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THE CURVE OF “PRYM CANONICAL” GAUSS DIVISORS
ON A PRYM THETA DIVISOR

ROY SMITH AND ROBERT VARLEY

Abstract. The Gauss linear system on the theta divisor of the Jacobian of a
nonhyperelliptic curve has two striking properties:

1) the branch divisor of the Gauss map on the theta divisor is dual to the
canonical model of the curve;

2) those divisors in the Gauss system parametrized by the canonical curve
are reducible.

In contrast, Beauville and Debarre prove on a general Prym theta divisor of
dimension ≥ 3 all Gauss divisors are irreducible and normal. One is led to ask
whether properties 1) and 2) may characterize the Gauss system of the theta
divisor of a Jacobian. Since for a Prym theta divisor, the most distinguished
curve in the Gauss system is the Prym canonical curve, the natural analog of
the canonical curve for a Jacobian, in the present paper we analyze whether the
analogs of properties 1) or 2) can ever hold for the Prym canonical curve. We
note that both those properties would imply that the general Prym canonical
Gauss divisor would be nonnormal. Then we find an explicit geometric model
for the Prym canonical Gauss divisors and prove the following results using
Beauville’s singularities criterion for special subvarieties of Prym varieties:

Theorem. For all smooth doubly covered nonhyperelliptic curves of genus
g ≥ 5, the general Prym canonical Gauss divisor is normal and irreducible.

Corollary. For all smooth doubly covered nonhyperelliptic curves of genus
g ≥ 4, the Prym canonical curve is not dual to the branch divisor of the
Gauss map.

Introduction

A good understanding of the geometry of a theta divisor Θ of a principally
polarized abelian variety (A,Θ) requires a knowledge of properties of its canonical
linear system, the Gauss linear system |OΘ(Θ)|. A striking feature of the theta
divisor Θ(C) of the Jacobian of a curve C is that the dual of the branch divisor
of the associated Gauss map γΘ on Θ, is not a hypersurface as expected but a
nondegenerate curve [A], namely the canonical model Cω ⊂ |ωC |∗ ∼= |OΘ(Θ)| of
C. This feature is so striking that one is led to ask whether it is shared by other
principally polarized abelian varieties, for example by those p.p.a.v.’s most similar
to Jacobians, the Prym varieties. For the Prym variety (P,Ξ) of a connected
étale double cover of curves π : C̃ → C the most natural first question of this
type is whether the branch divisor of γΞ is dual to the Prym canonical model
ϕη(C) = Cη ⊂ |ωC ⊗ η|∗ of the curve C. Specialization to a Jacobian (an approach
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proposed in private communication by Donagi), e.g. by letting C become trigonal,
seems to imply that the set of Prym varieties whose Gauss map γΞ has branch
divisor dual to Cη is a union of proper subvarieties of all Pryms, but gives no
information on the possible number of such subvarieties. One obstacle to proving
a more precise result has been a lack of computable models for the divisors in the
Gauss linear system on a Prym theta divisor.

In the present paper we construct explicit models for the Gauss divisors Γp
parametrized by points ϕη(p) of the Prym canonical curve Cη and deduce from
their geometry that in fact Cη is never dual to a component of the branch divisor
of γΞ, for any connected étale double cover C̃ → C of any nonhyperelliptic curve
C of genus g ≥ 4. (These may be considered as limiting cases of the models Spq
given in [BD2, proof of Prop. 1, p.615] for proper intersections of translates of
theta divisors on Prym varieties.) Although this means one cannot repeat for any
Prym varieties Andreotti’s proof [A] of the Torelli theorem, it raises the question
of whether the property that the dual of the branch divisor of the Gauss map is
a nondegenerate curve may be characteristic of Jacobians. This question remains
open even among Prym varieties. A result of Beauville and Debarre stated in
[BD2, Remarque 1, p. 619], along with a result in the present paper, seems to
imply that the set of Prym varieties of dimension ≥ 4 whose Gauss map γΞ has
branch divisor dual to any curve is a union of proper subvarieties of all Pryms, and
that Jacobians are an irreducible component of this union, but again leaves open
the possible number of such subvarieties. An alternate model for the Gauss map on
a Prym theta divisor given by Verra in [Ve], although complicated, has enabled him
to compute the degree of γΞ for a generic Prym, and could eventually be useful in
determining the branch divisor. For generic four-dimensional Pryms, i.e. all generic
p.p.a.v.’s of dimension four, Adams, McCrory, Shifrin, and Varley have computed
in unpublished work [AMSV1], [AMSV2], that both the branch divisor of γΞ and
its dual variety, are irreducible surfaces of degree 60 in P3. Since for a general
Prym (P,Ξ) (of dimension ≥ 8), Cη does equal the base locus of the tangent cones
at double points of Ξ, the present result exhibits another contrast between theta
divisors of Pryms and theta divisors of Jacobians of curves (of genus ≥ 5) and of
intermediate Jacobians of cubic threefolds, where the dual of the branch divisor of
γΘ is equal, in general, to the base locus of the tangent cones at singular points.

The method of constructing the divisors Γp in this paper is the following: the
Prym theta divisor Ξ associated to a double cover C̃ → C with genus(C) = g,
admits a surjective map ϕ : X → Ξ with generic fiber P1, where X ⊂ C̃(2g−2)

parametrizes certain divisors on C̃ of degree 2g − 2 (see “The setup” below for
precise definitions). Each point p in C̃ determines a generic section Dp ⊂ X of
this map in the sense that if Dp = {those divisors D in X such that p belongs to
D}, then the restriction ϕ : Dp → Ξ has degree one. Since each Dp thus maps
birationally to Ξ, for any p 6= q on C̃ the image ϕ(Dp ∩ Dq) ⊂ Ξ should represent
a “self-intersection” of Ξ and hence is a candidate for an element of the Gauss
linear system |OΞ(Ξ)|. The cases q 6= p, p′ are computed in [BD2, p.615], and are
not Gauss divisors, but proper intersections of translates of Ξ. The limiting case
q = p′, is a Gauss divisor, which we compute as follows.

Theorem. If p and p′ are the preimages of a point p of C via the étale connected
double cover C̃ → C, where C is smooth and nonhyperelliptic of genus g ≥ 4, then
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1) ϕ(Dp ∩ Dp′) = Γp ⊂ Ξ is the Gauss divisor corresponding to the point ϕη(p)
on Cη ⊂ |ωC ⊗ η|∗ ∼= |OΞ(Ξ)|.

2) If furthermore g ≥ 5 and p is a general point of C, then p is a ramifica-
tion point of only finitely many g1

4’s, and for any such p, Γp is normal and
irreducible.

3) If the curve Cη were dual to a component of the branch divisor of γΞ on Ξsm,
then each Γp would be singular in codimension one.

It follows (with a special argument for genus 4) that Cη is never dual to a
component of the branch divisor of γΞ on Ξsm, for any étale connected double
cover C̃ → C of any smooth nonhyperelliptic curve C of genus g ≥ 4. We sketch
the proof of the main result: the theta divisor Ξ of the Prym variety of an étale
double cover π : C̃ → C of a curve C of genus g, can be modeled by “precanonical
effective even line bundles on C̃”, i.e. Ξ = {ξ ∈ Pic2g−2(C̃) : h0(ξ) ≥ 2 and even,
and N(ξ) = ωC} where N is the norm map N : Pic(C̃)→ Pic(C). Consequently, the
Abel map α̃ : C̃(2g−2) → Θ̃ restricts to a surjective map ϕ : X → Ξ with generic
fiber P1, where X = α̃−1(Ξ). One can then relate the structure of X and ϕ to the
Gauss linear system on Ξ as follows: for a double cover π : C̃ → C if p ∈ C̃, and
X ⊃ Dp = {precanonical effective even divisors containing p}, then for every p 6= q

in C̃, Beauville’s homological calculations in [B] imply that Ξ ⊃ ϕ(Dp∩Dq) has the
homology class [Ξ]2 of a Gauss divisor on Ξ. We then complete the proof of part
1) of the theorem by proving a set theoretic inclusion ϕ(Dp ∩Dp′) ⊂ Γp, where p is
any point of C and {p, p′} = π−1(p).

The organization of the paper is as follows: after setting up the definitions, con-
ventions, and notations, we restate the main theorem and its corollary. We prove
the corollary first, assuming the theorem, followed by a proof of each of the three
parts of the theorem in order. At the end of the paper we make some remarks on
the case when the base curve C of the double cover is hyperelliptic, the relation
with Andreotti’s result, and more detailed remarks on related results of other work-
ers including those above. Finally, we pose some open questions, for example: if a
component of the branch divisor of the Gauss map on an indecomposable princi-
pally polarized abelian variety (A,Θ) is dual to a nondegenerate curve, is (A,Θ) a
Jacobian?

The setup. We work over the complex numbers. If C is a smooth connected
projective curve of genus g ≥ 2, Pic(C) its Picard variety, and Pic2g−2(C) ⊃
Θ = {L : h0(L) 6= 0} the natural theta divisor, the pair (Pic0(C), [Θ]), where
[Θ] is the homology class of any translate of Θ in Pic0(C), is the Jacobian of C,
a principally polarized abelian variety denoted J(C). If π : C̃ → C is a con-
nected étale double cover, and N : Pic(C̃) → Pic(C) the associated norm map
on line bundles, then N−1(0) = {L ∈ Pic0(C̃) : N(L) = OC} has two connected
components, and the Prym variety of π is by definition [Mu1, p.331] P 0 = the
(g− 1) dimensional connected component of N−1(0) which contains 0, with princi-
pal polarization (equal to half that) induced from Pic0(C̃). We consider also [Mu1,
p.342] the associated “precanonical” cosets of the Prym variety, both the “odd” one
P− = N−1(ωC)odd = {L : N(L) = ωC , h

0(L) odd} ⊂ Pic2g−2(C̃), and the “even”
one P+ = P = N−1(ωC)ev = {L : N(L) = ωC , h

0(L) even} ⊂ Pic2g−2(C̃), the lat-
ter with natural divisor Ξ = Ξ(C̃/C) = (P ∩Θ̃)red = the “Prym theta divisor”, and
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its parametrization ϕ : X → Ξ (with fiber ∼= P1 over a generic point of any com-
ponent of Ξ) defined by the restriction of the Abel map α̃ : C̃(2g−2) → Pic2g−2(C̃)
to α̃−1(Ξ) = X . P− admits a parametrization ϕ− : X− → P− where ϕ− is a map
with fiber ∼= P0 over a generic point of P−, and ϕ− is defined as the restriction
of the Abel map α̃ : C̃(2g−2) → Pic2g−2(C̃) to α̃−1(P−) = X−. Furthermore,
when C is nonhyperelliptic, [B, Cor. of Prop. 3, p.365] X and X− are irreducible.
We should remark that in [B] the definition of the scheme structure on X , X− is
different from that given above, i.e. if α : C(2g−2) → Pic2g−2(C) is the Abel map
for C, π : C̃(2g−2) → C(2g−2) the norm map on divisors, and {ωC} the canonical
point in Pic2g−2(C), then in [B, p.359, line −6] the scheme structures on X , X−

are defined as in [W, (8.3), p.99], i.e. as inherited from that defined by the equa-
tion X ∪ X− = π−1(|ωC |). But in fact the two scheme structures π−1(|ωC |) and
α̃−1(Ξ ∪ P−) on X ∪ X− agree, first of all since π−1(|ωC |) = (α ◦ π)−1(ωC) =
(N ◦ α̃)−1(ωC) = α̃−1(P ∪P−). Then since the scheme α̃−1(P ∪P−) is reduced by
[B, p.359], and contains the scheme α̃−1(Ξ ∪ P−), and since as sets α̃−1(P ∪ P−)
and α̃−1(Ξ ∪ P−) are equal, then as schemes they are equal as well.

If p is a point of C̃, and Dp ⊂ X is the subset of X whose corresponding divisors
on C̃ contain p, then we claim Dp ⊂ X is a divisor with nonempty intersection with
every fiber of ϕ, hence ϕ(Dp) = Ξ. I.e. since the finite norm map π : C̃(2g−2) →
C(2g−2), maps X onto |ωC | and Dp ⊂ X onto the codimension one subspace |ωC −
p|+p ⊂ |ωC |, Dp is a divisor in X . Since Dp meets each positive dimensional linear
series ϕ−1(y) in codimension at most one, Dp ∩ ϕ−1(y) 6= ∅ for every y in Ξ.

Our main observation is that when C is nonhyperelliptic of genus g ≥ 4, then
the set ϕ(Dp ∩Dp′) with its reduced scheme structure is the Prym canonical Gauss
divisor Γp, which we shall define next. If C is nonhyperelliptic, η the square trivial
line bundle corresponding to π : C̃ → C, (i.e. the unique line bundle on C such
that η 6= OC , π∗(η) = OC̃ , for π∗ : J(C) → J(C̃)), then the Prym canonical map
ϕη : C → |ωC⊗η|∗ = P(T0(P )) is a morphism, and we denote by Λp the hyperplane
in |ωC⊗η| parametrizing Prym canonical divisors on C containing ϕη(p). We denote
by Γp ⊂ Ξ the Gauss divisor corresponding to Λp, i.e. Γp = (the closure in Ξ of)
γ−1

Ξ (Λp) where γΞ : Ξsm → |OΞ(Ξ)|∗ ∼= P(T0(P ))∗ ∼= |ωC ⊗ η| is the Gauss map
defined on the smooth points of Ξ.

Equivalently, Γp is the Gauss divisor in |OΞ(Ξ)| corresponding to the point ϕη(p)
of the Prym canonical model ϕη(C) of C in |ωC⊗η|∗ = P(T0(P )) ∼= |OΞ(Ξ)|, where
a direction v in T0(P ) corresponds to the divisor on Ξ of the directional derivative
∂vϑ, where ϑ is a theta function on P vanishing simply on Ξ.

Theorem. Assuming the notation of the setup above, if C is a smooth nonhyperel-
liptic curve of genus g ≥ 4, π : C̃ → C a connected étale double cover, p any point
of C, and π−1(p) = {p, p′}, then

1) ϕ(Dp ∩Dp′) = Γp ⊂ Ξ, the Gauss divisor corresponding to the point ϕη(p) on
the Prym canonical model of C.

2) If furthermore g ≥ 5 and p is a general point of C, then p is a ramifica-
tion point of only finitely many g1

4’s, and for any such p,Γp is normal and
irreducible.

3) If a component of the branch divisor of the Gauss map were dual to the Prym
canonical curve, then the divisors Γp would be singular in codimension one.
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Corollary. If C is a smooth nonhyperelliptic curve of genus g ≥ 4, π : C̃ → C any
connected étale double cover, and Bγ is the (closure of the) branch divisor of the
Prym Gauss map γ : Ξsm → |OΞ(Ξ)|∗ ∼= |ωC ⊗ η|, then Bγ does not contain the
dual (ϕη(C))∗ of the Prym canonical curve.

Proof of Corollary. It follows from the theorem, parts 1) and 2), that if C has genus
g ≥ 5, and p is general on C, the Gauss divisor Γp is normal, hence nonsingular
in codimension one, which contradicts the assumption that Bγ contains ϕη(C)∗

by part 3). So assume C has genus g = 4. Then by Recillas’ theorem [Re],
the Prym variety P (C̃/C) is a Jacobian J(Σ) of a curve Σ of genus 3, hence by
Andreotti’s proof of Torelli [A], the branch divisor Bγ is the union of the dual of
the image in P2 of Σ and the lines dual to the images of any ramification points
of the canonical map ϕω : Σ → P2. Since the Prym canonical map ϕη on a
nonhyperelliptic curve C is a nonconstant morphism, the only way Bγ can contain
ϕη(C)∗ is if ϕη(C) = ϕω(Σ). Now ϕω(Σ) has degree either 4 or 2 and ϕη(C)
has degree a divisor of 6. Thus we need only consider the case where the Prym
canonical map ϕη : C → ∆ ⊂ P2 is a degree three cover of a plane conic, i.e. is
given by the composition of a g1

3 and the quadratic Veronese map P1 → P2, which
implies that ωC ⊗ η = (ϕη)∗(O(1)) = O(2 · g1

3). But since ∆ = ϕη(C) = ϕω(Σ), Σ
is hyperelliptic of genus three, hence P (C̃/C) = J(Σ) is a hyperelliptic Jacobian,
so by [Mu1, Theorem, part (c), p.344], the genus four curve C has an effective even
theta characteristic. That implies C has only one g1

3 , and for that one we have
O(2 · g1

3) = ωC , contradicting the fact deduced above that O(2 · g1
3) = ωC ⊗ η, since

η is nontrivial. This proves the corollary.

Proof of Theorem. Recall the conventions from the setup above; in particular, g =
g(C), g̃ = g(C̃) = 2g−1, dim(P ) = dim(X) = g−1, dim(Ξ) = g−2, dim(Γp) = g−3.

Steps for the proof of part 1). Assume C is a smooth nonhyperelliptic curve
of genus g ≥ 4, π : C̃ → C a connected étale double cover, p any point of C,
π−1(p) = {p, p′}, and ξ is the cohomology class of the Prym theta divisor Ξ. Then

i) the (g− 3) (i.e. highest) dimensional part of the subset ϕ(Dp ∩Dp′) ⊂ Ξ with
its reduced scheme structure, has cohomology class ξ2 in H∗(P ), (the class of a
Gauss divisor on Ξ).

ii) The set ϕ(Dp ∩ Dp′) is contained in the Gauss divisor Γp = the pullback of
the hyperplane Λp corresponding to the Prym canonical point ϕη(p).

iii) Corollary: ϕ(Dp ∩ Dp′) = Γp, more precisely the set ϕ(Dp ∩ Dp′) is the
support of the reduced Cartier divisor Γp on Ξ.

Proof of i) (the cohomology class of the (g − 3) dimensional components of
ϕ(Dp ∩ Dp′). We will identify ϕ(Dp ∩ Dp′) as a translate of one component of
the “special subvariety” associated in [B] to the linear series |ωC − 2p|. If p is
any point of C, since C is nonhyperelliptic, the system |ω − 2p| has at most a
base divisor of degree one, hence contains a reduced divisor. [Indeed, if q is a
base point of |ω − 2p|, then h0(ω − 2p − q) = h0(ω − 2p), hence by Riemann-
Roch h0(2p + q) > h0(2p) = 1, so 2p + q defines a g1

3 on C. Then for any point
r of C, h0(2p + q + r) cannot equal 3 by Clifford’s theorem (since C is nonhy-
perelliptic and of genus g ≥ 4), so h0(2p + q + r) = h0(2p + q) = 2, hence by
Riemann-Roch h0(ω− 2p− q− r) < h0(ω− 2p− q), i.e. the base divisor of |ω− 2p|
is only the single point q with multiplicity 1.] Thus the hypotheses of [B, p.359]
hold and π−1(|ωC − 2p|) ⊂ C̃(2g−4) consists of two connected reduced components,
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S0 ∪ S1. We index them so that S0 + p + p′ ⊂ X , and S1 + p + p′ ⊂ X−. By
[B, Remarque 1, p.360], S0 has at most two types of irreducible components, those
collapsing by α̃ to lower dimensional subvarieties, and those on which α̃ is bira-
tional. The same argument, i.e. the fact that |D| ∼= P0 for a general point D on
a component of S0 on which α̃ is birational, proves that the image cycle α̃∗[S0]
is reduced, and is the component in the expected dimension (g − 3), of the cycle
of the reduced image variety V0 = α̃(S0), in Beauville’s notation. Moreover, since
deg(ωC − 2p) = 2g− 4 > 2(dim |ωC − 2p|) = 2(g− 3), [B, Thm.1, p.364] shows that
the cohomology class of (the g − 3 dimensional part of) V0 in P (after appropriate
translation), is ξ2. Since Dp ∩ Dp′ is the set of those precanonical divisors on C̃
which contain the points p and p′, it follows that Dp∩Dp′ = p+p′+S0 as sets, and
we give Dp∩Dp′ the scheme structure induced from p+p′+S0 as well, which is thus
reduced. In particular, dim(Dp∩Dp′) = dim(S0) = dim(|ωC−2p)|) = g−3. (In fact
the natural intersection scheme structure for Dp ∩ Dp′ is also reduced, but we do
not need this.) Then the g− 3 dimensional part of ϕ(Dp ∩Dp′) = α̃(p) + α̃(p′) +V0

also has cohomology class ξ2 in P . QED for i).

Remark. In particular, since the class ξ2 is nonzero, ϕ is birational on at least one
component of Dp ∩ Dp′ .

Proof of ii), the inclusion relation ϕ(Dp ∩ Dp′) ⊂ Γp. Since C is nonhyperelliptic,
the linear system |ωC ⊗ η| is base point free by Riemann Roch, and the Prym
canonical map ϕη is a morphism from C to |ωC ⊗ η|∗. We will examine the relation
between the Prym canonical map of C, and the canonical maps of C and C̃, within
the common projective space |ω̃|∗ = PT0J̃ . The linear space of differentials on C̃
decomposes as a direct sum of symmetric differentials and skew symmetric ones,
corresponding respectively to the pullbacks of usual differentials on C and of Prym
differentials on C. Hence these define complementary subspaces of linear forms
on |ω̃|∗ ∼= P2g−2 whose zero loci define disjoint subspaces of |ω̃|∗ corresponding
respectively to the Prym canonical space |ωC ⊗ η|∗ ∼= Pg−2 and to the canonical
space |ω|∗ ∼= Pg−1 for C. Since C and C̃ are nonhyperelliptic, they are embedded
canonically in |ω|∗ and |ω̃|∗ respectively. Given a point p on C̃, with corresponding
point p = π(p) on C, the Prym canonical point ϕη(p) in |ωC ⊗ η|∗ is obtained
by projecting p into |ωC ⊗ η|∗ from the center |ω|∗. Since |ω|∗ is the zero locus
of the skew symmetric Prym differentials, which have no base locus on C̃ for C
nonhyperelliptic, p does not lie in the center of projection. Thus the join 〈p, |ω|∗〉
is one dimension larger than |ω|∗ and the Prym canonical image ϕη(p) equals the
one point intersection 〈p, |ω|∗〉 ∩ |ωC ⊗ η|∗.

Claim 1 (cf. [T1, p.957, line 11]). If Lp,p′ is the line in |ω̃|∗ joining p to p′, the Prym
canonical point ϕη(p) = Lp,p′ ∩ |ωC ⊗ η|∗.

Proof. Since the join 〈p, |ω|∗〉 is defined by the skew symmetric differentials van-
ishing on p, and since a skew symmetric differential vanishes at p if and only if it
vanishes at p′, the three joins 〈p, |ω|∗〉, 〈p′, |ω|∗〉, and 〈p, p′, |ω|∗〉 are all equal to each
other, and thus ϕη(p) also equals the intersection 〈p, p′, |ω|∗〉 ∩ |ωC ⊗ η|∗. Since we
have the inclusion Lp,p′ ⊂ 〈p, p′, |ω|∗〉, we also have an inclusion Lp,p′ ∩ |ωC ⊗ η|∗ ⊂
〈p, p′, |ω|∗〉 ∩ |ωC ⊗ η|∗ = {ϕη(p)}. A symmetric differential also vanishes at p if
and only if it vanishes at p′, so the three joins 〈p, |ω ⊗ η|∗〉, 〈p′, |ω ⊗ η|∗〉, and
〈p, p′, |ω⊗ η|∗〉 are also all equal to each other. Since the join 〈p, p′, |ω⊗ η|∗〉 is thus
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at most one dimension larger than the space |ω⊗η|∗, the intersection Lp,p′∩|ωC⊗η|∗
is nonempty and hence equals {ϕη(p)}. QED Claim 1.

Claim 2. If γΞ is the Gauss morphism defined on the smooth points Ξsm ⊂ Ξ, then
ϕ(Dp ∩ Dp′) ∩ Ξsm ⊂ γ−1

Ξ (Λp), where Λp is the hyperplane in |ωC ⊗ η| of Prym
canonical divisors which contain p.

Proof. We must show, for x in Dp ∩ Dp′ , if ϕ(x) lies in Ξsm, then the hyperplane
γΞ(ϕ(x)) contains ϕη(p). We know that if Dx is the canonical divisor on C̃ cor-
responding to the point x, then the linear span Dx of this divisor in |ω̃|∗ contains
p and p′ hence also the line Lp,p′ . Moreover, the span Dx is one of the rulings on
the quadric tangent cone Q̃ϕ(x) to Θ̃ at the point ϕ(x). Thus we have inclusions
ϕη(p) = Lp,p′ ∩ |ω ⊗ η|∗ ⊂ Dx ∩ |ω ⊗ η|∗ ⊂ Q̃ϕ(x) ∩ |ω ⊗ η|∗. However, by [Mu1,
p.343] this last intersection is set theoretically just the tangent space to Ξ at ϕ(x),
i.e. is equal to γΞ(ϕ(x)). QED Claim 2.

Corollary. ϕ(Dp ∩ Dp′) ⊂ Γp.

Proof. Since Γp is defined as the closure of γ−1
Ξ (Λp) in Ξ, Claim 2 implies that

ϕ(Dp ∩ Dp′) ∩ Ξsm ⊂ Γp. To see that ϕ(Dp ∩ Dp′) ∩ singΞ ⊂ Γp also, we re-
call that singΞ is contained in every Gauss divisor on Ξ, hence, in particular
ϕ(Dp ∩ Dp′) ∩ singΞ ⊂ singΞ ⊂ Γp. I.e. recall the global sections of OΞ(Ξ) on
Ξ, are spanned by the partial derivatives ∂ϑ/∂zj of a theta function for Ξ, (in
terms of linear coordinates zj on the universal cover of P), hence all Gauss divisors
contain the base locus singΞ of the partial derivatives. QED for Cor. and for
ii).

We pause for some interesting remarks before resuming the argument with the
proof of iii) below.

Remark. This argument shows that for any point ϕ(x) of Ξ, smooth or not, if
PTCϕ(x)(Θ̃) denotes the projectivized tangent cone to Θ̃ at ϕ(x) (translated to a
hypersurface in PT0J̃ ∼= |ω̃|∗), then the intersection PTCϕ(x)(Θ̃)∩ |ω⊗ η|∗ contains
the Prym canonical point ϕη(p) as long as Dp ∩Dp′ intersects the fiber ϕ−1(ϕ(x))
nontrivially. Since to meet Dp ∩ Dp′ imposes at most two conditions on the fiber
ϕ−1(ϕ(x)), any fiber ϕ−1(ϕ(x)) of dimension ≥ 2 meets Dp ∩ Dp′ for every point
p. Hence for any point ϕ(x) of multiplicity ≥ 3 on Θ̃, the Prym canonical curve
ϕη(C) is contained in the intersection PTCϕ(x)(Θ̃) ∩ |ω ⊗ η|∗. When, furthermore,
PTCϕ(x)(Θ̃) does not contain the projective tangent space |ω ⊗ η|∗ to the Prym
variety, then the tangent cone to Ξ at ϕ(x) equals the intersection PTCϕ(x)(Θ̃) ∩
|ω⊗η|∗ (as subsets of the Prym canonical space |ω⊗η|∗ ∼= Pg−2) and thus contains
the Prym canonical curve. In particular, this occurs at so called “stable” double
points as we will observe next.

Definition [T1, p.960]. Given a double cover C̃/C and associated Prym variety, a
point of Ξ(C̃/C) which is of even multiplicity 4 or more on Θ̃, is called a “stable”
singularity of the Prym theta divisor.

Remarks. 1) The property of being “stable” is not intrinsic to the geometry of Ξ,
but depends on the particular double cover C̃/C giving rise to Ξ [D2, p.546].

2) Stable singularities were originally introduced simply as “case 2” singularities
in [Mu1, p.345].
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Corollary [T1, Lemma 2.3, p.963]. The tangent cone to Ξ(C̃/C) at a stable double
point contains the Prym canonical model of C.

Proof. If ϕ(x) is a stable singularity such that the intersection PTCϕ(x)(Θ̃)∩|ω⊗η|∗
contains the space |ω ⊗ η|∗, then the restriction to Ξ of an equation for Θ̃ would
begin with a term of degree at least 6, hence ϕ(x) would be a point of multiplicity
≥ 3 on Ξ. Hence at a stable double point the intersection PTCϕ(x)(Θ̃)∩ |ω⊗ η|∗ is
proper, and the result follows from the remarks just above the previous definition.
QED Corollary.

Remarks. 1) The statements of Claim 1 above and of the previous corollary appear
in [T1] as cited, but because the “Correction” [T2] to parts of that paper has
appeared, we include proofs of the relevant statements for completeness.

2) It is an open problem to determine precisely those cases when the intersection
of the tangent quadrics to Ξ at all stable double points of Ξ equals precisely the
Prym canonical curve. Debarre [D1] proved this is true for a general Prym variety
of dimension ≥ 8, but it fails for general Prym varieties of dimension ≤ 6.

Now we resume the argument.

Proof of iii), ϕ(Dp ∩ Dp′) = Γp. So far we know the following: ϕ(Dp∩Dp′ ) = W1∪
W2, where W1 is a reduced pure (g − 3) dimensional (i.e. pure codimension one)
closed algebraic subset of Ξ ⊂ P,W2 is a (possibly empty) closed algebraic set of
dimension less than (g − 3), and ϕ(Dp ∩ Dp′) ⊂ Γp, where Γp ⊂ Ξ is a Gauss
divisor, i.e. an effective Cartier divisor in the linear system |OΞ(Ξ)| on Ξ, and the
two divisors W1 and Γp have the same homology class in H∗(P,Z) by i). In other
words, we have an inequality W1 ≤ Γp of Weil divisors on Ξ, and W1 and Γp have
the same homology class on P . Then we can immediately conclude that W1 = Γp
by the following lemma.

Lemma 1. Suppose that we have an inequality D1 ≤ D2 of algebraic k-cycles on a
projective variety V , and that D1 and D2 have the same homology class in H∗(V,Z).
Then D1 = D2.

Proof. By embedding V in PN , we may assume that D1 and D2 are algebraic k-
cycles in PN satisfying D2 = D1 + D′, where D′ is an effective algebraic k-cycle
in PN with homology class 0 in H2k(PN ,Z). Then D′ must be the zero k-cycle.
Otherwise, write D′ = ΣnαWα (summation over a nonempty finite index set {α})
with nα > 0 and Wα (nonempty, irreducible) of dimension k in PN . Then the
intersection number of a codimension k-linear subspace of PN with the homology
class of D′ is Σnαdα, where dα is the degree of Wα in PN ; but dα > 0, so Σnαdα > 0,
and the homology class of D′ is nonzero, contradiction. QED Lemma 1.

Now iii) follows since W1 = Γp by Lemma 1, and ϕ(Dp ∩Dp′) ⊂ Γp by ii), hence as
sets ϕ(Dp ∩Dp′) ⊂ Γp = W1 ⊂W1 ∪W2 = ϕ(Dp ∩ Dp′), thus ϕ(Dp ∩ Dp′) = Γp as
sets. This proves part 1) of the theorem.

Proof of Theorem, part 2): Normality of Γp = ϕ(Dp ∩ Dp′). First we prove
Dp ∩ Dp′ is normal and irreducible.

Lemma 2. If C is nonhyperelliptic of genus g ≥ 5, and p is a ramification point
of only a finite number of g1

4’s on C, then (Dp ∩ Dp′) is normal and irreducible.
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Proof. Since Dp∩Dp′ = p+p′+S0, it suffices to prove S0 is normal and irreducible.
Thus it suffices to verify the hypotheses of [B, Cor., Prop. 3, p.365], i.e. that the
linear system |ωC(−2p)| is base point free and defines a birational morphism with
at most one ramification point in each fiber, and no ramification point of index ≥ 4.
Our hypothesis implies that p is not a ramification point of any g1

3 on C, hence for
every point q, h0(2p+q) = 1 = h0(2p), so h0(ωC(−2p)) > h0(ωC(−2p−q)), and the
system |ωC(−2p)| is base point free. In order for a fiber of the morphism associated
to |ωC(−2p)| to dominate a divisor q+ r, we must have h0(2p+ q+ r) = 2, so that
2p + q + r is one of the finitely many divisors of g1

4 ’s which dominate 2p. Hence
for every point q not in the support of one of these divisors, q is a nonsingular,
singleton fiber of the morphism, which is thus birational onto its image. On the
other hand, if q+ r+s+ t is any divisor of degree 4 which is dominated by the fiber
containing q, then we must have h0(ωC(−2p− q)) = h0(ωC(−2p− q − r − s− t)),
hence h0(2p+q+r+s+t) = 4. Since the linear system |2p+q+r+s+t| is thus a g3

6,
and C is nonhyperelliptic with g(C) ≥ 5, this contradicts Clifford’s theorem. Thus
there cannot be more than one ramification point in each fiber, and no ramification
point can have index ≥ 4. QED Lemma 2.

Next we check that the hypotheses of Lemma 2 hold at a general point of the
curves under consideration.

Lemma 3. If C is nonhyperelliptic of genus g ≥ 5, then at most a finite number
of points p of C are ramification points of infinitely many g1

4’s.

Proof. By Martens’ theorem, [ACGH, p.191], the varietyW 1
4 ⊂ Pic4(C) parametriz-

ing all line bundles L defining g1
4 ’s on C is of dimension ≤ 1. Consider the incidence

variety I ⊂ C ×W 1
4 consisting of pairs (p, L) such that p is a ramification point of

L, and consider the projection maps I →W 1
4 and I → C. Since each g1

4 has at most
a finite number of ramification points the map I → W 1

4 is finite, so dim(I) ≤ 1.
Then the map I → C has infinite fibers over at most a finite number of points of
C, i.e. at most a finite number of points of C are ramification points of infinitely
many g1

4’s, as claimed. QED Lemma 3.

Next we prove normality and irreducibility of the image ϕ(Dp ∩ Dp′).

Lemma 4. If C is nonhyperelliptic, g(C) ≥ 5, and (Dp ∩ Dp′) is normal and
irreducible, then ϕ(Dp ∩ Dp′) = Γp ⊂ Ξ is also normal and irreducible.

Proof. ϕ(Dp∩Dp′) is irreducible since Dp∩Dp′ is. For normality, we first show ϕ is
an injective immersion except on a subset of Dp∩Dp′ whose image has codimension
at least 2 in ϕ(Dp∩Dp′ ). Consider the maps ϕ : Dp → Ξ, and ϕ : (Dp∩Dp′)→ Γp ⊂
Ξ. First throw out the singular points Z1 = sing(Ξ), from Ξ, and throw out also
their inverse images ϕ−1(Z1) = W1 from Dp∩Dp′ . Since Ξ is the Prym theta divisor
of a connected étale double cover of smooth curves, and C is nonhyperelliptic of
genus g ≥ 5, Mumford’s theorem [Mu1, p.344, part d] implies Z1 has codimension
≥ 3 in Ξ, hence ϕ(W1) ⊂ Z1 has codimension ≥ 2 in the divisor Γp ⊂ Ξ. Then
for all D in (Dp ∩ Dp′) −W1, ϕ(D) is a smooth point of Ξ, and ϕ : X → Ξ is a P1

bundle over a neighborhood of ϕ(D). Then we we throw out of Ξ also the set Z2

of divisor classes with p and p′ both as base points, and throw out from Dp ∩ Dp′
the inverse image set ϕ−1(Z2) = W2. Since ϕ : W2 → ϕ(W2) = Z2 has positive
dimensional fibers, and ϕ : Dp ∩Dp′ → Γp is birational by the remark following the
proof of Step (i), part 1 of the theorem, W2 ⊂ (Dp ∩ Dp′) is a proper exceptional
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subvariety of codimension ≥ 1, and hence ϕ(W2) ⊂ Γp has codimension ≥ 2. Then
for D in (Dp ∩Dp′)−W1−W2, either p or p′ is not a base point for the pencil |D|,
hence either the map ϕ : Dp → Ξ or the map ϕ : Dp′ → Ξ is, near D, a bijective
map to a smooth variety, hence a local isomorphism by Zariski’s Main Theorem.
Thus, near such a point D the map ϕ : Dp ∩ Dp′ → Γp is the restriction of a local
isomorphism, hence ϕ is immersive on (Dp ∩ Dp′) −W1 −W2. Since the fibers of
ϕ : Dp ∩ Dp′ → Ξ are projective spaces, ϕ immersive implies ϕ is also injective on
(Dp ∩ Dp′) −W1 −W2. Thus ϕ : Dp ∩ Dp′ → Γp is an injective immersion on the
open set (Dp ∩ Dp′) −W1 −W2, and the image ϕ(W1 ∪W2) of the complement
has codimension at least 2 in ϕ(Dp ∩ Dp′) = Γp. Then we throw out the subset
W3 = sing(Dp ∩ Dp′) ⊂ (Dp ∩ Dp′). Since (Dp ∩ Dp′) is assumed normal, W3 has
codimension at least 2 in (Dp ∩ Dp′), hence ϕ(W3) has codimension at least 2 in
Γp. Then (Dp ∩ Dp′) −W1 −W2 −W3 is smooth and maps isomorphically to its
image by ϕ; consequently, the image of this set is a smooth subset of Γp whose
complement has codimension at least 2. Since Γp is a divisor in the Gauss linear
system, it is a Cartier divisor, hence a local complete intersection in P , and since
it has been shown to be smooth in codimension one, it is normal. QED Lemma
4.

We have shown that if p is a general point of C and C is nonhyperelliptic of
genus g ≥ 5, then p is a ramification divisor of only finitely many g1

4 ’s on C, and
that for any such p, ϕ(Dp ∩Dp′) = Γp is normal and irreducible.

This completes the proof of part 2) of the theorem.

Remarks. We can be more precise about when Γp is normal. If C has only finitely
many g1

4 ’s, then the previous lemmas imply Γp is normal for every p on C. In
particular, by [Mu1, Theorem, p.348], if g(C) ≥ 6 and C is neither trigonal nor
bi-elliptic (i.e. not a double cover of an elliptic curve) nor a plane quintic, then C
has only finitely many g1

4 ’s. If C is a plane quintic, all g1
4 ’s are of form |g2

5 − q| for
some point q on C. [Since the net of conics containing three noncollinear points of
P2 have no other base point, a net of conics has four base points only if the points
are collinear. By the adjunction formula and Riemann Roch, thus every divisor of
a g1

4 on a plane quintic consists of four collinear points.] Hence a point p can only
be a ramification point of those series |g2

5 − q| such that the tangent line to C at
p contains q, a finite set of g1

4 ’s, hence again Γp is normal for every point p of a
plane quintic C. If C is bi-elliptic of genus g ≥ 6, then by [R, Prop. 2.5, Cor. 2.6,
pp. 234-235], there is a unique double cover C → E of an elliptic curve E, and
every g1

4 on C is pulled back from a g1
2 on E, (cf. also [S, p.129]). Hence if p is not

a ramification point of the double cover C → E, then p is a ramification point of
only finitely many g1

4 ’s, and hence Γp is normal. If C is trigonal and has a base
point free g1

4 , then the two series g1
3 and g1

4 give a birational map from C to a curve
of type (3,4) on P1 × P1, hence of arithmetic genus ≤ 6. Hence if C is trigonal of
genus g ≥ 7, then every g1

4 is of form q + g1
3, for the unique g1

3 on C, hence if p
is not a ramification point of the unique g1

3 , then p is a ramification point of only
the one g1

4 = p + g1
3. Hence Γp is normal if p is not a ramification point of the

g1
3. If g(C) = 4, and Γp is singular, Welters’ singularity criterion (cf. [B, Prop. 3,

p.365]) implies that ωC = |2p+ 2q+ 2r| for some points q, r on C, i.e. O(p+ q+ r)
is an effective theta characteristic on C. Hence if C has no effective even theta
characteristic, and p is not in the support of any of the finitely many odd theta
characteristics of C, then Γp is normal (i.e. a smooth curve). However, if C has
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an effective even theta characteristic, there is a double cover for which the Prym
variety is a hyperelliptic Jacobian, hence Ξ is singular. Since all Gauss divisors
on Ξ contain the singular point, hence all Gauss divisors Γ on Ξ, including Γp for
every p on C, are singular. Since here every Γ is a curve, all Gauss divisors are
nonnormal.

Proof of 3), singularities of “branch” Gauss divisors. Let (A,Θ) be a d-dimen-
sional p.p.a.v. with (reduced and) irreducible theta divisor, let Θsm be the smooth
points of Θ, and let γ : Θsm → P∗T0A ∼= (Pd−1)∗ be the Gauss map, i.e. the map
such that γ(p) = TpΘ, translated to a hyperplane in T0A. Since Θ is irreducible
and ample, the Gauss map is generically finite and dominant [K, Cor. 9.11, p.85],
hence the differential of γ is generically invertible, and the locus where it is non-
invertible is defined locally by the determinant of the differential, hence has pure
codimension one in Θsm. The ramification locus of γ is the subset R of Θsm where
the differential of γ is not invertible (as a linear map of d − 1 dimensional linear
spaces) and the branch divisor B is the codimension one part of the closure of the
image of R in P∗T0A.

Next we observe that tangent hyperplanes to the branch divisor B yield singular
members in the Gauss linear system on Θsm; (note: all Gauss divisors on Θ are
singular at all points of singΘ).

Lemma 5. Let S be an irreducible component of the branch divisor of γ, y a smooth
point of S, H the tangent hyperplane to S at y, and D = γ−1(H) the divisor in the
Gauss linear system associated to H. If x is a smooth point of Θ such that γ(x) = y
and the image of the tangent space TxΘ under the differential γ′(x) is contained in
(the tangent space at y to) H, then D is singular at x.

Proof. If λ is a local equation for H near y, and (λ◦γ) the composed local equation
for D near x, then the linear term of (λ ◦ γ) is zero at x since it defines the linear
functional λ′(y) ◦ γ′(x), which is zero by hypothesis. QED Lemma 5.

Proposition. Let γ : Θsm → (Pd−1)∗ be the Gauss map on an irreducible theta
divisor of a d-dimensional principally polarized abelian variety, d ≥ 3. If S ⊂
(Pd−1)∗ is a component of the branch divisor of γ whose dual variety S∗ is a curve,
if H is a tangent hyperplane to S at a general point of S, and D = γ−1(H) is the
corresponding Gauss divisor, then D is singular in codimension one.

Proof. After resolving the map γ to make it regular, let R be the closure in the
normalized graph of γ, of the set {smooth points x in Θsm at which γ′(x) is not
invertible}. There must be a component R1 of R such that γ(R1) = S, and since
R1 and S are irreducible of the same dimension, the induced map γ1 : R1 → S is
generically finite and surjective. We remove from S the images of all added points,
i.e. of all points of R1 − Θsm, and remove also from S all singular points of S,
and all images of singular points of R1. We then remove from R1 all preimages of
points removed from S, leaving a surjective map γ2 : U → V from an open smooth
subset U ⊂ R1, onto an open smooth subset V ⊂ S. By [Mu2, p.42], every point
y of V outside a proper Zariski closed subset has the property that at every point
x of γ−1

2 (y) in U , the differential γ′2(x) has image equal to the tangent space TyS.
Since for x in U ⊂ R, dimy S ≥ rankxγ′(x), it follows that the image of γ′(x) also
lies in TyS. If H is the tangent hyperplane to S at y, it follows that the hypotheses
of the previous lemma hold and hence D = γ−1(H) is singular at x. Since we are
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assuming S∗ is a curve, for each given tangent hyperplane H to S, the set of points
y of S such that H = TyS, has codimension one in S. Thus for a general H , the
set of points x at which γ−1(H) = D is singular, has codimension one in D. QED
Proposition. This completes the proof of the theorem.

Remarks on the hyperelliptic case. Given a connected étale double cover π : C̃ →
C, where g(C) ≥ 4 and C is hyperelliptic but C̃ is nonhyperelliptic, the Prym
variety P (C̃/C) is a product of two hyperelliptic Jacobians [Mu1, p.346], hence
Ξ(C̃/C) is reducible, and the rational Gauss map γΞ is the disjoint union of the
Gauss maps on the two components of Ξ. The two images lie in disjoint linear
subspaces of PT0P

∗, neither of which can contain the dual of the Prym canonical
curve, since the Prym canonical map is a morphism to a spanning curve. If C̃ and
C are both hyperelliptic, then using [Mu1, p.346], the double cover π corresponds
to a square trivial line bundle η = p − q, where p, q are Weierstrass points on C.
Then the rational Prym canonical map ϕη : C 99K Pg−2 is not a morphism but has
base divisor p+ q, the Prym variety P (C̃/C) ∼= J(Σ) is isomorphic to the Jacobian
of a hyperelliptic curve Σ of genus g−1, and the image of the rational map ϕη is the
same as the image of the canonical map ϕω : Σ→ Pg−2, i.e. is the rational normal
curve in Pg−2 of degree g− 2. Consequently, by Andreotti’s proof of Torelli for the
hyperelliptic Jacobian J(Σ), in this case alone the branch divisor of the Gauss map
on Ξ(C̃/C) = Θ(Σ) contains the dual of the image curve ϕη(C).

Remarks on the relation with Andreotti’s result. There is one subtle difference be-
tween our result and an exact analog of Andreotti’s: in his paper [A] Andreotti
works with the branch divisor of the normalized Nash blowup N(γ) of the Gauss
map γ on a Jacobian theta divisor Θ [A, p.820], [ACGH, p.246], whereas we work
with the branch divisor of the actual Gauss map on smooth points, as in [GH,
p.360] which could conceivably be smaller. I.e. Andreotti first extends the rational
Gauss map to a morphism on the Nash blowup of Θ, then takes the normalization,
considers the locus of those points in the target over which the fiber is a finite set
of exactly degree(γ) distinct points, and finally takes the codimension one part of
the complement of this locus as the branch divisor. Thus the branch divisor of
γ consists of the union of only those components of the branch divisor of N(γ)
which can be detected from the behavior of the derivative of γ at smooth points of
Θ. For Prym varieties, we do not know at present whether the dual of the Prym
canonical curve can occur as a component of the possibly larger branch divisor of
N(γ). However, for general Prym varieties of dimensions 4 and 5, the theta divisor
is smooth, the Gauss map is a morphism, so the Nash blowup is the identity map,
and the two branch loci are the same. Hence our results do imply that for all
classical Prym varieties of dimensions 4 and 5 with smooth theta divisors, the dual
of the Prym canonical curve is not a component of the branch divisor of either γ
or N(γ). As we have mentioned, for Jacobians the branch divisors of both γ and
N(γ) are equal, but in some examples they can differ. In particular, Varley has
shown (unpublished) that for the theta divisor of the 4 dimensional abelian variety
studied in [V], the branch divisor of γ is empty, while that of N(γ) is the union of
the quadrics dual to the tangent cones of Θ at the double points. The unpublished
result of Adams, McCrory, Shifrin, and Varley, that for a general 4 dimensional
principally polarized abelian variety, both the branch divisor of the Gauss map
and its dual, are irreducible surfaces of degree 60 in P3, was mentioned in the talk
[AMSV1] and is based on results published in [AMSV2].
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Open questions. For the theta divisor Θ of a Jacobian variety of a curve C of
genus g, precise information about the Gauss map follows from Riemann’s theorem
that Θ = {ξ ∈ Picg−1(C) : h0(ξ) ≥ 1} and the corollary that the Abel map
α : C(g−1) → Θ gives a birational resolution of Θ. I.e. points p of canonical space
|ωC |∗ parametrize Gauss divisors on Θ, where p corresponds to the Abel image
in Θ of those D = x1 + ... + xg−1 in C(g−1) such that p lies on a hyperplane
containing D in |ωC |∗. Of special interest are those Gauss divisors corresponding
to points p of the canonical model of C in |ωC |∗, the only one-parameter family of
reducible Gauss divisors on Θ(C) for C nonhyperelliptic and g ≥ 4. I.e. if C(g−1) ⊃
Dp ={those D in C(g−1) which contain p}, then the Gauss divisor corresponding to
p is the reducible, hence nonnormal, hypersurface α(Dp)∪ (α(Dp))′, where (α(Dp))′

denotes the image of the set α(Dp) under the involution L 7→ (ωC − L) on Θ. (To
see this is the only infinite family of reducible Gauss divisors on nonhyperelliptic
Jacobian theta divisors for g ≥ 4, note that if p is a point of |ωC |∗ not on Cω,
then after projection from p, the Gauss divisor defined by p is parametrized by the
family of those divisors of degree g−1 on the projected curve that lie in hyperplane
sections, an irreducible family by the monodromy lemma p.111 of [ACGH], provided
the projection is birational. If the projection is not birational and g ≥ 5, it must be
of degree 2 onto a curve of degree g−1 in Pg−2, thus an elliptic curve, and there are
only finitely many such bi-elliptic projections of C. Or if g = 4, there can also be
one projection of degree 3 onto a plane conic. Cf. [ACGH, Exercise batch E, pp.268-
9].) Andreotti observed further that the canonical curve parametrizing reducible
Gauss divisors is dual to the branch divisor of the Gauss map for a Jacobian.
Hence the following questions arise for the Gauss map on the theta divisor of any
indecomposable principally polarized abelian variety (A,Θ):

i) Is there a nondegenerate (i.e. irreducible, spanning) curve of reducible Gauss
divisors?

ii) Is there a nondegenerate curve of nonnormal Gauss divisors?
iii) Is the branch divisor dual to a nondegenerate curve?

For Jacobians we have seen that the canonical curve of Gauss divisors answers yes
to each of these. Hence, if g = dim(A), we might even restrict the curve in these
questions to be of genus = g, and degree = 2g − 2.

We note that property i) implies ii) since Gauss divisors are connected on abelian
varieties of dimension ≥ 3, and iii) implies ii) by the previous proposition. It
is natural to ask whether these properties characterize Jacobians. If Ag is the
moduli space of p.p.a.v.’s (A,Θ) with dim(A) = g, recall the Andreotti Mayer locus
Ag ⊃ Ng−4 ={those (A,Θ) in Ag such that dim(singΘ) ≥ g − 4}. Beauville and
Debarre prove in [BD1] that if |OΘ(Θ)| contains even one reducible Gauss divisor,
then (A,Θ) belongs either to Ng−4 or to another subvariety Eg ={(A,Θ) such that
there is an elliptic curve E ⊂ A with E · Θ = 2}. In particular, the locus Jg of
Jacobians is an irreducible component of those (A,Θ) such that |OΘ(Θ)| contains
a reducible Gauss divisor. They also give a way to produce, on certain p.p.a.v.’s
isogenous to products (which constitute most known examples of p.p.a.v.’s inNg−4),
degenerate families of reducible Gauss divisors, and conclude that the property
of having a single reducible Gauss divisor seems not much stronger than that of
belonging to Ng−4. It is not apparent to us, however, that any of their examples
has a nondegenerate curve of reducible Gauss divisors, hence property i) above
may well be stronger, hence more characteristic of Jacobians. As to the existence
of nonnormal Gauss divisors, the result stated in [BD2, Remarque 1, p.619] (that
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a p.p.a.v. with a nonnormal Gauss divisor is either isogenous to a product or
belongs to Ng−4) seems to imply also (since a general Jacobian is “simple”) that
Jacobians are an irreducible component of the set of those p.p.a.v.’s having a single
nonnormal Gauss divisor. In particular, Jacobians appear to be a component of the
set of p.p.a.v.’s satisfying any one of the three properties in questions i)–iii) above,
but we do not know of any non-Jacobians satisfying any of them.
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