)+\sum B R_{2}^{2}
$$

where $R_{1} \in P_{k}$, every $R_{2} \in P_{k}$ and every B is a Dickson monomial with $B \mid$ $\prod_{0 \leq r<k} Q_{r}, B \neq 1, Q_{s-1} \not \backslash B$.
Proof. From the hypothesis we can write $A=\bar{A} \prod_{0<r<s} Q_{r}$ with a certain Dickson monomial $\bar{A} \mid \prod_{s<r<k} Q_{r} Q_{0}$. By the Cartan formula

$$
\begin{aligned}
S q^{2^{s-1}}\left(\bar{A} Q_{s} \prod_{0<r<s-1} Q_{r} R^{2}\right) & =S q^{2^{s-1}}\left(\bar{A} Q_{s} \prod_{0<r<s-1} Q_{r}\right) R^{2} \\
& +\sum_{0 \leq j<2^{s-2}} S q^{2 j}\left(\bar{A} Q_{s} \prod_{0<r<s-1} Q_{r}\right) S q^{2^{s-1}-2 j}\left(R^{2}\right)
\end{aligned}
$$

Denoting $R_{1}:=\bar{A} Q_{s} \prod_{0<r<s-1} Q_{r} R^{2}$, we get

$$
\begin{aligned}
S q^{2^{s-1}}\left(\bar{A} Q_{s} \prod_{0<r<s-1} Q_{r}\right) R^{2} & =S q^{2^{s-1}}\left(R_{1}\right) \\
& +\sum_{0 \leq j<2^{s-2}} S q^{2 j}\left(\bar{A} Q_{s} \prod_{0<r<s-1} Q_{r}\right) S q^{2^{s-1}-2 j}\left(R^{2}\right)
\end{aligned}
$$

We will prove that (a) $A=S q^{2^{s-1}}\left(\bar{A} Q_{s} \prod \quad Q_{r}\right)$ and that (b) every polynomial $S q^{2 j}\left(\bar{A} Q_{s} \prod_{0<r<s-1} Q_{r}\right) S q^{2^{s-1}-2 j}\left(R^{2}\right)$ for $0 \leq j<2^{s-2}$ can be written in the form $\sum B R_{2}^{2}$, where B, R_{2} satisfy the conclusions of Lemma 4.2. Thus, the required expansion will be obtained.

First we prove (a). By Corollary 2.2 we have

$$
S q^{2^{s-1}}\left(\bar{A} Q_{s} \prod_{0<r<s-1} Q_{r}\right)=\bar{A} S q^{2^{s-1}}\left(Q_{s} \prod_{0<r<s-1} Q_{r}\right)
$$

So it suffices to show that $S q^{2^{s-1}}\left(Q_{s} \prod_{0<r<s-1} Q_{r}\right)=\prod_{0<r<s} Q_{r}$. By the Cartan formula

$$
\begin{aligned}
S q^{2^{s-1}}\left(Q_{s} \prod_{0<r<s-1} Q_{r}\right)= & Q_{s} S q^{2^{s-1}}\left(\prod_{0<r<s-1} Q_{r}\right) \\
& +\sum_{0<a \leq 2^{s-1}} S q^{a}\left(Q_{s}\right) S q^{2^{s-1}-a}\left(\prod_{0<r<s-1} Q_{r}\right) \\
= & Q_{s} S q^{2^{s-1}}\left(\prod_{0<r<s-1} Q_{r}\right)+Q_{s-1} \prod_{0<r<s-1} Q_{r}
\end{aligned}
$$

$$
\left(\text { since } S q^{a}\left(Q_{s}\right)=0 \text { for } 0<a<2^{s-1}\right.
$$

$$
\text { and } \left.S q^{2^{s-1}}\left(Q_{s}\right)=Q_{s-1}\right)
$$

$$
=Q_{s} S q^{2^{s-1}}\left(\prod_{0<r<s-1} Q_{r}\right)+\prod_{0<r<s} Q_{r}
$$

It is sufficient to prove $S q^{2^{s-1}}\left(\prod_{0<r<s-1} Q_{r}\right)=0$. Note that, by the Cartan formula,

$$
S q^{2^{s-1}}\left(\prod_{0<r<s-1} Q_{r}\right)=\sum \prod_{0<r<s-1} S q^{a_{r}}\left(Q_{r}\right)
$$

where the sum is taken over all $\left(a_{r}\right)_{0<r<s-1}$ satisfying $\sum_{0<r<s-1} a_{r}=2^{s-1}$ and $a_{r} \geq 0$. It is easy to show that there exists an r such that $0<r<s-1$ and $a_{r}>$ 2^{r}. Since $a_{r} \leq 2^{s-1}<2^{k-1}$, we have $2^{r}<a_{r}<2^{k-1}$. So, by Theorem 2.1 $S q^{a_{r}}\left(Q_{r}\right)=0$. Hence $\prod_{0<r<s-1} S q^{a_{r}}\left(Q_{r}\right)=0$. This is true for every $\left(a_{r}\right)_{0<r<s-1}$, so $S q^{2^{s-1}}\left(\prod_{0<r<s-1} Q_{r}\right)=0$. Part (a) is shown.

Next we prove (b). From Corollary 2.2 and since $2 j<2^{s-1}<2^{k-1}$ we have

$$
S q^{2 j}\left(\bar{A} Q_{s} \prod_{0<r<s-1} Q_{r}\right)=\bar{A} Q_{s} S q^{2 j}\left(\prod_{0<r<s-1} Q_{r}\right)
$$

By the Cartan formula we get

$$
S q^{2 j}\left(\prod_{0<r<s-1} Q_{r}\right)=\sum \prod_{0<r<s-1} S q^{j_{r}}\left(Q_{r}\right)
$$

where the sum is taken over all sequences $\left(j_{r}\right)_{0<r<s-1}$ satisfying $\sum_{0<r<s-1} j_{r}=2 j$ and $j_{r} \geq 0$. From Theorem 2.1 and since $j_{r} \leq 2 j<2^{k-1}$ we have $S q^{j_{r}}\left(Q_{r}\right)=$ either 0 or Q_{t} with $0 \leq t \leq r$. So $\prod_{0<r<s-1} S q^{j_{r}}\left(Q_{r}\right)$ is not divisible by $Q_{s-1}, Q_{s}, \ldots, Q_{k-1}$. Therefore, the 0th cut of every Dickson monomial in $S q^{2 j}\left(\prod_{0<r<s-1} Q_{r}\right)$ is not divisible by $Q_{s-1}, Q_{s}, \ldots, Q_{k-1}$. Let us write $S q^{2 j}\left(\prod_{0<r<s-1} Q_{r}\right)$ as the sum of its Dickson monomials $S q^{2 j}\left(\prod_{0<r<s-1} Q_{r}\right)=\Sigma \prod_{0 \leq i \leq p} C_{i}^{2^{i}}$, where $C_{i}^{2^{i}}$ is an i th cut. Then

$$
\begin{aligned}
S q^{2 j}\left(\bar{A} Q_{s} \prod_{0<r<s-1} Q_{r}\right) & =\bar{A} Q_{s} S q^{2 j}\left(\prod_{0<r<s-1} Q_{r}\right) \\
& =\sum \bar{A} Q_{s} C_{0} \prod_{0<i \leq p} C_{i}^{2^{i}}
\end{aligned}
$$

We have shown that C_{0} is not divisible by $Q_{s-1}, Q_{s}, \ldots, Q_{k-1}$. Note that $\operatorname{deg} Q_{0}$ is odd, while $\operatorname{deg} Q_{r}$ is even for every $r>0$. Thus, the 0 th cut C_{0} of every term in $S q^{2 j}\left(\prod_{0<r<s-1} Q_{r}\right)$ is not divisible by Q_{0}. Recall that \bar{A} is a divisor of $\prod_{s<r<k} Q_{r} Q_{0}$. So $\bar{A} Q_{s} C_{0}$ is not divisible by Q_{s-1}. Moreover, it is a Dickson monomial, which is different from 1 and divides $\prod_{0 \leq r<k} Q_{r}$.

$$
\begin{aligned}
& \text { Putting } B:=\bar{A} Q_{s} C_{0} \text { and } R_{2}:=\prod_{0<i \leq p} C_{i}^{2^{i-1}} S q^{2^{s-2}-j}(R) \text { for each } C_{0}, \text { we get } \\
& \begin{aligned}
S q^{2 j}\left(\bar{A} Q_{s} \prod_{0<r<s-1} Q_{r}\right) S q^{2^{s-1}-2 j}\left(R^{2}\right) & =\sum \bar{A} Q_{s} C_{0} \prod_{0<i \leq p} C_{i}^{2^{i}} S q^{2^{s-1}-2 j}\left(R^{2}\right) \\
& =\sum B R_{2}^{2}
\end{aligned}
\end{aligned}
$$

It has been shown that $B=\bar{A} Q_{s} C_{0}$ satisfies the conclusions of Lemma 4.2. Hence, part (b) and therefore Lemma 4.2 is proved.

Proof of Lemma A. The proof is divided into 2 steps.
Step 1. If Lemma $\mathrm{A}(\mathrm{a})$ is true for every $n \leq N$, then so is Lemma $\mathrm{A}(\mathrm{b})$ for every $n \leq N$.

Indeed, suppose $Q=\prod_{0 \leq i \leq n} A_{i}^{2^{i}}($ with $n \leq N)$ is full and m satisfies $0 \leq m<k-1$. One needs to prove $Q S q^{2^{m+n+1}}\left(R^{2^{n+1}}\right) \in \mathcal{A}^{+} . P_{k}$, where $R \in P_{k}$. Recall that

$$
S q^{a}\left(R^{2^{n}}\right)= \begin{cases}{\left[S q^{a / 2^{n}}(R)\right]^{2^{n}}} & \text { if } 2^{n} \mid a \\ 0 & \text { otherwise }\end{cases}
$$

Then, by the Cartan formula, one gets

$$
\begin{aligned}
S q^{2^{m+n+1}}\left(Q R^{2^{n+1}}\right) & =\sum_{0 \leq j \leq 2^{m}} S q^{2^{n+1} j}(Q) S q^{2^{n+1}\left(2^{m}-j\right)}\left(R^{2^{n+1}}\right) \\
& =Q S q^{2^{m+n+1}}\left(R^{2^{n+1}}\right)+\sum_{0<j \leq 2^{m}} S q^{2^{n+1} j}(Q) R_{j}^{2^{n+1}}
\end{aligned}
$$

where $R_{j}:=S q^{2^{m}-j}(R)$ for $j=1, \ldots, 2^{m}$.
In order to prove that $Q S q^{2^{m+n+1}}\left(R^{2^{n+1}}\right)$ is \mathcal{A}-decomposable, it suffices to show that each $S q^{2^{n+1} j}(Q) R_{j}^{2^{n+1}}$ is \mathcal{A}-decomposable. We do this by showing $B R_{j}^{2^{n+1}} \in$ $\mathcal{A}^{+} \cdot P_{k}$ for every Dickson monomial B of $S q^{2^{n+1} j}(Q)$. Let $B=\prod_{0 \leq i \leq p} B_{i}^{2^{i}}$, with $B_{i}^{2^{i}}$ the i th cut of B. By Lemma4.1(a), we have $p \geq n$. If $\prod_{0 \leq i \leq n} B_{i}^{2^{i}}=1$, then $p>n$, so $B R_{j}^{2^{n+1}}=\left(\prod_{n<i \leq p} B_{i}^{2^{i-1}} R_{j}^{2^{n}}\right)^{2} \equiv 0\left(\bmod I_{0}\right)$. If $\prod_{0 \leq i \leq n} B_{i}^{2^{i}} \neq 1$, then it is not full by Lemma 4.1(b). So we can choose an integer q such that $B_{q} \neq 1(0 \leq q \leq n \leq N)$ and $\prod_{0 \leq i \leq q} B_{i}^{2^{i}}$ is not full. Applying Lemma $\mathrm{A}\left(\right.$ a) to $\prod_{0 \leq i \leq q} B_{i}^{2^{i}}$, we obtain

$$
B R_{j}^{2^{n+1}}=\prod_{0 \leq i \leq q} B_{i}^{2^{i}}\left(\prod_{q<i \leq p} B_{i}^{2^{i-q-1}} R_{j}^{2^{n-q}}\right)^{2^{q+1}} \in \mathcal{A}^{+} \cdot P_{k}
$$

Therefore, Step 1 is shown.
Step 2. Lemma A(a) holds for every non-negative integer n.

Let $q=q(Q)$ be the smallest integer so that A_{q} is not full $(0 \leq q \leq n)$. Setting $\bar{R}:=\prod_{q<i \leq n} A_{i}^{2^{i-q-1}} R^{2^{n-q}}$, we have $Q R^{2^{n+1}}=\prod_{0 \leq i \leq q} A_{i}^{2^{i}} \bar{R}^{2^{q+1}}$.

Let s be the smallest integer with $0<s<k$ such that $Q_{s} \nmid A_{q}$.
We first notice that Lemma $\mathrm{A}(\mathrm{a})$ is true if $q(Q)=0$. This is proved by induction on s. For $s=1$, we have $A_{q} \bar{R}^{2} \equiv 0\left(\bmod I_{0}\right)$. Indeed, if $A_{q}=1$, then every monomial of \bar{R} is of positive degree, so $A_{q} \bar{R}^{2}=\bar{R}^{2} \equiv 0\left(\bmod I_{0}\right)$; if $A_{q} \neq 1$, then $A_{q} \bar{R}^{2} \equiv 0\left(\bmod I_{0}\right)$ by Corollary 2.6. Therefore, $Q R^{2^{n+1}}=A_{q} \bar{R}^{2} \in \mathcal{A}^{+} \cdot P_{k}$. The case $s=1$ is proved. Suppose $s>1$ and the assertion holds for $s-1$. Then $A_{q} \neq 1$. By Lemma 4.2 we get

$$
Q R^{2^{n+1}}=A_{q} \bar{R}^{2}=S q^{2^{s-1}}\left(R_{1}\right)+\sum B R_{2}^{2}
$$

Since $Q_{s-1} \not \backslash B$, by the inductive hypothesis on s, we have $B R_{2}^{2} \in \mathcal{A}^{+} \cdot P_{k}$. This is true for every term $B R_{2}^{2}$, so $Q R^{2^{n+1}} \in \mathcal{A}^{+} . P_{k}$.

We now prove Step 2 by induction on n. For $n=0$, we have $q(Q)=0$, so Lemma $\mathrm{A}(\mathrm{a})$ is true by the above remark. Suppose $n>1$ and Lemma A(a) holds for every smaller value of n. Using the above remark, it suffices to consider the case $q=q(Q)>0$. Again, the proof proceeds by induction on s.

For $s=1$, we have seen that $A_{q} \bar{R}^{2} \equiv 0\left(\bmod I_{0}\right)$. In other words, $A_{q} \bar{R}^{2}=$ $S q^{1}\left(R_{1}\right)$ for some $R_{1} \in P_{k}$. Then

$$
Q R^{2^{n+1}}=\prod_{0 \leq i<q} A_{i}^{2^{i}}\left(A_{q} \bar{R}^{2}\right)^{2^{q}}=\prod_{0 \leq i<q} A_{i}^{2^{i}} S q^{2^{q}}\left(R_{1}^{2^{q}}\right)
$$

Note that $\prod_{0 \leq i<q} A_{i}^{2^{i}}$ is full. By Step 1 and the inductive hypothesis on n, we can apply Lemma $\mathrm{A}(\mathrm{b})$ to the element $\prod_{0 \leq i<q} A_{i}^{2^{i}}$ of height $q-1<n$. This gives

$$
\prod_{0 \leq i<q} A_{i}^{2^{i}} S q^{2^{q}}\left(R_{1}^{2^{q}}\right) \in \mathcal{A}^{+} \cdot P_{k}
$$

Thus, the case $s=1$ is proved.
Suppose $s>1$ and the assertion holds for every smaller value of s. Since $A_{q} \neq 1$, by Lemma 4.2, we get $A_{q} \bar{R}^{2}=S q^{2^{s-1}}\left(R_{1}\right)+\sum B R_{2}^{2}$. So

$$
\begin{aligned}
Q R^{2^{n+1}} & =\prod_{0 \leq i<q} A_{i}^{2^{i}}\left(A_{q} \bar{R}^{2}\right)^{2^{q}} \\
& =\prod_{0 \leq i<q} A_{i}^{2^{i}} S q^{2^{q+s-1}}\left(R_{1}^{2^{q}}\right)+\sum \prod_{0 \leq i<q} A_{i}^{2^{i}} B^{2^{q}} R_{2}^{2^{q+1}}
\end{aligned}
$$

By Step 1 and the inductive hypothesis on n, we have

$$
\prod_{0 \leq i<q} A_{i}^{2^{i}} S q^{2^{q+s-1}}\left(R_{1}^{2^{q}}\right) \in \mathcal{A}^{+} \cdot P_{k}
$$

On the other hand, as B is a cut that is not divisible by Q_{s-1}, by using the inductive hypothesis on s we get

$$
\prod_{0 \leq i<q} A_{i}^{2^{i}} B^{2^{q}} R_{2}^{2^{q+1}} \in \mathcal{A}^{+} \cdot P_{k}
$$

Step 2 is proved. Then, Lemma A follows.

5. Proof of Lemma B

By the hypothesis, $A=\prod_{0<s<k} Q_{s} Q_{0}^{\alpha}$, with $\alpha \in\{0,1\}$. We need to prove $A \equiv 0$ $\left(\bmod I_{1}\right)$. To this end, by means of Corollary 2.2 and the hypothesis $k>2$, it suffices to show $Q_{2} Q_{1} \equiv 0\left(\bmod I_{1}\right)$. From [7, Theorem 2.2], we get

$$
\begin{aligned}
Q_{1} & =\sum_{\substack{\alpha_{1}+\ldots+\alpha_{k}=2^{k}-2, \alpha_{i}=0 \text { or power of }}} x_{1}^{\alpha_{1}} \ldots x_{k}^{\alpha_{k}} \\
& =\sum_{\text {sym }} x_{1} x_{2} x_{3}^{4} \ldots x_{k}^{2^{k-1}}+\sum_{\text {sym }} x_{1}^{2} x_{2}^{2} x_{3}^{2} x_{4}^{8} \ldots x_{k}^{2^{k-1}}+R^{2},
\end{aligned}
$$

where $\sum_{\text {sym }}$ denotes the sum of all symmetrized terms in x_{1}, \ldots, x_{k}, and R is some polynomial, whose monomials are all of positive degree. By Lemma 2.5 $R^{2} \equiv 0$ $\left(\bmod I_{0}\right)$. We obtain

$$
\begin{aligned}
Q_{1} & \equiv \sum_{\mathrm{sym}}\left(x_{1} x_{2} x_{3}^{4} \ldots x_{k}^{2^{k-1}}+x_{1}^{2} x_{2}^{2} x_{3}^{2} x_{4}^{8} \ldots x_{k}^{2^{k-1}}\right)\left(\bmod I_{0}\right) \\
& \equiv S q^{2}\left(\sum_{\text {sym }} x_{1} x_{2} x_{3}^{2} x_{4}^{8} \ldots x_{k}^{2^{k-1}}\right)\left(\bmod I_{0}\right) \\
& \equiv S q^{2} S q^{1}\left(\sum_{\text {sym }} x_{1} x_{2} x_{3} x_{4}^{8} \ldots x_{k}^{2^{k-1}}\right)\left(\bmod I_{0}\right) \\
& \equiv S q^{2} S q^{1}\left(R_{1}\right)\left(\bmod I_{0}\right)
\end{aligned}
$$

where $R_{1}:=\sum_{\text {sym }} x_{1} x_{2} x_{3} x_{4}^{8} \ldots x_{k}^{2^{k-1}}$. Writing $Q_{1}=S q^{2} S q^{1}\left(R_{1}\right)+S q^{1}\left(R_{2}\right)$ for some $R_{2} \in P_{k}$, we get

$$
\begin{aligned}
Q_{2} Q_{1} & =Q_{2} S q^{2} S q^{1}\left(R_{1}\right)+Q_{2} S q^{1}\left(R_{2}\right) \\
& \equiv R_{1} S q^{1} S q^{2}\left(Q_{2}\right)+R_{2} S q^{1}\left(Q_{2}\right)\left(\bmod I_{1}\right) \quad \text { (by Lemma 2.4) } \\
& \equiv R_{1} Q_{0}\left(\bmod I_{1}\right) \quad(\text { by Corollary 2.2). }
\end{aligned}
$$

On the other hand, by [7] Theorem 2.2], we have

$$
\begin{aligned}
Q_{0} & =\sum_{\mathrm{sym}} x_{1} x_{2}^{2} x_{3}^{4} \ldots x_{k}^{2^{k-1}}=S q^{2}\left(\sum_{\mathrm{sym}} x_{1} x_{2}^{2} x_{3}^{2} x_{4}^{8} \ldots x_{k}^{2^{k-1}}\right) \\
& =S q^{2} S q^{2}\left(\sum_{\mathrm{sym}} x_{1} x_{2} x_{3} x_{4}^{8} \ldots x_{k}^{2^{k-1}}\right)=S q^{2} S q^{2}\left(R_{1}\right)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
Q_{2} Q_{1} & \equiv R_{1} Q_{0}\left(\bmod I_{1}\right) \equiv R_{1} S q^{2} S q^{2}\left(R_{1}\right)\left(\bmod I_{1}\right) \\
& \equiv S q^{2}\left(R_{1}\right) S q^{2}\left(R_{1}\right)\left(\bmod I_{1}\right) \quad(\text { by Lemma 2.4 }(\mathrm{b})) \\
& \equiv\left[S q^{2}\left(R_{1}\right)\right]^{2}\left(\bmod I_{1}\right) \equiv 0\left(\bmod I_{1}\right)
\end{aligned}
$$

Lemma B is proved.

References

[1] L. E. Dickson, A fundamental system of invariants of the general modular linear group with a solution of the form problem, Trans. Amer. Math. Soc. 12 (1911), 75-98. CMP 95:18
[2] Nguyễn H. V. Hu'ng, The action of the Steenrod squares on the modular invariants of linear groups, Proc. Amer. Math. Soc. 113 (1991), 1097-1104. MR 92c:55018
[3] Nguyễn H. V. Hu'ng, Spherical classes and the algebraic transfer, Trans. Amer. Math. Soc. 349 (1997), 3893-3910. MR 98e:55020
[4] Nguyễn H. V. Hu'ng, The weak conjecture on spherical classes, Math. Zeit. 231 (1999), 727-743. MR 2000g:55019
[5] Nguyễn H. V. Hu'ng, Spherical classes and the lambda algebra, Trans. Amer. Math. Soc. 353 (2001), 4447-4460.
[6] Nguyễn H. V. Hu'ng and F. P. Peterson, \mathcal{A}-generators for the Dickson algebra, Trans. Amer. Math. Soc. 347 (1995), 4687-4728. MR 96c:55022
[7] Nguyễn H. V. Hu'ng and F. P. Peterson, Spherical classes and the Dickson algebra, Math. Proc. Camb. Phil. Soc. 124 (1998), 253-264. MR 99i:55021
[8] M. Kameko, Products of projective spaces as Steenrod modules, Thesis, Johns Hopkins University 1990.
[9] F. P. Peterson, Generators of $H^{*}\left(\mathbf{R P}^{\infty} \wedge \mathbf{R P}^{\infty}\right)$ as a module over the Steenrod algebra, Abstracts Amer. Math. Soc., No 833, April 1987.
[10] S. Priddy, On characterizing summands in the classifying space of a group, I, Amer. Jour. Math. 112 (1990), 737-748. MR 91i:55020
[11] J. H. Silverman, Hit polynomials and the canonical antiautomorphism of the Steenrod algabra, Proc. Amer. Math. Soc. 123 (1995), 627-637. MR 95c:55023
[12] W. M. Singer, The transfer in homological algebra, Math. Zeit. 202 (1989), 493-523. MR 90i:55035
[13] N. E. Steenrod and D. B. A. Epstein, Cohomology operations, Ann. of Math. Studies, No. 50, Princeton Univ. Press, 1962. MR 26:3056
[14] R. M. W. Wood, Modular representations of $G L\left(n, \mathbb{F}_{p}\right)$ and homotopy theory, Lecture Notes in Math. 1172, Springer Verlag (1985), 188-203. MR 88a:55007

Department of Mathematics, Vietnam National University, Hanoi, 334 Nguyên Trãi Street, Hanoi, Vietnam

E-mail address: nhvhung@hotmail.com
Department of Mathematics, Vietnam National University, Hanoi, 334 Nguyên Trãi Street, Hanoi, Vietnam

E-mail address: trngnam@hotmail.com

[^0]: Received by the editors September 29, 1999 and, in revised form, February 22, 2000.
 2000 Mathematics Subject Classification. Primary 55S10; Secondary 55P47, 55Q45, 55T15.
 Key words and phrases. Steenrod algebra, invariant theory, Dickson algebra.
 This work was supported in part by the National Research Project, No. 1.4.2.

