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CENTERED COMPLEXITY ONE
HAMILTONIAN TORUS ACTIONS

YAEL KARSHON AND SUSAN TOLMAN

Abstract. We consider symplectic manifolds with Hamiltonian torus actions
which are “almost but not quite completely integrable”: the dimension of
the torus is one less than half the dimension of the manifold. We provide a
complete set of invariants for such spaces when they are “centered” and the
moment map is proper. In particular, this classifies the preimages under the
moment map of all sufficiently small open sets, which is an important step
towards global classification. As an application, we construct a full packing of
each of the Grassmannians Gr+(2,R5) and Gr+(2,R6) by two equal symplectic
balls.

1. Introduction

Let a torus T ∼= (S1)dimT act effectively on a symplectic manifold (M,ω) by
symplectic transformations with a moment map Φ: M −→ t∗, that is,

ι(ξM )ω = −d 〈Φ, ξ〉(1.1)

for every ξ in the Lie algebra t of T , where ξM is the corresponding vector field on
M . The dimension of the torus is at most half the dimension of the manifold. The
difference k = 1

2 dimM − dimT is half the dimension of the symplectic quotient
Φ−1(α)/T at a regular value α in the moment image Φ(M). We call this number
k the complexity.1

Compact symplectic manifolds with complexity zero Hamiltonian torus actions,
also known as symplectic toric manifolds or Delzant spaces, are classified by their
moment images [De1]. The first examples where the complexity is one are compact
symplectic surfaces (with no action). By Moser [Mo], these are classified by their
genus and total area. The next examples are compact symplectic four manifolds
with Hamiltonian circle actions, which were classified by the first author [K2]; also
see [AH, Au1, Au2]. In the algebraic category, complexity one actions (of possibly
non-abelian groups) were recently classified by Timashëv [T1, T2]. Among other
works on Lie group actions of complexity zero or one are [I, De2, W, GSj, Kn] in
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the symplectic category; [KKMS, OW, R, FK, BB, LV] in the algebraic category;
[F, OR] in the smooth category.

This is the first in a series of papers in which we study complexity one torus
actions in arbitrary dimension. In this paper we study the basic building blocks:
the preimages under the moment map of sufficiently small open subsets in t∗. We
provide invariants which determine these spaces up to an equivariant symplecto-
morphism. Our techniques apply to “large” complexity one spaces, as long as they
are centered (see Definition 1.4).

In this paper, because we wish to restrict to the preimages of open subsets of
t∗, we do not insist that our manifolds be compact. Instead, we assume that the
moment map is proper as a map to an open convex set U ⊂ t∗, that is, that the
preimage of every compact subset of U is compact. For instance, if M is compact,
Φ is proper.

Definition 1.2. Let T be a torus. A proper Hamiltonian T-manifold is a
connected symplectic manifold (M,ω) together with an effective action of T , an
open convex subset U ⊆ t∗, and a proper moment map Φ: M −→ U . Here, t is the
Lie algebra of T and t∗ the dual space. For brevity, in this paper we call (M,ω,Φ, U)
a complexity k space, where k = 1

2 dimM − dimT . An isomorphism between
two such spaces over the same set U is an equivariant symplectomorphism that
respects the moment maps.

Example 1.3. Let (M,ω,Φ, U) be a proper Hamiltonian T -manifold. For any
open convex subset V ⊆ U , the preimage Φ−1(V ) is a proper Hamiltonian T -
manifold over V . The fact that it is connected follows from the facts that the
restriction Φ: Φ−1(V ) −→ V is proper and its image and fibers are connected (see
Theorem 2.3) by easy point-set topology.

Here are a few examples of complexity one spaces. The complete flags on C3 form
a six dimensional compact symplectic manifold with a two dimensional Hamiltonian
torus action. The Grassmannians Gr+(2,R5) and Gr+(2,R6) of oriented two-planes
in R5 and R6 are also complexity one spaces; see section 14 for more details. Any
symplectic toric manifold gives rise to complexity one spaces in several ways: one
can either restrict the action to a codimension one subtorus, or take the product of
the manifold with a surface. Finally, the example in [To], of a symplectic manifold
with a Hamiltonian torus action with isolated fixed points that is not equivariantly
Kähler, is a complexity one space.

We now describe invariants of a complexity one space.
The Liouville measure on a 2n dimensional symplectic manifold (M,ω) is given

by integration of the volume form ωn/n! with respect to the symplectic orientation.
In the presence of a Hamiltonian action, the Duistermaat-Heckman measure is
the push-forward of Liouville measure by the moment map. It is equal to Lebesgue
measure on t∗ times the Duistermaat-Heckman function, which is piecewise
linear.2

Assume M is connected. For any value α ∈ Φ(M), if the symplectic quotient
Φ−1(α)/T is not a single point, it is homeomorphic to a connected closed oriented
surface (see Proposition 6.1). The genus of this surface does not depend on α (see
Corollary 9.7); we call it the genus of the complexity one space.

2For a complexity k space it is piecewise polynomial of degree at most k.



CENTERED COMPLEXITY ONE HAMILTONIAN TORUS ACTIONS 4833

The stabilizer of a point x ∈M is the closed subgroup H = {λ ∈ T | λ ·x = x}.
The isotropy representation at x is the linear representation of H on the tangent
space TxM . Points in the same orbit have the same stabilizer, and their isotropy
representations are linearly symplectically isomorphic; this isomorphism class is the
isotropy representation of the orbit.

An orbit is exceptional if every nearby orbit in the same moment fiber has
a strictly smaller stabilizer. In particular, if a moment fiber Φ−1(α) consists of
a single orbit, that orbit is exceptional. Since each moment fiber is compact, it
contains finitely many exceptional orbits. The isotropy data at α ∈ U is the
unordered list of isotropy representations of the exceptional orbits in Φ−1(α).

With these definitions on hand, let us state our main theorem, which gives
necessary and sufficient conditions for two complexity one spaces to be locally
isomorphic.

Theorem 1 (Local Uniqueness). Let (M,ω,Φ, U) and (M ′, ω′,Φ′, U) be complex-
ity one spaces. Assume that their Duistermaat-Heckman measures are the same
and that their genus and isotropy data over α ∈ U are the same. Then there exists
a neighborhood of α over which the spaces are isomorphic.

Here is a simple proof of Theorem 1 in the case where the torus action on Φ−1(α)
is free:

The symplectic quotient Φ−1(α)/T is a symplectic surface. Its
symplectic area is the value of the Duistermaat-Heckman function
at α. Together with the genus, this determines the surface.

The moment fiber Z = Φ−1(α) is a principal T -bundle over the
symplectic quotient. Its Chern class is given by the slope of the
Duistermaat-Heckman function at α [DH].

The pullback to the moment fiber Z of the symplectic form on
the symplectic quotient is the restriction i∗Zω of ω to Z. By the
equivariant co-isotropic embedding theorem (see [W1, lecture 5]),
a neighborhood of the moment fiber Z is determined up to equi-
variant symplectomorphism by (Z, i∗Zω). Since the moment map is
proper, this neighborhood contains the preimage of a neighborhood
of α.

This argument easily extends to the case that α is any regular value of the
moment map. The main volume of this paper consists of carefully extending the
argument to singular values of the moment map.

Recall that the orbit type strata are the connected components of the sets of
points with the same stabilizer.

Definition 1.4. A proper Hamiltonian T -manifold (M,ω,Φ, U) is centered about
a point α ∈ U if α is contained in the closure of the moment image of every orbit
type stratum.

Example 1.5. A linear action on a symplectic vector space is centered.

Example 1.6. Every point in t∗ has a neighborhood whose preimage is centered.
This follows from the local normal form theorem (see below) and the properness of
the moment map. Conversely, a (non-trivial) compact symplectic manifold is never
centered, because it has fixed points with different moment images.
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Example 1.7. Consider the Grassmannian Gr+(2,R5), as shown in Figure 1 in
Section 14. The preimage of the open upper half-plane is centered; so is the preim-
age of the interior of the shaded diamond.

Theorem 2 (Centered Uniqueness). Let (M,ω,Φ, U) and (M ′, ω′,Φ′, U) be com-
plexity one spaces that are centered about α ∈ U . Assume that their Duistermaat-
Heckman measures are the same and that their genus and isotropy data over α ∈ t∗

are the same. Then the spaces are isomorphic.

Finally, we present an application of our results to an interesting question in
symplectic topology: to what extent can a symplectic manifold be filled by disjoint
symplectic balls? Holomorphic techniques give obstructions to embedding balls,
and, in dimension four, lead to existence theorems [Bi1], [Bi2]. Some explicit em-
beddings can be found in [McD, 2.7.1], [K1], [Tr]. Our construction uses equivariant
techniques to solve this non-equivariant problem. In a future paper, we will extend
these techniques to address this question more deeply. Here, we are content with a
simple, but fairly representative, application:

Theorem 3. Let M be the Grassmannian Gr+(2,R5) or Gr+(2,R6). There exists
an equivariant symplectic embedding of a disjoint union of two open symplectic
balls with linear actions and with equal radii into M such that the complement of
the image has zero volume. A fortiori, each of these Grassmannians can be fully
packed by two equal symplectic balls.

Acknowledgement. We would like to warmly thank the referees for their incredibly
helpful comments; specifically, for simplifying the proof of Lemma 3.6 and for in-
sisting on improving the exposition. We thank F. Knop and D. Luna for explaining
to us aspects of complexity one actions in algebraic geometry.

2. Background

We now set our notation and review some background material.
An effective linear action of a compact abelian group H on a symplectic vector

space is isomorphic to the action of H on Cn through an inclusion

ρ = (ρ1, . . . , ρn) : H −→ (S1)n.

The characters ρi are determined up to permutation. The differential of each
ρi : H −→ S1 is an element ηi of the dual space h∗; the ηi are called the weights.

Let a torus T act effectively on a symplectic manifold (M,ω). The symplectic
slice at x ∈M is the symplectic vector space

(TxO)ω / (TxO ∩ (TxO)ω) ,

where O is the T -orbit of x in M . Let H ⊂ T be the stabilizer of x. The isotropy
representation of H on TxM induces a representation on the symplectic slice, called
the slice representation. The isotropy representation is the direct sum of the slice
representation and a trivial representation. The weights of the slice representation
are called the isotropy weights.

We fix an inner product on the Lie algebra t of our torus T , once and for all.
This determines an inclusion h∗ ↪→ t∗ for any subspace h ⊂ t. Throughout this
paper, we identify h∗ with its image in t∗.

The Guillemin-Sternberg-Marle local normal form theorem describes the neigh-
borhood of an orbit in a symplectic manifold with a Hamiltonian action of a compact
Lie group [GS2], [M]. We state it for torus actions.
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Theorem 2.1 (Local normal form). Let a closed subgroup H of a torus T act on
Cn by an inclusion ρ : H −→ (S1)n with weights η1, . . . , ηn and moment map

ΦH(z) =
1
2

n∑
j=1

|zj|2ηj .

1. Equip T ∗(T ) × Cn with the standard symplectic form and the diagonal H
action. Its symplectic quotient by H can be identified with the local model

Y = T ×H Cn × h0,

where h0 denotes the annihilator of h in t∗. Given α ∈ t∗,

ΦY ([t, z, ν]) = α+ ΦH(z) + ν

is a moment map for the left T action. Here, T ∗(T ) = T × t∗ is the cotangent
bundle of T

2. Let the torus T act effectively on a symplectic manifold (M,ω) with a moment
map Φ: M −→ t∗. Given a point x ∈ M with slice representation ρ, there
exists a neighborhood of the orbit T ·x that is equivariantly symplectomorphic
to a neighborhood of the orbit {[t, 0, 0]} in the model Y with α = Φ(x). We
call Y the local model for the orbit.

The following immediate corollary of the local normal form theorem implies an
important special case of Theorem 1:

Proposition 2.2. Let (M,ω,Φ, U) and (M ′, ω′,Φ′, U) be proper Hamiltonian T -
manifolds. Consider a value α ∈ U so that the moment fibers Φ−1(α) and Φ′−1(α)
each consist of a single orbit. Suppose that these orbits have the same slice rep-
resentation. Then there exists a neighborhood V of α over which M and M ′ are
isomorphic.

We will also use the following intimately related global properties:

Theorem 2.3. Every proper Hamiltonian T -manifold (M,ω,Φ, U) has the follow-
ing properties.

Convexity: The moment image, Φ(M), is convex.
Connectedness: The moment fiber, Φ−1(α), is connected for all α ∈ U .
Stability: As a map to Φ(M), the moment map is open.

For the compact case, see [At], [GS1], and [Sj, Theorem 6.5]. For proper moment
maps to open convex sets and a brief history, see [LMTW].

3. Eliminating the symplectic form

Our first task is to free ourselves from the symplectic form. In this section we
show that, instead of working with equivariant symplectomorphisms, it is enough
to work with equivariant diffeomorphisms that respect the orientation and the mo-
ment map. These are much easier to work with, as one can apply techniques from
differential topology.

Definition 3.1. Let a torus T act on oriented manifolds M and M ′ with T -
invariant maps Φ: M −→ t∗ and Φ′ : M ′ −→ t∗. A Φ–T–diffeomorphism
from (M,Φ) to (M,Φ′) is an orientation preserving equivariant diffeomorphism
Ψ: M −→M ′ that satisfies Ψ∗(Φ′) = Φ.
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In this section and the next one we use the following technical condition:

The restriction map H2(M/T,Z) −→ H2(Φ−1(y)/T,Z)
is one-to-one for some regular value y of Φ.(3.2)

In a later paper we will prove that this condition is satisfied by all complexity one
spaces.

Proposition 3.3. Let (M,ω,Φ, U) and (M ′, ω′,Φ′, U) be complexity one spaces
that satisfy Condition (3.2) and have the same Duistermaat-Heckman measure.3

Then there exists an equivariant symplectomorphism from M to M ′ if and only if
there exists a Φ–T–diffeomorphism from M to M ′.

Our proof of Proposition 3.3 uses Moser’s method. The special case T = {e}
is Moser’s theorem that two compact symplectic surfaces with the same area are
symplectomorphic exactly if they are diffeomorphic. Before giving our proof, we
need to recall the definition of basic forms and prove a few technical lemmas.

Let a compact Lie group G act on a manifold M , and let ξM , for ξ ∈ g, be the
generating vector-fields. A differential form β on M is basic if it is G invariant and
horizontal, that is, ιξMβ = 0 for all ξ ∈ g.

Remark 3.4. The basic differential forms on M constitute a differential complex
whose cohomology coincides with the Čech cohomology of the topological quotient,
M/G. See [Kl]. To see this, repeat the standard Čech-de Rham spectral-sequence
argument, as in [BT]. It still works because, by the local normal form for smooth
actions of compact Lie groups, every orbit in M has a neighborhood on which the
complex of basic forms is acyclic.

Lemma 3.5. Let (M,ω,Φ, U) and (M ′, ω′,Φ′, U) be complexity one spaces that
satisfy Condition (3.2) and have the same Duistermaat-Heckman measure. Then
for every Φ–T–diffeomorphism g : M −→M ′ there exists a basic one-form β on M
such that dβ = g∗ω′ − ω.

Proof. Let Ω = g∗ω′−ω. Since ω and g∗ω′ are closed invariant symplectic forms on
M with the same moment map, ι(ξM )Ω = 0 for all ξ ∈ t. Since Ω is also invariant,
it is basic.

By Condition (3.2) it suffices to show that the restriction of Ω to the moment
fiber Φ−1(α) is exact for some regular value α of Φ. Since this restriction is the
pull-back of a differential form Ωred on the orbifold Mred = Φ−1(α)/T , it is enough
to show that Ωred is exact. Since Mred is two dimensional, it is enough to show
that the integral of Ωred over it is zero, i.e., that the integrals of ωred and g∗ω′red are
equal. This follows from the fact that the Duistermaat-Heckman measures for M
and M ′ are the same, because the density functions for these measures are given
by the symplectic volumes of the symplectic quotients; see [DH, §3].

Lemma 3.6. Let an (n − 1)-dimensional abelian group T act effectively on a 2n
dimensional manifold M . Let ω0 and ω1 be invariant symplectic forms that induce
the same orientation and have the same moment map. Then the two-form ωt =
(1− t)ω0 + tω1 is nondegenerate for all 0 ≤ t ≤ 1.

3 In fact, we only need that the Duistermaat-Heckman functions agree at a point. Contrast
with footnote 4.
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Proof. Let x ∈M be a point with stabilizer H ; let h be the dimension of H . By the
local normal form theorem, a neighborhood of the orbit of x with the symplectic
form ω0 is equivariantly symplectomorphic to a neighborhood of the orbit {[t, 0, 0]}
in the model T ×H Ch+1 × h0. The tangent space at x splits into t/h⊕ h0 ⊕Ch+1,
where t/h is the tangent space to the orbit. By the definition of the moment map,
ωt|x is given by a block matrix of the form 0 I 0

−I ∗ ∗
0 ∗ ω̃t


where I is the natural pairing between the vector space t/h and its dual, h0, and
where ω̃0 and ω̃1 are linear symplectic forms on Ch+1 with the same moment map
and the same orientation. It suffices to show that ω̃t is nondegenerate.

Case 1. Suppose that the stabilizer of x is trivial. Then ω̃0 and ω̃1 are non-zero
two-forms on C that induce the same orientation. Hence, ωt is nondegenerate.

Case 2. Suppose that the stabilizer of x is non-trivial. Because each ω̃t is trans-
lation invariant, to prove that it is nondegenerate it is enough to prove it at any
v ∈ Ch+1. We choose v ∈ Ch+1 whose stabilizer is trivial and apply Case 1 to the
H action on Ch+1.

Proof of Proposition 3.3. Let g be any Φ–T –diffeomorphism from M to M ′. By
Lemma 3.6, ωt := (1 − t)ω + tg∗ω′ is nondegenerate for all 0 ≤ t ≤ 1.

By Lemma 3.5, there exists a basic one-form β on M such that dβ = g∗ω′ − ω.
The time dependent vector field Xt determined by iXtωt = −β preserves the level
sets of Φ, because for every ξ ∈ t, 〈dΦ(Xt), ξ〉 = −ωt(ξM , Xt) = −iξMβ = 0.
Moreover, the vector field Xt is invariant because ωt and β are invariant.

Since Φ is proper, Xt integrates to a flow, Ft : M −→ M , with F0 the identity
map. Let gt = g◦Ft. Then Φ′ ◦gt = Φ. Additionally, gt is equivariant, and hence is
a Φ–T –diffeomorphism. As in the standard Moser argument [Mo], the choice of Xt

implies that d
dt (F

∗
t ωt) = 0, hence F ∗1 ω1 = F ∗0 ω0 = ω0. Finally, g1 is an (equivariant)

symplectomorphism because g∗1ω
′ = F ∗1 (g∗ω′) = F ∗1 (ω1) = ω0 = ω.

4. Passing to the quotient

In this section we show that, as long as two complexity one spaces have the
same Duistermaat-Heckman measure, we can reduce the problem of finding a Φ–T –
diffeomorphism between them to the easier problem of finding a Φ-diffeomorphism
between their quotients.

Let a compact torus T act on a manifold N . The quotient N/T can be given
the quotient topology and a natural differential structure, consisting of the sheaf
of real-valued functions whose pullbacks to N are smooth. We say that a map
h : N/T −→ N ′/T is smooth if it pulls back smooth functions to smooth functions;
it is a diffeomorphism if it is smooth and has a smooth inverse. See [Sch2]. If N
and N ′ are oriented, the choice of an orientation on T determines orientations on
the smooth part of N/T and N ′/T . Whether or not a diffeomorphism f : N/T −→
N ′/T preserves orientation is independent of this choice.

While this notion of diffeomorphism is natural, we also need another notion,
which is stronger but less natural.
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Definition 4.1. Let a torus T act on oriented manifolds M and M ′ with T -
invariant maps Φ: M −→ t∗ and Φ′ : M ′ −→ t∗. A Φ-diffeomorphism from
M/T to M ′/T is an orientation preserving diffeomorphism Ψ: M/T −→ M ′/T
such that

1. Ψ preserves the maps to t∗, i.e., Ψ∗Φ′ = Φ.
2. Each of Ψ and Ψ−1 lifts to a Φ–T –diffeomorphism in a neighborhood of each

exceptional orbit.

We now state the main result of this section.

Proposition 4.2. Let (M,ω,Φ, U) and (M ′, ω′,Φ′, U) be complexity one spaces
that satisfy Condition (3.2) and have the same Duistermaat-Heckman measure.4

Then every Φ-diffeomorphism from M/T to M ′/T lifts to Φ–T–diffeomorphism
from M to M ′.

Example 4.3. Consider any closed surface Σ and integer k. Let P −→ Σ be the
principal circle bundle with Euler number k. Let M = P ×S1 S2 be the associated
sphere bundle, with the fiberwise S1 action. Let ω be an invariant symplectic form
on M . (These do exist.) Let h and A denote the areas of the fiber and south pole
section, respectively. Up to translation, the moment map is the height function
on the sphere. The Duistermaat-Heckman function is A + kx for 0 ≤ x ≤ h, and
is zero otherwise. Up to equivariant diffeomorphism, M is determined by k and
the genus of Σ. The Duistermaat-Heckman measure determines k; the quotient
M/S1 = Σ× [0, h] determines the genus.

The first step in proving Proposition 4.2 is to show that on the non-exceptional
orbits every Φ-diffeomorphism lifts locally to a Φ–T –diffeomorphism. We do this
in the next three lemmas.

Lemma 4.4. Every local model for a non-exceptional orbit in a complexity one
space has the form

Y = T ×H Ch × C× h0,(4.5)

where H ⊆ T is a closed h dimensional subgroup which acts on Ch through an
isomorphism with (S1)h.

Proof. Let Y := T ×H Ch+1 × h0 be the local model for a non-exceptional orbit in
Φ−1(α), with h = dimH . Inside the moment fiber Φ−1

Y (α), the set of points with
stabilizer H is

T ×H (Ch+1)H × {0},(4.6)

where (Ch+1)H is the subspace fixed by H . By the definition of exceptional orbit,
this subspace is not trivial. Therefore, the local model becomes (4.5), where the
group H acts trivially on C and acts on Ch through an inclusion into (S1)h. By a
dimension count, this inclusion must be an isomorphism.

The following lemma tells us that neighborhoods of non-exceptional orbits can
be read off from the moment image.

4 In fact, we only need their Duistermaat-Heckman functions to have the same slope; the
functions may differ by a constant. Contrast with footnote 3.
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Lemma 4.7. Let (M,ω,Φ, U) be a complexity one space. Assume that the moment
fiber Φ−1(α) contains a non-exceptional orbit. Then there exists a closed connected
subgroup H ⊆ T with Lie algebra h and a basis {ηj} for the weight lattice in h∗ so
that

1. The group H is the stabilizer and the ηj are the non-zero isotropy weights of
every non-exceptional orbit in Φ−1(α).

2. In a neighborhood of α, the image Φ(M) coincides with the Delzant cone
α+ h0 +

∑
j R+ηj.

Proof. Consider the slice representation at any non-exceptional orbit. By Lemma
4.4 above, the stabilizer H is connected. Since the action is effective, the isotropy
weights ηj generate the weight lattice. The stabilizer and these weights are deter-
mined by the image of the moment map for a local model; this image is the Delzant
cone h0 +

∑
j R+ηj . Finally, by the stability of the moment map, the image of the

moment map is the same for every local model in Φ−1(α).

Example 4.8. Suppose that, near (0, 0), the moment image coincides with the pos-
itive quadrant in R2. Then, at every non-exceptional orbit in Φ−1(0, 0), the space
is locally isomorphic to (S1)2 acting on C3 by (α, β) · (z1, z2, z3) = (αz1, βz2, z3).
In contrast, the (S1)2 action on C3 given by (α, β) · (z1, z2, z3) = (αz1, βz2, αβz3)
has the same moment image, but (0, 0, 0) is an exceptional orbit.

Corollary 4.9. Over the interior of the moment image, the non-exceptional orbits
are precisely the free orbits.

Lemma 4.10. Let Y be a local model for a non-exceptional orbit with a moment
map ΦY : Y −→ t∗. Let W and W ′ be invariant open subsets of Y . Let g : W/T −→
W ′/T be a diffeomorphism which preserves the moment map. Then g lifts to an
equivariant diffeomorphism from W to W ′.

Proof. Assume W = W ′ = Y ; the general case is similar. Since, by Lemma 4.4,
Y = T×HCh×C×h0, we can identify Y/T with h0×(Ch/H)×C. Since g preserves
the moment map, it necessarily has the form

g(ν, [z], ζ) = (ν, [z], ψ(ν, [z], ζ)) ,

for some ψ : h0 × (Ch/H)× C −→ C. Similarly, the inverse g−1 sends (ν, [z], ζ) to
(ν, [z], γ(ν, [z], ζ)), where γ : ho × (Ch/H) × C −→ C. Since both g and its inverse
are smooth, ψ and γ must themselves be smooth.

We define g̃ : Y −→ Y by g̃([t, z, ζ, ν]) = [t, z, ψ(ν, [z], ζ), ν]. Then g̃ is a
smooth equivariant lift of g, and it has a smooth inverse given by [t, z, ζ, ν] 7→
[t, z, γ(ν, [z], ζ), ν].

From Definition 4.1 and Lemma 4.10 we deduce that a Φ-diffeomorphism lifts
to a Φ–T –diffeomorphism locally; we still need to show that, in the proper circum-
stances, a Φ-diffeomorphism that lifts locally also lifts globally. We do this in the
lemma below; the basic idea is that the Duistermaat-Heckman measure determines
the “fibration” M −→M/T .

Lemma 4.11. Let (M,ω,Φ, U) and (M ′, ω′,Φ′, U) be complexity one spaces that
satisfy Condition (3.2) and have the same Duistermaat-Heckman measure. Then
every homeomorphism from M/T to M ′/T that locally lifts to a Φ–T–diffeo-
morphism also lifts globally to a Φ–T–diffeomorphism from M to M ′.
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The proof uses some techniques adapted from Haefliger and Salem, and relies on
the following theorem, which is based on a lemma of Schwarz [HS].

Theorem 4.12 ([HS]). Let a torus T act on a manifold M . Let h : M −→ M be
an equivariant diffeomorphism that sends each orbit to itself. Then there exists a
smooth invariant function f : M −→ T such that h(m) = f(m) ·m for all m ∈M .

Proof of Lemma 4.11. Let T, t, and ` denote the sheaves of smooth functions from
M/T to T , t, and `, respectively. Here, ` denotes the lattice in t. Let t denote the
sheaf of locally constant function to t.

Fix a homeomorphism Ψ: M/T −→M ′/T that lifts locally. Choose a cover U of
M by open invariant sets, and on each Ui ∈ U a Φ–T –diffeomorphism Ψi : Ui −→
M ′ that is a lift of Ψ. By Theorem 4.12, there exist smooth invariant functions
gij : Ui ∩ Uj −→ T such that gij · Ψj = Ψi for all i and j. These functions form
a Čech cocycle g ∈ Č1(U , T ). The map Ψ lifts to a global Φ–T –diffeomorphism
exactly if the corresponding cohomology class [g] ∈ Ȟ1(M/T, T ) is trivial.

The short exact sequence 0 −→ ` −→ t −→ T −→ 0 induces a long exact se-
quence in cohomology. Since there exists a smooth partition of unity on M/T ,
the cohomology Ȟi(M/T, t) vanishes for all i > 0. Therefore, Ȟ1(M/T, T ) =
Ȟ2(M/T, `). Condition (3.2) implies that the restriction map Ȟ2(M/T, `) −→
Ȟ2(Σ, `) is one-to-one, where Σ = Φ−1(α)/T is a regular symplectic quotient.
Therefore, it is enough to show that the image of [g] in Ȟ2(Σ, `) is zero. Since
Ȟ2(Σ, `) is torsion free, it is enough to show that the image of [g] in Ȟ2(Σ, t) van-
ishes. The Čech-de Rham isomorphism for basic forms on Φ−1(α) (see Remark 3.4)
takes this image to the cohomology class of the basic differential two-form whose
restriction to each open set Ui ∩ Φ−1(α) is

±
∑
j

dλjg−1
ij dgij ,(4.13)

(the sign depending on conventions), where {λi} is a partition of unity subordinate
to U ∩ Φ−1(α). We claim that this is exact as a basic form.

Let Θ′ be a connection one-form on Φ′−1(α) ⊂M ′, that is, a T -invariant t-valued
one-form such that Θ′(ξM ′ ) ≡ ξ for all ξ ∈ t. Then Θ =

∑
λiΨi

∗Θ′ is a connection
one-form on Φ−1(α) ⊂ M . The curvature forms dΘ and dΘ′ are basic. Their
integrals over the symplectic quotients are equal to the slopes of the Duistermaat-
Heckman function of M and of M ′ at α [DH]. Since these slopes are the same,
and since Φ−1(α)/T is a two dimensional orbifold, the difference between dΘ and
Ψ∗dΘ′ is exact as a basic form. A simple computation shows that this difference is
equal to (4.13).

We are finally ready to prove our main proposition.

Proof of Proposition 4.2. By definition, a Φ-diffeomorphism g lifts near exceptional
orbits. Let O be a non-exceptional orbit in M . By Definition 4.1, g sends O to a
non-exceptional orbit O′ in M ′. By Lemma 4.7, the local models for O and O′ are
the same. By Lemma 4.10 and the local normal form theorem, g lifts to a Φ–T –
diffeomorphism from a neighborhood of O to a neighborhood of O′. By Lemma
4.11, g lifts globally.
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5. Symplectic representations

By Propositions 3.3 and 4.2, two complexity one spaces M and M ′ with the
same Duistermaat-Heckman measure are equivariantly symplectomorphic if their
quotients M/T and M ′/T are Φ-diffeomorphic (and Condition (3.2) is satisfied).
Therefore, to prove Theorem 1 it is enough to prove that the genus and isotropy
data determine these quotients up to Φ-diffeomorphism (and that Condition (3.2)
is satisfied), at least over small subsets of t∗. Sections 5 through 11 are dedicated
to proving that this is true.

As a first step, in this section we analyze linear symplectic representations. The
key ingredient, which we use repeatedly, is simply the formula for the moment map:
let a compact abelian group H act on Cn as a subgroup of (S1)n with weights
η1, . . . , ηn. Then one moment map is

ΦH(z) =
1
2

n∑
j=1

|zj|2ηj .(5.1)

Lemma 5.2. The moment map ΦH is surjective if and only if there exist ξj > 0
so that

∑
ξjηj = 0.

Proof. Suppose that the moment map ΦH is surjective. Then every element of h∗

is in the non-negative span of the {ηj}. In particular, there exist aj ≥ 0 such that∑
ajηj =

∑
−ηj , that is,

∑
(1 + aj)ηj = 0. Let ξj = 1 + aj .

Conversely, suppose that there exist positive ξj ’s so that
∑
ξjηj = 0. Let α ∈ h∗

be any element. Because the action is effective, the weights ηj span h∗, so there
exist aj, j = 1, . . . , n, such that α =

∑
ajηj . Because

∑
ξjηj = 0, we also have

α =
∑

(aj + tξj)ηj for any t ∈ R. Because ξj > 0 for all j, if we take t large enough
we get that α is in the positive span of the ηj .

Lemma 5.3. The moment map ΦH is not proper if and only if there exist ξj ≥ 0,
not all zero, such that

∑
ξjηj = 0.

Proof. Suppose that
∑
ξjηj = 0 for some ξj ≥ 0, not all zero. Since the moment

fiber Φ−1
H (0) contains the line R ·

(√
ξ1, . . . ,

√
ξk
)
, the map is not proper.

Conversely, suppose that
∑
ξiηi 6= 0 whenever ξi ≥ 0 are not all zero. Then

m = min{|ΦH(z)|}|z|2=1 is positive. Since ΦH is quadratic, |ΦH(z)| ≥ m|z|2 for all
z. Hence, ΦH is proper.

This analysis distinguishes the two possibilities for non-empty moment fibers:

Lemma 5.4. Let (M,ω,Φ, U) be a proper Hamiltonian T -manifold. If a moment
fiber Φ−1(α) is not empty, it consists of either

1. a single orbit, which has a local model with a proper moment map, or
2. infinitely many orbits, each of which has a local model with an improper mo-

ment map, that is, a moment map that is not proper.
If α ∈ interior(Φ(M)), the second case occurs.

Proof. Consider a local model Y = T ×H Cn × h0 with moment map

ΦY ([t, z, ν]) = α+ ΦH(z) + ν.(5.5)

By Lemma 5.3 and equations (5.1) and (5.5), the moment map ΦY is proper if and
only if the moment fiber Φ−1

Y (α) consists of a single orbit, and otherwise Φ−1
Y (α)
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contains infinitely many orbits near {[t, 0, 0]}. The lemma now follows from the
local normal form theorem and the connectedness of moment fibers.

Definition 5.6. Let (M,ω,Φ, U) be a complexity one space. A non-empty moment
fiber Φ−1(α), or the symplectic quotient Φ−1(α)/T , is short if it consists of a single
orbit; otherwise it is tall.

We will use the following corollary of Lemma 5.4.

Lemma 5.7. Let (M,ω,Φ, U) be a proper Hamiltonian T -manifold, and let Φ−1(α)
be a short moment fiber. Then every neighborhood of α contains a smaller neigh-
borhood V such that the quotient Φ−1(V )/T is contractable.

Moreover, if the complexity is one, any regular non-empty symplectic quotient
Φ−1(y)/T is homeomorphic to a 2-sphere, for y ∈ V .

Proof. Let Y = T ×H Cn × h0 be the local model at x ∈ Φ−1(α). By Lemma 5.4,
the moment map ΦY is proper. By Proposition 2.2, the preimages in M and in Y
of a sufficiently small neighborhood V of α are isomorphic. Thus, we may work
purely inside Y . Choose a neighborhood of α of the form V = V1 × V2, where
V1 ⊂ h∗ and V2 ⊂ h0 are convex, and where we identify t∗ = h∗ × h0. Because ΦH
is homogeneous, Φ−1

Y (V )/T = (Φ−1
H (V1)/T )× V2 is contractable.

A regular non-empty symplectic quotient Φ−1(y)/T is a symplectic orbifold. It
can be identified with Φ−1

H (y)/H and hence admits a residual Hamiltonian action
of (S1)n/H . A two dimensional compact symplectic orbifold with a Hamiltonian
circle action is homeomorphic to a 2-sphere by the classification of [LT].

For short moment fibers, Theorem 1 follows from Proposition 2.2. Therefore, we
may focus on tall moment fibers.

So far, we have been allowing actions of any complexity, but we now restrict to
complexity one to define a useful monomial:

Lemma 5.8. Let an h dimensional compact abelian Lie group H act on Ch+1 as
a subgroup of (S1)h+1. There exist a (unique up to sign) weight ξ = (ξ0, . . . , ξh) ∈
Zh+1 such that the following sequence is exact :

1 −→ H
ρ
↪→ (S1)h+1 P−→ S1 −→ 1,(5.9)

where

P (z) =
h∏
j=0

z
ξj
j .(5.10)

We can choose the exponents ξj to all be non-negative if and only if the moment
map is improper. We can choose the ξj to all be positive if and only if the moment
map is surjective.

Proof. Because the quotient (S1)h+1/H is a one dimensional compact connected
Lie group, ξ exists, is non-zero, and is unique up to sign.

Let ηj ∈ h∗ denote the weights for the H-action on Ch+1. Differentiating the
identity P ◦ ρ = 1 from (5.9), we get∑

ξjηj = 0.(5.11)

The result follows from Lemmas 5.3 and 5.2 and the fact that, up to scalar multi-
plication, only one vector ξ satisfies (5.11).
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Definition 5.12. We call P the defining monomial of the representation of H
on Ch+1. We also use this name for the map P : Ch+1 −→ C given by the same
formula, its extension to the local model P : Y = T ×H Ch+1 × h0 −→ C given by
P ([t, z, ν]) = P (z), and the induced map P : Y/T −→ C. We trust that this will
not cause confusion.

Example 5.13. Let S1 act on C2 by λ · (z1, z2) =
(
λz1, λ

−1z2

)
. The moment

map 1
2

(
|z1|2 − |z2|2

)
is not proper but is surjective. Both exponents of the defining

monomial z1z2 are positive.
The moment map for the action given by (λz1, z2) is 1

2 |z1|2, which is neither
proper nor surjective, so only one exponent of the defining monomial z2 is positive.

In contrast, the action given by (λz1, λz2) with the proper moment map
1
2

(
|z1|2 + |z2|2

)
does not have a defining monomial with both exponents non-

negative.

Let an h dimensional compact abelian Lie group H act on Ch+1 as a subgroup
of (S1)h+1 with an improper moment map, and let P (z) =

∏
zj
ξj be the defining

monomial. We may identify H with the subgroup of (S1)h+1 by which it acts. The
stabilizer of z ∈ Cn then consists of those elements λ ∈ (S1)h+1 such that λj = 1
whenever zj 6= 0 and such that P (λ) =

∏
λ
ξj
j = 1.

Remark 5.14. This leads immediately to the following geometric interpretation of
the defining monomial. For each j, ξj is the order of the stabilizer of the jth
coordinate hyperplane in Ch+1 if this stabilizer is finite, and ξj = 0 otherwise.

We can also derive a criterion for exceptional orbits.

Lemma 5.15. Assume that the moment map ΦH is surjective. The orbit of z ∈
Ch+1 is exceptional unless

1. zj 6= 0 for all j, or
2. there exists an index i such that ξi = 1 and zj 6= 0 for all j 6= i.

Proof. Since the moment map is onto, by Corollary 4.9 the H-orbit of z is non-
exceptional if and only if the stabilizer of z in H is trivial.

Example 5.16. Let S1 act on C2 by λ · (z1, z2) = (λz1, λ
−2z2). The defining

monomial is z2
1z2. The orbit of (z1, z2) is exceptional exactly if z1 = 0.

A complexity one linear representation splits into the direct sum of two repre-
sentations, one whose moment map is surjective, and one which is toric.

Lemma 5.17. Let an h dimensional compact abelian Lie group H act on Ch+1

through an inclusion ρ : H ↪→ (S1)h+1 with an improper moment map. After a
permutation of the coordinates, there exist splittings

H = H ′ ×H ′′ and Ch+1 = Ch
′+1 × Ch

′′
,

such that H ′ acts on Ch′+1 as a subgroup of (S1)h
′+1 with a surjective moment map,

and H ′′ acts on Ch′′ through an isomorphism with (S1)h
′′

. The defining monomial
only depends on the Ch′+1 coordinates.

Proof. Consider the defining monomial, P (z) =
∏
z
ξj
j . We can assume that ξj > 0

for 0 ≤ j ≤ h′ and ξh′+j = 0 for 1 ≤ j ≤ h′′, where h′ + h′′ = h. Then P defines a
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monomial P ′ : (S1)h
′+1 −→ S1. Let us identify H with its image in (S1)h+1. Then

H = kerP = kerP ′ × (S1)h
′′
.

Let H ′ = kerP ′ and H ′′ = (S1)h
′′
. By Lemma 5.8, the moment map for H ′ is

onto.

6. The topology of the quotient

In this section we describe the topology of the quotient M/T . This will help us
to show that two such quotients are Φ-diffeomorphic if they have the same genus
and isotropy data. Our main result is the following proposition:

Proposition 6.1. Let (M,ω,Φ, U) be a complexity one space. The subset of M/T
consisting of all tall symplectic quotients is, topologically, a manifold with boundary.
Each tall symplectic quotient is, topologically, a closed connected oriented surface.

The proof uses the following result.

Lemma 6.2. Let T be a torus. Let a closed h dimensional subgroup H ⊆ T act
on Ch+1 as a subgroup of (S1)h+1 with an improper moment map and defining
monomial P (z) =

∏
z
ξj
j . Consider the model Y = T ×H Ch+1 × h0 and the map

ΦY : Y/T −→ t∗ induced by the moment map. The map

F := (ΦY , P ) : Y/T −→ t
∗ × C

is a homeomorphism of Y/T with its image, (image ΦY )× C.

Corollary 6.3. The restriction of the defining monomial to the symplectic quo-
tient, Pα : Φ−1

Y (α)/T −→ C, is a homeomorphism for all α ∈ image ΦY .

Definition 6.4. Let Y = T ×H Ch+1 × h0 be a local model with an improper mo-
ment map. The map F of Lemma 6.2 is called the trivializing homeomorphism
of the model.

Proof of Proposition 6.1. By Lemma 5.4, the local normal form theorem, and
Lemma 6.2, the subset of M/T of all tall symplectic quotients is locally homeo-
morphic to sets of the form (image ΦY )×C. By formulas (5.5) and (5.1), the image
of ΦY is a convex polyhedral cone. Topologically, it is a manifold with boundary.

The fact that each tall symplectic quotient is topological surface follows imme-
diately from Lemma 5.4, the local normal form theorem, and Corollary 6.3. This
surface is closed because the moment map is proper. It is connected by the con-
nectedness of moment fibers. The symplectic structure on the symplectic quotient
induces an orientation on the complement of a discrete set of points (namely, the
exceptional orbits) and hence on the symplectic quotient itself.

Proof of Lemma 6.2. To show that F is a homeomorphism, it is both necessary and
sufficient to prove that the map (ΦH , P ) : Ch+1 −→ (image ΦH)× C is proper and
surjective and that its fibers are exactly the H-orbits.

We begin by assuming that the moment map ΦH is onto h∗. By Lemma 5.8,
this implies that the ξj ’s are positive.

Consider the commuting diagram

Ch+1 (ΦH ,P )−→ h∗ × C
q1 ↓ ↓ q2
Rh+1

+
F−→ h∗ × R+,

(6.5)
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where

q1(z0, . . . , zh) = (|z0|2, . . . , |zh|2), q2(α, ζ) = (α, |ζ|2),

and

F (x0, . . . , xh) = (
1
2

h∑
j=0

xjηj ,

h∏
j=0

x
ξj
j ).

Let W be the boundary of the positive orthant Rh+1
+ . Since ξj > 0 for all j,

the map (x, t) 7→ x + tξ is a homeomorphism from the product W × R+ to the
orthant Rh+1

+ . The map F , composed with this homeomorphism, becomes a map
from W × R+ to h∗ × R+, given by the formula

(x, t) 7→

1
2

h∑
j=0

xjηj ,

h∏
j=0

(xj + tξj)ξj

 ,

where in the first coordinate we used the equality
∑
ηi(xi + tξi) =

∑
ηixi.

The function x 7→
∑
xjηj is a homeomorphism from W onto h∗. For each x ∈W ,

the function t 7→
∏

(xj + tξj)ξj from R+ to R+ is strictly monotone, is zero when
t = 0, and approaches infinity uniformly in x ∈ W as t −→ ∞. Therefore, F is
one-to-one, onto, and proper.

The properness of (ΦH , P ) follows from that of F and q1.
Let us now show that (ΦH , P ) is onto h∗ × C. Since F is onto, for any (α, ζ) ∈

h∗ × C, there exists z ∈ Ch+1 such that ΦH(z) = α and |P (z)|2 = |ζ|2. Choose
b ∈ S1 so that P (z) = bζ. Since the map P : (S1)h+1 −→ S1 is onto, there exists
a ∈ (S1)h+1 such that P (a) = b−1. Then (ΦH , P )(az) = (α, ζ).

Let us now show that the level sets of (ΦH , P ) are the orbits of H . Suppose
that ΦH(z) = ΦH(z′) and P (z) = P (z′) for some z and z′ in Ch+1. Since F is one
to one, there exists λ ∈ (S1)h+1 such that z′ = λz. We must show that λ can be
chosen to be in H . If all the coordinates of z are non-zero, P (λz) = P (z) implies
that P (λ) = 1, which further implies that λ ∈ H , by (5.9).

If one of the coordinates of z, say z0, is zero, then it is enough to show that
the (S1)h+1-orbit of z coincides with the H-orbit of z. By a dimension count, it
is enough to show that the (S1)h+1-stabilizer of z is not contained in H . Because
z0 = 0, the (S1)h+1-stabilizer of z contains the circle (a0, 1, . . . , 1). Since ξ0 6= 0,
the monomial P is not constant on this circle. By exactness of (5.9), this circle is
not contained in H .

For the general case, we may let

Ch+1 = Ch
′+1 × Ch′′ and H = H ′ ×H ′′

be the splitting into a surjective part and a toric part, as described in Lemma 5.17.
Then ΦH(z, w) = (ΦH′ (z),ΦH′′(w)). The map z 7→ (ΦH′ (z), P (z)) is proper, its
fibers are the H ′ orbits, and it is onto (h′)∗×C, as we have shown above. The map
w 7→ ΦH′′(w) is a moment map for a toric action, so it is proper and its level sets
are H ′′ orbits. Thus, the map

(ΦH , P ) : (z, w) 7→ (ΦH′(z),ΦH′′(w), P (z))

is proper, onto (image ΦH)×C, and its level sets are the H-orbits. This is precisely
what we needed in order to deduce that F is a homeomorphism.
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7. The smooth structure on the quotient

In the previous section, we studied the topology of the quotient M/T near tall
fibers. In this section, we study the smooth structure of the quotient.

More specifically, we proved that the trivializing homeomorphism F is in fact a
homeomorphism, and concluded that the quotient M/T is a topological manifold
with corners. We would like to prove that F is a diffeomorphism, and conclude
that the quotient M/T is naturally a smooth manifold with corners.

Unfortunately, near the exceptional orbits, the trivializing homeomorphism F is
not a diffeomorphism; however, it is a diffeomorphism on the complement of the
exceptional orbits. Consequently, on this subset the quotient M/T is naturally a
smooth manifold with corners.

Lemma 7.1. Let T be a torus. Let a closed h dimensional subgroup H of T act on
Ch+1 as a subgroup of (S1)h+1 with an improper moment map. Consider the model
Y = T ×H Ch+1 × h0. Let E ⊂ Y be the union of the exceptional orbits. Then the
restriction of the trivializing homeomorphism

F := (ΦY , P ) : (Y r E)/T −→ t∗ × C

pulls back the sheaf of smooth functions on t∗×C onto the sheaf of smooth functions
on the quotient.

A similar statement holds for the symplectic quotients:

Corollary 7.2. The restriction of the defining monomial

Pα : (Φ−1
Y (α) ∩ (Y r E))/T −→ C

is a diffeomorphism onto its image.

Before proving Lemma 7.1 in its full generality, we prove the following variant,
which implies the lemma for the case that the moment map is onto.

Lemma 7.3. Let a compact abelian group H act on Ch+1 as a codimension one
subgroup of (S1)h+1 with a surjective moment map ΦH . Denote by U the union of
the non-exceptional orbits in Ch+1. For any manifold N , the map

(id,ΦH , P ) : N × (U/H) −→ N × h∗ × C,(7.4)

given by

(n, [z]) 7→ (n,ΦH(z), P (z)),

is a diffeomorphism with its image, i.e., it pulls back the sheaf of smooth functions
on N × h∗ × C onto the sheaf of smooth functions on the quotient.

Proof. Since H acts freely on U , the quotient U/H is naturally a smooth manifold.
The map (7.4) is smooth, and, by Lemma 6.2, it is a homeomorphism onto its
image. Since a smooth homeomorphism between two smooth manifolds of the same
dimension is a diffeomorphism exactly at those points where it is a submersion, it
is enough to show that (dΦH , dP )|z is onto for all non-exceptional z ∈ Ch+1.

To show that (dΦH , dP )|z is onto, it is enough to find ζ ∈ TzCn = Cn such that
dΦH |z(ζ) = dΦH(

√
−1ζ) = 0 and dP |z(ζ) 6= 0. To see this, note that, since H

acts freely, dΦH |z is onto h∗. Additionally, since P is holomorphic, dP |z(ζ) and
dP |z(

√
−1ζ) =

√
−1dP |z(ζ) form a real basis to C.
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Recall that P (z) =
∏
z
ξj
j and ΦH(z) = 1

2

∑
j ηjzjzj. Hence

dΦH |z(ζ) =
1
2

∑
j

ηj(zjζj + ζjzj).

By Lemma 5.15, we only need to consider the following two subcases.

Subcase A: all the coordinates of z are non-zero. In this case,

dP |z (ζ) = P (z)
∑
j

ξj
zj
ζj .

Let ζj =
ξj
zj

for 1 ≤ j ≤ n. Then

dΦH |z(ζ) =
1
2

∑
ηj

(
zj
ξj
zj

+
ξj
zj
zj

)
=

1
2

∑
ηj (ξj + ξj) = 0

by (5.11), and

dΦH(
√
−1ζ) =

1
2

∑
ηj

(
zj

(
−
√
−1

ξj
zj

)
+
√
−1

ξj
zj
zj

)
=

1
2

∑
ηj(−

√
−1 ξj +

√
−1 ξj) = 0,

whereas

dP |z(ζ) = P (z)
∑
j

ξj
zj

ξj
zj
6= 0.

Subcase B: one of the coordinates of z, say, z1, is zero, ξ1 = 1, and zj 6= 0 for all
j 6= 1. In this case,

dP |z(ζ) =

∏
j 6=1

z
ξj
j

 ζ1.

Let ζ1 = 1 and ζj = 0 for all j 6= 1. Then

dΦH |z(ζ) =
1
2
η1(z1 + z1) = 0,

and

dΦH |z(
√
−1ζ) =

1
2
η1(−

√
−1 z1 +

√
−1 z1) = 0,

whereas

dP |z(ζ) =

∏
j 6=1

z
ξj
j

 6= 0.

Proof of Lemma 7.1. Let Ch+1 = Ch
′+1 × Ch′′ and H = H ′ ×H ′′ be the splitting

into a surjective part and a toric part, as described in Lemma 5.17. With this
splitting, the local model is

Y = T ×H′ Ch
′+1 ×H′′ Ch

′′
× h

0,
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and its quotient is

Y/T = (Ch
′+1/H ′)× (Ch

′′
/H ′′)× h0.

The union of the non-exceptional orbits in this quotient is

(U ′/H ′)× (Ch
′′
/H ′′)× h0,(7.5)

where U ′ is the union of the free orbits in Ch
′+1. Under the identification t∗ =

(h′)∗ × (h′′)∗ × h0, the trivializing homeomorphism F on (7.5) is

F ([z′], [z′′], ν) = (ΦH′(z′),ΦH′′(z′′), ν, P (z′)),

where P is the defining monomial.
Lemma 7.3 implies that the map

([z′], [z′′], ν) 7→ (ΦH′ (z′), [z′′], ν, P (z′))

pulls back the sheaf of smooth functions on (h′)∗ × (Ch
′′
/H ′′) × h0 × C onto the

sheaf of smooth functions on (U ′/H ′)× (Ch′′/H ′′)× h0. Therefore, it is enough to
show that the map

(α, [z′′], ν, ζ) 7→ (α,ΦH′′(z′′), ν, ζ)(7.6)

pulls back the sheaf of smooth functions on (h′)∗ × (h′′)∗ × h0 × C onto the sheaf
of smooth functions on (h′)∗ × (Ch′′/H ′′)× h0 × C.

By a theorem of Schwartz [Sch1], any invariant smooth function can be expressed
as a smooth function of real invariant polynomials. Since H ′′ acts on Ch′′ through
an isomorphism with (S1)h

′′
, the ring of H ′′-invariant polynomials in (α, z′′, ν, ζ)

is generated by the coordinates of α and ν, the real and imaginary parts of ζ, and
|z1|2, . . . , |zh′′ |2. Finally, note that

ΦH′′(z1, . . . , zh′′) = A(|z1|2, . . . , |zh′′ |2),

where A : Rh′′ −→ (h′′)∗ is a linear isomorphism. Hence, every smooth invariant
function is the pullback via (7.6) of a smooth function.

8. Grommets

All we have left to show is that the genus and isotropy data determine M/T
up to Φ-diffeomorphism. Roughly speaking, if the defining homeomorphism were a
diffeomorphism, we could finish the proof in four paragraphs:

Assume (usually falsely) that the defining homeomorphism is a
diffeomorphism. Then M/T is a manifold with corners and the
map Φ induced by the moment map is a submersion, in the sense
that M/T is locally diffeomorphic to Φ(M)× C.

Because Φ is a proper submersion, there is a diffeomorphism
from Φ−1(V )/T to (Φ(M) ∩ V ) × (Φ−1(α)/T ) for some neighbor-
hood V of α. This diffeomorphism can be chosen to take excep-
tional orbits to exceptional orbits.

The symplectic quotient Σ = Φ−1(α)/T is an oriented 2-mani-
fold, with marked points given by the exceptional orbits. The genus
and isotropy data determine Σ up to a diffeomorphism which takes
marked points to marked points with the same isotropy data.

Therefore, they determine Φ−1(V )/T up to Φ-diffeomorphism.
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Unfortunately, the above argument fails near the exceptional orbits. Never-
theless, on the complement of the exceptional orbits we will follow this argument
precisely. Near the exceptional orbits, we will follow the same basic pattern, but we
will not demand that our maps be diffeomorphisms. Instead, we will fix an identi-
fication with our local model near each exceptional orbit, and use this to restrict
to a well behaved class of maps.

Definition 8.1. Let (M,ω,Φ, U) be a complexity one space. A grommet is a
Φ–T –diffeomorphism ψ : D −→ M from an invariant open subset D of a local
model Y = T ×H Cn × h0 onto an open subset of M .5

We think of this as attaching a grommet to the fabric of the manifold at every
point where the orbit is exceptional. For an ordinary grommet,6 the fabric can flow
however it wants away from the grommet, but at the grommet it can only spin.
Grommets are designed to allow all the necessary freedom of movement but prevent
the fabric from ripping at the points of stress.

Similarly, in Sections 9, 10, 11, and subsequent papers we consider maps that
are arbitrary diffeomorphisms away from the grommets but are “rigid” near the
grommets. This gives enough freedom so that we can approximate any map, but
we don’t need to really understand what happens at the difficult points where the
orbits are exceptional.

We will need grommets that are sufficiently large, in the following sense:

Definition 8.2. Let Y be a local model with an improper moment map. The
exceptional sheet is the subset

S =
{

[t, z, ν] ∈ T ×H Cn × h0 | P (z) = 0
}
.

Not every orbit in S is exceptional. However, by Lemmas 5.15 and 5.17, every
exceptional orbit is contained in S.

Definition 8.3. Let (M,ω,Φ, U) be a complexity one space. Let ψ : D −→ M
be a grommet whose domain D is a subset of a local model Y with an improper
moment map ΦY . The grommet is wide if D contains that part of the exceptional
sheet that lies over U , i.e., (Φ−1

Y (U) ∩ S) ⊂ D.

Locally, we will always be able to find such grommets:

Lemma 8.4. Let (M,ω,Φ, U) be a complexity one space, and let Φ−1(α) be a tall
moment fiber. Denote the exceptional orbits in Φ−1(α) by {Ej}.

After replacing M by the preimage of some neighborhood of α in U , there exist
wide grommets ψj : Dj −→M such that ψj({[t, 0, 0]}) = Ej and the images ψj(Dj)
have pairwise disjoint closures.

Proof. By Lemma 5.4, for every exceptional orbit Ej over α, the corresponding
local model has an improper moment map, Φj : Yj −→ t∗. By the local normal form
theorem, we may choose a grommet ψj : Dj −→M such that ψj({[t, 0, 0]}) = Ej .

By Lemma 6.2 and Definition 8.2, the moment map Φj restricts to a homeomor-
phism of the exceptional sheet Sj ⊂ Yj with the image of Φj . Hence there exists a
neighborhood Wj of α such that Sj ∩Dj = Sj ∩ Φ−1

j (Wj).

5 The domain D need not contain the orbit {[t, 0, 0]}.
6Grommet: 1: a flexible loop that serves as a fastening, support, or reinforcement. 2: an

eyelet of firm material to strengthen or protect an opening or to insulate or protect something
passed through it. (See [MW].)
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Let W =
⋂
Wj , and replace M by M ∩Φ−1(W ) and Dj by Dj ∩Φ−1

j (W ). Then,
the grommets ψj are wide and the exceptional sheets ψj(Sj ∩Dj) are closed.

For i 6= j, the intersection ψi(Si ∩ Di) ∩ ψj(Sj ∩ Dj) is a closed subset of M
which does not meet the moment fiber Φ−1(α). Since the moment map is proper,
there exists a neighborhood V ⊂W of α which does not meet the image under the
moment map of any of these intersections.

We now replace M by M ∩Φ−1(V ) and Dj by Dj ∩Φ−1
j (V ). The grommets ψj

are still wide. Also, the exceptional sheets ψj(Sj ∩Dj) are then closed and disjoint,
so we can shrink each Dj to a smaller neighborhood of Sj ∩ Dj to obtain wide
grommets whose images have pairwise disjoint closures.

9. Flattening the quotient

Following the pattern explained in the beginning of the previous section, the ideal
next step would be to find a diffeomorphism from the quotient Φ−1(V )/T to the
product (Φ(M)∩V )× (Φ−1(α)/T ) for some neighborhood V of α. Instead, we now
find a homeomorphism between these spaces. Away from the exceptional orbits,
this homeomorphism will be a diffeomorphism; near the exceptional orbits, it will
be determined by the grommets. Such a homeomorphism is called a flattening; a
precise definition is given below. The main result of this section is that flattenings
always exist locally. Our proof is a modification of the standard proof that a proper
submersion is a fiber bundle.

We begin by defining a flattening for a local model. Let T be a torus, and let
a closed subgroup H ⊆ T act on Cn as a codimension one subgroup of (S1)n with
an improper moment map. Consider the model Y = T ×H Cn × h0, with moment
map ΦY : Y −→ t∗.

Definition 9.1. The standard flattening of Y is the map

δ : Y/T −→ (image ΦY )×
(
Φ−1
Y (α)/T

)
given by

δ :=
(

ΦY ,
(
Pα
)−1 ◦ P

)
.

The standard flattening δ is well-defined and is a homeomorphism by Lemma
6.2 and Corollary 6.3. By Lemma 7.1 and Corollary 7.2, it is also a diffeomorphism
of (Y r S)/T with its image. Here S is the exceptional sheet; see Definition 8.2.

We are now ready to define the flattening of a complexity one space.

Definition 9.2. Let (M,ω,Φ, U) be a complexity one space, and let Φ−1(α) be
a tall moment fiber. A flattening of the space about α consists of the following
data:

1. A homeomorphism

δ : M/T −→ (image Φ)× (Φ−1(α)/T )(9.3)

whose first coordinate is induced by the moment map.
2. For each exceptional orbit Ej in Φ−1(α), a wide grommet ψj : Dj −→M such

that ψj({[t, 0, 0]}) = Ej .

We require that the following two conditions be satisfied:
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1. The restriction of δ to the complement of the exceptional sheets,

δ : M/T r
⊔
j

ψj(Sj ∩Dj)/T −→ (image Φ)× (Φ−1(α)r
⊔
j

Ej)/T,

must be a diffeomorphism, in the sense discussed in the second paragraph of
section 4.

2. Additionally, near the exceptional sheets δ must be given by the standard
flattenings of the local models. More precisely, the following diagram must
commute:

Dj/T
δj−→ t∗ × ((Φ−1

j (α) ∩Dj)/T )
↓ ψj ↓ (id,ψj)

M/T
δ−→ t∗ × (Φ−1(α)/T ),

(9.4)

where Φj is the moment map on the corresponding local model Yj ⊃ Dj, where
δj : Yj/T −→ (image Φj)× (Φ−1

j (α)/T ) denotes the standard flattening of Yj ,
and where ψj : Dj/T −→M/T is induced by the grommet. In particular, we
require that the diagram be well defined, i.e., that the image δj(Dj/T ) be
contained in t∗ × ((Φ−1

j (α) ∩Dj)/T ).

The main result of this section is that flattenings always exist locally:

Proposition 9.5. Let (M,ω,Φ, U) be a complexity one space, and let Φ−1(α) be a
tall moment fiber. Then there exists a neighborhood V of α contained in U whose
preimage, Φ−1(V ), admits a flattening about α.

We will prove this proposition after giving a few corollaries.

Corollary 9.6. Let (M,ω,Φ, U) be a complexity one space. Let M0 be the union of
the tall moment fibers and ∆0 = Φ(M0). Then the map M0/T −→ ∆0 induced by
the moment map is, topologically, a surface bundle: each α ∈ ∆0 has a neighborhood
V whose preimage is homeomorphic to (V ∩ ∆0) × Σ, where Σ is a surface, in a
manner that respects the moment map.

This surface bundle plays an important role in the global classification of com-
plexity one spaces, which will be given in subsequent papers.

Since the set ∆0 of points in U whose moment fiber is tall is connected by Lemma
5.4, we have the following result:

Corollary 9.7. Let (M,ω,Φ, U) be a complexity one space. Then all the tall sym-
plectic quotients Φ−1(α)/T have the same genus. Thus, the genus of a complexity
one space (see section 1) is well-defined.

Remark 9.8. This corollary was first proved by Dusa McDuff [McD], for dimM = 4.
It follows from the fact that, as one crosses a singular value of the moment map,
the symplectic quotients change by blowups and blowdowns: in real dimension
2, blowups and blowdowns don’t change the topology. See [GS2] for the case of
quasi-free actions. A generalization of Corollary 9.7, to arithmetic genus, appears
in [MS].

Since Φ(M) is convex, we also have the following result.



4852 YAEL KARSHON AND SUSAN TOLMAN

Corollary 9.9. Let (M,ω,Φ, U) be a complexity one space, and let Φ−1(α) be a
tall moment fiber. Then for every sufficiently small convex neighborhood V of α,
the restriction map

H∗(Φ−1(V )/T ) −→ H∗(Φ−1(y)/T )

is an isomorphism for all y ∈ V ∩Φ(M). In particular, Φ−1(V ) satisfies Condition
(3.2).

Proof of Proposition 9.5. Let ψj : Dj −→M be wide grommets such that

ψj({[t, 0, 0]}) = Ej

are the exceptional orbits in the moment fiber Φ−1(α) and such that the images
ψj(Dj) have disjoint closures in M . These grommets exist by Lemma 8.4. This is
not ruined when we further restrict to a smaller neighborhood of α.

Recall that the standard flattening of the local model Yj is

δj = (Φj , gj) : Yj/T −→ (image Φj)× (Φ−1
j (α)/T )

where

gj = (P j,α)−1 ◦ P j .
Replace Dj/T by its intersection with g−1

j ((Φ−1
j (α)∩Dj)/T ). Then the restriction

δj : Dj/T −→ (image Φj)× ((Φ−1
j (α) ∩Dj)/T )

is well defined. After this, the grommets determine a unique map δ on the images
of Dj/T in M/T such that the following diagram commutes:

Dj/T
δj−→ t∗ × ((Φ−1

j (α) ∩Dj)/T )
↓ ψj ↓ (id,ψj)⊔

j ψj(Dj/T ) δ−→ t∗ × (Φ−1(α)/T ).

(9.10)

We need to extend δ to the rest of M/T , perhaps after shrinking the Dj’s to smaller
neighborhoods of Sj ∩Φ−1

j (U).
Using the stability of the moment map, Lemma 7.1 implies that on the comple-

ment of the exceptional sheets in the quotient M/T , the map

Φ: M/T r
⊔
j

ψj(Sj ∩Dj)/T −→ (image Φ)

induced by the moment map is a submersion. Namely, for each point [m] in the
domain of this map there exists a neighborhood W of Φ(m) in t∗ such that a
neighborhood of [m] is diffeomorphic to the product of a disk with W ∩ (image Φ)
with the map Φ being the projection map.

The partial flattening (9.10) determines an Ehresmann connection for this sub-
mersion, defined on the open subset

⊔
j ψj(Dj r Sj)/T : we declare the horizontal

tangent vectors to be those whose push-forward by δ is tangent to the sheets {q}×t∗

for q ∈ Φ−1(α)/T .
We extend this to an Ehresmann connection on the entire complement of the

exceptional sheets, M/T r
⊔
j ψj(Sj ∩Dj)/T , perhaps after shrinking the Dj ’s; this

is easily done with a partition of unity. Then for a point p in

M/T r
⊔
j

ψj(Sj ∩Dj)/T,
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any path γ in U which starts at Φ(p) can be lifted to a horizontal path in M/T r⊔
j ψj(Sj ∩Dj)/T .
We proceed as in the proof of Ehresmann’s lemma. Let us assume that α = 0

and that U is a ball centered at 0. We can choose coordinates on t∗ such that the
image of Φ becomes

(image Φ) = U ∩ (Rk × Rl+) , k + l = m = dim t∗.

(This is possible by Lemma 4.7.) Denote by v1, . . . , vm the standard vector fields
on t∗ that are parallel to the coordinate axes, let ṽ1, . . . , ṽm be their horizontal
liftings to M/T r

⊔
j ψj(Sj ∩Dj)/T , and let f tj , for i = 1, . . . ,m and t ∈ R, be the

flows which the ṽi generate. For p ∈M/T , define

δ(p) = (Φ(p), g(p))

where, if (t1, . . . , tm) are the coordinates of p, then g(p) ∈ Φ−1(α)/T is given by
g(p) = f−t11 · · · f−tmm (p).

10. The associated surface

Let us recall the next step from the pattern that we outlined in the beginning
of section 8. We would like to claim that the symplectic quotient Σ = Φ−1(α)/T
is a smooth compact oriented surface, and hence argue that it is determined up
to diffeomorphism by its genus and isotropy data. On the complement of the
exceptional orbits, Σ is naturally a smooth oriented surface. Near the exceptional
orbits, it is not. However, we can give it a smooth structure using the grommets
on M . We can then show that it is still determined by its genus and isotropy data,
up to a map which is a diffeomorphism away from the marked points, and strictly
determined by the grommets near them.

On a surface, a grommet is simply a choice of a coordinate chart for a marked
point. We give it this name to remind ourselves that we are going to fix it once
and for all and then use it to restrict to maps which behave nicely near the marked
point.

Definition 10.1. Let Σ be a smooth oriented two dimensional manifold. A grom-
met at a point q ∈ Σ is a diffeomorphism ϕ : B −→ Σ from a neighborhood B of
the origin in C onto an open subset of Σ, such that ϕ sends the origin 0 to the
point q.

Definition 10.2. Let Σ and Σ′ be closed oriented surfaces with labeled marked
points and with grommets at these points. (See Definition 10.1.) An orientation
preserving diffeomorphism g : Σ −→ Σ′ is rigid if
• it induces a bijection between the marked points in Σ and those in Σ′, and

sends each marked point to a marked point with the same label;
• for each marked point qj ∈ Σ and q′j ∈ Σ′ and corresponding grommets ϕj

and ϕ′j , the composition ϕ′j
−1 ◦ g ◦ϕj coincides with a rotation of C on some

neighborhood of 0.

The following result is standard in differential topology; see, e.g., [Ko, II, 5.2].

Lemma 10.3. Let Σ and Σ′ be closed oriented surfaces with labeled marked points
and with grommets at these points. Suppose that Σ and Σ′ have the same genus.
Then any bijection from the marked points in Σ to the marked points in Σ′ which
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sends each marked point to a marked point with the same label extends to a rigid
map from Σ to Σ′.

Remark 10.4. Let (M,ω,Φ, U) be a complexity one space, and let Φ−1(α) be a
tall moment fiber. Any grommet ψ : D −→ M with ψ({[t, 0, 0]}) = O ⊂ Φ−1(α)
induces a homeomorphism ϕ from a subset B ⊂ C into the symplectic quotient
Φ−1(α)/T , such that ϕ(0) = O/T . Explicitly, the map Pα : (D∩Φ−1

Y (α))/T −→ C
given by the defining monomial is a homeomorphism onto its image B, and ϕ :=
ψ ◦P−1

α : B −→ Φ−1(α)/T is a homeomorphism onto its image, where ψ is induced
from ψ.

Definition 10.5. Let (M,ω,Φ, U) be a complexity one space, and let Φ−1(α) be
a tall moment fiber. For each exceptional orbit Ej in Φ−1(α), let ψj : Dj −→ M
be a grommet such that ψj({[t, 0, 0]}) = Ej . The associated marked surface
consists of the following data:

1. The connected oriented topological surface Σ = Φ−1(α)/T .
2. The set of marked points {qj} in Σ that corresponds to the set of exceptional

orbits {Ej} in Φ−1(α).
3. The smooth manifold structure on Σ that is given by the following coordinate

charts. For each exceptional orbit Ej in Φ−1(α), take the given grommet. For
each non-exceptional orbit O in Φ−1(α), choose an arbitrary grommet with
ψ({[t, 0, 0]}) = O. For each grommet, take the induced coordinate chart on
Σ as described in Remark 10.4.

4. At each marked point qj , the grommet on Σ that is given by the coordinate
chart of item (3).

5. For each marked point, a label consisting of the isotropy representation at the
corresponding exceptional orbit.

The image of the grommet ψj does not contain any of the other exceptional
orbits, Ei, i 6= j; this follows from the fact that the model contains at most one
exceptional orbit in each moment fiber (see Lemma 5.15). The fact that the charts
in item (3) give a well defined smooth structure on M/T follows from this and from
the fact that the smooth structures coincide on this complement (see Corollary 7.2).

Example 10.6. For the complexity one space given in Example 4.3, the associated
marked surface is the original surface Σ.

Example 10.7. Let S1 act on C2 by λ · (z1, z2) = (λz1, λ
2z2). The associated

marked surface is S2 with one point labeled by the standard non-trivial action of
Z2 on C, and a coordinate chart around that point.

11. Diffeomorphism between quotients

In this section, we give the last step in our argument. In the pattern out-
lined at the beginning of section 8, we argued that Φ−1(V )/T is Φ-diffeomorphic to
Σ×(Φ(M)∩V ), and Σ is determined up to diffeomorphism by its genus and isotropy
data, therefore, Φ−1(V )/T must itself be determined up to Φ-diffeomorphism by
the same data. We must adapt this argument to the fact that our maps are diffeo-
morphisms only away from the marked points; near the marked points, they behave
well with respect to the grommets. More precisely, we show the following result.

Proposition 11.1. Let (M,ω,Φ, U) and (M ′, ω′,Φ′, U) be complexity one spaces
equipped with flattenings about a point α ∈ U . Let Σ and Σ′ be the associated
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marked surfaces. Then any rigid map h : Σ −→ Σ′ extends to a Φ-diffeomorphism
g : M/T −→M ′/T .

Proof. If there exists a rigid map h : Σ −→ Σ′, the labels on Σ and on Σ′ are the
same, hence, the isotropy data over α are the same in M and M ′. See Definitions
10.2 and 10.5. By Lemma 4.7, image Φ = image Φ′.

Identifying the symplectic quotients Φ−1(α)/T and Φ′−1(α)/T with Σ and Σ′,
respectively, the maps given in the flattenings become

δ : M/T −→ (image Φ)× Σ

and

δ′ : M ′/T −→ (image Φ)× Σ′.

We will show that the map g : M/T −→M ′/T defined by

g := δ′
−1 ◦ (id, h) ◦ δ

is a Φ-diffeomorphism.
The diffeomorphism h determines an identification between exceptional orbits in

Φ−1(α) and Φ′−1(α) with the same isotropy representation. Thus, we can unequiv-
ocally denote by {Yj} the local models for the exceptional orbits over α in both M
and M ′. Let

ψj : Dj −→M and ψ′j : D′j −→M ′

denote the grommets, with Dj ⊆ Yj and D′j ⊆ Yj , and let Ej and E′j denote the
exceptional orbits in Φ−1(α) and in Φ′−1(α).

Our first claim is that the restriction

g :

M r
⊔
j

ψj(Sj ∩Dj)

 /T −→

M ′ r⊔
j

ψ′j(Sj ∩Dj)

 /T

is a Φ-diffeomorphism. This is easy: by the definition of flattening, the restrictions

δ :

M r
⊔
j

ψj(Sj ∩Dj)

 /T −→ (image Φ)×

Φ−1(α)r
⊔
j

Ej

 /T

and

δ′ :

M ′ r⊔
j

ψ′j(Sj ∩Dj)

 /T −→ (image Φ′)×

Φ′−1(α) r
⊔
j

E′j

 /T

are both diffeomorphisms. Moreover, the mapΦ−1(α)r
⊔
j

Ej

 /T −→

Φ′−1(α) r
⊔
j

E′j

 /T

induced by h is a diffeomorphism, since the smooth structures on Φ−1(α)/T and Σ
agree for the exceptional orbits.

It remains to show that g is a Φ-diffeomorphism in a neighborhood of each
exceptional sheet ψj(Sj ∩Dj)/T .
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Let ϕj : Bj −→ Σ and ϕ′j : B′j −→ Σ′ denote the grommets of the associated
surfaces. Since h is rigid, there exist aj ∈ S1 such that ϕ−1

j ◦ h ◦ ϕj is given by
rotation by aj ∈ S1 on some neighborhood of the origin in C.

Let Pj : (S1)nj −→ S1 be the defining monomial for the exceptional orbit Ej .
Since Pj is surjective, we may choose λj ∈ (S1)nj so that Pj(λj) = aj . This defines
an equivariant symplectomorphism from the local model Yj = T ×Hj Cnj × h0

j to
itself as follows:

λj · ([t, z, ν]) = [t, λj · z, ν].(11.2)

This map induces a Φ-diffeomorphism on the quotient, gj : Yj/T −→ Yj/T .
It remains to show only that the gj and g agree in some neighborhood of
ψj(Dj ∩ Sj). Indeed, when we use the trivializing homeomorphism Fj to iden-
tify Yj with (image Φj)× C, the map gj sends (β, z) to (β, ajz).

12. Proof of the Local Uniqueness Theorem

We now have all the ingredients to prove Theorem 1. We recall the statement:

Theorem 1. Let (M,Φ, ω, U) and (M ′,Φ′, ω′, U) be complexity one spaces. As-
sume that their Duistermaat-Heckman measures are the same, and that their genus
and isotropy data over a point α ∈ t∗ are the same. Then there exists a neighborhood
of the point α over which the spaces are isomorphic.

Proof. Since the case that the moment fiber Φ−1(α) is short is covered by Propo-
sition 2.2, we may assume that the moment fiber is tall.

By Proposition 9.5, after possibly restricting to the preimage of a small neigh-
borhood of α, we may assume that M and M ′ are equipped with flattenings. By
assumption, the spaces M and M ′ have the same genus and isotropy data, hence
the associated marked surfaces, Σ and Σ′, have the same genus and labels. By
Lemma 10.3, there exists a rigid map h : Σ −→ Σ′. By Proposition 11.1, there
exists a Φ-diffeomorphism g : M/T −→M ′/T .

Since the spaces have flattenings, Condition (3.2) is satisfied. (See Corollary
9.9.) By assumption, the Duistermaat-Heckman measures of M and M ′ are the
same. Hence, we can apply Propositions 3.3 and 4.2. The first implies that the
map g lifts to a Φ–T –diffeomorphism from M to M ′. The second then guarantees
that there exists Φ–T –symplectomorphism from M to M ′.

13. Proof of uniqueness for centered spaces

In this section we prove that the invariants described in Theorem 2 also separate
centered spaces.

We recall Definition 1.4: a proper Hamiltonian T -manifold (M,ω,Φ, U) is cen-
tered about a point α if α is contained in the closure of the moment image of every
orbit type stratum in M .

We recall the statement of the theorem.

Theorem 2 (Centered Uniqueness). Let (M,Φ, ω, U) and (M ′,Φ′, ω′, U) be com-
plexity one spaces that are centered about α ∈ U . Assume that their Duistermaat-
Heckman measures are the same and that their genus and isotropy data over α ∈ t∗

are the same. Then the spaces are isomorphic.

The proof of Theorem 2 relies on the following “stretching lemma”, which tells
us that a centered space retracts onto a neighborhood of its central fiber.
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Lemma 13.1. Let t∗ be the dual of the Lie algebra of a torus T , U ⊂ t∗ an open
convex neighborhood of a point α ∈ t∗, and V ⊂ U any sub-neighborhood. Then
there exists a convex neighborhood W of α contained in V , and a diffeomorphism
f : U −→ W with the following property: for any proper Hamiltonian T -manifold
(M,ω,Φ, U) that is centered about α, there exists a smooth equivariant orientation
preserving diffeomorphism F : M −→ Φ−1(W ) such that Φ ◦ F = f ◦ Φ.

Proof of Theorem 2.

Case I: the moment fiber is short. By Proposition 2.2, there exists a convex
sub-neighborhood V ⊂ U of α and a Φ–T –diffeomorphism (in fact, symplectomor-
phism) from Φ−1(V ) to Φ′−1(V ). By Lemma 5.7 we can choose V so that Φ−1(V )
and Φ′−1(V ) satisfy Condition (3.2).

By Lemma 13.1, this implies that there exists a Φ–T –diffeomorphism from
(M,ω,Φ) to (M ′, ω′,Φ′), and that M and M ′ themselves also satisfy Condition
(3.2). The Duistermaat-Heckman measures coincide; hence we may apply Proposi-
tion 3.3, which completes the proof.

Case II: the moment fiber is tall. By Proposition 9.5, there exists a convex
sub-neighborhood V ⊂ U of α so that Φ−1(V ) and Φ′−1(V ) are equipped with
flattenings. By assumption, the spaces M and M ′ have the same genus and isotropy
data. Therefore, by Proposition 11.1, there is a Φ-diffeomorphism g : Φ−1(V ) −→
Φ′−1(V ). Since these spaces have flattenings, Condition (3.2) is satisfied. (See
Corollary 9.9.) By assumption, the Duistermaat-Heckman measures of M and
M ′ are the same. Hence, Proposition 4.2 implies that the map g lifts to a Φ–T –
diffeomorphism from Φ−1(V ) to Φ′−1(V ). Proposition 3.3 completes the proof.

Recall that the Euler vector field on a vector space V is X =
∑
xi

∂
∂xi

, where
xi are linear coordinates. This vector field is the generator of the flow x 7→ etx,
thus it is independent of the choice of coordinates.

Lemma 13.2. Let (M,ω,Φ, U) be a proper Hamiltonian T -manifold. Suppose that
U contains the origin 0 of t∗, and that the space is centered about the origin. Then
the Euler vector field X on t∗ lifts to a smooth invariant vector field X̃ on M , that
is, Φ∗(X̃) = X.

Proof. By the local normal form theorem, it is enough to construct the vector field
X̃ on the local models. We can then patch together the pieces by an invariant
partition of unity.

Notice that if a map Φ: V −→ W between vector spaces is homogeneous of
degree m, then Φ∗XV = mXW where XV and XW are the Euler vector fields on V
and W ; this follows from the equality Φ(etv) = emtΦ(v). In particular, the Euler
vector field on W lifts to a vector field on V . Similarly, if Φi : Vi −→Wi, i = 1, 2, are
homogeneous (possibly of different degrees), and Φ = Φ1×Φ2 : V1×V2 −→W1×W2,
then the Euler vector field on W1 ×W2 lifts to a vector field on V1 × V2.

Consider a local model in M , namely, Y = T ×H Cn × h0, with a moment map
ΦY ([t, z, ν]) = α+ΦH(z)+ν. The stratum fixed by H is T ×H (Cn)H×h0. Because
the space is centered about 0, we must have that α ∈ h0. Without loss of generality,
we may assume that α = 0. To lift the Euler vector field on t∗ to a T -invariant
vector field on Y , it is enough to lift it to an H-invariant vector field on Cn × h0.
This is possible by the previous paragraph, because Φ|Cn×h0 is bihomogeneous.
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Proof of Lemma 13.1. Without loss of generality, we may assume that α = 0.
Choose ε > 0 so that an ε-ball about 0 is contained in V . Let gt : [0,∞) −→ [0,∞)
for 0 ≤ t ≤ 1 be an isotopy such that g0 is the identity map, the image of g1 is
contained in [0, ε), gt(x) ≤ x for all x and all t, and gt(x) = x for all x near zero
and all t.

Take ft(v) = gt(|v|) v
|v| for all v ∈ U r {0} and ft(0) = 0; let f = f1.

Let ξt be the vector field on V which generates this isotopy: dft
dt = ξt ◦ ft. Since

ξt vanishes near v = 0, we can write ξt = ψt ·X , where ψt : t∗ −→ R is a smooth
function, and X is the Euler vector field on t∗. By Lemma 13.2, there exists a
smooth invariant vector field X̃ on M such that ψ∗(X̃) = X . So ξ̃t = (ψt ◦Φ) · X̃ is
a smooth invariant vector field on M which is a lifting of ξt. Because Φ is proper,
the vector field ξ̃t generates an isotopy, Ft. Take F = F1.

14. Application to packings of Grassmannians

We are now ready to present our application. First, we recall a definition from
symplectic topology:

Definition 14.1. A symplectic manifold M admits a full packing by k equal
balls if for any ε > 0 there exists a symplectic embedding into M of a disjoint
union of k symplectic balls with equal radii such that the complement of the image
has volume less than ε.

Let Gr+(2,Rn) denote the Grassmannian of all oriented real 2-planes in Rn, to-
gether with an SO(n)-invariant symplectic structure (which is unique up to scalar),
and with the bn2 c dimensional torus action given by restricting the standard action
of SO(n).

Theorem 3. Let M be the Grassmannian Gr+(2,R5) or Gr+(2,R6). There exists
an equivariant symplectic embedding of a disjoint union of two open symplectic
balls with linear actions and with equal radii into M such that the complement of
the image has zero volume. A fortiori, these Grassmannians can be fully packed by
two equal balls.

The following tool is useful:

Lemma 14.2. Let (M,ω,Φ) be a complexity one space over t∗. Let p ∈ M be an
isolated fixed point with isotropy weights η1, . . . , ηn. Assume that the differences
ηi− ηj span a codimension one subspace, H, of t∗. Assume, moreover, that p is the
only fixed point whose moment map image lies on one open side, H+, of H.

Then the preimage Φ−1(H+) is equivariantly symplectomorphic to a ball with a
linear T -action.

Example 14.3. Let (S1)2 act on C3 with weights η1 = (−1,−1), η2 = (0,−1),
and η3 = (1,−1), and moment map Φ(z) = (0, 1) + 1

2

∑
ηj |zj|2. The preimage of

the upper half-plane is the ball of radius
√

2.

Proof of Lemma 14.2. First, we show that Φ−1(H+) is centered. The closure N
of an orbit type stratum in M is itself a compact symplectic manifold with the
restricted T action and moment map. By the convexity theorem, its moment image
is the convex hull of the moment images of its fixed points. Either N contains p, or
its moment image is contained in conv(MT r p), and therefore disjoint from H+.
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Figure 1. Moment images of orbit type strata in the Grassman-
nian Gr+(2,R5)

Let T act on Cn with weights η1, . . . , ηn and with the moment map that sends
(z1, . . . , zn) to Φ(p) +

∑ 1
2ηi|zi|2. Because the differences ηi − ηj span H , the mo-

ment preimage of H+ in Cn is a ball. Hence, this ball is also a centered complexity
one space over H+.

Since both spaces are centered about a = Φ(p), and the preimages of a are both
single orbits with the same isotropy data, by Theorem 2 the spaces are equivariantly
symplectomorphic.

Now consider any semi-simple compact Lie group G, and let T be a maximal
torus. Use the Killing form to identify t and t∗ and embed t∗ in g∗. Recall that
the coadjoint orbit in g∗ through an element x of t∗ is a symplectic manifold, and
the projection to t∗ is a moment map for the T -action. The fixed points for the
T -action are exactly the Weyl group orbit of x in t∗. The isotropy weights at a
fixed point y ∈ t∗ are exactly those roots α ∈ t∗ for which 〈α, y〉 < 0.

Proof of Theorem 3 for Gr+(2,R5). The Lie algebra of the maximal torus of SO(5)
can be identified with R2 with the standard metric. The roots are (±1, 0), (0,±1),
(±1,±1). The Weyl group acts by permuting the coordinates and by flipping their
signs.

The orbit through the point (1, 0) is naturally identified with the Grassmannian
Gr+(2,R5) = SO(5)/ S(O(2) × O(3)). The Weyl group orbit of this point consists
of the points (1, 0), (−1, 0) (0, 1), and (0,−1). The moment image is a diamond;
see Figure 1. The isotropy weights at (1, 0) are (−1, 1), (−1, 0), and (−1,−1). By
Lemma 14.2, the preimage of the half space {(x, y) | x > 0} is a ball as required.
A similar argument shows that the preimage of the opposite half space is again a
ball.

Proof of Theorem 3 for Gr+(2,R6). The Lie algebra of the maximal torus of SO(6)
can be identified with R3 with the standard metric. The Weyl group acts by
permuting the coordinates and by flipping the signs of two coordinates at a time.
The roots are (±1,±1,±1).

The orbit through the point (1, 0, 0) is naturally identified with the Grassman-
nian Gr+(2,R6) = SO(6)/ S(O(2) × O(4)). The Weyl group orbit of this point
consists of the points (±1, 0, 0), (0,±1, 0), and (0, 0,±1). The moment image is an
octahedron. The isotropy weights at (1, 0, 0) are (−1,±1,±1). By Lemma 14.2,
the preimage of the half space {(x, y, z) | x > 0} is a ball as required. A similar
argument shows that the preimage of the opposite half space is again a ball.
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matics 93, Birkhäuser Verlag, Basel, 1991. MR 92m:57046

[BB] A. Bialynicki-Birula, Remarks on the action of an algebraic torus on kn. II, Bull. Acad.
Polon. Sci. Sér. Sci. Math. Astronom. Phys. 15, (1967), 123–125. MR 35:6666

[Bi1] P. Biran, A stability property of symplectic packing, Invent. Math. 136 (1999), 123–155.
MR 2000b:57039

[Bi2] P. Biran, Symplectic packing in dimension 4, GAFA, Geom. Fun. Anal. 7 (1997), 420–
437. MR 98i:57057

[BT] R. Bott and L. W. Tu, Differential forms in algebraic topology, Springer–Verlag, 1982.
MR 83i:57016

[De1] T. Delzant, Hamiltoniens périodiques et images convexes de l’application moment, Bull.
Soc. Math. France 116 (1988), 315–339. MR 90b:58069

[De2] T. Delzant, Classification des actions hamiltoniennes complèment intégrables de rang
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