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ORTHOGONAL, SYMPLECTIC AND
UNITARY REPRESENTATIONS OF FINITE GROUPS

CARL R. RIEHM

Abstract. Let K be a field, G a finite group, and ρ : G → GL(V ) a linear
representation on the finite dimensional K-space V . The principal problems
considered are:

I. Determine (up to equivalence) the nonsingular symmetric, skew sym-
metric and Hermitian forms h : V × V → K which are G-invariant.

II. If h is such a form, enumerate the equivalence classes of representations
of G into the corresponding group (orthogonal, symplectic or unitary group).

III. Determine conditions on G or K under which two orthogonal, sym-
plectic or unitary representations of G are equivalent if and only if they are
equivalent as linear representations and their underlying forms are “isotypi-
cally” equivalent.

This last condition means that the restrictions of the forms to each pair of
corresponding isotypic (homogeneous) KG-module components of their spaces
are equivalent.

We assume throughout that the characteristic of K does not divide 2|G|.
Solutions to I and II are given when K is a finite or local field, or when

K is a global field and the representation is “split”. The results for III are
strongest when the degrees of the absolutely irreducible representations of G
are odd – for example if G has odd order or is an Abelian group, or more
generally has a normal Abelian subgroup of odd index – and, in the case that
K is a local or global field, when the representations are split.

Let G be a finite group of order g, K a field of characteristic relatively prime to
2g with an involution (possibly the identity) a 7→ ā, and ρ : G → GL(V ) a linear
representation of G on the finite dimensional K-vector space V .

The group algebraKG has an involution ¯ extending that onK and inverting the
group elements. Since KG is a semisimple algebra, the involution algebra (KG, ¯)
is a direct sum of simple involution algebras:

(KG, ¯) = (A1, ¯)⊕ (A2, ¯)⊕ · · · ⊕ (Ar, ¯),

where each Ai either is a simple algebra stabilized by the involution or is a “simple
hyperbolic algebra” – a direct sum of two simple algebras interchanged by the
involution. Now let

h : V × V → K
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be a symmetric, skew symmetric or Hermitian form on V (we assume throughout
that all forms are nonsingular) which is G-invariant. The decomposition

V = A1V ⊕A2V ⊕ · · · ⊕ArV

of the KG-module V into “isotypic” components is an orthogonal direct sum. (AiV
is the direct sum of two isotypic components in the usual sense if Ai is hyperbolic.)
The restrictions of h to these isotypic components are called the isotypic components
of h, and two forms are called isotypically equivalent if their corresponding isotypic
components are equivalent.

To say that h is G-invariant is the same as saying that ρ is an orthogonal rep-
resentation G → O(V, h), a symplectic representation G → Sp(V, h) or a unitary
representation G→ U(V, h), according to the type of h. We refer to such represen-
tations as equivariant representations.

Two equivariant representations ρ and ρ′ are (equivariantly) equivalent if there
is an isometry between their forms which is also KG-linear. There are therefore
two obvious necessary conditions for ρ and ρ′ to be equivalent, namely

(i) ρ and ρ′ are equivalent as linear representations, and
(ii) their underlying forms are isotypically equivalent.
This allows us to restrict our attention by and large to the isotypic case, that

is to say, when V = AiV for some i. (In this case we say that V , or the asso-
ciated representation of G, is Ai-isotypic or isotypic of type Ai.) Furthermore if
the involution algebra (Ai, ¯) is hyperbolic, linear equivalence implies equivariant
equivalence, and so we can assume in addition that Ai is a simple algebra.

Problems I, II and III were solved earlier for K algebraically closed or real
closed.

In the algebraically closed case, Frobenius showed that two orthogonal or two
symplectic representations are equivalent if and only if they are equivalent as linear
representations ([13], pp. 184-186); furthermore, Frobenius and Schur characterized
linear representations which are equivalent to an orthogonal or symplectic repre-
sentation (cf. [22], §13.2), that is to say, for which there is a G-invariant symmetric
or skew symmetric form.

In the case of a real closed field K, Fröhlich and McEvett showed ([9], Prop.
4.9) that two unitary (over K(

√
−1)) or orthogonal representations are equivalent

if and only if they are linearly equivalent and their underlying forms are isotypically
equivalent. They also showed that an invariant symmetric or Hermitian form on an
irreducible KG-module is definite. Of course the existence of an invariant positive
definite symmetric or Hermitian form on an arbitrary KG-module V is well known
when K is formally real – one such form is

∑
s∈G f(sx, sy), where f is any positive

definite symmetric or Hermitian form on V .
Recently, G. Nebe has given a method in [16] for calculating, under certain

circumstances, the determinant or the Hasse invariant of an invariant symmetric
form of a representation of a perfect group over a totally real number field, and
in [17] she gives a recursion formula for the invariant symmetric form of certain
irreducible representations of a symmetric group. This form is also determined,
using different methods, in [10] – we give an example in §6.

Another result relevant here is the following (cf. §1.3): If ρ : G → GL(V ) is a
given linear representation, there is at least one G-invariant form h of a given type
(symmetric, skew symmetric or Hermitian) on V if and only if the following hold:
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1. In the symmetric case, lenAAV is even if (A, ¯ ) is a simple symplectic
component of (KG, ¯) of index 1.

2. In the skew symmetric case, lenAAV is even if (A, ¯) is a simple orthogonal
component of (KG, ¯) of index 1.

3. dimK AV = dimK ĀV for all simple algebra components A of KG.
This is an easy consequence of results of McEvett [14].
Before summarizing our results, it is necessary to introduce some additional

notions and notation. Unexplained terms can be found in §1.
Let A be a simple K-algebra, say A ∼= M(n,D) for the division algebra D with

center L. If ¯ is an involution on A stabilizing K, K0 denotes the subfield of
elements of K fixed by the involution, and L0 that of L.

An arbitrary linear representation is called split if it is the sum of absolutely
irreducible representations. It is said to be of odd type if AV = 0 for each simple
summand A of KG which has even degree and which is stable under the canonical
involution. We shall say that G has odd representation type (with respect to K
and its involution) if all nonhyperbolic simple involution components of KG are
quasisplit and of odd degree. This is the case, for example, if G has odd order.

In general, we ignore the case of a unitary representation with respect to a skew
Hermitian form, since any such form is a scalar multiple of an Hermitian form.

Since skew symmetric forms are equivalent if and only if they have the same rank,
symplectic representations are particularly easy to deal with. In particular since a
space V has at most one equivalence class of skew symmetric forms, invariant or
not, problem I is trivial.

Symplectic representations (cf. §2).

II Let A be a simple algebra component of KG, stable under ¯, and let m be a
positive integer.

(A, ¯) orthogonal. Suppose that A has index 1 or that K is finite, real
closed, local or global. Then there is exactly one equivalence class of A-
isotypic symplectic representations G → Sp(V ) of length m (assuming
that there is at least one such symplectic representation – i.e. that m is
even if the index of A is 1).
(A, ¯) symplectic. The equivalence classes of A-isotypic symplectic rep-
resentations G→ Sp(V ) of length m are in bijective correspondence with
the equivalence classes of symmetric bilinear forms over L (respectively
skew Hermitian forms over D) of rank m, if A has index 1 (respectively
> 1).
It follows that the number of equivalence classes of such symplectic rep-
resentations G→ Sp(V ) is

2 if K is finite,
(L∗ : L∗2) resp. 2(L∗ : L∗2) if K is local, A has index 1, and

m = 1 respectively m > 1,
(L∗ : L∗2)− δ1m if K is local and A has index > 1,
1 if K is real closed,
∞ if K is global.

(A, ¯) unitary. The equivalence classes of A-isotypic symplectic represen-
tations G → Sp(V ) of length m are in bijective correspondence with the
skew Hermitian forms of rank m over D.
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Thus the number of equivalence classes of such symplectic representations
G→ Sp(V ) is

1 if K is finite,
2 if K is local,
m+ 1 if K is real closed,
∞ if K is global.

III Let ρ and ρ′ be symplectic representations of G. Suppose that at least one of
the following conditions holds:

1. G is a symmetric group.
2. K is finite.
3. ρ is split.
4. If (A, ¯) is a unitary simple involution component of KG such that
AV 6= 0 under the action provided by ρ, then (A, ¯) is hyperbolic.

Assume in addition that ρ is of odd type in cases 2, 3 and 4; then ρ and ρ′

are equivalent if and only if they are linearly equivalent.

From this we get a conjugacy result:
Let G and G′ two subgroups of Sp(V, h) of order relatively prime to charK such

that either

1. G is a symmetric group, or
2. G and G′ are of odd representation type, and K is either finite or a splitting

field for G.

Then G and G′ are conjugate in Sp(V, h) if and only if they are conjugate in
GL(V ).

For the determinant det(¯) of an involution, see §1.2.

Unitary representations (cf. Theorem 3.1, Theorem 4.1, Corollary 4.4, Theorem
5.2).

K finite.
I, II and III. There is only one equivalence class of Hermitian forms of a
given rank, invariant or not, and two arbitrary (not necessarily isotypic)
unitary representations of G are equivalent if and only if they are linearly
equivalent.

K local.
I and II. Let A be a simple algebra component of KG, stable under ¯, V
an A-module of length m, and h an Hermitian form on V . There is a
G-invariant Hermitian form on V equivalent to h if and only if n is odd
or deth = NL/K(det(¯))m. If h′ is an invariant form, there is exactly
one class of unitary representations G → U(V, h′) if n is odd; if n is
even, there are two.
III. Two unitary representations of G of odd type are equivalent if and
only if they are equivalent as linear representations and their underlying
forms are isotypically equivalent.

K global. Assume that A is a simple component of KG which is split and is
stable under ¯. Let V be an A-module of length m and h an Hermitian form
on V . Let ℘ be the set of real primes of K0 which do not split in K.

I. There is an invariant form on V equivalent to h if and only if the
positive and negative indices of h are divisible by n at each p ∈ ℘ and,
when n is even, det h = (det(¯))m.
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II. Let h′ be an invariant form on V .
(i) If n is odd, there is exactly one equivalence class of unitary rep-
resentations G→ U(V, h′) for which V is A-isotypic.
(ii) If n is even, the equivalence classes of unitary representations
G → U(V, h′) for which V is A-isotypic are in bijective correspon-
dence with those norm classes in K∗0/NK/K0K

∗ which are positive at
each p ∈ ℘.

III. Two split unitary representations of G of odd type are equivalent if
and only if they are equivalent as linear representations and their forms
are isotypically equivalent.

Witt equivalence between symmetric forms is denoted by h ∼W g.

Orthogonal representations (cf. Theorem 3.1, Theorem 4.1, Corollary 4.4, The-
orem 4.9, Theorem 5.3). Let A be a simple algebra component of KG, stable under
¯, and let m be a positive integer.

K finite.
I, II. Let V be an A-isotypic module of length m.

(A, ¯) symplectic. V supports an invariant symmetric form if and only if
m is even. If V does have an invariant symmetric form, every invariant
form is hyperbolic and there is exactly one equivalence class G → O(V )
of A-isotypic orthogonal representations.
(A, ¯) orthogonal. When n is odd, there are invariant forms of both
determinants on V and there is exactly one equivalence class of orthogonal
representations for each of these forms.
When n is even, an invariant form h on V has determinant

NL/K(det(¯))m,

and there are two equivalence classes of orthogonal representations G→
O(V, h).
(A, ¯) unitary. An invariant form on V has determinant

(−disc(L/L0))mn|L
∗
0|/|K

∗|

and supports exactly one equivalence class of orthogonal representations.
III. Let ρ : G → O(V, h) be an orthogonal representation such that BV = 0
for every component (B, ¯) of (KG, ¯) which is orthogonal and of even degree.
If ρ′ is another orthogonal representation on V , then ρ and ρ′ are equivalent
if and only if they are linearly equivalent and their forms are isotypically
equivalent. In particular, if G has odd representation type, two orthogonal
representations are equivalent if and only if they are linearly equivalent and
their forms are isotypically equivalent.
K local. I, II. See Theorems 4.1 and 4.9.
III. Let ρ and ρ′ be orthogonal representations of G of odd type, and assume
that either ρ is split or G is Abelian. Then ρ and ρ′ are equivalent if and only
if they are linearly equivalent and their forms are isotypically equivalent.
K global. Assume that A is split.

(A, ¯) symplectic.
I, II. If h is an invariant symmetric form on the A-isotypic mod-
ule V , it is hyperbolic and the orthogonal representation it affords is
unique up to equivalence.
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(A, ¯) orthogonal.
I. See Theorem 5.3.
II. If h is an invariant symmetric form on the A-isotypic module V ,
there is (up to equivalence) only one orthogonal representation G→
O(V, h) if n is odd, and there are an infinite number of equivalence
classes of orthogonal representations G→ O(V, h) if n is even.

III. Two split orthogonal representations of odd type are equivalent if and only
if they are equivalent as linear representations and their underlying forms are
isotypically equivalent.

The case K local, (A, ¯) orthogonal, D = L 6= K, n odd, and m = 1 is not
completely resolved; its solution depends on the calculation of “trace forms” in the
extension L/K. This is carried out in Theorem 4.9 when K is nondyadic (which
means, given our assumptions on K, that K is not a finite extension of the 2-adic
numbers Q2). The dyadic case is unresolved, but a partial solution (for the trace
form problem) can be found in [6].

The proofs, when V = AV with A simple, are based on the determination of h
in terms of the matrix h0 (cf. §1.2) and the discriminant matrix h̆ of the form h̆
over D which corresponds to ρ under Hermitian Morita equivalence (cf. §1.4). This
computation appears in its simplest form when A is split: then the discriminant
matrix of h is simply n

g (ε0h̆⊗ ht0), where h∗0 = ε0h0.
There is an extensive theory calculating the Witt group of equivariant represen-

tations, even in the integral case – cf. [23], [4]. But this work does not concern
itself with the questions dealt with in this paper.

If K is a global field, we give a proof of the Hasse Principle (Theorem 5.6)
for equivariant representations of finite groups over K. It describes the precise
conditions under which the equivalence of two equivariant representations over a
global field K is implied by their equivalence over all completions of K.

This theorem is well-known in the sense that anyone familiar with the Fröhlich-
McEvett theory [9] and the Hasse Principle for ε-Hermitian forms over division
algebras over global fields (cf. [21], p. 347) is aware that such a result exists. But
to my knowledge, it is not documented in the literature.

The Hasse Principle always holds for unitary representations, but its validity in
the orthogonal and symplectic cases depends on the nature of the representations
as linear representations – see Corollary 5.10.

1. Preliminaries

1.1. Sesquilinear forms over fields and division algebras. If h : V ×V → D
is a form over D, we denote by deth ∈ L∗/NL/L0L

∗ the “norm class” of the reduced
norm nrdB/Lh, where h ∈ B = M(k,D) is the matrix of h with respect to some
basis of V over D and k = dimD V . We interpret NL/L0L

∗ to be = L∗2 if the
involution is the identity on L, i.e. if the involution on D is of the first kind. We
note that deth ∈ L∗0/NL/L0L

∗ if h is Hermitian.
We also define the discriminant of a symmetric bilinear form h (when D = L)

to be disch = (−1)k(k−1)/2 deth, and that of a skew Hermitian form over L to
be disch = det

√
λ0h ∈ L∗0/NL/L0L

∗, where L = L0(
√
λ0). Of course

√
λ0h is an

Hermitian form. We put disch = deth if h is Hermitian.

Lemma 1.1. Let L/K be a finite separable extension such that if the involution on
L is 6= the identity, then it is also 6= the identity on K. Suppose that h : V ×V → L
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is either a nonsingular symmetric bilinear form or a nonsingular Hermitian or skew
Hermitian form of rank k. Then the transfer TrL/Kh : V ×V → K has determinant

det TrL/Kh = (disc(L/K))kNL/K(deth),

where disc(L/K) is the field discriminant. Similarly,

disc TrL/Kh = ((−1)l(l−1)/2disc(L/K))kNL/K(disch),

where l = (L : K). If h is Hermitian, we also have

det TrL/Kh = (disc(L0/K0))kNL0/K0(det h).

A proof for the bilinear case can be found, e.g., in [15], Lemma 2.2, and a similar
proof applies to the Hermitian and skew Hermitian cases if one carries out the
calculation using a basis of L0 over K0.

The following result of Milnor ([15], pp. 89 and 91) is critical in the study of
equivariant representations over local fields:

Lemma 1.2. If L/K is a finite separable extension of local fields, the transfers from
L to K of two inequivalent nonsingular symmetric forms with the same determinant
are inequivalent over K. Similarly, if L has a nonidentity involution which is the
identity on K, the transfers of two inequivalent Hermitian forms from L to K
remain inequivalent, in fact have the same determinant but different Hasse symbols.

Let b = 〈a1, . . . , am〉 be a diagonalization of the symmetric bilinear form b. We
use the definition SK(b) = S(b) =

∏
i<j(ai, aj)K of the Hasse-Witt invariant, where

(ai, aj)K stands for the Brauer class of the quaternion algebra – which we also
denote by (ai, aj)K .

Lemma 1.3. (i) If η ∈ K∗,

S(ηb) = S(b)(η,−1)m(m−1)/2
K (η, det b)m−1

K .

(ii) If b1, . . . , br are symmetric forms over K,

S(b1 ⊥ . . . ⊥ br) =
∏
i

S(bi)
∏
i<j

(det bi, det bj)K .

(iii) If η1, . . . , ηn ∈ K∗,
S(〈det η1b, . . . , det ηnb〉)

= S(〈ηm1 , . . . , ηmn 〉)(det b,−1)n(n−1)/2
K (det b, η1 · · · ηn)m(n−1)

K .

(iv) Let h0 be another symmetric form, say of rank n. Then

S(b⊗ h0) = S(b)nS(h0)m(det b,−1)n(n−1)/2
K (det b, deth0)mn−1

K (deth0,−1)m(m−1)/2
K .

(v) If b is hyperbolic of dimension m = 2k, then

S(b) = (−1,−1)k(k−1)/2
K .

These are either well known or easily checked.
The equivalence theory of forms over finite, real closed, local (non-Archimedean)

and global fields is summarized in the following table. It is derived from [21], p.
347. In it, “1st k.” refers to the involution being of the first kind (cf. §1.2), and
“Hasse” means that the Hasse principle holds.
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Type of form finite real local global
symmetric dim, det dim, sgn dim, det, S Hasse
skew-symmetric dim dim dim dim
Herm/quat.(1st k.) @ dim, sgn dim Hasse
skew-Herm/quat. @ dim dim, det
Herm/field dim dim, sgn dim, det dim, det, sgnp

Herm/quat.(2nd k.) @ @ @ dim, det, sgnp

Table 1.

1.2. Simple involution algebras and representations of finite groups.

Lemma 1.4. The center L of any simple direct summand A of KG is Abelian
over K. And if A is stable under the canonical involution ¯ of KG, L/K0 is also
Abelian.

Proof. If K is a finite field, L/K is of course Abelian, and the same is true for an
arbitrary field K of characteristic 6= 0 by extension of scalars from the finite case.
If the characteristic of K is 0, it is well known that L is a subfield of a cyclotomic
extension of K (cf. [3], §70) – in fact it is generated by the character values of any
absolutely irreducible representation ρ arising from A – and so is Abelian.

Suppose then that A is stable under the involution of KG and that K 6= K0.
Let A1 be the simple direct summand of K0G from which A arises by extension
of scalars. If L1 is the center of A1, K ⊗K0 L1 is the center of K ⊗K0 A1 ⊂ KG.
By [1], Prop. 3, K ⊗K0 L1 is the direct sum of the composites of K and L1 over
K0, and therefore either K ⊗K0 L1 is a field, namely L, or K ⊗K0 L1

∼= L1 ⊕ L1.
In the first case, the group generated by the automorphisms ¯ ⊗ idL1 and idK ⊗ σ
(σ ∈ Gal(L1/K0)) is Abelian and has order 2[L1 : K0] and so is the Galois group
of L/K0. In the second case L1 = L.

By Brauer’s Theorem ([22], p. 24), every representation of G over K is split (i.e.
K is a splitting field of G) if the exponent of G divides the order |µ(K)| of the
group of roots of unity of K, or if it divides the order of the multiplicative group
of the residue class field when K is local.

We note that G has odd representation type if it has odd order or is Abelian,
or more generally if it has a normal Abelian subgroup of odd index. See [22],
Corollary, p. 61, for the case of characteristic 0. The case of prime characteristic
p follows from the fact that any absolutely irreducible representation over a field
of characteristic p which contains a primitive gth root of unity is the reduction
“mod p” of an absolutely irreducible representation in characteristic 0.

The algebra A ∼= M(n,D) is called split if D = K, quasisplit or of (Schur) index
1 if D = L. Otherwise A is “not quasisplit” or it is “of index > 1”. The index of
A is d and the degree of A is nd, where dimLD = d2.

An involution on the simple algebra A is of the first kind if the involution is
the identity on the center of A; otherwise it is of the second kind, or unitary. An
involution of the first kind is orthogonal if its 1-eigenspace has dimension 1

2nd(nd+1)
(where nd is the degree of A) over the center of A; otherwise it is symplectic – in
which case the 1-eigenspace has dimension 1

2nd(nd− 1).
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A hyperbolic involution component of KG is also considered to be of the second
kind.

If the simple algebra A ∼= M(n,D) has an involution, then the division algebra
D has one of the same kind. If D is not a field, it can be chosen to be a symplectic
involution; in this case we denote it by ∗.

If D is a quaternion algebra over K, ∗ will be assumed to be the standard
conjugation on D. In this case D0 denotes the skew conjugate elements, the “pure”
quaternions. If ¯ is an orthogonal involution on D, d̄ = j−1d∗j for j ∈ D0 uniquely
determined up to a nonzero element of K.

Note that if K is a local field, a quaternion division algebra D does not admit
an involution of the second kind ([21], Theorem 2.2 (ii), p. 353).

The symbol a∗ will also denote the “transpose conjugate” of a matrix a ∈
M(n,D), or more generally of a rectangular matrix with entries in D. If A is
identified with M(n,D), there is a matrix h0 ∈ A such that ā = h−1

0 a∗h0, satisfying
h∗0 = ε0h0 for ε0 = ±1; we can and shall suppose that ε0 = 1 if the involution on A
is unitary.

Suppose that the involution ¯ on A is of the first kind. If D = L, the transpose
on A is an orthogonal involution, and ¯ is an orthogonal respectively symplectic
involution if h0 is a symmetric respectively skew symmetric matrix. If D is a
quaternion algebra, then transpose conjugate is a symplectic involution, and the
involution ¯ on A is a symplectic respectively orthogonal involution if h0 is an
Hermitian respectively skew Hermitian matrix (with respect to ∗).

If the involution ¯ on A is orthogonal and A has even degree nd, its determinant
det(¯) ∈ L∗/L∗2 and discriminant disc(¯) = (−1)nd/2 det(¯) are defined. If D = L,
then det(¯) = deth0, and if D is a quaternion algebra, then disc(¯) = nrdA/Lh0.
See [11], Prop. 7.3(2),(3), p. 81.

It is useful to define as well the determinant of an involution of the second kind
on a central simple algebra A of even degree. In this case, with the assumption
ε0 = 1, we define det(¯) = nrdA/Kh0 ∈ L∗0/NL/L0L

∗. It is not difficult to check
that it is well-defined, since A has even degree.

We note that it follows from [14], 2.5, that a simple module V over A supports
a nonsingular Hermitian form respectively skew Hermitian form h : V × V → A
if the simple involution algebra (A, ¯) is orthogonal respectively symplectic – and
if A is has index > 1 or if (A, ¯) is unitary, it supports both. In the exceptional
case when A has index 1 and the involution is of the first kind, it supports only an
Hermitian form if the involution is orthogonal, and only a skew Hermitian form if
the involution is symplectic.

Every orthogonally indecomposable nonsingular Hermitian or skew Hermitian
space (V, h) over a simple hyperbolic involution algebra is hyperbolic (of length 2),
and is uniquely determined up to equivalence.

Now let K be a real closed field, and denote by H the unique quaternion division
algebra (−1,−1)K over K. It is known that all simple components of KG are stable
under the canonical involution (which is the identity on K), and that for each of
the three possibilities A ∼= M(n,D), D = K, K(

√
−1), H, the induced involution

is conjugate transpose; it is orthogonal, unitary or symplectic respectively. See for
example [9] or [21], 8.13.3, p. 323.

1.3. Reformulation of the equivalence of equivariant representations. The
canonical trace TrKG/K = Tr : KG→ K is the K-linear functional
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Tr(
∑
s∈G

αss) = α1.

It is clear that this is the same thing as 1
gTrreg, where Trreg is the “algebra trace”

arising from the regular representation.
If A1 is a separable K-algebra, recall that trd = trdA1/K : A1 → K denotes the

reduced trace.

Theorem 1.5. If A ∼= M(n,D) is an arbitrary simple component of KG, then for
all a ∈ A

TrKG/Ka =
nd

g
trdA/Ka.(1.1)

Proof. The regular trace of A is the restriction of the regular trace of KG, and is
also nd trdA/K .

Let h : V ×V → K be a (nonsingular, as always) ε-Hermitian form with ε = ±1 –
if the involution on K is the identity, we interpret this to mean that h is symmetric
or skew symmetric – and ρ : G→ I(V, h) an equivariant representation, I = O,Sp,
or U. The equivalence class of ρ is determined by the equivalence class of the
nonsingular ε-Hermitian form

ĥ : V × V → KG, ĥ(u, v) =
∑
s

h(ρ(s−1)u, v)s(1.2)

over the group algebra KG with the canonical involution (cf. [8], §7). Note that

TrKG/K ◦ ĥ = h,(1.3)

and that ĥ is the unique ε-Hermitian form on V satisfying (1.3).
Let (KG, ¯) =

⊕r
i=1(Ai, ¯) be the decomposition of (KG, ¯) into simple involu-

tion components. The associated orthogonal decomposition

V = A1V ⊥ A2V ⊥ · · · ⊥ ArV

with respect to h is also an orthogonal decomposition with respect to the form ĥ.
The restriction ĥi of ĥ to the isotypic component AiV takes its values in Ai and so
can be considered as an ε-Hermitian form ĥi : AiV ×AiV → Ai. Since any isomor-
phism of KG-modules is an isomorphism on corresponding isotypic components,
the equivalence class of the equivariant representation ρ is therefore determined by
the equivalence classes of the ĥi. If Ai is a simple hyperbolic involution algebra,
the equivalence class of ĥi is completely determined by the length of the Ai-module
AiV (see [14], §2, especially 2.3), and hence by the equivalence class of ρ as a linear
representation.

This means that ρ is determined up to equivalence by its linear equivalence class
and its isotypic subrepresentations G → I(AiV ), where Ai runs over the simple
algebras fixed by the involution of KG. Suppose that these simple algebras are
A1, . . . , Ak.

We can now apply the Hermitian Morita theory ([8], §8, or §1.4 of this paper) to
ĥ1, . . . , ĥk. This yields forms h̆1, . . . , h̆k, where h̆i is a symmetric, skew symmetric,
Hermitian or skew Hermitian form over the division algebra which is Brauer equiva-
lent to Ai. Once again the equivalence classes of the h̆i characterize the equivalence
class of ρ. Moreover, if ρ is orthogonal respectively symplectic and Ai has index 1
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with ¯ symplectic respectively orthogonal, then h̆i is a skew symmetric form and
so is completely determined by dimK AiV . Thus we can ignore such Ai as well.

Therefore let A1, . . . , Al be the simple summands of KG such that Āi = Ai and
such that if ρ is orthogonal respectively symplectic and Ai has index 1, then the
involution ¯ on Ai is orthogonal respectively symplectic. Then the equivalence class
of ρ is determined by its equivalence class as a linear representation and by the
equivalence classes of h̆1, . . . , h̆l.

Another simple consequence of this procedure is that if ρ : G → GL(V ) is a
given linear representation, there is always a G-invariant form h of a prescribed
type on V if and only if the following holds for each simple component A of KG:

1. If A is stable under the involution of KG and has index 1, then lenAAV is
even if either

(i) (A, ¯) is symplectic and h is to be symmetric, or
(ii) (A, ¯) is orthogonal and h is to be skew symmetric.
2. dimK AV = dimK ĀV .
Condition 1 arises from the fact that if D is a division algebra with an involution,

there is a nonsingular form h̆ of any type (symmetric, skew symmetric,. . . ) and any
given rank m ≥ 1 over D unless D is a field with trivial involution, h̆ is skew
symmetric, and m is odd. Condition 2 results from the fact that any nonsingular
ε-Hermitian form over a hyperbolic algebra is hyperbolic (§2, [14]).

1.4. Explicit Hermitian Morita theory and transfer theory. Suppose that
D is a division algebra over K, with an involution ∗ which is compatible with the
involution on K. Let A = M(n,D), and denote the conjugate transpose of a ∈ A
by a∗. Let h0 ∈ GL(n,D) be ε0-Hermitian, h∗0 = ε0h0 with ε0 = ±1. Suppose that
A is given the involution ā = h−1

0 a∗h0.
Denote by Dk×l the k × l matrices over D, and let ∗ again stand for conjugate

transpose Dk×l → Dl×k. Dn×k is a semisimple left module over A of length k, and
every (finitely generated) left module over A is of this form, up to isomorphism.

Lemma 1.6. (a) The map

Dm×k → HomA(Dn×m, Dn×k)

given by right multiplication is an isomorphism of M(k,D)-modules.
(b) Multiplication

Dm×n ⊗A Dn×k → Dm×k

is an isomorphism of (M(m,D),M(k,D))-bimodules.

Proof. (a) follows at once by looking at the homomorphisms Dn×m → Dn×k as
matrices with respect to the direct sum decompositions of Dn×m and Dn×k into
their “columns”.

(b) Every element of D1×n ⊗A Dn×1 is of the form e11 ⊗ e′11d, where d ∈ D
and e11 and e′11 are matrix units. It follows that D1×n⊗ADn×1 is a 1-dimensional
vector space over D, and then (b) follows easily.

Now suppose that V = Dn×k. By the foregoing lemma, V ∗ = HomA(V,A) =
Dk×n. Let f : V × V → (A, ¯) be a sesquilinear form, and consider fr : V →
V ∗, fr(v) = fr(·, v). If we compose this map with the map V ∗ → V given by
x 7→ h−1

0 x∗, the result is an A-linear homomorphism V → V , and so is given by
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right multiplication by a matrix b ∈ Dk×k. It follows that f(·, v) = ε0b
∗v∗h0, and

so if we set ε0b∗ = f ∈M(k,D), we get the formula

f(u, v) = ufv∗h0.(1.4)

Thus f is the generalization of the notion of “discriminant matrix” (sometimes
also called the “Gram matrix”) of a sesquilinear form over a division ring. It is of
fundamental importance in this paper.

We note that f is nonsingular if and only f is an invertible matrix, and f is
ε-Hermitian if and only if f∗ = ε0εf .

We give next a matrix version of Hermitian Morita theory for A = M(n,D). We
refer to Chapter 4 of [20] for the “ordinary” Morita theory (between categories of
modules) and to §8 of [8] for the Hermitian Morita theory.

Let B = M(m,D). We have perfect pairings

V × V ∗ → A, V ∗ × V → B,

given respectively by

〈v, x〉 = vx, [x, v] = xv,

satisfying the “associative laws”

〈v, x〉w = v[x,w], x〈v, y〉 = [x, v]y.

These data constitute a Morita context which provides a Morita equivalence be-
tween the categories AM of left A-modules and BM of left B-modules. The equiv-
alence functors are U  V ∗ ⊗A U of AM into BM and X  V ⊗B X in the
opposite direction.

If we restrict the Morita equivalence to the “skeletal” subcategory of AM of
modules of the form Dn×k, it follows from Lemma 1.6, (b), that the resulting
functor is isomorphic to Dn×k  Dm×k, with the morphism Dn×k → Dn×l in
AM given by right multiplication by a matrix in Dk×l, being transformed into the
morphism Dm×k → Dm×l in BM given by right multiplication by the same matrix.

Suppose that h1 is an ε1-Hermitian form over A on a simple A-module, where
ε1 = ±1 – for example, one can always find such an h1 if ε1 = 1 unless D = L
and the involution ¯ on A is symplectic, i.e. h0 is skew symmetric, in which case
h1 exists for ε1 = −1 (cf. §1.2 – this also follows easily by use of the discriminant
matrix). Then an ε-Hermitian form ĥ over A is Hermitian Morita equivalent to an
ε1ε-Hermitian form h̆ over D, where D has the adjoint involution of h1. See [8], §8.
The Hermitian Morita theory tells us that ĥ ∼= ĝ if and only if h̆ ∼= ğ.

Hermitian Morita equivalence in the case at hand is very easily described in
terms of the discriminant matrix; we give it here only in the case of interest to us,
when h1 is defined on the simple module V1 = Dn×1.

Lemma 1.7. A sesquilinear form f over (A, ¯) on Dn×k with discriminant matrix
f ∈ M(k,D) corresponds, via the Hermitian Morita equivalence effected by h1, to
the sesquilinear form over (D, ¯) with the discriminant matrix ε1f . The involution
¯ on D is the adjoint with respect to h1.

Proof. The discriminant matrix h1 of h1 is an ε0ε1-Hermitian element of (D,∗ ), i.e.
h∗1 = ε0ε1h1. The adjoint involution on D with respect to h1 is d̄ = h1d

∗h−1
1 .

Let V̄1 be the (A,D)-bimodule V1 twisted into a (D,A)-bimodule by the involu-
tion ¯ on both A and D. The ε1-Hermitian form H : V̄ × V̄ → (D, ¯) which effects



REPRESENTATIONS OF FINITE GROUPS 4699

the Morita equivalence between the categories of sesquilinear forms over (A, ¯) and
(D, ¯) respectively is defined by

h1(v1, v2)v3 = v1H(v̄2, v̄3) for all v1, v2, v3 ∈ V

(cf. (8.3), [8]), where v̄i stands for the vector vi ∈ V considered as a vector of V̄1.
Since h1(v1, v2) = v1h1v

∗
2h0, this implies that

H(v̄2, v̄3) = h1v
∗
2h0v3.(1.5)

This is the analogue of (1.4) for a form on a right module instead of a left module.
Thus the discriminant matrix of H is h0.

We identify the twisted bimodule V̄1 with the A-dual V ∗1 = D1×n via the (A,D)-
bimodule isomorphism h1r which takes v̄ to h1(·, v) = h1v

∗h0.
Now let (U, f) be a sesquilinear form over (A, ¯), where U = Dn×k, and suppose

that the discriminant matrix of f is f . We wish to find the discriminant matrix of
the sesquilinear form (V̄1 ⊗A U,Hf) over D which corresponds to (U, f) under the
Hermitian Morita equivalence effected by h1 and H . Both of the mappings

V̄1 ⊗A U
h1r⊗idU−→ V ∗1 ⊗A U

mult.−→ D1×k

are isomorphisms of left D-spaces, and their composition takes v̄⊗ u to h1v
∗h0u ∈

D1×k. We identify V̄ ⊗A U and D1×k by this isomorphism.
Now by definition of the product form Hf ,

Hf(v̄1 ⊗ u1, v̄2 ⊗ u2) = H(v̄1f(u1, u2), v̄2) = H(f(u1, u2)v1, v̄2).(1.6)

A straightforward computation shows that

Hf(v̄1 ⊗ u1, v̄2 ⊗ u2) = ε1(v̄1 ⊗ u1)f(v̄2 ⊗ u2)∗h−1
1 ,

which implies that the discriminant matrix of Hf is ε1f .

This explicit version of the Hermitian Morita theory underlies our computation
of the equivalence classes of equivariant representations in the rest of the paper,
and we now describe the version of it which will be used.

If the involution on A = M(n,D) is of the first kind and D is a quaternion
algebra, we choose it to be conjugation ∗ .

Now choose h1 : V1 × V1 → A to be the form h1(u1, v1) = u1v
∗
1h0. Then h1 is

ε0-Hermitian with respect to ¯ and its adjoint involution on D is the involution
¯ chosen above; in particular it is conjugation if it is of the first kind and D is a
quaternion algebra.

We now apply Lemma 1.7 to get:

Lemma 1.8. With the foregoing notation, the ε-Hermitian form

ĥ : Dn×m ×Dn×m → A

with discriminant matrix ĥ ∈ Dm×m (which is ε0ε-Hermitian),

ĥ(u, v) = uĥv∗h0,

corresponds via the Hermitian Morita theory arising from h1 to the ε0ε-Hermitian
form

h̆ : D1×m ×D1×m → D



4700 C. RIEHM

which has discriminant matrix ε0ĥ,

h̆(u, v) = uε0ĥv
∗.

And if D is a quaternion algebra and the involution on A is of the first kind, the
involution on D is conjugation.

Remark 1.9. In the exceptional case when (A, ¯) is symplectic of index 1, the cor-
respondence between forms over A and over L = cenA under which the form over
A with matrix f corresponds to the form over L with matrix f is a category equiva-
lence, since for example the functor (W, g) (W,−g) is certainly an automorphism
of the category of bilinear forms over L. But this correspondence does not arise
from a Morita equivalence.

We now use the discriminant matrix to compute the transfer trdA/Lĥ of the
ε-Hermitian form ĥ over A; the transfer is an ε-Hermitian form over L (symmetric
or skew symmetric if ¯ is the identity on K).

We note that if a = (aij) ∈ A, then

trdA/Ka =
∑
i

trdD/Kaii = trdD/K
∑
i

aii.

Define trdA/Da =
∑
i aii. This depends on the identification A = M(n,D), but is

nevertheless useful. The above formula becomes

trdA/K = trdD/K ◦ trdA/D.

A straightforward matrix computation proves:

Lemma 1.10. Suppose that D = L. The discriminant matrix of trdA/Lĥ (in a
suitable basis) is

ĥ⊗ ht0,(1.7)

and its determinant is

(det ĥ)n(deth0)m.(1.8)

Now consider the case where A has index > 1, i.e. D is not commutative. We
can suppose that h0 and ĥ are diagonal matrices, say h0 = 〈η01, . . . , η0n〉 and
ĥ = 〈η1, . . . , ηm〉. Note that for all i and j, η∗0i = ε0η0i and η∗j = ε0εηj. The one
dimensional form

Hij : D ×D → D, Hij(u, v) = uηjv
∗η0i, 1 ≤ i ≤ n, 1 ≤ j ≤ m,(1.9)

is an ε-Hermitian form with respect to the involution

d 7→ η−1
0i d

∗η0i(1.10)

of D. Another matrix computation proves:

Lemma 1.11. (a) The transfer trdA/Lĥ : Dn×m ×Dn×m → L is an ε-Hermitian
form and is the orthogonal direct sum of the transfers from D to L of the nm forms
Hij in (1.9), where Hij is a one dimensional ε-Hermitian form with respect to the
involution (1.10).

(b) Suppose that h0 = η0In (for example, h0 = In). Then the transfer

H = trdA/Dĥ : Dn×m ×Dn×m → D
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is a nonsingular ε-Hermitian form with respect to the involution

d̄ = η−1
0 d∗η0,

and its transfer to L is the transfer of ĥ to L,

trdD/LH = trdA/Lĥ.

Its discriminant matrix H ∈ Dnm×nm, defined by H(u, v) = uHv∗η0, u, v ∈
D1×nm, is given by

H = ĥ⊗ h0.

If K is a non-Archimedean local field and D is the unique quaternion algebra
overK, with conjugation ∗ as its involution, it is always possible to achieve h0 = ηIn
except in the case n even and h∗0 = −h0. See Table 1 in §1.

The next lemma is useful in calculating the transfers of the Hij .
Let D be a central quaternion division algebra over K with an orthogonal invo-

lution ¯. There is a pure quaternion j such that d̄ = j−1d∗j for all d ∈ D, where ∗

denotes conjugation in D (cf. §1.2).
Thus if h : D × D → (D, ¯) is a rank 1 Hermitian form, there is another pure

quaternion η such that

h(d1, d2) = d1ηd
∗
2j = d1ηjd̄2.

With this notation, we have:

Lemma 1.12. The quaternary quadratic form trdD/Kh over K has determinant
1, and is isotropic (hence hyperbolic) if and only if (η2, j2)K ∼= D.

Proof. Conjugation by j of the space D0 of pure quaternions is an involutory linear
transformation, and it follows, by consideration of the eigenspaces, that we can find
another pure quaternion i 6= 0 satisfying η = θj + δi with θ ∈ K, ij = −ji, and
δ = 0 or 1.

Let i2 = α, j2 = β, so D = (α, β)K . And

η2 = θ2β + δ2α.

The discriminant matrix of trdD/Lh in the basis 1, k = ij, i, j of D is

2β


θ −αδ 0 0
−αδ −θαβ 0 0

0 0 θα −αδ
0 0 −αδ −θβ

 .

Its determinant is 4β2(−θ2αβ − α2δ2)2 = 1 in K∗/K∗2.
If θ = 0, a glance at the above matrix shows that trdD/Kh is isotropic; further-

more η = i, so (η2, j2)K = D.
Suppose θ 6= 0. The forms b1 and b2 with matrices(

θ −αδ
−αδ −θαβ

)
and

(
θα −αδ
−αδ −θβ

)
have the same determinant, and so their sum b1 ⊥ b2 is isotropic if and only if
b2 ∼= −b1. This is equivalent to the form 〈θ,−θ3αβ− θα2δ2〉 representing θβ, hence
to 〈1,−θ2αβ − α2δ2〉 representing β. Since binary forms are classified by their
determinant and Hasse symbol, this in turn is equivalent to

(β,−θ2αβ2 − α2δ2β)K = (1,−θ2αβ − α2δ2)K = 1
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i.e. to (β, θ2αβ + α2δ2)K = 1. Thus the condition is

1 = (β, α)K(β, θ2β + αδ2)K = (β, α)K(j2, η2)K ,

i.e. D = (α, β)K ∼= (η2, j2)K .

2. Symplectic Representations

Because of the fact that two nonsingular skew symmetric forms are equivalent
if and only if they have the same rank, symplectic representations are considerably
easier to deal with than are orthogonal or unitary representations, and so we treat
them separately here.

We now prove the statements on symplectic representations given earlier.
We identify A = M(n,D) and V = Dn×m. The involution on A is of the form

ā = h−1
0 a∗h0 – see §1.2.

If ĥ is an m ×m matrix, the form h(u, v) = TrA/K(uĥv∗h0) on Dn×m will be
skew symmetric if and only if ĥ(u, v) = uĥv∗h0 is skew Hermitian.

Suppose that (A, ¯) is orthogonal and of index 1. Then ĥmust be skew symmetric
(in order for h to be skew symmetric). This verifies II (in the orthogonal case) for
any field K if (A, ¯) has index 1. This is always the case if K is finite or real closed
– see §1.2 – which proves I for these fields (by Table 1).

Suppose next that (A, ¯) is orthogonal but has index > 1. Recall that we assume
that the involution ∗ on D is symplectic when D 6= L. Since h0 is then skew
Hermitian, ĥ must be an Hermitian matrix, so the equivalence classes of symplectic
representations on V are in bijective correspondence with the equivalence classes
of Hermitian forms of rank m over D by Hermitian Morita theory. There is only 1
when K is local, by Table 1.

Now suppose that K is global. We must count the number of Hermitian forms
h̆ of rank m over D, a quaternion division algebra with the canonical involution. If
D splits at the prime p of its center L, h̆p is an Hermitian form over M(2, Lp) with
a symplectic involution. Thus we can assume that h̆p(u, v) = uĥvth1, where h1 is
a skew symmetric matrix of degree 2. Therefore, as a 2m× 2m matrix over Lp, ĥ
is skew symmetric and so is uniquely determined up to equivalence.

We note that D does split at every real prime p of the center, since (A, ¯) is
orthogonal – cf. §1.2.

If D is not split at the finite prime p, h̆p is an Hermitian form over the local
division algebra Dp and so is again uniquely determined up to equivalence by its
rank (cf. Table 1). By the Hasse Principle for Hermitian forms over D (cf. Table
1), this finishes the proof for (A, ¯) orthogonal.

Suppose now that (A, ¯) is symplectic. This means that h0 is skew symmetric
if A has index 1 and is Hermitian otherwise. Then h(u, v) = trdA/K(uĥv∗h0) is
an invariant skew symmetric form on Dn×m if and only if ĥ is nonsingular and
symmetric in the first case and skew Hermitian in the second. The cases of K
finite, or K global, or K local and A of index 1 follow easily. If K is real closed,
A is necessarily of index > 1 (§1.2); by Table 1, skew Hermitian forms over D
are classified by their rank and so there is only 1 equivalence class of symplectic
representations in this case. Finally, the case of K local and (A, ¯) of index > 1
follows from [21], Theorem 10.3.6.
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The case (A¯ ) unitary is proved in a similar manner. Note that (noncommu-
tative) division algebras over local or real closed fields do not admit involutions of
the second kind – in the real closed case, A admits a unitary involution if and only
if A is a full matrix algebra over the algebraic closure of K, again by §1.2.

Now III. If G is a symmetric group, it is well known that all of the simple
components of KG are split and stable under the canonical involution, and that
the induced involution in each case is orthogonal (cf. §6). This proves III in this
case (by II). Now consider 2, 3 and 4. The assumption of odd representation type
rules out both a symplectic involution and an orthogonal involution on an algebra
of Schur index > 1. So III is clear if K is finite. Otherwise conditions 3 and
4 both rule out a unitary involution which is not hyperbolic. Thus each simple
component A of KG, stable under the canonical involution and for which AV 6= 0,
is orthogonal of index 1.

Finally, consider the statement on conjugacy of subgroups of Sp(V, h). Since G
and G′ are conjugate in GL(V ), there is a φ ∈ GL(V ) such that s 7→ φ−1sφ is an
isomorphism G → G′. This map and the identity are symplectic representations
which are linearly equivalent, so by III we can find ψ ∈ Sp(V, h) such that s →
ψ−1sψ is an isomorphism G→ G′. �

3. Unitary and orthogonal representations

over finite fields

If K is a finite field, the simple algebra A is a matrix algebra M(n,L) over the
field L.

Theorem 3.1. Let K be a finite field, A a simple K-algebra and V an A-module
of length lenAV = m.

Let h : V × V → K be a symmetric, Hermitian or skew Hermitian form.

I, II.
Unitary representations. There is exactly 1 equivalence class of A-isotypic uni-
tary representations G→ U(V, h), in both the Hermitian and skew Hermitian cases.

Orthogonal representations. If h is symmetric, then the number of equivalence
classes of A-isotypic orthogonal representations G→ O(V, h) is

(a) 1 if (A, ¯) is symplectic, m is even and h is hyperbolic,
(b) 1 if (A, ¯) is orthogonal and n is odd,
(c) 2 if (A, ¯) is orthogonal, n is even and deth = NL/K(det(¯))m,
(d) 1 if (A, ¯) is unitary and deth = (−disc (L/L0))mn|L

∗
0 |/|K∗|,

and is 0 otherwise.

III.
Unitary representations. Two unitary representations of G over K are equiva-
lent if and only if they are linearly equivalent.

Orthogonal representations. Two orthogonal representations of G over K are
equivalent if and only if they are linearly equivalent and their forms are isotypically
equivalent, unless KG has a simple orthogonal component (A, ¯) of even degree for
which AV 6= 0.

If ρ : G → O(V, h) is an orthogonal representation and r is the number of
orthogonal components (A ¯) of even degree for which AV 6= 0, the number of
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equivalence classes of orthogonal representations G → O(V, h) which are linearly
equivalent to ρ is 2r.

In particular, two orthogonal representations of G of odd type are equivalent
if and only if they are equivalent as linear representations and have isotypically
equivalent forms.

Corollary 3.2. If K is a finite field, two subgroups of U(V, h) which have order
relatively prime to charK are conjugate in U(V, h) if and only if they are conjugate
in GL(V ).

Proof of the theorem. We view the succession of equivalences ρ ĥ h̆ (cf. §1.3)
in the reverse direction. Thus we consider all possibilities for h̆ (up to equivalence)
and (A, ¯), and for each such pair h̆, (A, ¯) we determine the form h by first deter-
mining ĥ by Hermitian Morita theory using Lemma 1.8, and then h = n

g trdA/K ĥ
via the transfer theory using Lemma 1.10. The equivalence classes of h’s so ob-
tained are those whose forms which admit an equivariant representation linearly
equivalent to ρ, and the number of equivalence classes of h̆’s which lead to the
equivalence class of h is the number of nonequivalent orthogonal representations
G→ O(V, h) or unitary representations G→ U(V, h).

We use the notation of Lemma 1.8. The form h̆ is a symmetric, skew symmetric,
Hermitian or skew Hermitian form over L on Lm with matrix ε0ĥ.

Suppose first that h̆ is skew symmetric – in particular, m is even and the invo-
lution on K is the identity. If the involution on A is orthogonal, the form ĥ is skew
Hermitian and the form h must be skew symmetric. This case is already handled
in §2.

If h̆ is skew symmetric and the involution on A is symplectic, ĥ is an Hermitian
form over A on Ln×m, and its transfer h′ = trdA/Lĥ is a symmetric form over
L on Ln×m with matrix ĥ ⊗ ht0 (cf. §1.4) which, since h0 and ĥ are both skew
symmetric, is hyperbolic. Thus TrL/K(h′) = trdA/K ĥ is also hyperbolic, and so
also h = Tr ĥ = n

g trdA/K ĥ. This is (a).

Now suppose that h̆ is symmetric. If the involution on A is symplectic, ĥ is skew
Hermitian, so Tr ĥ = n

g trdA/K ĥ is skew symmetric and can be disregarded.

If h̆ is symmetric and the involution is orthogonal, ĥ is Hermitian, and trdA/Lĥ is
symmetric; moreover by the determinant formula det (trdA/Lĥ) = (det ĥ)n(det h0)m

(cf. (1.8)), the two possibilities for h̆ (up to equivalence) give rise to two nonequiv-
alent transfers trdA/Lĥ if n is odd, while if n is even there is only one possibility for
trdA/Lĥ, up to equivalence. Moreover in the latter case, trdA/Lĥ has determinant
(deth0)m = (det(¯))m. Since the norm NL/K preserves nonsquares, by Lemma 1.1
the same thing is true for trdA/K ĥ = TrL/KtrdA/Lĥ = g

nTrKG/K ĥ = g
nh (namely

two nonequivalent forms when n is odd, and one when n is even), so also for h,
where h has determinant (ng )lmnNL/K(det h0)m = NL/K(det ( ¯ ))m in K∗/K∗2

when n is even. This gives (b) and (c).
Now suppose that the involution on A is of the second kind, so we can take

h0 = In since Hermitian forms over a finite field are characterized by their dimension
(cf. Table 1). Consider first the case where the involution on K is the identity. If
h̆ is skew Hermitian, h is skew symmetric. If h̆ is Hermitian, we get one class of
orthogonal representations for the form h since there is only one equivalence class of
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Hermitian forms of a given rank. Furthermore if L = L0(
√
λ0), h has discriminant

NL0/K(−λ0)mn = (−λ0)|L
∗
0|/|K

∗|

by Lemma 1.1, since trdA/Lĥ has matrix Im⊗ In and the discriminant of the binary
symmetric form TrL/L0(xȳ) on L is −λ0. This is (d).

Now suppose the involution on K is also not the identity. There is only one
equivalence class of skew Hermitian forms on Lm, and it gives rise to a single
equivalence class of unitary representations (with respect to a skew Hermitian form).
Similarly we get a single equivalence class of unitary representations with respect
to an Hermitian form from the unique equivalence class of Hermitian forms on Lm.

III is clear from I and II.

4. Unitary and orthogonal representations over local fields

If A is an Abelian group, σ2(A) denotes the number of square classes (A : A2).
In this section K is a local (non-Archimedean) field. It is “dyadic” if 2 is not a

unit, “nondyadic” otherwise, and

σ2(L∗) = (L∗ : L∗2) =
{

4 if L is nondyadic,
22+(L:Q2) if L is dyadic,

([21], p. 217). Let gK denote the unique quaternary anisotropic form over K, and
G the (Abelian) Galois group Gal(L/K).

The integer m′ in part (k) of the next theorem is

m′ =

 2 if m = 1 and either n is odd and h ∼W 0,
or n is even and h ∼W gK ,

m otherwise.

Theorem 4.1. Let K be a local field, A ∼= M(n,D) a simple algebra component of
KG stable under ¯, and V an A-module of length lenAV = m.

Let h : V × V → K be a symmetric or Hermitian form.

Unitary representations. The number of equivalence classes of A-isotypic uni-
tary representations G→ U(V, h) is

type of # of equiv. conditions
(A, ¯) classes

(a) unitary 1 n odd,

(b) unitary 2 n even and deth = NL/K(det(¯))m,

and 0 otherwise.

Orthogonal representations. The number of equivalence classes of A-isotypic
orthogonal representations G→ O(V, h) is
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type of # of equiv. conditions
(A, ¯) classes

(c) unitary 1 n odd and deth = NL0/K(−disc(L/L0))m,
(d) unitary 2 n even, and

h ∼W 0 if (det(¯))m = (−1)mn/2,
h ∼W gK otherwise,

(e) sympl. 1 h ∼W gK if mn is odd, otherwise h ∼W 0
and, if D = L, m is even,

(f) orthog., σ2(G)σ2(L∗)
σ2(K∗) n odd, m > 1, det h ∈

(disc(L/K))m(NL/KL
∗)K∗2,

ind. = 1
(g) orthog., 1 ≤ # n odd, m = 1, h ∼= TrL/K〈αh0〉, α ∈ L∗,

ind. = 1 ≤ σ2(G)σ2(L∗)
σ2(K∗)

(h) orthog., σ2(L∗)
1+δ1m

n even, disc(¯) 6= 1, deth = NL/K(det(¯))m,
ind. = 1

(i) orthog., 2σ2(L∗)
1+δ1m

n even, disc(¯) = 1, h ∼W 0 or gK,
ind. = 1 if mn/2 is even,

h ∼W 0⇔ S(h0)m = (−1,−1)m
2n/4

L ,
if mn/2 is odd,

h ∼W 0⇔ S(h0)m = (−1,−1)(m2n−2)/4
L ,

(j) orthog., σ2(L∗)− δ1m det(¯) = 1, h ∼W 0 if mn is even,
ind. > 1 h ∼W gK if mn is odd,

(k) orthog., 1
2σ2(L∗)− δ1m′ det(¯) 6= 1, h ∼W 0 or gK ,

ind. > 1

and 0 otherwise.

Remark 4.2. 1. In (f) and (g), σ2(L∗) = σ2(K∗) if K is nondyadic, σ2(G) = 1 and
(NL/KL

∗)K∗2 = K∗ if (L : K) is odd.
2. In (g), 〈αh0〉 is the symmetric form of rank n and matrix αh0. The determi-

nant of its trace TrL/K〈αh0〉 is disc(L/K)NL/K(α deth0). Its Hasse symbol can be
calculated using [6], Lemma 1, 3, but the result unfortunately involves the unknown
factor SK(〈α disc h0〉), the Hasse symbol of a “scaled trace form” of the extension
L/K. It is possible, however, to give complete results when K is a nondyadic field;
this is carried out in Theorem 4.9.

We note that the discriminants of the h in this case are

(
n

g
)l(disc(L/K))(NL/KL

∗)K∗2

and, by Remark 1, the number of equivalence classes is 1 if l is odd and K is
nondyadic, or if A is split.

3. In (i), S(h0) is well-defined. In fact, by Lemma 1.3 (i), if η ∈ L∗ then

S(ηh0) = S(h0)(η,−1)n(n−1)/2
L (η, (−1)n(n−1)/2)L = S(h0),

since disch0 = 1 implies that deth0 = (−1)n(n−1)/2.
4. The integer m can be calculated easily from a knowledge of h and (A, ¯ ).

Namely, the rank of h is mnd2l.
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Proof. The proof proceeds in the same way as that of Theorem 3.1, starting with
the form

h̆ : Dm ×Dm → D

and then “descending” first to

ĥ : Dn×m ×Dn×m → M(n,D) = A

via Morita theory using Lemma 1.8, then to

trdA/Dĥ : Dnm ×Dnm → D

via a transfer from A to D, then to

trdD/LtrdA/Dĥ = trdA/Lĥ : Ld
2nm × Ld2nm → L

(where d2 = dimLD = 1 or 4) via a transfer from D to L, and then finally to
nd

g
trdL/KtrdA/Lĥ =

nd

g
trdA/K ĥ = TrKG/K ĥ = h : K ld2nm ×K ld2nm → K

via the transfer from L to K. The “reduced trace” trdA/D is defined just before
Lemma 1.10.
h̆ : Lm × Lm → L skew symmetric. This means that ĥ is a skew symmetric

matrix (Lemma 1.7), m is even, and A has index 1. If the involution on A is
orthogonal, i.e. h∗0 = h0 so ε0 = 1, then ĥ is skew Hermitian (cf. p. 4698), and
so trdL/K ĥ = g

nh and h are skew symmetric. Since the skew symmetric case is
handled in §2, we ignore it here.

If the involution on A is symplectic, h0 is skew symmetric and ĥ is Hermitian.
The transfer trdA/Lĥ is symmetric on Lnm with discriminant matrix −ĥ ⊗ h0 by
(1.7). This implies readily that trdA/Lĥ is hyperbolic, and so trdA/K ĥ and h are also
hyperbolic. Thus we get exactly one orthogonal representation, up to equivalence,
and it is on a hyperbolic space. This is the index 1 case of (e).
h̆ : Lm×Lm → L symmetric. Thus ĥ is a symmetric matrix. If the involution on

A is symplectic, ĥ is skew Hermitian and h is skew symmetric, and this is already
handled elsewhere.

Now suppose the involution on A is orthogonal. Then ĥ is Hermitian and the
transfer trdA/Lĥ is a symmetric form on Lnm with discriminant matrix ĥ⊗ h0 and
determinant (det ĥ)n(deth0)m (cf. Lemma 1.10), and h is symmetric as well.

Consider first the case n odd. Then the determinant of b = trdA/Lĥ is

(det ĥ)(deth0)m

and so is arbitrary since det(ĥ) = det h̆ is arbitrary. Assume also that m > 1.
Then by Lemma 1.3 (iv), the Hasse symbol of b is also arbitrary; in other words,
b runs over all equivalence classes of symmetric forms on Lnm as h̆ runs over all
equivalence classes of symmetric forms on Lm – thus the correspondence is bijective.
Now consider the transfer bK = trdL/Kb. Since L/K is Abelian,

l = [L : K] = [K∗ : NL/KL
∗]

by local class field theory, and it follows that, when l is odd, the map

N̄ : L∗/L∗2 → K∗/K∗2(4.1)

induced by the norm is onto; thus it is an isomorphism when K is nondyadic,
and in general has kernel of order σ2(L∗)/σ2(K∗). This means there are exactly
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σ2(L∗)/σ2(K∗) equivalence classes of orthogonal representations for each symmetric
form on K lnm by Lemmas 1.1 and 1.2. This gives (f) when l is odd.

Suppose that l is even. The image of N̄ is (NL/KL
∗)K∗2/K∗2, and by local

class field theory, (NL/KL
∗)K∗2 consists of the norms from the compositum of the

quadratic extensions of K contained in L; the degree of this compositum over K
is σ2(G) = (Gal(L/K) : Gal(L/K)2). Thus since (L∗ : L∗2) = |imN̄| · | ker N̄ |, each
bK is, up to equivalence, the image of | ker N̄| of the b, where

| ker N̄| = σ2(L∗)σ2(G)/σ2(K∗).(4.2)

Thus in this case the symmetric forms on K lmn which support an orthogonal rep-
resentation of G which is linearly equivalent to ρ are those with determinant in
(disc(L/K))mn(NL/KL)∗K∗2 (since (g/n)lmn is a square), and each of them sup-
ports | ker N̄| different orthogonal equivalence classes of orthogonal representations.
This completes the proof of (f).

Now suppose that n is odd and m = 1. If ĥ = (α), b = trdA/Lĥ = 〈αh0〉,
which has determinant αn deth0. Since n is odd, we get one form b over L for
each possible discriminant α ∈ L∗/L∗2. By the same analysis as in the case
m > 1, the discriminants which occur among the transfers bK down to K are
(disc(L/K))(NL/KL

∗)K∗2 and each discriminant receives σ2(G)σ2(L∗)
σ2(K∗) of the b. This

proves (g). We note also that this shows that the possible discriminants of h are
(ng )l(disc(L/K))(NL/KL

∗)K∗2, as mentioned in Remark 2 after the theorem.
Now consider the case when n is even (and the involution of A is orthogonal).

The determinant of the transfer b = trdA/Lĥ down to L is the same for all h̆, namely
(deth0)m, and

S(b) = S(ĥ⊗ h0) = S(h0)m(det ĥ, disch0)L(deth0,−1)m(m−1)/2
L(4.3)

by Lemma 1.3 (iv). If disch0 6∈ L∗2, this implies that we get both forms of determi-
nant (deth0)m over L, and so, by Lemmas 1.1 and 1.2, both forms of determinant
(disc(L/K))mnNL/K(deth0)m = NL/K(det h0)m over K via the transfer from L to
K. Furthermore, by (4.3) one of the forms arises from those h̆ whose determinants
are in the kernel of canonical homomorphism

L∗/L∗2 → L∗/NL(
√

disch0)/LL(
√

disch0)∗ ∼= Z/2,

so the number of equivalence classes of orthogonal representations for each of the
two forms is σ2(L∗) if m > 1, 1

2σ2(L∗) if m = 1. This is (h).
On the other hand, disch0 ∈ L∗2 means that deth0 = (−1)n(n−1)/2 = (−1)n/2

and det b = (−1)mn/2; in this case we get only one form over L as a transfer – that
with determinant (−1)mn/2 and Hasse symbol

S(b) = S(h0)m(−1,−1)mn(m−1)/4
L .

Therefore there we get only one G-invariant symmetric form bK over K. Its deter-
minant is (disc(L/K))mnNL/K(−1)mn/2 = (−1)lmn/2, and we now determine its
equivalence class.
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Suppose first that mn/2 is even. Then det b = 1 and dim b = mn ≡ 0 mod 4, so
b ∼W 0 or b ∼W gL. Moreover, by Lemma 1.3(v),

b ∼W 0 ⇔ S(b) = (−1,−1)mn/4L

⇔ S(h0)m(−1,−1)mn(m−1)/4
L = (−1,−1)mn/4L

⇔ S(h0)m = (−1,−1)m
2n/4

L .

On the other hand, if mn/2 is odd, then det b = −1 and dim b ≡ 2 mod 4, so if
c is a hyperbolic plane, det(b ⊥ c) = 1 and dim(b ⊥ c) ≡ 0 mod 4, and so since
b ∼W b ⊥ c, we see again that b ∼W 0 or b ∼W gL. Now S(b ⊥ c) = S(b)(−1,−1)L
by Lemma 1.3 (ii), and by applying the same kind of argument to b ⊥ c as we did
above to b, we get (i).
h̆ : Lm × Lm → L skew Hermitian. The involution on A is unitary, so we are

assuming that h0 is an Hermitian matrix, h∗0 = h0. The form ĥ and its discriminant
matrix ĥ are skew Hermitian. If the involution is the identity on K, h is skew
symmetric and we can ignore it.

Suppose therefore that the involution is not the identity onK, sayK = K0(
√
λ0);

then also L = L0(
√
λ0). The transfer trdA/Lĥ is a skew Hermitian form over L

of rank mn and determinant (det ĥ)n(deth0)m. Write ĥ =
√
λ0ĥ1, where ĥ1 is an

Hermitian matrix. Then the determinant of trdA/Lĥ is
√
λ0
mn(det ĥ1)n(det h0)m,

and det ĥ1 and det h0 are both in L∗0.
If n is even, we get but one form (up to equivalence) as a transfer over L — it has

determinant (λ
n
2
0 deth0)m — and so only one transfer down to K, of determinant

NL/K(λ
n
2
0 deth0)m by Lemma 1.1. This form gives rise, then, to two inequivalent

unitary representations with respect to this unique skew Hermitian form. This is
the skew Hermitian version of (b) (cf. the definition of disch in §1.1).

Suppose now that n is odd. Then there are two transfers (up to equivalence)
down to L, with their determinants representing the two possible classes in
L∗/NL/L0L

∗. Since the restriction of NL/K to L0 is NL0/K0 , the following lemma
and Lemma 1.1 imply that their transfers down to K are also distinct, and so we
have 2 distinct skew Hermitian forms over K each with a single unitary represen-
tation. This is the skew Hermitian version of (a).

Lemma 4.3. The homomorphism N̄ : L∗0/NL/L0L
∗ → K∗0/NK/K0K

∗ induced by
NL0/K0 is onto.

Proof. Let GalabL0
be the Galois group of the Abelian closure Lab0 of L0 in some

separable closure. Define GalabK0
similarly, using the same separable closure. Let

GalL0 and GalK0 be the absolute Galois groups of L0 and K0. We may assume
GalL0 ⊂ GalK0 , and this inclusion induces a homomorphism

GalabL0
= GalL0/Gal′L0

i→ GalabK0
= GalK0/Gal′K0

, σGal′L0
7→ σGal′K0

.

This fits into the commutative diagram

L∗0 −−−−→ GalabL0

NL0/K0

y yi
K∗0 −−−−→ GalabK0
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where the horizontal maps are given by the norm residue symbol – cf. [2], p. 141.
This implies a commutative diagram

L∗0/NL/L0L
∗ −−−−→ GalL/L0

N̄

y y
K∗0/NK/K0K

∗ −−−−→ GalK/K0

where the right vertical map is restriction – and is an isomorphism. Since the
horizontal maps are isomorphisms by local class field theory, N̄ is an isomorphism
as well.

h̆ : Lm × Lm → L Hermitian. Again h0 is Hermitian and the involution is
unitary. The transfer trdA/Lĥ of ĥ down to L is Hermitian with determinant
(det ĥ)n(det h0)m. Thus if n is even we get only one form over L (up to equivalence),
while if n is odd we get two.

We consider first the case when the involution is the identity on K (so h is
symmetric) and n is even. Thus trdA/Lĥ has determinant (deth0)m. The transfer
of a rank 1 Hermitian form with matrix (η) over L = L0(

√
λ0) down to L0 is the

symmetric form 〈2η,−2ηλ0〉, so the transfer of ĥ down to L0 is the symmetric
form of rank 2mn with matrix trdA/L(ĥ ⊗ 〈2,−2λ0〉), under the assumption that
trdA/Lĥ is diagonal – in fact we can assume that trdA/Lĥ = 〈1, . . . , 1, (deth0)m〉.
The determinant of this form over L0 is

(det trdA/Lĥ)2(−λ0)mn = 1,

and by Lemma 1.3 (iv) its Hasse invariant is

(−1,−1)mn/2L0
((−1)n/2 deth0, λ0)mL0

.

Since its rank is divisible by 4, it is ∼W 0 or gL0 , and is ∼W 0 if and only if
(−1,−1)mn/2L0

((−1)n/2 deth0, λ0)mL0
= (−1,−1)mn/2L0

by Lemma 1.3; this condition
is equivalent to (−1)mn/2(deth0)m ∈ NL/L0L

∗. By Lemma 1.2, the same situation
obtains when we take the transfer down to K, and in either case we get a single
symmetric form h supporting 2 nonequivalent orthogonal representations. This is
(d).

Now suppose that the involution is the identity on K and n is odd. As in the
case n even, the two transfers to L0 have matrix (trdA/Lĥ) ⊗ 〈2,−2λ0〉. Their
determinants are both (−λ0)mn = (−disc(L/L0))m, and their Hasse invariants are
given by (

(−1)m(mn−1)/2(2 deth0)m det ĥ, λ0

)
L0

(−1,−1)m(mn−1)/2
L0

.

These Hasse invariants are distinct since det ĥ represents both norm residue classes
in L∗0/NL/L0L

∗, and so the transfers to L0 remain distinct. Both transfers to K
have determinant NL0/K(−disc(L/L0))m, and they remain inequivalent by Lemma
1.2. This is (c).

Now suppose the involution is not the identity on K. As before, the transfer
trdA/Lĥ is an Hermitian form over L with determinant (det ĥ)n(det h0)m. If n
is even, we get but one form (up to equivalence) as a transfer over L — it has
determinant (det h0)m and rank mn — and so also only one transfer down to K,
of determinant NL0/K0(deth0)m by Lemma 1.1 and rank lmn. Thus this form
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supports two inequivalent unitary representations. This is (b) in the Hermitian
case.

If n is odd, there are two distinct transfers (up to equivalence) down to L, with
determinants det ĥ(deth0)m representing the two norm classes in L∗0/NL/L0L

∗. By
Lemmas 1.1 and 4.3, their transfers down to K are also inequivalent, and so we have
two inequivalent Hermitian forms over K, each with a single unitary representation.
This is (a) in the Hermitian case.

The remaining cases involve A of index > 1. Thus A = M(n,D), where D is a
quaternion division algebra over K with conjugation ∗ as its involution. Since an
Hermitian or skew Hermitian form over D has an orthogonal basis, we can suppose
that h0 is diagonal, say h0 = 〈η01, . . . , η0n〉, where η∗0j = ε0η0j for all j. If ε0 = 1,
we can assume that h0 = In (cf. Table 1).

Similarly h̆ is either Hermitian or skew Hermitian, and we can assume that its
matrix ε0ĥ is diagonalized, say ĥ = 〈η1, . . . , ηm〉, and that ĥ = Im if h̆ is Hermitian.
h̆ : Dm ×Dm → D Hermitian. Suppose first that h0 is Hermitian (i.e. (A, ¯)

is symplectic of index > 1 – cf. §1.2), so h0 = In, ĥ = Im, and ĥ(u, v) = uv∗. By
Lemma 1.11, (b), if we define the “trace” trdA/D(aij) =

∑
i aii, then trdA/Dĥ is the

nonsingular Hermitian form on Dnm with respect to conjugation, with discriminant
matrix Inm. Furthermore trdA/Lĥ = trdD/LtrdA/Dĥ, and so it follows that trdA/Lĥ
is the orthogonal direct sum of nm copies of the norm form gL of D. Since gL ⊥ gL
is hyperbolic, trdA/Lĥ is hyperbolic of rank 4nm if n or m is even – in which case
trdA/K ĥ is also hyperbolic, of rank 4lnm. Otherwise trdA/Lĥ ∼W gL, and by
Lemma 1.2, trdA/K ĥ ∼W gK .

In each of these two cases, nm even or odd, we get a unique orthogonal repre-
sentation linearly equivalent to ρ. This is (e) in the nonsplit case.

If h0 is skew Hermitian ((A, ¯) is orthogonal with index > 1), then ĥ is also skew
Hermitian. It follows that trdA/K ĥ is skew symmetric, so we can ignore it.
h̆ : Dm ×Dm → D skew Hermitian. If h0 is Hermitian ((A, ¯) symplectic with

index > 1), then ĥ is skew Hermitian and the transfer trdA/K ĥ is a skew symmetric
form (on K4lnm).

Suppose then that (A, ¯) is orthogonal, so h0 is skew Hermitian, ĥ is Hermitian
and ĥ is a skew Hermitian matrix. By Lemma 1.11(a), trdA/Lĥ is the orthogonal
direct sum of the mn transfers

hij(u, v) = trdD/L(uηiv∗η0j) (1 ≤ i ≤ m, 1 ≤ j ≤ n)

of one dimensional forms over D. By Lemma 1.12, hij is a quaternary symmetric
form of determinant 1, and is hyperbolic if and only if (η2

i , η
2
0j)L = −1. It follows

that trdA/Lĥ ∼W 0 if and only if∏
i,j

(η2
i , η

2
0j)L = (−1)mn,

and otherwise it is ∼W gL. Now∏
i

η2
i =

∏
i

(−ηiη∗i ) =
∏
i

(−nrdD/Lηi) = (−1)mnrdB/Lĥ

(B = M(m,D)), so trdA/Lĥ ∼W 0 if and only if

((−1)mnrdB/Lĥ, (−1)nnrdA/Lh0)L = (−1)mn.
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Parts (j) and (k) now follow if one takes into account the following facts, along with
Lemma 1.2:

(i) Two nonsingular skew Hermitian forms of the same rank over D are equiva-
lent if and only if their determinants are equal (in L∗/L∗2).

(ii) For any fixed rank r and square class λ ∈ L∗/L∗2, there is a skew Hermitian
form of rank r and determinant λ unless r = 1 and λ = −1. See [21], Theorem 3.6,
p. 363.

This finishes the proof of Theorem 4.1.

Corollary 4.4. We use the same notation and assumptions as in Theorem 4.1; in
particular K is a local non-Archimedean field and ρ is isotypic. Assume in addition
that ρ has odd type.

Unitary representations. There is exactly 1 equivalence class of unitary repre-
sentations G→ U(V, h) linearly equivalent to ρ.

Thus two unitary representations of odd type are equivalent if and only if they
are linearly equivalent and their underlying forms are isotypically equivalent.

Orthogonal representations. The number of equivalence classes of orthogonal
representations G→ O(V, h) which are linearly equivalent to ρ is as follows:

kind of # of equiv. conditions
(A, ¯) classes
first σ2(G)σ2(L∗)

σ2(K∗) m > 1 and deth ∈ (disc(L/K))m(NL/KL
∗)K∗2,

first 1 ≤ # m = 1 and h ∼= TrL/K〈αh0〉, α ∈ L∗,
≤ σ2(G)σ2(L∗)

σ2(K∗)

second 1 deth = NL0/K(−disc(L/L0))m,
and 0 otherwise.

When G is Abelian, we get
kind of (A, ¯) # of equiv. classes conditions

first 1
second 1 deth = NL0/K(−disc(L/L0))m,

and 0 otherwise.
Two not necessarily isotypic orthogonal representations of odd type, which we

assume to be split if G is not Abelian, are equivalent if and only if they are linearly
equivalent and their underlying forms are isotypically equivalent.

Remark 4.5. When G is Abelian and the involution on K is the identity, the re-
striction of the involution of KG to any direct summand L must be nontrivial if
L 6= K (i.e the involution is unitary), since L is generated over K by the images of
G under the projection KG→ L.

Proof. The assumption that ρ has odd type means that A has index 1, and that n
is odd. The statements about the number of equivalence classes in each case follow
by Theorem 4.1 – and by Remark 4.5 in the case of an orthogonal representation
of an Abelian group.

The statements about the equivalence of two not necessarily isotypic representa-
tions follow since the conditions stated for orthogonal representations rule out the
cases where the number of equivalence classes of isotypic representations is > 1.

We now treat in detail the nondyadic case in Theorem 4.1, (g), for orthogonal
representations, and we begin with two auxiliary lemmas. We assume that Knr is
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the unramified closure of K in L, with (Knr : K) = f , and that Ktm is the largest
tamely ramified subextension of L/K, with (Ktm : Knr) = e. Let (L : Ktm) = q,
which is a power of the residue class field characteristic p and so is odd.

Recall that G = Gal(L/K). Note that in the case when K is nondyadic, σ2(G) =
(G : G2) = 1, 2, or 4 (since, for example, it is the order of the kernel of the map
L∗/L∗2 → K∗/K∗2 induced by the norm, according to the proof of (f) of Theorem
4.1).

Lemma 4.6. (a) The Galois group Gal(Ktm/K) is isomorphic to the direct product
of Gal(Knr/K) and Gal(Ktm/Knr).

(b) If K is nondyadic or L/K is tamely ramified, then

σ2(G) =

 1 if and only if e and f are odd,
2 if and only if e and f have different parity,
4 if and only if e and f are both even.

Proof. (a) is a special case of [18], aufgabe 1, p. 1851, according to which

Gal(L/K) ∼= Gal(L/Knr)oGal(Knr/K)

for any tamely ramified Galois extension L/K of a Henselian field K. (b) follows
at once from (a), since the wild ramification index (L : Ktm) is odd.

Let cK(h) denote the Witt invariant of the symmetric form h. The following
lemma is easily checked.

Lemma 4.7. (a) If the rank of h is odd, then cK(αh) = cK(h) for any α ∈ K∗.
(b) If the rank of h is even and K is nondyadic, then cK(αh) = cK(h) for any

unit α ∈ K∗.

If M/K is any finite separable extension, 〈M〉 stands for the symmetric form
TrM/K(xy) (x, y ∈ M); in other, words, 〈M〉 is the transfer of the symmetric
bilinear form over M with matrix (1). We also denote by ordKα the order of
α ∈ K∗ with respect to a prime element of the K.

Let h be a symmetric form of rank n over L. Define

r = ordKtmdisc(TrL/Ktmh)

= ordKtm

(
(discL/Ktm)nNL/Ktm(disch)

)
= n ordKtm(discL/Ktm) + ordL(disch).

Lemma 4.8. Suppose that K is a nondyadic field and that the rank n of h is odd.
(a) If (L : K) is odd,

cK(TrL/Kh) = cLh.(4.4)

(b) If (L : K) is even,

cK(TrL/Kh) = cK〈Ktm〉r+1(π, disc(TrL/Kh))erK (Π, disc(TrL/Ktmh))(e+1)(r+1)
Ktm

cLh,

and

cK〈Ktm〉 =


1 if e is odd,

(π, (−1)(f−1)/2e)K if e is even and f is odd,
−(π, (−1)f/2discL/K)K if e and f are both even.

1I am grateful to M. Kolster for providing this reference.
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Here π and Π are prime elements of K and Ktm respectively, arbitrary unless f
is odd, in which case they are chosen to satisfy Πe ≡ −πmodK∗2nr .

Proof. The first formula (4.4) follows from [5], Theorem 4.4, 3. The second formula
follows from [5], Theorem 5.6, after a straightforward computation. It uses the
facts that if α ∈ L, then (π, α)L = (π,NL/Kα)K (cf. [12], Theorem 2.14, 8.), and
that cKtm(TrL/Ktmh) = cLh (which is the special case of (4.4) with K = Ktm). The
formula for cK〈Ktm〉 follows from [5], Theorems 4.2, 5.3, 5.4, and 5.5.

Theorem 4.9. Let K be a nondyadic local field, and suppose that (A, ¯) is orthogo-
nal of odd degree n with center L and index 1. We denote by f , e, and q respectively
the index of inertia, the tame ramification index, and the wild ramification index of
L/K.

Suppose that ρ is a linear representation of type A on the vector space V of length
1, and that h is a symmetric form on V .

1. e and f odd. Then there is an invariant form equivalent to h if and only
if cK(h) = cL(h0), and each invariant form admits exactly one orthogonal
representation (up to equivalence, of course).

2. e odd and f even. An invariant form has determinant discL/K or ε discL/K,
where ε is any nonsquare unit of K. Assume that h has one of these as its
determinant.

If (π, disc h)K = 1, there is a form equivalent to h which supports two
nonequivalent orthogonal representations if cK(h) = cL(h0); otherwise there
is no invariant form equivalent to h.

If (π, disch)K = −1, there is an invariant form equivalent to h and it
supports one orthogonal representation.

3. e even and f odd. There is an invariant form equivalent to h if and only
if det h ∈ (disc(L/K))(NL/KL

∗)K∗2 and, if ordK(deth) is even, cK(h) =
cL(h0). In the latter case, an invariant form supports two inequivalent or-
thogonal representations. Each of the two inequivalent invariant forms with
determinant of odd order supports a single orthogonal representation.

4. e and f both even. There is an invariant form equivalent to h if and only
if deth = disc(L/K), and it admits three inequivalent orthogonal representa-
tions if cK(h) = cL(h0), and one otherwise.

Proof. We know that the invariant forms on V are those of the form TrL/Kαh0 for
α ∈ L∗. Since n is odd, we can assume that deth0 = 1. Then det TrL/Kαh0 =
disc(L/K)NL/Kα by Lemma 1.1.

Suppose e and f are both odd. Then (L : K) is also odd, and by (4.4) and
Lemma 4.7 (a), cKTrL/Kαh0 = cLh0. Since the map L∗/L∗2 → K∗/K∗2 is an
isomorphism when (L : K) is odd, the theorem follows in this case.

Suppose e is odd and f is even. We first prove that the image of N̄ : L∗/L∗2 →
K∗/K∗2 consists of the square classes K∗2 and εK∗2, where ε is any nonsquare
unit of K. (Note that (UK : U2

K) = 2 since K is nondyadic.) The image certainly
is of order 2, since its kernel has order σ2(G) = 2 by (4.2) and Lemma 4.6. The
norm-induced map L∗/L∗2 → K∗nr/K

∗2
nr is bijective since the degree of L/Knr is

odd. The norm of a nonsquare unit of Knr in K is a nonsquare since
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oKnr −−−−→ knry y
oK −−−−→ k

is commutative, and the norm in a finite extension of finite fields is onto. (Here o is
a ring of integers, k its residue class field, and the vertical maps are norms.) Thus
the image of N̄ is as stated. It also follows that each of these images is the image
of a square class of L containing a unit and of one containing a prime.

Thus det(TrL/Kαh0) = disc(L/K) NL/Kα = disc(L/K) or ε disc(L/K), so an
invariant form must have one of these determinants. By Lemma 4.8, (b),

cK(TrL/Kαh0) = (π, disc(TrL/Kαh0))rK cL(h0),

where r = ordKtmdisc(L/Ktm) + ordLα. (We can drop the n from this expression,
since n is odd and r only appears in the exponents of powers of −1.) Thus

cK(TrL/Kαh0) = cL(h0) if ordLα ≡ ordKtmdisc(L/Ktm) mod 2,
= (π, disc(TrL/Kαh0))K cL(h0) otherwise.

By local class field theory, NK(
√
π)/KK(

√
π)∗ consists of two of the four square

classes in K∗/K∗2, and it is clear they must be K∗2 and −πK∗2. It follows that ε
is not a norm from K(

√
π), and so (π, ε)K = −1. Since an invariant form h satisfies

cK(h) = cL(h0) if it arises from an α satisfying ordLα ≡ ordKtmdisc(L/Ktm) mod 2,
and otherwise satisfies cK(h) = (π, disc(h))K cL(h0), the statement in the theorem
for e odd and f even follows readily.

Suppose next that e is even and f is odd. The norm from L to Ktm (on nonzero
elements) is bijective mod squares since the degree is odd. It follows from Lemma
4.6, (b), that the norm from Ktm to Knr takes units to square units, and all primes
to a single square class containing primes, and so the same thing is true for the
norm from L to K since (Knr : K) = f is odd.

By Lemma 4.8,

cK(TrL/Kαh0) = cK〈Ktm〉r+1(Π, disc(TrL/Ktmαh0))r+1
Ktm

cLh0.(4.5)

Thus if ordLα 6≡ ordKtmdisc(L/Ktm) mod 2, then cK(TrL/Kαh0) = cL(h0); since
ordLα ≡ ordLα′ mod 2 implies that the norms of α and α′ down to K are equal
mod squares, we get one invariant form supporting two inequivalent orthogonal
representations.

We now show that the condition ordLα 6≡ ordKtmdisc(L/Ktm) mod 2 is equiva-
lent to ordK(det TrL/Kαh0) being even. Note that

ordLα and ordKNL/Kα

have the same parity, and the same is true of

ordKtmdisc(L/Ktm) and ordKNKtm/Kdisc(L/Ktm).

Thus the condition is equivalent to

ordK(disc(L/K)NL/Kα) 6≡ ordK(disc(L/K)NKtm/Kdisc(L/Ktm))
≡ ordK(disc(Ktm/K)q(NKtm/Kdisc(L/Ktm))2)
≡ ordK(disc(Ktm/K)
= f(e− 1) by Dedekind’s discriminant theorem
≡ 1 mod 2,

as desired.
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Now suppose that ordLα ≡ ordKtmdisc(L/Ktm) mod 2. By a now familiar argu-
ment, (Π,NL/Ktmα)Ktm takes on both ±1 for the two possible square classes that
α represents, and so we get two invariant forms, each supporting one orthogonal
representation. This finishes the proof of the case e even and f odd.

Now suppose both e and f are even. Then det TrL/Kαh0 = disc(L/K) by Lemma
4.6 (b). Also (4.5) again holds, and so, if ordLα 6≡ ordKtmdisc(L/Ktm) mod 2, we
get one invariant form of determinant disc(L/K) and Witt invariant cL(h0) with two
inequivalent orthogonal representations. In the other case, we get two inequivalent
invariant forms, again with determinant disc(L/K), with one orthogonal represen-
tation for each. This finishes the proof of the case e and f both even, and of the
theorem as well.

5. Global fields and the Hasse Principle

In this section, K is a global field with an involution ¯. Our principal goals are
to consider problems I, II and III for split representations over K, and to prove
the Hasse Principle for equivariant representations.

In the case of split representations, it is particularly easy to determine the equi-
variant representations of G: if A is simple with involution ā = h−1

0 a∗h0, the asso-
ciation ĥ ĥ⊗h0 yields a bijective correspondence between the equivalence classes
of ε-Hermitian forms of a given rank m and the equivalence classes of all equivariant
representations of G of rank mn and type A with respect to ε0ε-Hermitian forms.
(It is understood that if the involution on K is the identity, then Hermitian means
symmetric.) As we already have seen, it is easy to calculate such things as the
determinant, Hasse symbol and signatures from this formula.

The case of split symplectic representations has already been covered in §2, so
we deal only with unitary and orthogonal representations.

If K0 is formally real and h0 is symmetric or Hermitian, we can assume that h0

is a positive definite matrix at each ordering of K0.
If h is a symmetric bilinear form over R or an Hermitian form over C, the

number of −1’s in any diagonalization 〈1, . . . , 1,−1, . . . ,−1〉 is the negative index
of h. Similarly the number of 1’s is the positive index. If h is a symmetric or
Hermitian form over the number field K and p is a real prime of K0 which does
not split in K, the indices of hp are denoted by r−p (h) and r+

p (h) respectively.

Lemma 5.1. Let δ ∈ K∗0 . Let ℘ be the set of all real primes of K0 which do not
split in K. Suppose that m is a positive integer and, for each p ∈ ℘, that rp is an
integer such that 0 ≤ rp ≤ m and δ(−1)rp >p 0. Then there is an m×m Hermitian
matrix ĥ whose determinant is δ and whose negative index at each p ∈ ℘ is rp.

Proof. If m = 1, take ĥ = (δ). Suppose m > 1. By the weak approximation
theorem, there is an αm ∈ K∗0 such that αm >p 0 if rp < m, αm <p 0 if rp = m.
Put δ′ = δαm, r′p = rp if αm >p 0, = rp − 1 if αm <p 0. Then δ′(−1)r

′
p > 0, and

so by induction there is an Hermitian matrix ĥ
′

of rank m− 1 with det ĥ
′
= δ′ and

with negative indices r′p. Then ĥ = ĥ
′ ⊥ (αm) has the required properties.

Theorem 5.2 (Split unitary representations). Suppose that the simple involution
algebra component A of KG is ∼= M(n,K), and that K is a global field with a
nontrivial involution. Let ℘ be the set of real primes of K0 which do not split in
K. Let V be an A-module of length m and h an Hermitian form on V .



REPRESENTATIONS OF FINITE GROUPS 4717

I. There is an invariant form on V equivalent to h if and only if the positive
and negative indices of h are divisible by n for each real prime p ∈ ℘ and,
when n is even, deth = (det h0)m.
II. Suppose h is invariant.

(i) If n is odd, h supports exactly one unitary representation of type A
(up to equivalence).
(ii) If n is even, the equivalence classes of unitary representations sup-
ported by h are in bijective correspondence with the norm classes in
K∗0/NK/K0K

∗ which are positive at each p ∈ ℘. (Note that the elements
of NK/K0K

∗ are positive at each p ∈ ℘.)
III. Two split unitary representations of odd type are equivalent if and only if
they are equivalent as linear representations and their forms are isotypically
equivalent.

Proof. Most of this follows easily from the fact that there is a bijection between
Hermitian forms over K and isotypic unitary representations, arising from ĥ  
ĥ ⊗ ht0. The necessity of the condition in I that the indices be divisible by n is a
consequence of the fact that the n × n matrix h0 is definite. Conversely, suppose
that the indices of h are nr−p and nr+

p . If n is odd, put

δ = (
n

g
)m(det h0)m deth.

Since deth0 is totally positive and (deth)(−1)nr
−
p = 1 for all p ∈ ℘, we can apply the

above lemma to find an Hermitian matrix ĥ with determinant δ and negative indices
rp. Since n

g (ĥ⊗ h0) has the same determinant and indices as h, it is equivalent to

h. Furthermore since the determinant and indices of ĥ are uniquely determined by
those of h (and h0), we get II in the case of n odd as well.

Suppose n is even. The necessity of I is clear. Conversely, it is easy to see by
Lemma 5.1 that there are Hermitian matrices ĥ with indices equal to those of h
divided by n, and then, for any such matrix, ng (ĥ⊗h0) is equivalent to h. This proves

I in the case of even n. Furthermore, any two such matrices ĥ have determinants
differing by an element of K0 which is positive at each p ∈ ℘. Conversely, if
α0 ∈ K0 is positive at each p ∈ ℘ and ĥ is such an Hermitian matrix, then by the
same lemma, there is another such matrix with determinant α0 det ĥ. This proves
II in the case of even n.

And III follows easily from II.

Theorem 5.3 (Split orthogonal representations). Suppose that K is a global field
and that the simple involution algebra component A of KG is ∼= M(n,K). Let V
be an A-module of length m.

(A, ¯) symplectic.
I, II. Any invariant form on V is hyperbolic, and the orthogonal repre-
sentation it affords is unique up to equivalence.

(A, ¯) orthogonal.
I. Suppose that h is a symmetric form on V .

If n is odd, there is an invariant form ∼= h on V if and only if
(i) h ∼= 〈αh0〉 for some α ∈ K∗ when m = 1, and
(ii) n | sgnph for all real primes p of K when m > 1.

If n is even, there is an invariant form ∼= h on V if and only if



4718 C. RIEHM

(iii) deth = (deth0)m, and
(iv) for all real primes p of K, n|r−p (h), and

(v) Sp(h) = Sp(h0)m(−1,−1)
nm(m−1)

4
p for all p at which disch0 =

1.
II. If h is invariant, there is (up to equivalence) only one orthogonal
representation G→ O(V, h) if n is odd, and there are an infinite number
if n is even.

III. Two split orthogonal representations of odd type are equivalent if and only
if they are equivalent as linear representations and their underlying forms are iso-
typically equivalent.

Remark 5.4. 1. In (v), Sp(h0) is well-defined, since for any α ∈ K∗, Sp(αh0) =
Sp(h0) when n is even and disch0 = 1 at p.

2. In III, “odd type” can be weakened to “AV = 0 for all simple orthogonal
involution components (A, ¯) of even degree.”

Proof. If (A, ¯) is symplectic, ĥ must be skew symmetric and this case follows.
Suppose that (A, ¯) is orthogonal. If n is odd, the necessity of (i) follows since

ĥ = 〈α〉 implies ĥ ⊗ h0 = αh0. The necessity of (ii) is clear since h ∼= 〈ng (ĥ ⊗ h0)〉
for some ĥ (and h0 is positive definite).

The sufficiency of (i) is also clear. Suppose that n is odd and m > 1. By
Lemmas 1.1 and 1.3 (iv), and the fact that sgnp(ĥ⊗h0) = n(sgnpĥ), the association
ĥ  ĥ ⊗ h0 is injective (on equivalence classes of symmetric forms) since n is
odd. We now show that its image consists of all equivalence classes of symmetric
forms on V with signature at each real prime p divisible by n. Suppose that h
is such a form, with signatures nrp. We show the existence of a symmetric form
ĥ such that h ∼= 〈ĥ ⊗ h0〉. Its determinant satisfies deth = (det ĥ)n(det h0)m,
so det ĥ = (det h)(deth0)m. Similarly its Hasse-Witt invariant is determined by
Lemma 1.3 (iv):

S(ĥ) = S(h)S(h0)m(det ĥ,−1)n(n−1)/2
K (det ĥ, deth0)mn−1

K (det h0,−1)m(m−1)/2
K ,

(5.1)

and its real signatures are rp. We must check that the desired signatures are
compatible with the determinant and Hasse-Witt invariant.

Let r−p = (m− rp)/2 be the negative index at p. At any real prime p, deth0 = 1,
so

det ĥ = deth = (−1)nr
−
p = (−1)r

−
p ,

as desired.
By (5.1) the Hasse invariant at p is

Sp(ĥ) = Sp(h)(det ĥ,−1)(n−1)/2
p

= (−1)nr
−
p (nr−p −1)/2(−1)(n−1)r−p /2.

It is easy to check that this is = (−1)r
−
p (r−p −1)/2, as desired.

The “local-global existence theorem” for quadratic forms ([19], Theorem 72:1)
shows that ĥ exists. The upshot is that every form h satisfying (i) or (ii) is equivalent
to the trace trdA/K ĥ of an Hermitian form ĥ over (A, ¯) and so is equivalent to an
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invariant form. The bijectivity implies II as well when n is odd and m > 1. And
in the case m = 1, II follows from the fact that 〈αh0〉 ∼= 〈βh0〉 implies 〈α〉 ∼= 〈β〉.

Now assume n even. Suppose that h is invariant. Since h ∼= 〈ng (ĥ⊗h0)〉 for some

m×m nonsingular symmetric matrix ĥ, (iii) and (iv) follow at once. From Lemma
1.3 (i) and (iv),

S(h) = S(
n

g
(ĥ⊗ h0))

= S(h0)m(det ĥ, disch0)(det h0,−1)m(m−1)/2(
n

g
, disch0)m.(5.2)

If disch0 = 1 at p, then deth0 = (−1)n/2, and (v) follows at once.
Conversely, suppose that (iii), (iv) and (v) prevail. First we show there is δ ∈ K∗

satisfying

(a) (δ, disch0) = S(h)S(h0)m(deth0,−1)m(m−1)/2(ng , disch0)m, and

(b) the sign of δ at any real prime p at which disch0 = 1 is (−1)r
−
p ,

where r−p (h) = nr−p is the negative index of h. By Lemma 5.5 it is enough to
find δ satisfying (a). If disch0 is a square at p, the right side of (a) is 1 at p by
assumption (iv). By the Hilbert reciprocity law, and [19], 71:19 and 71:19a, there
is a δ satisfying (a).

Now suppose p is a real prime of K. Since h0 is positive definite at all real
primes,

S(h0) = 1, deth0 = 1, disch0 = (−1)n/2 at p.

It follows from (a) that, also at p,

(δ, disch0) = (δ,−1)
n
2

= S(h) = (−1)
nr
−
p

2 = (−1)r
−
p (n2 ).

Let ĥp be a symmetric bilinear form of rank m over Kp with negative index r−p . If
disch0 6= 1 at p, then n/2 must be odd, and it follows that (δ,−1)p = (−1)r

−
p =

det ĥp. Since each of δ and det ĥp can be considered to be ±1 at p, it follows that
δ = det ĥp. On the other hand, if disch0 is a square at p, we get δ = det ĥp at p by
(b).

It follows once more from the local-global existence theorem that there is a
nonsingular symmetric matrix ĥ of rank m over K of determinant δ whose lo-
calizations at each real prime p are the ĥp just constructed. From (a), the ex-
pression for S(ng (ĥ ⊗ h0)) in (5.2), the fact that det ng (ĥ ⊗ h0) = (deth0)m, and

r−p (ĥ⊗ h0) = nr−p (ĥ) = nr−p = r−p (h), it follows that TrKG/K ĥ ∼= h, where ĥ is the
Hermitian form over (A, ¯) on Kn×m with discriminant matrix ĥ. Thus TrKG/K ĥ
is an invariant form ∼= h.

In fact there are an infinite number of such ĥ which are inequivalent, since we
can choose the Sp(ĥ) for p finite arbitrarily (up to the Hilbert reciprocity law).
Thus we get II for n even: each invariant form h supports an infinite number of
inequivalent orthogonal representations.

III is a consequence of II, of course.
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Lemma 5.5. Let γ ∈ K∗ and let (δ, γ) be a fixed quaternion Brauer class over the
algebraic number field K. Then the signs of δ at the real primes p at which γ is a
square (i.e. for which γ >p 0) can be arbitrarily prescribed.

Proof. Let “signs” εp = ±1 be given for each real prime at which γ is a square. For
each such prime, choose αp and βp in Kp so that (α2

p − β2
pγ)δεp >p 0. Apply the

weak approximation theorem to find α and β in K such that (α2 − β2γ)δεp >p 0
for each p, and set δ′ = (α2 − β2γ)δ. Then

(δ′, γ) = (α2 − β2γ, γ)(δ, γ) = (δ, γ),

since, if γ is not a square in K, α2 − β2γ is a norm in K(
√
γ)/K. Furthermore,

δ′εp = (α2 − β2γ)δεp >p 0

for any real p at which γ is a square.

The Hasse Principle. We now prove the Hasse Principle for equivariant repre-
sentations.

The completion of the fixed field K0 of the involution at any discrete or Archi-
medean prime p is denoted by K0p. Similarly Vp = K0p⊗K0V , Ap = K0p⊗K0A, . . .
– these are all modules over Kp = K0p ⊗K0 K. The latter ring has a K-involution
given by α⊗ β = α⊗ β̄. If p splits in K – which implies that the involution on K
is not the identity – Kp is the hyperbolic involution algebra K0p⊕K0p. Otherwise
it is the completion of K with respect to the unique extension of p to K. Similarly,

(KG)p = K0p ⊗K0 KG = Kp ⊗K KG = KpG

is also a hyperbolic involution algebra if p splits in K. In this case any Hermitian
form over KpG is hyperbolic, and so is determined by the isomorphism class of the
KpG-module Vp ([14], 2.3), and so by the isomorphism class of the KG-module V
itself.

Of course if the involution on K is the identity, then K0 = K and K0p = Kp.
Note that any sesquilinear form f : V ×V → A over the K-involution algebra A

has a unique extension to a sesquilinear form

fp : Vp × Vp → Ap

determined by

fp(α⊗ v, β ⊗ u) = αβ ⊗ f(v, u),

where α, β ∈ K0p.
We can also extend an equivariant representation ρ : G→ I(V, h) (I = O,Sp, or

U) to an equivariant representation ρp : G→ I(Vp, hp) in the obvious way,

ρp(s)(α⊗ v) = α⊗ ρ(s)v.

It is clear that ρp(s) ∈ I(Vp, hp) and that ρp is a homomorphism.

Theorem 5.6 (Hasse Principle for equivariant representations). Let G be an ar-
bitrary finite group and K a global field. Let ρ : G → I(V, h) be an equivariant
representation, and P the set of all equivariant representations on V which are
linearly equivalent to ρ. Then the “Hasse Principle”

for all ρ′ ∈ P, ρ ∼= ρ′ ⇔ ρp
∼= ρ′p for all primes p of K0

holds if and only if AV = 0 for every simple direct summand A of KG which
satisfies the following:
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(*) A is a matrix algebra over a quaternion algebra which is nonsplit at more than
2 primes (of its center), and the restriction of the canonical involution on KG
to A is an involution of orthogonal type if ρ is orthogonal, and of symplectic
type if ρ is symplectic.

Remark 5.7. In particular, this means that the Hasse Principle always holds for
unitary representations.

Proof. Suppose that

ρ : G→ I(V, h), ρ′ : G→ I(V ′, h′)

are two equivariant representations which are “of the same type” (h and h′ both
symmetric, or both Hermitian, . . . ) and that they are linearly equivalent. In fact
we assume that they are equal (as linear representations). Let ε = 1 if h and h′ are
symmetric or Hermitian, −1 if they are skew symmetric or skew Hermitian. We
shall refer to h and h′ as ε-Hermitian in both cases.

According to §1.3 there are simple summands A1, . . . , Ak of KG stable under
¯ and forms h̆1, . . . , h̆k over the division algebras D1, . . . , Dk, with Di Brauer
equivalent to Ai, whose (ordinary) equivalence classes characterize the equivariant
equivalence classes of ρ. We now look more closely at the last step in this associa-
tion, the Hermitian Morita equivalence of ĥi and h̆i, using the “Hermitian Morita
context” of Lemma 1.8.

There is an εi-Hermitian matrix h0i ∈ Ai = M(ni, Di) such that ā = h−1
0i a

∗h0i

for all a ∈ Ai. Let V0i be the simple Ai-module Dni×1
i . It is an (Ai, Di)-bimodule.

By Lemma 1.8, the nonsingular εi-Hermitian form h0i : V0i × V0i → Ai defined by
h0i(u, v) = uv∗h0i is εi-Hermitian and, if Di is a quaternion algebra and the involu-
tion on Ai is of the first kind, the adjoint involution ¯ on Di is conjugation; in this
latter case we note that εi = 1 respectively −1 if (A, ¯) is symplectic respectively
orthogonal. Twist the action of Ai and Di on V0i using their involutions, and let
V̄0i denote the resulting (Di, Ai)-bimodule.

By the Hermitian Morita theory, there is a nonsingular εi-Hermitian form H0i :
V̄0i×V̄0i → Di whose adjoint involution on Ai is ¯ and which satisfies the Hermitian
Morita associative relationship

h0i(u, v)w = uH0i(v̄, w̄) for all u, v, w ∈ V0i.(5.3)

It effects an equivalence between the category AiHε of ε-Hermitian forms over Ai
and the category DiHεεi of εεi-Hermitian forms over Di, via the map ĝ  H0iĝ
(product of forms–cf. [8], §2). This is the equivalence described in Lemma 1.8.

By Table 1 in §1.1 and 10.4.6, [21], the Hasse Principle applies to the forms H0iĝ
unless they are skew Hermitian (εεi = −1) and Di is a quaternion division algebra
which is nonsplit at more than 2 primes. These exceptional cases are precisely those
arising from (*), and so, in order to prove the sufficiency of the condition in the
theorem, we assume that AiV = 0 for any such exceptional i, 1 ≤ i ≤ k. Of course
this means also that ĥi = 0.

It follows that ρ ∼= ρ′ if and only if (H0iĥi)P
∼= (H0iĥ

′
i)P for 1 ≤ i ≤ k and all

primes P of Li0, where Li is the center of Di and Li0 is the subfield of elements
fixed by the involution of Li. We now wish to show that this is equivalent with

ρ ∼= ρ′ ⇔ (H0iĥi)p
∼= (H0iĥ

′
i)p for 1 ≤ i ≤ k and all primes p of K0.(5.4)

In doing this we shall drop the index i from Li, Li0, Di, etc., in order to simplify
the notation.



4722 C. RIEHM

By [2], p. 57, there is an isomorphism K0p ⊗K0 L0
∼=
⊕

P|p L0P, which implies
an isomorphism

Lp
∼=
⊕
P|p

LP (Lp = K0p ⊗K0 L, LP = L0P ⊗L0 L)

given by

αp ⊗ β 7→ (ι1αp ⊗ β, . . . , ιqαp ⊗ β),

where ιj : K0p → L0Pj is the inclusion. We identify Lp and
⊕

P|p LP via this
isomorphism. Similarly we identify

Dp =
⊕
P|p

DP and Wp =
⊕
P|p

WP,

where W is a vector space over D, via the isomorphisms

αp ⊗ d 7→ (ι1αp ⊗ d, . . . , ιqαp ⊗ d) and αp ⊗ w 7→ (ι1αp ⊗ w, . . . , ιqαp ⊗ w).

These identifications are compatible with the inclusion of D respectively W on both
sides, as well as with the action of Dp on Wp and

⊕
P|pDP on

⊕
P|pWP.

Let f : W ×W → D be a sesquilinear form.

Lemma 5.8. (a) The sesquilinear module (Wp, fp) is the orthogonal direct sum of
the sesquilinear modules (WP, fP). Briefly, fp = ⊥P|pfP.

(b) Let g : U × U → D be another sesquilinear form. Then fp
∼= gp if and only

if fP
∼= gP for all primes P|p of L0.

Proof. First of all, fP : WP ×WP → DP ⊂ Dp and so can be considered as a
sesquilinear form over Dp. Then

(⊥P|p fP)(α⊗ w,α′ ⊗ w′)
= (fP1(ι1α⊗ w, ι1α′ ⊗ w′), . . . , fPq(ιqα⊗ w, ιqα′ ⊗ w′))
= (ι1αα′ ⊗ f(w,w′), . . . , ιqαα′ ⊗ f(w,w′))

= αα′ ⊗ f(w,w′) = fp(α⊗ w,α′ ⊗ w′),
which proves (a). And (b) follows, since WP = DPWp and UP = DPUp.

It follows then that (5.4) holds.

Lemma 5.9. Suppose that A and B are K-involution algebras, that f : U×U → B
is a sesquilinear form admitting A, and that g : V × V → A is a sesquilinear form.
If p is a prime of K0, the forms (fg)p and fpgp over Bp are canonically equivalent.

Proof. There is a standard K0p-isomorphism φ : (U ⊗A V )p → Up ⊗Ap
Vp taking

α⊗ (u ⊗ v) to (α⊗ u)⊗ (1 ⊗ v) (α ∈ K0p, u ∈ U, v ∈ V ). It is easy to check that
φ is an isomorphism of Bp-modules, and that it is also an equivalence between the
forms (fg)p and fpgp. (Recall that the definition of the product fg : (U ⊗A V ) ×
(U ⊗A V )→ B is (fg)(u⊗ v, u′ ⊗ v′) = f(ug(v, v′), u′)).

We now prove that the Hasse Principle holds, under the assumption that AV = 0
for every simple direct summand A of KG which satisfies (*). Any such summand
is certainly one of the Ai, 1 ≤ i ≤ k, defined in §1.3; let Ai, 1 ≤ i ≤ m, be the
remaining Ai. From (5.4) and Lemma 5.9, we get

ρ ∼= ρ′ ⇔ H0ipĥip ∼= H0ipĥ
′
ip for all p and 1 ≤ i ≤ m.(5.5)
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Now consider ρp : G → I(Vp, hp), hp : Vp × Vp → Kp. Then ĥp : Vp × Vp →
KpG =

⊕t
i=1Aip and (ĥp)i : AipVp × AipVp → Aip. Furthermore, it is easy to

check that ρp
∼= ρ′p if and only if (ĥp)i ∼= (ĥ′p)i for all i, 1 ≤ i ≤ t.

Now suppose that i > k (cf. §1.3). If Ai is a hyperbolic involution algebra, so is
Aip. Otherwise Ai is of index 1 with a symplectic respectively orthogonal involution
(which implies that the involution on K is the identity), and so Aip is likewise of
index 1 with a symplectic respectively orthogonal involution, or is a direct sum of
such involution algebras. Thus if ρ is orthogonal respectively symplectic, the forms
(ĥp)i and (ĥ′p)i arising from these algebras are determined by the KpG-module
structure of the spaces on which they are defined (cf. §1.3).

Thus ρp
∼= ρ′p if and only if (ĥp)i ∼= (ĥ′p)i for all i, 1 ≤ i ≤ k.

The next step is to show that (ĥp)i = ĥip. Now ĥip is defined on (AiV )p =
K0p ⊗ AiV , which we identify with a submodule of K0p ⊗ V = Vp in the usual
way. Note that AipVp is spanned, as an Abelian group, by elements of the form
(α⊗ ai)(β⊗ v) = αβ⊗ aiv ∈ (AiV )p. It follows that AipVp = (AiV )p. We can now
show that (ĥp)i = ĥip. Let α, β ∈ K0p and u, v ∈ AiV . Then (cf. (1.2))

ĥp(α⊗ u, β ⊗ v)

=
∑
s

hp(ρp(s−1)(α⊗ u), β ⊗ v)s

=
∑
s

hp(α⊗ ρ(s−1)u, β ⊗ v)s

=
∑
s

αβ ⊗ h(ρ(s−1)u, v)s = αβ ⊗
∑
s

h(ρ(s−1)u, v)s

= αβ ⊗ ĥ(u, v) = ĥip(α⊗ u, β ⊗ v).

Thus

ρp
∼= ρ′p ⇔ ĥip ∼= ĥ′ip for all i, 1 ≤ i ≤ k.

The forms h0i : V0i × V0i → Ai and H0i : V̄0i × V̄0i → Di are nonsingular εi-
Hermitian forms which satisfy the associativity relationship (5.3). The forms h0ip

and H0ip also satisfy the associativity relationship:

h0ip(α ⊗ u, β ⊗ v)(γ ⊗ w) = (αβ ⊗ h0i(u, v)) (γ ⊗ w) = αβγ ⊗ h0i(u, v)w
= αβγ ⊗ (uH0i(v̄, w̄)) = (α⊗ u)(βγ ⊗H0i(v̄, w̄))
= (α⊗ u)H0ip(β ⊗ v̄, γ ⊗ w̄).

It follows from the Hermitian Morita theory that h0ip and H0ip induce a category
equivalence between the category of ε-Hermitian forms over Aip and the category
of εiε-Hermitian forms over Dip. This implies that

ρp
∼= ρ′p ⇔ H0ipĥip ∼= H0ipĥ

′
ip for all i, 1 ≤ i ≤ k.

This together with (5.5) shows that ρ ∼= ρ′ if and only if ρp
∼= ρ′p for all p (since

ĥi = 0 for m < i ≤ k).
Conversely, suppose that AiV 6= 0 for some Ai satisfying (*). In particular, ρ

is orthogonal (ε = 1, εi = −1) or symplectic (ε = −1, εi = 1). Then H0iĥi is a
skew Hermitian form over Di on V̄0i ⊗AiV , and there is another nonsingular skew
Hermitian form over Di on the same space, which is locally equivalent to H0iĥi
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at all primes P but not globally equivalent to it (cf. [21], 10.4.6). By Morita
equivalence there is an ε-Hermitian form ĥ′′i over Ai on AiV which is locally but
not globally equivalent to ĥi. This gives rise in an obvious way to an orthogonal or
symplectic representation ρ′′ : G→ U(V, h′′) which is locally equivalent to ρ at all
p but not globally equivalent. Namely, one defines ĥ′′ = ⊥j ĥ′′j , where ĥ′′j = ĥj for
all j 6= i, and then h′′ = TrKG/K ◦ ĥ′ (cf. (1.3)). This finishes the proof of Theorem
5.6.

Corollary 5.10. The Hasse Principle always holds in the following cases:

(a) The representations are unitary.
(b) The characteristic of K is 6= 0.
(c) The representations are of odd type.
(d) G is nilpotent and K contains either a cubic or quartic root of unity.

Proof. If the representation is unitary, (*) does not apply. If the characteristic is
6= 0, the Ai all have index 1 and so again (*) does not apply. Suppose that the
characteristic is 0. If the degree of every absolutely irreducible character is odd, no
Ai is similar to a quaternion algebra. In (d) the Ai also have index 1 – see [7], 14.5,
p. 77.

6. Equivariant representations of the symmetric group.

As with linear and projective representations, the equivariant representation
theory of Sr is especially explicit – the essential points are that all representations
are split and that one can calculate the invariant symmetric form h0 explicitly for
an irreducible representation ρ : Sr → GL(V ). This is of course the same matrix
involved in the involution ā = h−1

0 a∗h0 on the direct summand ofKG corresponding
to ρ, induced by the canonical involution of KG. The procedure for the calculation
of h0 is described in [10]; we illustrate it by an example. This method applies if
charK = 0 or p > r.

We note that when G = Sr, every simple involution algebra component A of KG
is orthogonal. In characteristic 0, this follows from the existence of a nonsingular
invariant symmetric form on a simple A-module – in fact it can be assumed to be a
positive definite form defined over Q – and from the fact that such a form is unique
up to scalar multiples since A is split. In characteristic p, there is also a nonsingular
invariant symmetric form on any simple module, which is described explicitly later
in this section via the example.

If K has a nontrivial involution and KSr has the corresponding canonical in-
volution, then every simple involution component A of KSr is again a simple al-
gebra. This follows from the fact that KSr is split over the prime subfield, so
A = K ⊗K0 A0, where A0 is a simple involution component of K0Sr, and the in-
volution on A is the tensor product of the involutions on K and A0. This implies
that the Hermitian matrix h0 for the unitary involution on A is identical with the
symmetric matrix for the involution of the first kind on A0.

All of the facts cited in the following about representations of Sr can be found
in [10].

We recall that each irreducible representation of Sr arises from a partition α =
[α1, α2, . . . , αk] of r; thus the αi are positive integers satisfying α1 ≥ α2 ≥ · · · ≥ αk
and

∑
i αi = r (cf. [10], pp. 350 and 376). We shall describe the calculation of h0
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through an example, namely the partition

α = [3, 2, 2]

of 7, which gives rise to an irreducible representation of S7. The standard α-tableaus
are the arrays

1 2 3
4 5
6 7

1 2 3
4 6
5 7

1 2 4
3 5
6 7

1 2 4
3 6
5 7

1 2 5
3 4
6 7

1 2 5
3 6
4 7

1 2 6
3 4
5 7

1 2 6
3 5
4 7

1 2 7
3 4
5 6

1 2 7
3 5
4 6

1 3 4
2 5
6 7

1 3 4
2 6
5 7

1 3 5
2 4
6 7

1 3 5
2 6
4 7

1 3 6
2 4
5 7

1 3 6
2 5
4 7

1 3 7
2 4
5 6

1 3 7
2 5
4 6

1 4 5
2 6
3 7

1 4 6
2 5
3 7

1 4 7
2 5
3 6

They are characterized by the fact that the row lengths constitute the given
partition of 7, and the integers in each row and in each column are increasing. The
number of standard α-tableaus, 21, is the degree of the corresponding representation
([10], 3.1.13, p. 107).

There is an orthogonal basis u1, · · · , u21 (with respect to h0) of the representation
space for which one can calculate h0(ui, ui). One starts with the ith standard
tableau; then

h0(ui, ui) =
7∏

x=1

∏
k

h(x, k)
h(x, k)− 1

,

where h(x, k) is a “hook length” defined as follows. k = 1, 2, 3 is the number of a
row. h(x, k) is not defined (and hence does not appear in the above product) unless
the integer x is in a row lower than row k; thus h(1, k) and h(x, 3) are not defined
for any k and x.

Suppose x is in a row lower than row k. Then h(x, k) is the number of integers
in the “hook” consisting of

(i) the integer x,
(ii) the integers above x up to row k (but not in rows 1, . . . , k − 1) in the
same column as x, and
(iii) the integers ≤ x in row k to the right of the column of x.

For example, in the 8th standard tableau in the above display

1 2 6
3 5
4 7
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we have h(4, 1) = 4, h(4, 2) = 2 (and of course h(4, 3) is not defined). It is easy to
check that

h0(u8, u8) =
7∏

x=2

2∏
k=1

h(x, k)
h(x, k)− 1

= (
3
2

)(
4
3
· 2

1
)(

2
1

)(
4
3
· 2

1
) =

26

3
,

where the parenthesized factors correspond respectively to x = 3, 4, 5, 7.
In this way one gets for h0(ui, ui), 1 ≤ i ≤ 21,

10, 40/3, 45/4, 15, 15, 16,

16, 64/3, 18, 24, 15, 20,

20, 64/3, 64/3, 256/9, 24, 32,

24, 32, 36.

After adjusting by squares,

h0 = 〈10, 30, 5, 15, 15, 1, 1, 3, 2, 6, 15, 5, 5, 3, 3, 1, 6, 2, 6, 2, 1〉.
Thus one can compute the determinant and Hasse symbol of h0; they are 1 and
(3, 3)K respectively. This means that, over a local or global field

h0
∼= 〈1, 1, . . . , 1, 3, 3〉.
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[8] A. Fröhlich and A. M. McEvett, Forms over rings with involution, Journal of Algebra 12
(1969), 79–104. MR 43:243

[9] , The representations of groups by automorphisms of forms, Journal of Algebra 12
(1969), 114–133. MR 39:1569

[10] Gordon James and Adalbert Kerber, The representation theory of the symmetric group,
Encyclopedia of Mathematics and Its Applications, vol. 16, Addison-Wesley, Reading, MA,
1981. MR 83k:20003

[11] Max-Albert Knus, Alexander Merkurjev, Markus Rost, and Jean-Pierre Tignol, The book of
involutions, Colloquium Publications, vol. 44, American Mathematical Society, Providence,
R.I., 1998. MR 2000a:16031

[12] H. Koch, Number theory II, Encyclopaedia of Mathematical Sciences, vol. 62, Springer-Verlag,
1992. MR 98g:11118 (reprint)

[13] A. I. Malcev, On semisimple subgroups of Lie groups, Amer. Math. Soc. Transl. No. 33 (1950);
reprint, Amer. Math. Soc. Transl. (1) 9 (1962), 172–213. MR 12:317c

[14] A. M. McEvett, Forms over semisimple algebras with involution, Journal of Algebra 12
(1969), 105–113. MR 43:244

http://www.ams.org/mathscinet-getitem?mr=20:4576
http://www.ams.org/mathscinet-getitem?mr=35:6500
http://www.ams.org/mathscinet-getitem?mr=26:2519
http://www.ams.org/mathscinet-getitem?mr=52:8235
http://www.ams.org/mathscinet-getitem?mr=88j:11017
http://www.ams.org/mathscinet-getitem?mr=90m:11188
http://www.ams.org/mathscinet-getitem?mr=36:2715
http://www.ams.org/mathscinet-getitem?mr=43:243
http://www.ams.org/mathscinet-getitem?mr=39:1569
http://www.ams.org/mathscinet-getitem?mr=83k:20003
http://www.ams.org/mathscinet-getitem?mr=2000a:16031
http://www.ams.org/mathscinet-getitem?mr=98g:11118
http://www.ams.org/mathscinet-getitem?mr=12:317c
http://www.ams.org/mathscinet-getitem?mr=43:244


REPRESENTATIONS OF FINITE GROUPS 4727

[15] John Milnor, On isometries of inner product spaces, Invent. Math. 8 (1969), 83–97. MR
40:2764

[16] Gabriele Nebe, Invariants of orthogonal G-modules from the character table, Experimental
Mathematics 9 (2000), 623–629. CMP 2001:06

[17] , Orthogonal Frobenius reciprocity, Journal of Algebra 225 (2000), 250–260. MR
2000m:20003

[18] Jürgen Neukirch, Algebraische Zahlentheorie, Springer-Verlag, Berlin, Heidelberg, 1992. MR
2000m:11104 (English transl.)

[19] O. T. O’Meara, Introduction to Quadratic Forms, Grund. d. math. Wiss., vol. 117, Springer-
Verlag, New York, Heidelberg, Berlin, 1963. MR 27:2485

[20] I. Reiner, Maximal orders, L.M.S. Monographs, Academic Press, Inc., London, New York,
San Francisco, 1975. MR 52:13910

[21] W. Scharlau, Quadratic and hermitian forms, Grund. Math. Wiss., vol. 270, Springer-Verlag,
New York, Heidelberg, Berlin, 1985. MR 86k:11022

[22] J.-P. Serre, Linear representations of finite groups, Graduate Texts in Mathematics, vol. 42,
Springer-Verlag, New York, Heidelberg, Berlin, 1977. MR 56:8675

[23] C. T. C. Wall, Classification of Hermitian Forms. VI. Group rings, Ann. of Math. (2) 103
(1976), 1–80. MR 55:5720

Deptartment of Mathematics and Statistics, McMaster University, Hamilton, On-

tario, Canada, L8S 4K1

E-mail address: riehm@mcmaster.ca

http://www.ams.org/mathscinet-getitem?mr=40:2764
http://www.ams.org/mathscinet-getitem?mr=2000m:20003
http://www.ams.org/mathscinet-getitem?mr=2000m:11104
http://www.ams.org/mathscinet-getitem?mr=27:2485
http://www.ams.org/mathscinet-getitem?mr=52:13910
http://www.ams.org/mathscinet-getitem?mr=86k:11022
http://www.ams.org/mathscinet-getitem?mr=56:8675
http://www.ams.org/mathscinet-getitem?mr=55:5720

	Symplectic representations (cf. §??)
	Unitary representations (cf. Theorem ??, Theorem ??, Corollary ??, Theorem ??)
	Orthogonal representations (cf. Theorem ??, Theorem ??, Corollary ??, Theorem ??, Theorem ??)
	1. Preliminaries
	1.1. Sesquilinear forms over fields and division algebras
	1.2. Simple involution algebras and representations of finite groups
	1.3. Reformulation of the equivalence of equivariant representations
	1.4. Explicit Hermitian Morita theory and transfer theory

	2. Symplectic Representations
	3. Unitary and orthogonal representations over finite fields
	I, II.Unitary representations
	Orthogonal representations
	III.Unitary representations
	Orthogonal representations

	4. Unitary and orthogonal representations over local fields
	Unitary representations
	Orthogonal representations
	Unitary representations
	Orthogonal representations

	5. Global fields and the Hasse Principle
	The Hasse Principle

	6. Equivariant representations of the symmetric group.
	References

