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Abstract. The two main theorems proved here are as follows: If A is a finite
dimensional algebra over an algebraically closed field, the identity component
of the algebraic group of outer automorphisms of A is invariant under derived
equivalence. This invariance is obtained as a consequence of the following gen-
eralization of a result of Voigt. Namely, given an appropriate geometrization
CompAd of the family of finite A-module complexes with fixed sequence d of

dimensions and an “almost projective” complex X ∈ CompAd , there exists a
canonical vector space embedding

TX(CompAd )/TX (G.X) −→ HomDb(A-Mod)(X,X[1]),

where G is the pertinent product of general linear groups acting on CompAd ,
tangent spaces at X are denoted by TX(−), and X is identified with its image
in the derived category Db(A-Mod).

1. Introduction

One of our primary goals is to prove that the identity component Out(A)0 of
the outer automorphism group of a finite dimensional algebra A is invariant under
derived equivalence; here we assume that the base field K of A is algebraically
closed. This generalizes a result of Brauer (see [13]), guaranteeing that Out(A)0 is
Morita invariant, as well as the next step beyond Brauer’s result, which established
tilting-cotilting invariance of Out(A)0 (the latter is due to Guil Asensio and the
second-named author [7]). On the other hand, note that the full outer automor-
phism group Out(A) = Aut(A)/ Inn(A) is not even Morita invariant, in general,
and a fortiori, derived invariance fails for the group Aut(A) of all algebra automor-
phisms of A. Our invariance theorem was proved independently and with different
methods by Rouquier [16].

In his seminal paper [14], Rickard extended results of Happel [8] and Cline-
Parshall-Scott [4], to give an explicit description of the equivalences between de-
rived categories of module categories (strictly speaking, between categories derived
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from the triangulated homotopy categories of chain complexes of modules). This
characterization opened up the possibility of exhibiting invariants under derived
equivalence: Rickard himself showed that the center and the Grothendieck group
of A are among them [14], as are the cyclic and Hochschild cohomologies of A (see
[9] and [15]). The group Out(A)0, which our final theorem below places on this list,
can be viewed as a carrier of homological information as well; indeed, as was first
observed by Fröhlich in [6], Out(A) naturally embeds into the Picard group of A,
that is, into the group of (isomorphism types of) Morita self-equivalences of the cat-
egory of left A-modules. The invariance status of the full Picard group relative to
derived equivalence is negative, but self-injective algebras which are derived equiv-
alent share at least the stable Picard group [12]. To round off the picture, we point
out that the classical Picard group is an object of natural significance in the con-
text of derived categories, in that it in turn embeds into the ‘derived Picard group’
DPic(A), which consists of the isomorphism types of derived self-equivalences of
A induced by tilting complexes in Db((A ⊗K Aop)-Mod) (see [17], [20], and [11]).
The first of our main results entails that DPic(A) contains only finitely many A-A
tilting complexes of fixed total dimension which are pairwise non-isomorphic when
viewed as one-sided complexes over A.

This latter result is obtained (in Section 2) as an ingredient of our invariance
proof for Out(A)0. We describe it in some detail, since it holds substantial in-
terest in its own right. Suppose X is a point in the classical variety ModAd of
all d-dimensional left A-modules. In [19], Voigt exhibited a natural vector space
monomorphism

TX(ModAd )/TX(GLd .X) −→ Ext1
A(X,X),

where TX(ModAd ) and TX(GLd .X) denote the tangent spaces atX to ModAd and the
GLd-orbit of X in ModAd , respectively. Here is a sketch of our generalization (The-
orem 7): Roughly speaking, it relates tangent spaces of varieties of bounded finite
dimensional complexes over A to Hom-groups in the derived category Db(A-Mod),
whenever A is finite dimensional over an algebraically closed field. More precisely,
the geometrization of the d-dimensional modules in the framework of ModAd can be
carried over, in the same spirit, to the complexes of the form 0→ Xm → Xm−1 →
· · · → X0 → 0 for fixed m, where X0, . . . , Xm ∈ A-Mod have prescribed dimensions
d0, . . . , dm, respectively. In the predictable manner, this leads to a Zariski-closed
subset CompAd of∏

0≤i≤m
HomK(A,EndK(Kdi))×

∏
1≤i≤m

HomK(Kdi ,Kdi−1),

where d = (dm, . . . , d0). Moreover, the orbits of the (only plausible) conjugation
action of G = GLd0 × · · · × GLdm on CompAd are in one-to-one correspondence
with the isomorphism types of complexes of the described ilk. In this setting, the
following is true for any complex X of finite dimensional left A-modules of the
above format, with the additional property that all Xi, except possibly Xm, are
projective over A: If X is represented by a point X ∈ CompAd , say, then there exists
a canonical vector space embedding

TX(CompAd )/TX(G.X) −→ HomDb(A-Mod)(X,X[1]).

In case all Xi are projective, this embedding is actually an isomorphism. Ob-
serve that, in Db(A-Mod), every finite dimensional left A-module coincides with
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a complex of the addressed ilk – to wit, with the stalk complex of the module
concentrated in degree m – and hence Voigt’s result is retrieved as a special case.
Among the consequences, the one instrumental in establishing our result concern-
ing Out(A)0 is this: For any finite sequence of non-negative integers, there are only
finitely many complexes of projectives with this sequence of dimensions such that
HomDb(A-Mod)(X,X[1]) = 0. So, in particular, we see that A has only finitely many
one-sided tilting complexes of prescribed total dimension.

Throughout, A will be a finite dimensional algebra over a field K. In the main
results of Section 2 and throughout Section 3, K will be algebraically closed. More-
over, A-Mod, Mod-A, A-mod, and mod-A will denote the categories of all left/right
A-modules, and their full subcategories of finite dimensional left/right A-modules,
respectively.

2. The geometry of chain complexes

Suppose that A is generated by a1 = 1, a2, . . . , as as a K-algebra, and recall that
the objects in A-mod of vector space dimension d are parametrized by the points
of the following subvariety of s · d2-dimensional affine space:

ModAd = {(A1, . . . ,As) | the Aj ∈ EndK(Kd) satisfy

the same relations as a1, . . . , as}.
This variety comes with a canonical morphic GLd-action by conjugation, the orbits
of which reflect basis change. So, if one assigns to each point in ModAd the cor-
responding left A-module, it is clear that the isomorphism types of d-dimensional
modules are in one-to-one correspondence with the GLd-orbits in ModAd . Note
that we can identify the points of ModAd with points in HomK(A,EndK(Kd)) by
assigning to each sequence (A1, . . . ,As) ∈ ModAd the K-algebra homomorphism
A→ EndK(Kd) which sends aj to Aj .

We carry this idea over – in the same spirit – to finite chain complexes

X : 0→ Xm
∂m−−→ Xm−1

∂m−1−−−→ · · · ∂1−→ X0 → 0

in A-mod with fixed sequence

d = (dimK Xm, . . . ,dimK X0) = (dm, . . . , d0)

of dimensions. Accordingly, we define the variety CompAd to be the following Zariski
closed subset of the affine space

AN =
∏

0≤i≤m
HomK(A,EndK(Kdi))×

∏
1≤i≤m

HomK(Kdi ,Kdi−1).

Namely,

CompAd := {(Am, . . . ,A0, ∂m, . . . , ∂1) ∈ AN | Ai = (Aij)j≤s ∈ModAdi ,

∂iAij = Ai−1,j∂i, and ∂i−1∂i = 0 for all i ≤ m and j ≤ s}.

We will also label the points of CompAd in the form (Aij , ∂m, . . . , ∂1), as convenience
dictates. Clearly, the group GLd = GLdm × · · ·×GLd0 acts morphically on CompAd
via

(gm, . . . , g0)(Aij , ∂m, . . . , ∂1) = (Agiij , gm−1∂mg
−1
m , . . . , g0∂1g

−1
1 ),
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where Agiij stands for the conjugate giAijg−1
i . Moreover, it is straightforward to

check the following fact.

Observation 1. The natural map from CompAd to the collection of complexes X
as above, with fixed sequence d of dimensions, induces a one-to-one correspondence
between the orbits of the GLd-action on CompAd on one hand, and the isomorphism
classes of complexes of the described format on the other.

An alternate way of geometrizing complexes is, of course, that of viewing com-
plexes as graded modules over an enlarged algebra; but this approach would be
ill-suited to our purpose of relating the geometry of CompAd to the derived category
of A.

In the following, we will denote points of CompAd by capital letters and the
corresponding complexes by bold versions of these letters. Furthermore, we will,
from now on, assume that a1 = 1, . . . , as is a K-basis of A. This provides us with
structure constants cjkl ∈ K, arising in the equalities ajak =

∑s
l=1 cjklal. In order

to describe the coordinate ring of CompAd , we let Xij stand for a di × di matrix
of variables representing the entries of the matrix Aij , respectively, and Yi for a
di−1× di matrix of variables representing the entries of the map ∂i. When we view
a sequence (Xij , Ym, . . . , Y1) as an element of the coordinate ring of CompAd , our
setup shows these coordinate matrices to be subject to the following equalities; in
fact, CompAd is determined by these requirements:

(α) XijXik =
∑s

l=1 cjklXil;
(β) YiXij = Xi−1,jYi;
(γ) Yi−1Yi = 0.

In the upcoming lemma, we will derive a convenient explicit description of the
Zariski tangent space TX(CompAd ) of CompAd at a point X . Recall that a derivation
of a left A-module M is a K-linear map δ : A → EndK(M) such that δ(ab)x =
a(δ(b)x) + δ(a)(bx) for all a, b ∈ A and x ∈M .

Lemma 2. Given a point X = (Am, . . . ,A0, ∂m, . . . , ∂1) ∈ CompAd , the tangent
space TX(CompAd ) of CompAd at X consists precisely of those sequences (δm, . . . , δ0,
σm, . . . , σ1) in

AN =
∏

0≤i≤m
HomK(A,EndK(Kdi))×

∏
1≤i≤m

HomK(Kdi ,Kdi−1)

which satisfy the following conditions:
(a) Each δi : A→ EndK(Kdi) is a derivation of the left A-module Xi determined

by Ai = (Aij)j≤s.
(b) σiAij + ∂iδi(aj) = Ai−1,jσi + δi−1(aj)∂i for all 0 ≤ i ≤ m and 1 ≤ j ≤ s;

here we identify Aij with the left multiplication of Xi = Kdi by the element aj of
A.

(c) σi−1∂i + ∂i−1σi = 0 for all 1 ≤ i ≤ m.

Proof. Note that each of the δi is determined by the values (δi(aj))j≤s. Hence the
defining conditions (α)− (γ) of CompAd yield the following equations pinning down
TX(CompAd ); they are given in the variables wij representing the maps δi(aj), and
vi representing the K-endomorphisms σi : Kdi → Kdi−1, respectively:

(a) wijAik +Aijwik =
∑s

l=0 cjklwil,
(b) viAij + ∂iwij = wi−1,j∂i +Ai−1,jvi,
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(c) vi−1∂i + ∂i−1vi = 0,
for all eligible indices i, j, k. But these conditions are clearly tantamount to the
ones listed in our claim.

Next we follow the traditional road of mapping the tangent space of a module
variety at a point x to the group of self-extensions of the module represented by
x. Namely, we fix X ∈ CompAd , and assign to any point (δm, . . . , δ0, σm, . . . , σ1) in
the tangent space TX(CompAd ) a short exact sequence 0 → X → Z → X → 0 of
complexes as follows.

Remark 3. Let X ∈ CompAd as before.
(1) Condition (a) of Lemma 2 implies that the following is a left A-module

structure on Zi = Kdi ⊕Kdi: Namely, we define left multiplication of Zi by a ∈ A
as left multiplication by

(
Ai(a) δi(a)

0 Ai(a)

)
, viewing the elements Zi as column vectors.

(2) Condition (c) of Lemma 2 tells us that we can supplement the Zi to a chain
complex Z of K-vector spaces by introducing the differentials ∂Z

i =
(
∂i σi
0 ∂i

)
.

(3) Condition (b) of Lemma 2, finally, shows that the complex Z just defined is,
in fact, a complex of A-modules.

(4) Let 0 → Xi → Zi → Xi → 0 be the canonical sequences, given by injection
of Xi into the first component of Zi, followed by projection onto the second compo-
nent. These short exact sequences in A-mod are compatible with the differentials,
thus yielding a short exact sequence 0→ X→ Z→ X→ 0 of chain complexes.

Now suppose that X,Y are chain complexes which are bounded above, but not
necessarily finite. We will consider the group Ext1(X,Y) of (equivalence classes)
of extensions 0 → Y → E → X → 0 in the category of complexes of A-modules.
In analogy with Ext-groups of A-modules, Ext1(X,Y) actually carries a K-vector
space structure.

For any point X ∈ CompAd , Remark 3 provides us with a K-linear map

χ : TX(CompAd )→ Ext1(X,X),

sending an element of TX(CompAd ) to the class of the self-extension 0→ X→ Z→
X→ 0 of X described above. The proof of the following proposition is quite similar
to that of Voigt’s Lemma ([19, Chap. 2, Section 3.4]; see also [5, Theorem 1.6]).
Since Voigt’s original argument (couched in German) carries over smoothly to our
setting, we include only a brief outline (for the sake of the reader not familiar with
German). Recall that an extension 0→ Y → E→ X→ 0 is semisplit in the sense
of Verdier [18, pp. 272-273] if, in each degree i, the pertinent short exact sequence
of A-modules splits.

Proposition 4. Suppose that K is an algebraically closed field. Then, given any
X ∈ CompAd , the kernel of the map χ equals the tangent space of G.X at X. In
other words, χ induces a vector space embedding

TX(CompAd )/TX(G.X)→ Ext1(X,X).

Moreover, all semisplit self-extensions of X belong to the image of χ.

Proof. The canonical morphism G → G.X is separable (since the stabilizer sub-
group of X in G arises as the solution set of a system of linear equations), i.e., this
map has a surjective differential

Te(G)→ TX(G.X) ⊆ TX(CompAd ).
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In the description of the tangent space TX(CompAd ) given in Lemma 2, this identifies
TX(G.X) as being the following subset of TX(CompAd ): Namely, the set of those
elements (δm, . . . , δ0, σm, . . . , σ1) in TX(CompAd ) for which there is a sequence t =
(tm, . . . , t0) ∈

∏m
i=0 EndK(Kdi) such that the following equalities hold for all eligible

i and j:
• δi(aj) = tiAij −Aijti, and
• σi = ti−1∂i − ∂iti.

(These equalities can be gleaned directly from Voigt’s argument for modules by
identifying the complex X with a graded module

⊕m
i=0Xi over the finite dimen-

sional algebra A[∂1, . . . , ∂m]/(∂2
1 , . . . , ∂

2
m); here the operation of A on the direct

sum is extended via ∂i.(xm, . . . , x0) = ∂i(xi) ∈ Xi−1 for 1 ≤ i ≤ m.)
It is readily verified that the described subset of TX(CompAd ) coincides with the

kernel of χ. Indeed, splitness of the extension 0→ X→ Z→ X→ 0 of complexes
coming with the point (δm, . . . , δ0, σm, . . . , σ1) of TX(CompAd ) is equivalent to the
existence of a section for the epimorphism Z → X. Since the latter map just
projects the Zi = Xi ⊕Xi onto the second components, such sections are precisely
the chain maps X → Z of the form t′ = (ti, 1Xi)0≤i≤m, where the family (ti)
belongs to

∏m
i=0 EndA(Xi). But the condition that t′i : Xi → Zi be an A-module

homomorphism is clearly tantamount to the requirement that tiAij = Aijti+δi(aj),
while the stipulation that a family (ti) ∈

∏m
i=0 HomK(Kdi) be compatible with the

differentials of X and Z amounts to the equality ti−1∂i = ∂iti +σi. This completes
the proof of the fact that TX(G.X) coincides with the kernel of χ.

For the final comment, note that the differential of any semisplit self-extension
0→ X→ Z→ X→ 0 of X, with splitting Zi = Xi ⊕Xi in degree i, has the form
∂Z
i =

(
∂i σi
0 ∂i

)
relative to such a splitting, where ∂i is the i-th differential of X and

σi ∈ HomA(Xi, Xi−1) satisfies condition (c) of Lemma 2. Consequently, Remark 3
shows that the semisplit self-extensions of X are precisely the images under χ of
the vectors (0, . . . , 0, σm, . . . , σ1) in the tangent space TX(CompAd ).

Following Verdier’s conventions in [18], we denote the category of right bounded
complexes of finite dimensional left A-modules by C−(A-mod), its quotient cate-
gory modulo homotopy by K−(A-mod), and the corresponding derived category
by D−(A-mod). Analogously, Cb(A-mod), Kb(A-mod), and Db(A-mod) stand for
the category of bounded complexes, for the quotient category modulo homotopy,
and the pertinent derived category, respectively. According to [18, pp. 294-295],
every element 0 → Y → E → X → 0 of Ext1(X,Y) gives rise to a distinguished
triangle Y → E → X→ Y[1] in D−(A-mod). Here Y[1] denotes the shifted com-
plex which carries Yn−1 in the slot labeled n. This provides us with a K-linear
map ξ : Ext1(X,Y) −→ HomD−(A-mod)(X,Y[1]) which assigns to an extension as
above the connecting morphism X→ Y[1] of the corresponding triangle. Our next
intermediate goal is to scrutinize this map for complexes X which are ‘close’ to
being projective.

Definition. A complex X : · · · → Xi+1 → Xi → · · · in C−(A-mod) is called
projective if all of the terms Xi are projective A-modules.

Now suppose that X ∈ Cb(A-mod). If X is nonzero, then the largest integer
m with Xm 6= 0 will be referred to as the left degree of X. We will call X almost
projective if either X is projective or else Xm is the only non-projective term of the
complex.
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It is clear that, under the natural map Cb(A-mod)→ Db(A-mod), every object
in the derived category is represented by an almost projective complex.

One of the assets of almost projective complexes is a convenient lifting property
for maps in the derived category: If X and Y are both almost projective with
coinciding left degree, then any map in HomDb(A-mod)(X,Y) lifts to a chain map
in HomCb(A-mod)(X,Y): Indeed, we may restrict our attention to bounded almost
projective complexes for that purpose. So suppose that X is of the form

0→ Xm
∂m−−→ Xm−1

∂m−1−−−→ . . .
∂1−→ X0 → 0,

where all of the left A-modules Xi, except for Xm possibly, are projective; write Y
in the same format, with terms Yi. If we let · · · → Pm+1

pm+1−−−→ Pm
pm−−→ Xm → 0

be a projective resolution of Xm, the image of X in D−(A-mod) clearly coincides
with that of the projective complex X′, given by

. . . Pm+1
pm+1−−−→ Pm

∂mpm−−−−→ Xm−1
∂m−1−−−→ . . .

∂1−→ X0 → 0.

Analogously, define a projective complex Y′ based on Y. Now any homomorhism
in HomD−(A-mod)(X′,Y′) is induced by a chain map

η ∈ HomC−(A-mod)(X′,Y′).

But pm is the cokernel of pm+1, and therefore η induces a chain map in

HomCb(A-mod)(X,Y)

having the same image as η in Db(A-mod).
Again suppose that X ∈ Cb(A-mod) is almost projective. Along the line sug-

gested by the previous paragraph, we associate another almost projective complex
X(1) to X, by potentially extending X to the left as follows: Set X(1) = X if X is
projective. Otherwise, we denote the left degree of X by m, let p : X(1)

m → Xm be
a projective cover of Xm with kernel ∂X(1)

m+1 : X(1)
m+1 → X

(1)
m , and define X(1) to be

the complex

0→ X
(1)
m+1 → X(1)

m → Xm−1 → · · · → X0 → 0,

where the m-th differential of the complex X(1) is ∂X(1)

m = ∂X
m p. Clearly, X(1)

comes with a natural map f : X(1) → X of chain complexes, given by fm = p,
fi = 0 for i ≥ m + 1, and fi = idXi for i ≤ m − 1. By setting X(0) = X and
continuing inductively via X(r+1) =

(
X(r)

)(1), we thus obtain a sequence

· · · → X(r) → X(r−1) → · · · → X(1) → X(0)

of chain maps in C−(A-mod), which, in turn, induces a sequence

Ext1(X,Y)→ Ext1(X(1),Y)→ Ext1(X(2),Y)→ · · ·

ofK-linear maps for each Y ∈ C−(A-mod). Note that Verdier’s map ξ : Ext1(X,Y)
→ HomD−(A-mod)(X,Y[1]) factors through these vector space homomorphisms,
since all of the canonical maps X(r) → X(r−1) become isomorphisms in the homo-
topy category K−(A-mod).



4764 BIRGE HUISGEN-ZIMMERMANN AND MANUEL SAORÍN

We begin with an auxiliary point which sometimes allows us to replace X by
X(1) in the first argument of Ext1 without penalty.

Lemma 5. Let X,Y ∈ Cb(A-mod) be nonzero almost projective complexes whose
left degrees coincide. Then the canonical K-linear map

Ext1(X,Y)→ Ext1(X(1),Y)

is bijective.

Proof. The coinciding left degree of X and Y is denoted by m. Moreover, we write
Z for X(1), and f for the canonical chain map Z → X; this means, in particular,
that fm : Zm → Xm is a projective cover, and fi = idXi for i ≤ m−1. The K-linear
map addressed in our claim, finally, is denoted by h : Ext1(X,Y)→ Ext1(Z,Y).

We start by proving surjectivity of h. Suppose

φ : 0→ Y
ρ−→ F σ−→ Z→ 0

represents a class in Ext1(Z,Y). To construct a preimage

ε : 0→ Y
µ−→ E ν−→ X→ 0

of (the class of) φ under h, we start by setting Ei = 0 for i ≥ m + 1 and Ei = Fi
for i ≤ m − 1; the pertinent components of the differential ∂E and those of the
chain maps µ, ν are as follows: ∂E

i = ∂F
i , µi = ρi, and νi = σi for i ≤ m − 1, the

definitions to the left of the m-th position being obvious. The A-module Em and the
corresponding differential of E are defined by the requirements that gm : Fm → Em
be the cokernel of ∂F

m+1, and ∂E
m be the unique map in HomA(Em, Fm−1) such that

∂F
m = ∂E

m gm. Moreover, set µm = gmρm, and let νm : Em → Xm be the unique
homomorphism with fmσm = νmgm; the map νm is, once more, furnished by the
universal property of gm. Clearly, µ : X→ E is a chain map. The same is true for
ν : E→ X; indeed, a straightforward diagram chase yields ∂X

m νm = νm−1∂
E
m. It is

now routine to check that ε yields a preimage of φ under h.
To verify injectivity of h, suppose that the class of ε : 0 → Y

µ−→ E ν−→ X → 0
is mapped to zero by h. This means that the upper row of the following pullback
diagram of complexes splits:

0 // Y
ρ

// F
σ //

g

��

Z //

f

��

0

0 // Y µ
// E ν

// X // 0

In order to show that ε is trivial, i.e., that the lower row splits as well, let
τ = (τn)n∈N be a section for σ. To construct a section π for ν, we start by setting
πi = 0 for i ≥ m + 1, and πi = giτi for i ≤ m − 1. This setup is recorded in the
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following diagram:

Fm+1
//

σm+1

}}{{{{{{{{{

gm+1

��

Fm //

σm

����������

gm

��

Fm−1
//

σm−1

}}zzzzzzzzz

gm−1

��

Fm−2

σm−2

}}zzzzzzzzz

gm−2

��

Zm+1

fm+1

��

//

τm+1

EE

Zm

fm

��

//

τm

HH

Zm−1
//

τm−1

EE

Zm−2

τm−2

EE

0

νm+1

}}{{{{{{{{{{
// Em

νm

����������
// Em−1

νm−1

}}zzzzzzzzz
// Em−2

νm−2

}}zzzzzzzzz

0 //

πm+1

EE

Xm // Xm−1
//

πm−1

EE

Xm−2

πm−2

EE

Note that all of the squares in this diagram commute, so that our task is reduced
to finding a section πm for νm such that the two bottom squares adjacent to πm com-
mute. This is automatic for the left-hand square, irrespective of our choice of πm. To
construct πm with the property that ∂E

mπm = πm−1∂
X
m, we recall that fm is the cokernel

of the differential ∂Z
m+1. This provides us with a unique homomorphism πm : Xm → Em

having the property that gmτm = πmfm, for gmτm∂
Z
m+1σm+1 = ∂E

m+1gm+1 = 0 yields

gmτm∂
Z
m+1 = 0. It is now routine to check that π = (πi)i∈Z is a section for ν, as required.

This completes the argument.

Modules M,N ∈ A-mod can of course be viewed as stalk complexes M,N con-
centrated in degree 0. In this situation, Verdier’s map provides us with isomor-
phisms

Ext1(M,N) ∼= HomD−(A-mod)(M,N[1]).

The following lemma shows that the good behavior of Verdier’s map extends, at
least partially, to more general complexes, which provides the missing link towards
the main result of this section.

Lemma 6. Let X, Y be nonzero complexes in C−(A-mod). Then Verdier’s map

ξ : Ext1(X,Y) −→ HomD−(A-mod)(X,Y[1])

is injective if either
(1) X is a projective complex, or else
(2) X and Y are bounded almost projective complexes such that the left degree

of X is larger than or equal to the left degree of Y.
Moreover, if X is as in (1) or (2) and Y is projective, then ξ is bijective.

Proof. We show injectivity of ξ simultaneously for (1) and (2). In case (2), we
denote by k the left degree of X, by m that of Y, and observe that Lemma 5
permits us to derive the claim for k = m from that for k = m+1. In other words, we
may, w.l.o.g., assume that either both X and Y are projective or both are bounded
almost projective with k ≥ m + 1. Note that, in this situation, any extension
ε : 0 → Y

µ−→ E ν−→ X → 0 has the property that 0 → Yi
µi−→ Ei

νi−→ Xi → 0 splits
(i.e., the extension ε is semisplit in the sense of [18, pp. 272-273]). For each i ∈ Z, let
π′i be a section of νi. We will see that the assumption ‘ξ(ε) = 0’ allows us to adjust
the family (π′i) so as to furnish a section for ν. To that end, suppose that ξ(ε) is
represented by a chain map φ : X→ Y[1]. Let P→ X be the projective resolution
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of X in K−(A-mod) and φ̃ : P→ Y[1] its composition with φ; then the morphism
φ̃ in K−(A-mod) also represents ξ(ε) in D−(A-mod), in view of the canonical
isomorphism HomK−(A-mod)(X,Y[1]) ∼= HomK−(A-mod)(P,Y[1]) (see [18, p. 299]).
We further observe that ξ(ε) = 0 if and only if φ̃ is trivial in K−(A-mod), for
the quotient map HomK−(A-mod)(P,Y[1]) → HomD−(A-mod)(P,Y[1]) is injective.
Our hypothesis on the left degrees of X and Y guarantees that φ̃ is nullhomotopic
precisely when φ is nullhomotopic. Consequently, the assumption that ξ(ε) is zero
supplies us with a homotopy ψ from φ to zero. We deduce that π = (π′n−µnψn)n∈Z
is a chain map X→ E such that νπ = 1X, which shows that ε is indeed trivial.

Now suppose that Y is projective. In that case, we have isomorphisms

HomD−(A-mod)(X,Y[1]) ∼= HomK−(A-mod)(P,Y[1]) ∼= HomK−(A-mod)(X,Y[1]),

where P is a projective cover of X. Hence all we need to check is that the homotopy
class of any chain map ψ : X→ Y[1] occurs in the image of the map Ext1(X,Y)→
HomK−(A-mod)(X,Y[1]) induced by ξ. But if C is the mapping cone of ψ, then
clearly the class of the extension 0→ Y → C[−1]→ X→ 0 in Ext1(X,Y) is such
a preimage of ψ.

From the preceding lemmas it is now easy to glean

Theorem 7. Suppose that K is algebraically closed, and let X : 0→ Xm → · · · →
X0 → 0 be an almost projective complex of finite dimensional A-modules, repre-
sented by a point X in CompAd , where d = (dimXm, . . . ,dimX0). Moreover, let
TX(CompAd ) and TX(G.X) be the tangent spaces at X of CompAd and G.X, respec-
tively. Then there exists a canonical K-linear embedding

TX(CompAd )/TX(G.X) −→ HomDb(A-mod)(X,X[1]).

In case X is a projective complex, this embedding is an isomorphism.

Proof. We compose the vector space homomorphism

χ : TX(CompAd )→ Ext1(X,X)

introduced after Remark 3 with Verdier’s map

ξ : Ext1(X,X)→ HomD−(A-mod)(X,X[1])

to obtain a vector space homomorphism

η : TX(CompAd )→ HomD−(A-mod)(X,X[1]).

Observe that the kernel of η coincides with TX(G.X), since Ker(χ) = TX(G.X)
by Proposition 4, while ξ is an injection by Lemma 6. Consequently, η induces an
embedding of TX(CompAd )/TX(G.X) into HomD−(A-mod)(X,X[1]), as required.

For the final claim, let X be projective. Then ξχ is surjective, since χ is surjective
by the last part of Proposition 4, and ξ is surjective by the last statement of Lemma
6.

As in the case of the variety ModAd of d-dimensional A-modules, Theorem 7
entails a number of interesting consequences. We just point out two of them, the
second of which we will need in the sequel. Since the proofs are analogous to those
for the module-theoretic counterparts (see [5]), we leave them to the reader.
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Corollary 8. Suppose that K is algebraically closed and X ∈ Cb(A-mod) a bounded
almost projective complex such that HomDb(A-mod)(X,X[1]) = 0. If X ∈ CompAd is
a point representing X, then the G-orbit of X is open in CompAd .

Corollary 9. Again suppose that K is algebraically closed. Given any finite se-
quence d = (dm, . . . , d0) of natural numbers, there are – up to isomorphism in
Cb(A-mod) – only finitely many almost projective complexes X of A-modules sat-
isfying the following two conditions:

(1) HomDb(A-mod)(X,X[1]) = 0, and
(2) dimK Xn = dn, for all n ∈ Z.

3. Faithfully balanced two-sided complexes

and invariance of Out(A)0

Several of the ideas underlying this section have precursors which were developed
in a paper by Guil-Asensio and the second-named author [7]. Major portions of
our auxiliary results can be readily generalized to algebras over commutative rings;
in particular, this is true for Proposition 10 below. To facilitate the reading with a
unified blanket hypothesis, we will, however, continue to assume that A is a finite
dimensional algebra over an algebraically closed field K.

Of course, we can view a chain complex X ∈ C(A-Mod) as a pair (X, λ), where
X ∈ C(K-Mod) and λ : A → EndC(K-Mod)(X) is a K-algebra homomorphism.
Accordingly, given another finite dimensional K-algebra B, an A-B-bimodule com-
plex AXB amounts to a chain complex X of K-spaces, combined with an algebra
homomorphism τ : A⊗KBop → EndC(K-Mod)(X). We will call a bimodule complex
AXB almost projective if both AX and XB are almost projective in the sense of
Section 2; recall that, in particular, this means that X is a right bounded complex
of finite dimensional modules. By adapting standard terminology for modules to
this context (see, e.g., [1]), we moreover define:

Definition. A bimodule complex AXB will be called faithfully balanced provided
that both of the canonical K-algebra homomorphisms

λ = τ(−, 1) : A→ EndC(Mod-B)(XB), ρ = τ(1,−) : B → EndC(A-Mod)(AX)op

are isomorphisms.

Whenever we let endomorphisms of a complex Y of left A-modules act on the
right of Y, we record this by referring to them as maps in EndC(A-mod)(Y)op.
The existence of a faithfully balanced bimodule complex AXB entails a fairly tight
connection between the algebras A and B, as the following two results suggest.

Proposition 10. Whenever there exists a faithfully balanced bimodule complex
AXB, the centers of A and B are isomorphic.

Proof. Set E = EndC(K-Mod)(X). The canonical embeddings of algebras λ : A→ E
and ρ : Bop → E take the centers of A and B to the same subalgebra E′ of E,
namely to E′ = EndC(A-Mod-B)(X).

As in Section 1, we denote by Out(A) the group of outer automorphisms of A,
and by Out(A)0 its identity component. It is well-known (cf. [6], Theorem 1) that
Out(A) embeds naturally into the Picard group Pic(A), which can be thought of
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as the group of isomorphism types of Morita self-equivalences of A-Mod. Clearly,
any such Morita self-equivalence induces category equivalences

C(A-Mod)→ C(A-Mod), Cb(A-mod)→ Cb(A-mod),

and

D(A-Mod)→ D(A-Mod), Db(A-mod)→ Db(A-mod).

This provides us with a natural action of Pic(A), and consequently also of Out(A),
on sets of isomorphism classes of objects in C(A-Mod) (resp. D(A-Mod)). Given
any complex X ∈ C(A-Mod), we will accordingly consider its Out-orbit

{σX ∈ C(A-Mod) : σ ∈ Out(A)}
in C(A-Mod), and analogously that in D(A-Mod), as well as its Out-stabilizer

OutX(A) = {σ ∈ Out(A) : σX ∼= X in D(A-mod)}
in the derived category. As we are dealing with bimodule complexes AXB, it will
promote orientation to denote the actions of Out(A) and Out(B) by means of left
and right superscripts, respectively.

Proposition 11. Let AXB be a bounded, faithfully balanced bimodule complex
of finite dimensional modules. If the Out-orbits of AX and XB in Cb(A-mod)
and Cb(B-mod) are finite, then the groups Out(A)0 and Out(B)0 are isomorphic.
In particular, this is the case when both AX and XB are almost projective with
HomDb(A-mod)(X,X[1]) = 0 and HomDb(mod-B)(X,X[1]) = 0. If, in addition,
charK = 0, the first Hochschild cohomology groups of A and B are isomorphic
as well.

Proof. The first assertion is simply a translation of Corollary 2.6 in [7] into the
present context; the proof given in [7] carries over. The second part is an imme-
diate consequence of Corollary 9 of the previous section. Since the Lie algebra
associated to Out(A)0 coincides with the first Hochschild cohomology group of A
in characteristic 0, the last assertion follows as well.

Example. The above propositions cover situations which may be far removed from
the situation where A and B are derived equivalent. For instance, if M is any
nonzero left A-module with the properties that HomA(M,A) = 0 and the Out-orbit
of M is finite, then, by taking X = A⊕M and B = End(AX)op ∼=

[
A M
0 EndA(M)op

]
we obtain a faithfully balanced bimodule AXB satisfying the hypotheses of the
preceding propositions. Consequently, the centers of A and B are isomorphic, as
are Out(A)0 and Out(B)0; the same is true for the first Hochschild cohomology
groups of A and B, provided that charK = 0. But A and B fail to be derived
equivalent, since they do not have the same number of simple modules. More
specific examples of such modules M are the preprojective modules (in the sense
of [2]) which are devoid of projective direct summands. In case Out(A) is finite,
all modules M with vanishing A-dual HomA(M,A) qualify, of course. Finiteness of
Out(A), in turn, is guaranteed wheneverA is a split algebra which is tilting-cotilting
equivalent to a hereditary algebra of tree type (cf. [7], Theorem 2.10)

Our principal aim is to obtain the conclusion of Proposition 11 in case A and
B are derived equivalent algebras. For that purpose, we stretch the concept of a
faithfully balanced complex of bimodules as follows.
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Definition. A complex AXB of A-B-bimodules will be called derived faithfully
balanced , provided that the canonical K-algebra homomorphisms

λ : A −→ EndD(Mod-B)(XB) and ρ : B −→ EndD(A-Mod)(AX)op

are isomorphisms.

Remark 12. Suppose that AXB is a derived faithfully balanced bimodule complex.
Clearly, the canonical K-algebra homomorphism ρ : B → EndD(A-Mod)(AX)op

equals the composition

ρ : B → EndC(A-Mod)(AX)op → EndD(A-Mod)(AX)op,

where the second map is the canonical one. If we set B̂ = EndC(A-Mod)(AX)op, our
hypothesis on AXB thus yields a vector space decomposition B̂ = B ⊕ H , where
H is the two-sided ideal of B̂ consisting of the chain maps h : AX → AX which
become zero in D(A-Mod). In the special case where AX is an almost projective
complex of left A-modules, these chain maps h are precisely the ones which are
homotopic to zero.

Of course, the preceding remark has a twin sibling, with the roles of A and B
switched. The same is true for the following useful observation.

Lemma 13. Let AXB be a bounded almost projective complex of A-B-bimodules
which is derived faithfully balanced. Then there is an idempotent

e ∈ EndCb(A-mod)(AX)op

with the following properties:
(1) AX(1 − e) is an acyclic complex of left A-modules; in particular,

B ∼= EndDb(A-mod)(AXe)op.

(2) The kernel of the canonical K-algebra homomorphism

EndCb(A-mod)(AXe)→ EndDb(A-mod)(AXe)

is contained in the Jacobson radical of EndCb(A-mod)(AXe).
(3) A chain map in EndCb(A-mod)(AXe) is an isomorphism in Cb(A-mod) if and

only if it turns into an isomorphism in Db(A-mod).

Proof. As in Remark 12, we denote by B̂ the endomorphism ring

EndCb(A-mod)(AX)op,

and by H the twosided ideal of those chain maps that become trivial in Db(A-mod).
Then B̂ is in turn a finite dimensional algebra, because the complex X is bounded
by hypothesis. The twosided ideal

(
H+J(B̂)

)
/J(B̂) of B̂/J(B̂) therefore gives rise

to an idempotent f ∈ H + J(B̂) such that H + J(B̂) = fB̂ + J(B̂) = B̂f + J(B̂).
We verify that f is trivial on the homology groups of X. Indeed, if we write f in
the form f = h + j, with h ∈ H and j ∈ J(B̂), then Hn(f) = Hn(j) for all n
by Remark 12. But j being nilpotent, so is the induced map Hn(j), and hence
Hn(f) = 0 due to idempotency. Thus the chain complex Xf is acyclic, and the
choice e = 1 − f satisfies condition (1). Now the kernel eHe of the canonical K-
algebra homomorphism eB̂e ∼= EndCb(A-mod)(AXe)op → EndDb(A-mod)(AXe)op ∼=
B is contained in eJ(B̂)e; for if it were not, H would fail to be contained in fB̂ +
J(B̂), contrary to our choice of f . To check the final point of our claim, we consider
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the canonical surjection EndCb(A-mod)(AXe)op ∼= eB̂e→ eB̂e/eHe→ eB̂e/eJ(B̂)e.
If β ∈ EndCb(A-mod)(AXe) is a quasi-isomorphism, i.e., if β becomes a unit in
eB̂e/eHe, then, a fortiori, β + eJ(B̂)e is a unit in eB̂e/eJ(B̂)e. But J(eB̂e) =
eJ(B̂)e being nilpotent, this implies that β is a unit in eB̂e = EndCb(A-mod)(AXe)op,
which proves (3).

Our strategy in showing that the isomorphism type of Out(A)0 is invariant un-
der derived equivalence is to focus on a certain closed subgroup of finite index of
Out(A); invariance of the identity component of this subgroup will then of course
amount to invariance of the identity component of the full outer automorphism
group. More precisely, given mutually inverse twosided tilting complexes AXB

and BX̃A in the sense of [15], the subgroups of choice in Out(A) and Out(B) will
be the stabilizer subgroups OutX(A) and OutX̃(B) of X and X̃ in Db(A-mod)
and Db(B-mod), respectively. The construction of an isomorphism between them
hinges on the following concept of a ‘semilinear chain map’ between complexes of
left A-modules: Fix σ ∈ Aut(A) and complexes Y,Z of left A-modules. Follow-
ing the pattern established in [7], we call a chain map ϕ = (ϕn)n∈N : Y → Z of
K-complexes σ-semilinear, provided that ϕn(ay) = aσϕn(y) for all n ∈ N, y ∈ Yn,
and a ∈ A. We note that a σ-semilinear map Y → Z can alternately be viewed
as a morphism σ−1

Y → Z in C(A-Mod). Moreover, we observe that, given any
σ-semilinear automorphism ϕ of Y and any morphism β ∈ EndC(A-Mod)(Y)op,
the conjugate ϕβϕ−1 is again a morphism in EndC(A-Mod)(Y)op. The endomor-
phisms (resp., automorphisms) of the K-complex Y which are σ-semilinear for
some σ ∈ Aut(A) are collectively referred to as the (A-)semilinear endomorphisms
(resp., automorphisms) of Y. It is straightforward that the set S(Y) of all semilin-
ear automorphisms of Y forms a subgroup of the group of automorphisms of the
underlying K-complex.

In the following
L

⊗ will denote the left derived functor of the tensor functor on
chain complexes. Keep in mind that, under the hypothesis of the following lemma,
the algebra eB̂e/eHe is canonically isomorphic to B.

Lemma 14. Again, let AXB be a bounded almost projective complex of A-B-
bimodules, which is derived faithfully balanced, let e ∈ EndCb(A-mod)(AX)op be
chosen as in Lemma 13, and let H be the twosided ideal of

B̂ = EndCb(A-mod)(AX)op

as specified in Remark 12. Given automorphisms σ ∈ Aut(A) and τ ∈ Aut(B),
conditions (1)−(3) below are related as follows: ‘(1) =⇒ (2)’ and ‘(2) ⇐⇒ (3)’.

(1) The functors σ(X
L

⊗B −), X
L

⊗B τ (−) : Db(B-mod) → Db(A-mod) are iso-
morphic.

(2) There is a σ-semilinear chain map

ξ : X→ X,

i.e., a map in HomCb(A-mod)(σ
−1

X,X), which turns into an isomorphism σ−1
X→

X in Db(A-mod) and which satisfies the condition that ξb = bτ ξ in Db(A-mod),
for all b ∈ B.

(3) There is a bijective σ-semilinear chain map ϕ : Xe → Xe such that the
automorphism of eB̂e, given by β 7→ ϕβϕ−1, induces the same map as τ on B.
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Proof. (1) =⇒ (2). One readily verifies that (1) is equivalent to the functors
σ−1

(X
L

⊗B −) and X
L

⊗B τ−1
(−) being isomorphic. We assume that this latter

condition is satisfied, and recall that, when applied to stalk complexes of projectives,
the functor X

L

⊗B− is just the usual tensor product (cf. [18], ch. 2). Now the tensor
products X ⊗B (τ

−1
B) and Xτ ⊗B B are clearly canonically isomorphic; we will

identify them in fact. Specifying an isomorphism χ : σ
−1

(X
L

⊗B−)→ X
L

⊗B τ−1
(−)

of functors Db(B-mod) → Db(A-mod), we consider χ(B) : σ
−1

(X ⊗B B) → X ⊗B
τ−1

B and the resulting chain of isomorphisms in Db(A-mod):
σ−1

X ∼= σ−1
(X⊗B B) ∼= X⊗B τ−1

B = Xτ ⊗B B ∼= Xτ .

Since σ−1
X and Xτ are both almost projective complexes of left A-modules, the

displayed isomorphism is, on the level of the derived categories, induced by a chain
map ξ : σ

−1
X→ Xτ in Cb(A-mod) (see the remarks following the definition of an

almost projective complex in Section 1). Alternately expressed, ξ is a σ-semilinear
map X → Xτ which becomes bijective in Db(A-mod). Finally, the automorphism
τ of A makes a relevant appearance: Namely, the naturality of χ translates into
the required additional property of ξ.

(2) =⇒ (3). Let ξ : X→ X be a σ-semilinear map as specified in (2). The fact
that the morphism X e−→ Xe turns into an isomorphism in Db(A-mod) implies that,
in the derived category, ξ can be viewed as an isomorphism σ−1

Xe→ Xe, induced
by the chain map ϕ = eξ(e|Xe) : σ

−1
Xe → Xe in Cb(A-mod). From Lemma 13,

part (3), one easily derives that ϕ is actually an isomorphism in Cb(A-mod). Thus
ϕ is a σ-semilinear automorphism Xe → Xe. Checking the remaining condition
under (3) is routine.

(3) =⇒ (2). Using the equality X = Xe⊕X(1 − e), one extends ϕ : Xe→ Xe
to a σ-semilinear map ξ = ϕ ⊕ 0 : X → X and notes that, trivially, the extension
has the required properties.

The following proposition represents the second crucial step – next to Corollary
9 – on the road towards the main result of this section. We continue to study
a complex X of A-B-bimodules as in Lemma 14, still denoting its endomorphism
ring in Cb(A-mod) by B̂. Moreover, we introduce a set G which will turn out to
be the graph of a group isomorphism φ : OutX(A) → OutX̃(B), provided that
AXB and BX̃A are mutually inverse twosided tilting complexes. Namely, we define
G as the set of all pairs (σ, τ) ∈ Out(A) × Out(B) such that σ and τ satisfy the
equivalent conditions (2), (3) of Lemma 14. Since, from the resulting definition
of φ, it is not obvious that this isomorphism of abstract groups is actually an
isomorphism of algebraic groups, we resort to viewing φ from an alternate angle.
Namely, we will rewrite φ in the form p2p

−1
1 , with isomorphisms p1 : S → OutX(A)

and p2 : S → OutX̃(B) for a suitable choice of S, these latter maps having the
benefit of being more readily recognizable as isomorphisms of algebraic groups.
To that end, we consider the group S(Xe) of semilinear automorphisms of the
complex Xe ∈ Cb(A-mod), together with the following two subgroups U and V :
The subgroup U consists of the maps of the form x 7→ uxv, where u is a unit of A
and v a unit of eB̂e (note that the latter assignment is semilinear with respect to the
automorphism a 7→ uau−1 of A). The subgroup V of S(Xe) consists of those maps
ϕ ∈ S(Xe) for which the algebra automorphism eB̂e→ eB̂e, given by β → ϕβϕ−1,
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induces an inner automorphism on eB̂e/eHe ∼= B; here again, H ⊆ B̂ is the ideal
of those chain maps which vanish in the derived category Db(A-mod). One readily
checks that U and V are normal subgroups of S(Xe) and that U is contained in V .
This provides us with a canonical projection π : S(Xe)/U → S(Xe)/V .

Proposition 15. For any bounded almost projective complex AXB of A-B-bimod-
ules which is derived faithfully balanced, the following are true:

(1) The set G is the graph of a group homomorphism φ : OutX(A) → Out(B),
where OutX(A) is the Out(A)-stabilizer of X in Db(A-mod).

(2) In case X is a tilting complex over A and e ∈ EndCb(A-mod)(X)op an idem-
potent as before, the subgroups U and V of S(Xe) are closed, as is the subgroup
Im(φ) of Out(B). Moreover, there are isomorphisms of algebraic groups,

p1 : S(Xe)/U → OutX(A) and p2 : S(Xe)/V → Im(φ),

such that p2π = φp1, where π is the projection introduced above.

Proof. (1) The task of checking that an element σ ∈ Out(A) cannot be the first
component of two different pairs in G is easily reduced to the case where σ = 1,
i.e., to the case where σ(a) = uau−1 for some unit u of A. Suppose that τ ∈
Aut(B) is such that the pair (σ, τ) satisfies the equivalent conditions of Lemma
14, and let ϕ : Xe → Xe be a bijective σ-semilinear endomorphism of Xe as
specified in condition (3) of that lemma; this is to say that β 7→ ϕβϕ−1 induces
the same map as τ on eB̂e/eHe. The σ-semilinearity of ϕ yields A-linearity of
the assignment v : Xe → Xe defined by xv = u−1(xϕ). In other words, v is a
unit in EndCb(A-mod)(Xe)op = eB̂e. Keeping in mind that the algebra eB̂e/eHe
is isomorphic to B by our balancedness hypothesis and the choice of H , we let c
be the canonical image of v in B. In view of the equality vβv−1 = ϕβϕ−1 for
β ∈ eB̂e, we finally observe that τ is just conjugation by c, for our construction
entails τ(b) = ϕbϕ−1 = cbc−1 for b ∈ B. Thus τ is in turn inner, as required.

Knowing that G is the graph of a function φ, we pin down the domain of φ.
By construction, it consists of those classes σ ∈ Out(A) for which there exists a
bijective σ-semilinear map ϕ : Xe→ Xe (note that conjugation by ϕ automatically
induces an automorphism of eB̂e/eHe). The latter condition is tantamount to
the requirement that Xe be isomorphic to σ(Xe) in Cb(A-mod), which is in turn
equivalent to the existence of an isomorphism Xe ∼= σ(Xe) in Db(A-mod); this last
equivalence is readily deduced from Lemma 13(3). So the domain of φ is OutX(A),
as claimed. It is straightforward to check that φ is a group homomorphism.

(2) Now suppose that X is a tilting complex of left A-modules. In particular, this
means that the category add(X), consisting of the finite direct sums of direct sum-
mands of copies of X, generates the homotopy category Kb(A-proj) of all bounded
projective complexes of finitely generated left A-modules as a triangulated category.
We infer that the left annihilator of X in A is zero. Hence so is the annihilator of
Xe, for the projective complexes X and Xe coincide in Kb(A-proj). Following the
model of [7, Lemma 1.2], we deduce that, for every semilinear bijective chain map
ϕ : Xe→ Xe, there is a unique automorphism σ ∈ Aut(A) with the property that
ϕ is σ-semilinear: Namely, if `a denotes left multiplication of Xe by a, then σ(a) is
determined by the requirement that `σ(a) = ϕ`aϕ

−1. If we write S for the group of
semilinear automorphisms of Xe, this provides us with a map S → Aut(A), which
is actually a homomorphism of abstract groups. The proof of assertion (1) shows
that, whenever this homomorphism takes ϕ to an inner automorphism ‘a 7→ uau−1’
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for a suitable unit u ∈ A, the map v : Xe → Xe sending x to u−1(xϕ) is a unit
in eB̂e, and vice versa. But the latter condition just says that xϕ = uxv, and
thus shows that our group homomorphism S → Aut(A) induces a monomorphism
S/U → Out(A) of abstract groups. In light of the previous paragraph, the im-
age of this monomorphism is OutX(A), and hence it gives rise to an isomorphism
p1 : S/U → OutX(A).

Set p′2 = φp1 : S/U → Out(B). Then, clearly, Im(p′2) = Im(φ). As for the kernel
of p′2, we have φp1(ϕ + U) = 1 if and only if there is an inner automorphism ι of
B such that bιϕ equals ϕb in Db(A-mod), for all b ∈ B. But this just means that
the automorphism of eB̂e given by β → ϕβϕ−1 induces an inner automorphism
of the algebra eB̂e/eHe ∼= B. Hence Ker(p′2) equals V/U , so that p′2 induces an
isomorphism S/V → Im(φ), as required.

Finally, we need to ascertain that p1, p2 are isomorphisms of algebraic groups.
First, for p1, we start by identifying the algebra A with the subalgebra of Â =
EndCb(mod- eB̂e)(Xe) consisting of the left multiplications `a on Xe for a ∈ A; this
identification is legitimate, since Xe is faithful over A. With A viewed from this
angle, the group homomorphism S → Aut(A) underlying p1 maps ϕ ∈ S to the
automorphism `a 7→ ϕ`aϕ

−1 of A, the latter conjugate being equal to `σ(a) if ϕ
is σ-semilinear. This assignment is clearly a morphism of algebraic groups, and
hence U is a closed (normal) subgroup of S. To see that the inverse of p1 is again
a morphism, it suffices to show that the map p′1 : S → OutX(A) which induces
p1 modulo U has a surjective differential Te(S) → Te(Im(p′1)) (cf. [3, Proposition
6.13]).

In a first step, we focus on the following morphism of algebraic groups:

γ : G→ GL(V ) with γg(v) = gvg−1,

where G = GL(Xe) and V = EndK(Xe). Our aim is to see that the restriction
S → γ(S), again denoted by γ, has surjective differential d γ : Te(S)→ Te(Im(γ)) ⊆
EndK(V ). From [3, 3.10], we know that

(d γ)(X)(v) = (d orbv)e(X),(†)

for X ∈ Te(S) and v ∈ V , where orbv : S → γ(S)v is the orbit map g 7→ γgv. To
check surjectivity, we let v1, . . . , vn be a basis for V , set v = (v1, . . . , vn) ∈ V n, and
consider the ‘expanded orbit map’

Orb : G→ γ(G).v, g 7→ g.v = (γgv1, . . . , γgvn),

and its restriction to S,

orb : S → γ(S).v.

The map Orb has reduced fibres, since the stabilizer subgroup Stab(v) of v in G
clearly arises as the solution set of a system of linear equations (for background
on reduced fibres, see [10, A.I.2.5, 2.6]). By [10, A.I.5.5, Satz 2], this implies
that Ker(d Orb)e = Tv(Stab(v)). Cutting down Stab(v) to the stabilizer subgroup
stab(v) of v in S, we infer that Ker(d orb)e equals Tv(stab(v)), and, in view of
[3, Proposition 6.7], we deduce further that the differential (d orb)e : Te(S) →
Tv(γ(S).v) is surjective. In light of (†), this yields surjectivity of d γ.
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If we enlarge the codomain of p′1 from OutX(A) to Out(A), then p′1 can be
factored in the form

S γ−→ γ(S) res−−→ Aut(A) can−−→ Out(A),

where res : γ(S) → Aut(A) sends any K-automorphism of V in γ(S) to its re-
striction to the invariant subspace A = Â. Now res : γ(S) → Im(res) is clearly
separable, and so is the canonical map can, the latter being actually a geometric
quotient; hence both res and can have surjective differentials. This shows that our
auxiliary map p′1 has surjective differential, and we conclude that p1 is indeed an
isomorphism of algebraic groups.

To deal with p2, we identify B with eB̂e/eHe via the canonical isomorphism.
Clearly, the group homomorphism S → Aut(eB̂e) sending ϕ to the automorphism
β 7→ ϕβϕ−1 respects the variety structures, and since the normal subgroup of
Aut(eB̂e) consisting of those automorphisms which induce inner automorphisms of
eB̂e/eHe is closed, this subgroup gives rise to a geometric quotient of Aut(eB̂e). In
particular, the auxiliary map p′2 : S/U → Out(B) as above is again a morphism of
algebraic groups. This in turn entails that V ⊆ S and Im(φ) ⊆ Out(B) are closed
subgroups. Now the geometric quotient property of the canonical map S → S/V
guarantees that p2 is a morphism of algebraic groups as well. With an argument
similar to that given for p1, one finally shows that p2 also has a surjective differential,
which guarantees that its inverse is in turn a morphism of algebraic groups.

In the following, we adopt Rickard’s terminology in [15], but insignificantly
deviate from his conventions by calling a category equivalence D−(B-Mod) →
D−(A-Mod) (resp., Db(B-mod) → Db(A-mod)) standard if it is isomorphic to

X
L

⊗B −, where AXB is a two-sided tilting complex; as is shown in [15, Theorem
3.3], this is harmless. Moreover, we note that according to [15, loc. cit.], any

equivalence X
L

⊗B − between the derived categories D−(B-Mod) and D−(A-Mod)
automatically restricts to an equivalence Db(B-mod) → Db(A-mod). To finally
clear the road to the main theorem of this section, we record an easy subsidiary
observation.

Lemma 16. Let B be a finite dimensional algebra and

F : D−(B-Mod)→ D−(B-Mod)

a standard derived equivalence. Then the following assertions are equivalent:
(1) F is induced by an element τ ∈ Out(B), i.e., there is a natural isomorphism

F ∼= τ (−).
(2) F takes the stalk complex BB to an isomorphic copy of itself.

Proof. Clearly, any τ ∈ Aut(B) gives rise to an isomorphism B ∼= τB of left B-
modules, which proves ‘(1) =⇒ (2)’. For the converse, let BTB be a two-sided

tilting complex for B such that F ∼= T
L

⊗B −. Then B ∼= F (B) ∼= T
L

⊗B B ∼= T in
D−(B-Mod). In other words, as a complex of left B-modules, T is isomorphic to
the stalk complex B on the level of the derived category. By [15], the right derived
functor of HomB(T,−) is a quasi-inverse of F – call it F−1. We deduce that
F−1 = RHomB(T,−) ∼= HomD−(B-Mod)(B,−) is induced by a Morita equivalence
HomB(C,−) : B-Mod → B-Mod, where C is some B-B-bimodule isomorphic to
1Bτ

−1
for some automorphism τ of B. This shows that F ∼= τ (−) is determined by

τ ∈ Out(B), and completes the proof of ‘(2) =⇒ (1)’.
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As announced, we will exploit the scenario we have rigged up in the special
case where AXB is a twosided tilting complex. In particular, we will see that, in
this situation, the map φ constructed in Proposition 15 is a group isomorphism
OutX(A) → OutX̃(B), provided that BX̃A is a twosided tilting complex inverse
to X. Moreover, we will obtain U = V , which will provide us with an alternate
description of φ as p2p

−1
1 , in the terminology of the proposition.

Theorem 17. Suppose that A and B are finite dimensional algebras (over an al-
gebraically closed field K). If A and B are derived equivalent, then Out(A)0 and
Out(B)0 are isomorphic algebraic groups.

Proof. We begin by choosing two-sided tilting complexes AXB and BX̃A which are
inverse to each other, that is, X

L

⊗B X̃ ∼= AAA and X̃
L

⊗A X ∼= BBB in the derived
categories Db(A ⊗K Aop -mod) and Db(B ⊗K Bop -mod), respectively. Recall that
OutX(A) and OutX̃(B) denote the subgroups consisting of those elements of Out(A)
and Out(B) which stabilize X and X̃ in Db(A-mod) and Db(B-mod), respectively.
Our first goal is to show that these closed subgroups of Out(A) and Out(B) have
finite index in the corresponding full outer automorphism groups.

We show finiteness of the index [Out(A) : OutX(A)], the result for B being sym-
metric. Note that the Out(A)-stabilizer of X in Db(A-mod) equals that of Xe in
Db(A-mod), where e is an idempotent in the Cb(A-mod)-endomorphism ring of X
as specified in Lemma 13, for, in the derived category, X and Xe become isomor-
phic. Hence the index under consideration coincides with [Out(A) : OutXe(A)] and
thus equals the cardinality of the Out(A)-orbit of Xe in Db(A-mod). So clearly
it suffices to show that the Out(A)-orbit of Xe in Cb(A-mod) is finite. But this
follows from Corollary 9 of Section 1, which shows that there are only finitely many
complexes over A which share the K-dimension of Xe, as well as the property that
HomDb(A-mod)(Xe,Xe[1]) = 0. This takes us to our first goal.

Our argument is thus reduced to showing that Im(φ) = OutX̃(B) and U =
V , in the terminology of Proposition 15. Once these equalities are established,
Proposition 15 will provide us with isomorphisms of algebraic groups

OutX(A)
p1←−− S(Xe)/U p2−→ OutX̃(B).

We deduce that φ = p2p
−1
1 restricts to an isomorphism Out(A)0 → Out(B)0, for

the identity component of S(Xe)/U is mapped onto that of OutX(A) – which equals
Out(A)0 – by p1, and onto that of OutX̃(B) – which equals Out(B)0 – by p2.

We access the two remaining equalities by way of the group homomorphism φ
from OutX(A) to Out(B) constructed in Proposition 15. To that end, we give yet
another description of φ in the present situation. For any element σ ∈ OutX(A), the

equivalence F = (X̃
L

⊗A −) ◦ σ(X
L

⊗B −) from Db(B-mod) to Db(B-mod) preserves
the isomorphism type of the stalk complex BB, whence Lemma 16 shows F to be
induced by some element τ ∈ Out(B). In view of the choice of X and X̃ as inverse

to each other, this provides us with an isomorphism σ(X
L

⊗B −) ∼= X
L

⊗B τ (−) of
functors Db(B-mod)→ Db(A-mod). Consequently, Lemma 14 guarantees that the
pair (σ, τ ) satisfies the equivalent conditions (2), (3) of that lemma; in other words,
the pair (σ, τ ) belongs to the graph G of φ. Thus φ assigns to any σ ∈ OutX(A)

the unique element τ ∈ Out(B) with the property that σ(X
L

⊗B −) ∼= X
L

⊗B τ (−).
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To obtain Im(φ) ⊆ OutX̃(B), we derive the following string of isomorphisms in
Db(B-mod):

τX̃ ∼= (X̃
L

⊗A X)
L

⊗B τ X̃ ∼= X̃
L

⊗A (X
L

⊗B τ X̃)

∼= X̃
L

⊗A σ(X
L

⊗B X̃) ∼= X̃
L

⊗A σA.

Since the left A-modules σA and A are isomorphic, we conclude that τ X̃ ∼= X̃ in
Db(B-mod). But this just means that τ ∈ OutX̃(B).

The symmetric version of Proposition 15, obtained by switching the roles of A
and B, permits us to ‘symmetrize’ the preceding paragraph. Indeed, it provides
us with a group homomorphism φ̃ : OutX̃(B) → Out(A) which assigns to τ ∈
OutX̃(B) the unique element σ ∈ Out(A) with τ (X̃

L

⊗A −) ∼= X̃
L

⊗A σ(−), and
we obtain Im(φ̃) ⊆ OutX(A) as above. From the fact that X and X̃ are inverse
to each other, we moreover derive that φ and φ̃ are inverse group isomorphisms
between OutX(A) and OutX̃(B). In particular, Im(φ) = OutX̃(B). In view of part
(2) of Proposition 15, finally, injectivity of φ guarantees that the canonical map
π : S(Xe)/U → S(Xe)/V is the identity; in other words, we also have U = V . This
completes the argument.
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6. A. Fröhlich, The Picard group of noncommutative rings, in particular of orders, Trans. Amer.

Math. Soc. 180 (1973), 1-45. MR 47:6751
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Departamento de Mátematicas, Universidad de Murcia, 30100 Espinardo-MU, Spain

E-mail address: msaorinc@fcu.um.es

http://www.ams.org/mathscinet-getitem?mr=91b:18012
http://www.ams.org/mathscinet-getitem?mr=92b:16043
http://www.ams.org/mathscinet-getitem?mr=57:3132
http://www.ams.org/mathscinet-getitem?mr=58:5949

	1. Introduction
	2. The geometry of chain complexes
	3. Faithfully balanced two-sided complexes
	Acknowledgement
	References

