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AUTOMORPHISMS OF THE LATTICE OF Π0
1 CLASSES;

PERFECT THIN CLASSES AND ANC DEGREES

PETER CHOLAK, RICHARD COLES, ROD DOWNEY, AND EBERHARD HERRMANN

Abstract. Π0
1 classes are important to the logical analysis of many parts of

mathematics. The Π0
1 classes form a lattice. As with the lattice of computably

enumerable sets, it is natural to explore the relationship between this lattice
and the Turing degrees. We focus on an analog of maximality, or more pre-
cisely, hyperhypersimplicity, namely the notion of a thin class. We prove a
number of results relating automorphisms, invariance, and thin classes. Our

main results are an analog of Martin’s work on hyperhypersimple sets and
high degrees, using thin classes and anc degrees, and an analog of Soare’s
work demonstrating that maximal sets form an orbit. In particular, we show
that the collection of perfect thin classes (a notion which is definable in the
lattice of Π0

1 classes) forms an orbit in the lattice of Π0
1 classes; and a degree

is anc iff it contains a perfect thin class. Hence the class of anc degrees is an
invariant class for the lattice of Π0

1 classes. We remark that the automorphism
result is proven via a ∆0

3 automorphism, and demonstrate that this complexity
is necessary.

1. Introduction

While there are many ways of defining Π0
1 classes, for the purposes of the present

paper, we regard a (computably bounded) Π0
1 class as the collection of (infinite)

branches through an infinite binary tree. Alongside of computably enumerable sets
and degrees, Π0

1 class occupy a position as a fundamental notion in computability
theory. In some sense, this is because they can be thought of as coding possible
constructions. While this is very vague, a good illustration is provided by the fact
that if I is a computable ideal in a computable ring R then the collection of prime
ideals containing I forms a Π0

1 class.
Π0

1-classes have been studied for many years (for example, Jockusch and Soare
[18], Kreisel [19]) and are particularly associated with models of Peano arithmetic
(PA) and proof theoretical notions such as WKL0. There are many ways of viewing
Π0

1 classes and many connections of computable mathematics with Π0
1 classes. The

main connection we have in mind is viewing Π0
1-classes as being Stone spaces of

logical theories, and in particular the Stone space associated with the lattice of c.e.
filters L(Q), inQ, a computable copy of the free Boolean algebra. Here, literals {pi |
i ∈ ω} can be viewed as propositions with ¬pi their negations, with ∧ and ∨ having
their usual interpretations. Then proper filters correspond to consistent theories,
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computable filters to decidable theories, and ultrafilters to complete theories. We
remind the reader that under the Stone duality, c.e. theories A correspond to the
collection of complete theories U(A) containing them; and conversely, to a Π0

1-class
C, viewed as the complete extensions of some theory, we can associate a theory
A(C) = T, the intersection of the members of C. (While this is all standard, we will
make some of these important connections more explicit in the next section.) For
recent extensive surveys on Π0

1 classes and their applications, we refer the reader
to Cenzer [2], Cenzer-Jockusch [4], and Cenzer-Remmel [5].

The collection of Π0
1 classes forms a lattice L(2ω). In this paper we study this

lattice and its connection with the computably enumerable degrees, along the same
lines as the well known Post program for the computably enumerable sets.

While there are many natural degree classes associated with a given Π0
1 class

C ⊆ 2ω, there is a natural way to associate a canonical degree with the class.
The set of strings that have extensions in C is a co-computably enumerable set.
Therefore we define degT (C) to be the degree of this co-c.e. set. Again we refer to
section 2 for the reader who is unfamiliar with this material

The inspiration for the material of the present paper is the work of Soare and
Martin, who demonstrated deep connections between definability and degree no-
tions along the lines of Post’s program. As is well known, Post sought a thinness
property of the lattice of computably enumerable sets which guaranteed Turing in-
completeness. In the deep paper [28], Soare demonstrated that this was impossible
since all maximal sets were automorphic, and Martin [21] had earlier proved that
the degrees containing maximal sets (indeed hyperhypersimple sets) were precisely
the collection of all high degrees.

In the present paper we initiate a program similar to the above, but this time
for the lattice L(2ω) of Π0

1-classes under set inclusion. Our principal philosophy is
that the study of L(2ω) can yield significant insight into computability in the same
way that the study of E does.

The central concept of the present paper is that of a thin Π0
1-class, which cor-

responds to a “maximal”, or perhaps “hyperhypersimple”, theory. Martin and
Pour-El [22] constructed a perfect c.e. theory A (that is, essentially undecidable,
or, viewed as a c.e. filter in the free Boolean algebra, the quotient of Q by A would
be isomorphic to Q) which was maximal. That is, A has the property that any
c.e. theory A′ containing A is a principal extension of A. In fact in the paper [22]
Martin and Pour-El construct what seems a very special type of maximal theory.
They construct what we now call a Martin–Pour-El theory. A Martin–Pour-El the-
ory T is of the form 〈pi | i ∈ A,¬pj | j ∈ B〉 where A and B are c.e. sets such that
|N− (A ∪B)| =∞ and each extension of the theory T is principal over T.

It is easy to show that this type of theory is not definable in L(Q), since it must
not only be maximal but additionally must be well-generated, that is, generated by
literals and their negations (Theorem 5.8), but as we see in section 4 the notion of
(perfect) maximal theory is definable.

Viewed via Stone duality, maximal theories correspond to thin classes. Here we
say C is thin if it is infinite and for all Π0

1 subclasses C′ there is a clopen U such
that C′ = C ∩ U.

What are the basic degree theoretical properties of thin classes?
In his thesis, Downey [9] proved that not every degree contains a Martin–Pour-El

theory. He showed that while all high degrees contained Martin–Pour-El theories,
and some low degrees, there were initial segments not containing them.
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What was unusual was that there seemed something basic which prevented all c.e.
degrees being realized, akin to the high permitting needed to ensure maximality, but
somewhat different. To wit, the Martin–Pour-El construction was a rather unusual
one since it had a certain “multiple permitting” character. In most arguments using
the permitting technique, one has a series of “followers”. For the j-th attack, one
waits for an event to occur, and, when the event occurs (“realization”), one will
begin the (j + 1)-st attack on a bigger follower. If later any of the earlier followers
gets permitted, then we win with suitable priority. A mild variation of this is
that for Re, we would need g(e) many permissions for some function g, which is
eventually constant for each attack.

For the Martin–Pour-El construction, each follower of the requirement Re will
need f(〈e, j〉)-many attacks, and f(n) > f(n− 1), for some computable function f.
That is, each follower needs more permissions than its predecessor for followers of
the same requirement.

Eventually a new degree class, called the anc degrees, was introduced by Downey,
Jockusch and Stob [12] to explain such arguments. It turns out that the anc de-
grees are a class containing all nonlow2 degrees, and are closed upwards. They are
exactly the degrees realized by many known constructions. We refer the reader to
Downey, Jockusch and Stob [12]. However it is unknown if they are invariant for
the computably enumerable sets, E or degrees R.

Of interest to us is that Downey, Jockusch and Stob proved that each anc de-
gree contains a maximal theory and in fact Martin–Pour-El’s construction always
yields a theory of anc degree. However, as mentioned above, the Martin–Pour-El
construction needed the theory to be generated by literals or their negations, and
this property is not definable.

Our first result is an analogue of Martin’s theorem for L(2ω). We prove that if
C is a perfect thin class then C has anc degree. Hence the anc degrees form an
invariant class for L(2ω). [This result says that the anc degrees occupy the position
of the high degrees in the setting of Π0

1-classes.]
Naturally, having the analogue of Martin’s theorem, we were interested in one to

Soare’s theorem. Could it be that any two thin classes are automorphic? To attack
this question, our first problem was that there were no results for constructing
automorphisms of L(2ω). Evidence from other structures said that the presence of
additional algebraic structure can lead to quite different situations. For instance,
Guichard [15] proved that the lattice of c.e. subspaces of an infinite dimensional
fully effective vector space L(V∞) has only countably many automorphisms, each
induced by a computable semi-linear transformation of V∞. In particular, if V1 and
V2 are automorphic then they have the same 1-degree!

We show that any automorphism of L(Q) is induced by an automorphism of Q,
and further that if Φ is any automorphism of L(Q) induced by taking a c.e. set of
generators to another, then in fact Φ is induced by a computable automorphism of
Q. Moreover, we can construct two thin Π0

1-classes that are not automorphic via a
∆0

2 automorphism. This seems to present an obstacle to our program.
Nevertheless, Remmel [24] has proved that L(2ω) has 2ℵ0 automorphisms. We

give a proof of Remmel’s theorem in section 6. So there is some hope of an analogue
of Soare’s theorem. Indeed, as we show, this is the case. Using some new techniques,
we are able to prove that if C1 and C2 are two perfect thin Π0

1 classes, then C1

is automorphic to C2 via a ∆3 automorphism. As we have seen above, this is the
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sharpest result possible, since there are thin C1 and C2 such that there is no ∆0
2

automorphism taking C1 to C2.
We see this paper as but a first step in an analysis of L(2ω) and its relationship

with E and C.
The plan of the paper is the following. Since we work in various settings that

are connected by dualities of structure, we begin with a section detailing the corre-
spondence between certain structures and the notation we will use in each setting.

In section 3 we consider the lattice L(2<ω) of 2<ω-c.e. filters, and develop some
useful definitions for use in later sections.

Section 4 is concerned with thin Π0
1-classes and their correspondence to ∆0

2

Boolean algebras, and section 5 looks at perfect thin Π0
1-classes.

Automorphisms of L(Q), the lattice of theories of Q, are studied in section 6.
We prove

Theorem 6.1. Every automorphism of L(Q) is induced by a unique automorphism
of Q.

Theorem 6.4. Every automorphism of L(Q) induced by an isomorphism between
two sets of c.e. generators of Q is computable.

Theorem 6.2 (Remmel). There are 2ℵ0 automorphisms of L(Q).

However, we can also show

Theorem 6.6. There are two thin Π0
1-classes that are not ∆0

2 automorphic.

Despite this negative result, in section 7 we are able to prove analogues in L(Q) of
Soare’s and Martin’s theorems for E , the lattice of c.e. sets. We prove the theorems
in the equivalent setting of Π0

1-classes.

Theorem 7.8. The anc degrees form an invariant class for the automorphism
group of Π0

1-classes.

Theorem 7.9. Any two perfect thin Π0
1-classes are automorphic.

2. Preliminaries

In this section we introduce our notation and some background results. It is
a characteristic feature of the material that many of the results are proven much
more easily in a particular setting. This is nothing new, and is the idea behind
much of classical duality. We essentially work in three settings;

1. Q, a computable copy of the free countable Boolean algebra, and its lattice of
c.e. filters L(Q). We remind the reader that we view these as axiomatizable
theories and the like as we describe below.

2. 2ω, and in particular Π0
1-classes, and its lattice of Π0

1 classes L(2ω), and
3. 2<ω, and in particular the lattice L(2<ω) of c.e. filters on 2<ω.
We write σ, τ for strings in 2<ω, and λ denotes the empty string. For the length

of σ we write |σ|, and if |σ| = k then for 0 ≤ i < k we write σ(i) for the ith bit
of σ. If τ is an extension of σ then we write σ ≺ τ, and σ � τ denotes that either
σ ≺ τ or σ = τ.

For σ ∈ 2<ω, ext(σ) = {τ | σ � τ} and, for nonempty σ, σ− denotes the string
of length |σ|− 1 contained in σ. If x ∈ 2ω then we write x � i to denote the member
σ of 2<ω such that σ = x(0)x(1) . . . x(i− 1).
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To distinguish between filters on Q and filters on 2<ω we will think of Q as the
free Boolean algebra of propositional formulas modulo tautological equivalence. It
then makes sense to refer to c.e. filters on Q as theories, and to ultrafilters on Q as
complete theories. We regard Q as generated by {pi | i ∈ ω}, a computable set of
free generators, with pi and the negations ¬pi being referred to as literals.

Definition 2.1. Let T be a tree in 2<ω so that T ⊆ 2<ω and T is closed under
initial segments. Then [T ] will, as usual, be the set of all infinite branches x ∈ 2ω

such that x � n ∈ T for all n ∈ ω. A subset P of 2ω is called a Π0
1-class if there

is a computable tree T in 2<ω such that P = [T ]. Although the operation [·] is
not 1-1, and hence has no “inverse”, to a Π0

1-class P , we can naturally associate a
tree P< = {σ ∈ 2<ω | ∃x ∈ P (σ ≺ x)}. Note that P = [P<]. (The reader should
note that the definition of P< makes sense for any subset of 2ω, and the equality
P = [P<] holds provided that P is closed.)

Notice that while P is a set of infinite objects, P< is a countable set of strings,
a Π0

1 set rather than a Π0
1 class. We remark that it is clearly a Π0

1 set, since one
can take any computable tree T =

⋃
s Ts representing P , and note that, by König’s

Lemma, for all σ ∈ 2<ω, σ ∈ P< if and only if

∀s > |σ|∃τ ∈ T (|τ | = s ∧ σ ≺ τ).

It is very useful to view Π0
1 classes in 2<ω via their complements. The idea is that

while there are many trees representing a particular class P , there is one tightest
representation via the strings not in. For instance, let T1 be the perfect tree above
1, and let T2 be the tree consisting of the perfect tree above 1 together with a finite
number of strings extending 0. Then [T1] = [T2]. Such considerations give rise to
the following definition.

Definition 2.2. A subset G of 2<ω is called a 2<ω-filter if
• σ ∈ G& σ � τ =⇒ τ ∈ G,
• σ ∗ 0 ∈ G& σ ∗ 1 ∈ G =⇒ σ ∈ G.

Furthermore, G ⊆ 2<ω is called a c.e. 2<ω-filter if G is a c.e. set and is a 2<ω-filter.
For a (c.e.) subset G of 2<ω, we let 〈G〉 denote the (c.e.) 2<ω filter containing G.
(We also use the same notation in L(Q); that is, if G is a (c.e.) subset of Q then
〈G〉 denotes the (c.e.) L(Q) filter containing G.)

For a computably enumerable subset G of 2<ω, 〈G〉 is c.e..
We have the following correspondence between Π0

1-classes and computably enu-
merable filters. Its proof is straightforward, and is left to the reader.

Lemma 2.3. A closed P ⊆ 2ω is a Π0
1-class if and only if P< is a c.e. 2<ω-filter.

If G is a 2<ω-c.e. filter then we may write [G] to denote the Π0
1-class {x ∈ 2ω |

∀i (x�i+1 6∈ G)}. We will tend to denote filters on 2<ω by F,G and H. We let U(A)
denote the set of complete theories containing A. We use T to denote a subset of
2<ω. We use P and Q to denote Π0

1-classes. We now elaborate on the dualities
between the three settings.

Definition 2.4. Let L(2<ω) denote the lattice of c.e. 2<ω-filters ordered by set
inclusion ⊆ with + and ∩ denoting least upper and greatest lower bounds respec-
tively.

Note that L(2<ω) is a distributive lattice with least element ∅ and greatest
element 2<ω.
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Actually, as we now see, L(2<ω) is really L(Q) in disguise. For the discussion
below we use the notation εipi to denote one of pi or ¬pi. We have the following
observation, which is surely known to anyone who has thought about it.

Lemma 2.5. L(Q) and L(2<ω) are computably isomorphic in a natural way.

Proof. The theory T ∈ L(Q) corresponds to the c.e. filter FT = {σ : T ` σ∗},
where σ∗ is the conjunction of the pi with σ(i) = 1 and the ¬pi with σ(i) = 0. One
can check that the map induces an automorphism from L(Q) to L(2<ω).

We remark that, despite the “obvious correspondence” given in Lemma 2.5, as
we will see, there are a number of conceptual advantages in sometimes thinking in
terms of L(Q) and sometimes thinking of this as L(2<ω).

Under the interpretation above, Π0
1-classes correspond to complete theories in Q

also in a very natural way. If x is a member of P then x is just an infinite binary
path. We can then interpret this as a complete theory A(x) equal to

{εipi | εipi = pi if x(i) = 1, and εipi = ¬pi if x(i) = 0}.
This is a complete theory on Q, since precisely one of pi or ¬pi will be in A(x).

The point of Stone duality is that a logical theory B can be identified with the
unique set U(B) of all complete theories containing it, because B =

⋂
{D | D ∈

U(B)}. Since we are coding c.e. theories by Π0
1 classes, we have a natural identi-

fication of theories B with Π0
1 classes. Conversely, given a collection of complete

theories E, one can always form the unique theory T =
⋂
{M | M ∈ E}. If E is a

Π0
1 class then T will be computably enumerable.
It is perhaps worthwhile to articulate further the manner by which this duality is

obtained, since it is quite important for what is to follow. Think of a c.e. theory as
being given in stages. Say, B =

⋃
sBs. Then we can build a natural representation

of U(B) in stages, via a computable tree T which is built inductively in stages. At
stage 0, let T0 = {λ}. At stage s + 1, we will have a tree Ts and will decide how
to extend Ts to make Ts+1. For a string σ, we can interpret σ as z(σ) =

∨
i εipi,

where εipi = pi if and only if σ(i) = 1. For ν on Ts, we simply put ν ∗ j on Ts+1

(j ∈ {0, 1}) iff 0 6∈ 〈Bs+1, z(ν ∗ j)〉 (the theory generated by Bs+1 and z(ν ∗ j) is not
inconsistent). Conversely, given a Π0

1 class P , with representing tree T =
⋃
s Ts,

one builds the theory B by putting
∨
¬εipi into B, for εipi = pi iff σ(i) = 1, at the

stage where there is no extension of σ in Ts.

3. The Lattice of 2<ω-Filters

We now look at some key properties of this lattice. While, at least in terms of
L(Q), some of these are well known, we will give a fairly detailed discussion for
completeness.

Definition 3.1. Let L(2<ω)(G, ↑) denote the sublattice

{G′ ∈ L(2<ω) | G ⊆ G′}.
Let L(2<ω)(G, ↓) denote the sublattice

{G′ ∈ L(2<ω) | G′ ⊆ G}.
(Similarly for theories.) We will drop the 2<ω and write, for instance, L(G, ↓),
when the context is clear.

We say G is complemented in L(2<ω) if there is some G ∈ L(2<ω) such that
G+G = 2<ω and G ∩G = ∅. In this case we will write G⊕G = 2<ω.
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In L(Q) the interpretation of complementation is that a c.e. theory T has a
complement T ′ if and only if 〈T ∪ T ′〉 = Q and T ∩ T ′ = {1}, where 1 here denotes
the symbol for truth.

The dualities above allow us to characterize the complemented filters in 2<ω.
First we work in Q. Notice that we have the correspondence, that a complemented
filter in 2<ω corresponds to a Π0

1 class which is complemented in 2ω and hence to
a complemented theory in Q.

Lemma 3.2. A c.e. theory T is complemented if and only if it is principal.

Proof. ⇐ is clear, since the filter theory generated by θ is complemented by that
generated by ¬θ. Conversely, suppose that A is not finitely generated and com-
plemented by B. Thus the theory generated by A together with B is Q, yet
A ∩ B = {1}. Since 0 ∈ 〈A ∪ B〉, for some θ ∈ A we have ¬θ ∈ B. However,
since A is infinitely generated, there is some ϕ ∈ A with θ 6` ϕ. Consequently,
1 6= ¬θ ∨ ϕ ∈ A ∩B.

Corollary 3.3. “T is principal” is definable in the lattice of c.e. theories.

For the interpretation in 2<ω, we use the following.

Definition 3.4. Suppose G is a c.e. 2<ω-filter. Then we write r(G) for the set of
roots of G, that is,

r(G) = {σ ∈ G | (∀τ)(τ ∈ G& τ � σ =⇒ τ = σ)}.
We have the following interpretation of Lemma 3.2.

Corollary 3.5. An element G of L(2<ω) is complemented if and only if r(G) is
finite.

Proof. Under the isomorphism of Lemma 2.5, the roots of G form a finite set if and
only if the associated theory is finitely generated, and hence principal.

Reasoning classically about the Stone space of a logical theory, one would use
the set of roots. However, in our case, we need to consider effective given objects.
Therefore in place of the roots of G we use an effective generating set, which is the
idea behind the following definition.

Definition 3.6. A basis of a 2<ω-c.e. filter G is a subset B of G generating G and
such that any two elements are � incompatible.

Note that r(G) is a basis of G for any 2<ω-filter G. B ⊆ G is a basis of G iff B
generates G and no proper subset of B generates G. Also G is complemented iff
some basis of G is finite iff every basis of G is finite.

A useful fact is the following.

Lemma 3.7. Let G be a 2<ω-c.e. filter. Then there is a basis B of G which is c.e.

Proof. Let {Gs} be a computable enumeration of G. We construct a computable
enumeration of a basis B of G as follows. Let B0 = ∅. Given Bs, let n be the least
natural number which exceeds the length of all the members of Bs, and then let
Bs+1 = {τ ∈ 2<ω : |τ | = n ∧ τ ∈ Gs − 〈Bs〉}. It is easy to see that B =

⋃
sBs is a

basis of G.

The proof above gives rise to the following reduction principle between elements
of L(2<ω).



4906 P. CHOLAK, R. COLES, R. DOWNEY, AND E. HERRMANN

Lemma 3.8. For all G0, G1 ∈ L(2<ω) there exist G′0, G
′
1 ∈ L(2<ω) such that G′0 ⊆

G0, G
′
1 ⊆ G1, G

′
0 ∩G′1 = ∅ and G0 +G1 = G′0 +G′1.

Proof. Let (σ0
s)s≥0 and (σ1

s)s≥0 be computable enumerations of G0 and G1 re-
spectively. We construct c.e. bases B0 and B1 of G′0 and G′1. The construction is
virtually identical to the one in Lemma 3.7 with the extra condition that elements
of B0 and B1 are incomparable. (This is to ensure that if σ ∈ G0 ∩ G1 6= ∅ then
σ 6∈ G′0 ∩G′1.)

Then the 2<ω-c.e. filters G′i = 〈Bi〉 for i = 0, 1 witness the desired reduction.

The lattice of c.e. subsets of an infinite c.e. set is always isomorphic to the
lattice of c.e. sets. It is still an open question whether the analogous statement
holds for L(G, ↓) for any G. It is pointed out in Cenzer-Jockusch [4], Theorem 6.3,
that the ∆0

3 version is false: there are G1, G2 ∈ L(2<ω) such that there is no ∆0
3

isomorphism taking L(G1, ↓) to L(G2, ↓). However, we do show that there are at
most two isomorphism types.

Theorem 3.9. 1. If G ∈ L(2<ω) is nonempty and the root set r(G) is finite,
then L(2<ω) ∼= L(G, ↓).

2. If G0, G1 ∈ L(2<ω) with both root sets r(G0) and r(G1) infinite, then
L(G0, ↓) ∼= L(G1, ↓).

3. Furthermore, all the isomorphisms above are computable.

Proof. Let G be a 2<ω-c.e. filter.
1. Suppose r(G) = {σ1, . . . , σk} for some k ≥ 1.

If k = 1 then let θ(τ) = σ1 ∗ τ for all τ ∈ 2<ω.
If k > 1 then for all τ ∈ 2<ω let θ(1k−1 ∗ τ) = σk ∗ τ and θ(1i0 ∗ τ) = σi ∗ τ,

for i = 0, 1, . . . , k − 2. Then θ generates the required isomorphism between
2<ω and L(G, ↓).

2. Suppose that r(G) is infinite. Let Gm be the 2<ω-c.e. filter

{σ ∈ 2<ω | (∃i < |σ|)(σ(i) = 1)}.
Observe that r(Gm) is infinite and, in fact, r(Gm) = {0j1 | j ≥ 0}. Let
(σs)s≥0 be a c.e. basis of G. Then the mapping

θ : 0s1 ∗ τ 7→ σs ∗ τ
for τ ∈ 2<ω generates the isomorphism between L(Gm, ↓) and L(G, ↓).

3. It is clear that the isomorphisms above are computable.

Herrmann has conjectured that if r(G) is infinite then L(G, ↓) is not isomorphic
to L(2<ω).

4. Thin Π0
1-Classes and Boolean Algebras

The central notion for us in the rest of the paper is that of a thin Π0
1-class.

We like to think of Π0
1-classes as subsets of the Cantor space 2ω where the sets

I(σ) = {x | σ ≺ x} form a basis of open intervals. Then any clopen subset of 2ω is
just a finite union of intervals.

Definition 4.1. 1. A Π0
1 class P is called thin if P is infinite and for every Π0

1

class Q ⊆ P there is a clopen set F ⊂ 2ω such that Q = P ∩ F.
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2. Suppose that T is a complete undecidable extension of T, but for all c.e.
extensions T ′ of T , there is θ ∈ Q such that T ′ = 〈T, θ〉. Then, following
Downey [9], we say T is a maximal theory.

3. Note that a Π0
1 class is thin iff its corresponding theory is maximal.

Theorem 4.2. “P is thin or finite” is definable in L(2ω).

Proof. By Lemma 3.2, “T is principal” (and hence “C is clopen”) is so definable.

We remark that Open Question 6.3 in Cenzer-Jockusch [4] asks whether “T is
finite” is definable in L(2ω).

For more results and background on thin Π0
1-classes, see Cenzer, Downey, Joc-

kusch and Shore [3] and Downey [9].
The following says that, in a sense, thin classes are the precise analogues of

hyper-hyper-simple c.e. sets.

Lemma 4.3. A nonempty Π0
1-class P is thin if and only if L(2ω)(P, ↓) is an infinite

Boolean algebra. In other words, P is thin if and only if the lattice of c.e. filters
containing the associated theory T (P ) forms a Boolean algebra.

Proof. To prove the “only if” part, assume that P is thin. Since P is infinite L(P ) is
infinite, and distributive, as we have already seen. (For any two distinct x1, x2 ∈ P ,
there is a clopen C with x1 ∈ P ∩ C and x2 6∈ P ∩ C.) Also, if Q ⊆ P then Q has
the form C ∩P for some clopen C, so that Q∩ (2ω −C) is the complement of Q in
L(P ).

Conversely, assume that L(P ) is an infinite Boolean algebra. Then clearly P is
infinite. Let Q be any Π0

1 subclass of P . By assumption, Q is complemented in
L(P ). Let R be the Π0

1 class such that R∪Q = P and Q∩R = ∅. By the reduction
principle, dualized from c.e. 2<ω-filters, there exist Π0

1 classes Q′ ⊇ Q, P ′ ⊇ P
such that Q′ ∪ R′ = 2ω and Q′ ∩ R′ = Q ∩ R = ∅. Then Q′ is clopen, and clearly
Q′ ∩ P = Q. Thus P is thin.

Lemma 4.3 is quite suggestive. For c.e. sets Lachlan characterized the lattice
of supersets of hyperhypersimple sets as precisely the Σ0

3 Boolean algebras. Since
we now know that for maximal theories, the only supertheory lattices we get are
Boolean algebras, perhaps, as in the c.e. set case, there is some characterization of
the Boolean algebras that can be realized. Indeed this is the case.

Theorem 4.4. The following classes of Boolean algebras coincide up to ∆0
2 iso-

morphism.
(i) {B | B is an infinite ∆0

2 Boolean algebra}.
(ii) {L(T, ↑) | T is a c.e. maximal theory}.
(iii) {L(2ω)(P, ↓) | P is a thin Π0

1-class}.
(iv) {L(2<ω)(G, ↑) | [G] is a thin Π0

1-class}.

Proof. We do (i) ⇔ (iv), the others following by duality via Lemma 2.5. We first
prove that (iv) ⊆ (i). Suppose L(2<ω)(G, ↑) is Boolean algebra, with P being the
corresponding thin Π0

1-class.
Let B be the Boolean algebra (B,+,∩, ∗), where

B = {H | H ∈ L(2<ω)(G, ↑)}
and +,∩ and ∗ are the operations on the lattice L(2<ω)(G, ↑). We will give a ∆0

2

presentation of B.
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Now we know that each extension of G is determined by a finite (root) set. The
underlying set for B is the set of all finite subsets of 2<ω, modulo the equivalence
relation ≡ where F ≡ H iff 〈G ∪ F 〉 = 〈G ∪H〉. Note that ≡ is clearly c.e. The
induced +, ∩ and complementation are obvious ones.

For the converse direction, let B be a ∆0
2 Boolean algebra. By a result of Feiner

[14] (see Downey [10], Corollary 3.10), we know that B is isomorphic to a c.e.
presented Boolean algebra. Hence we can suppose, without loss of generality, that
there is a c.e. theory F such that B ∼= Q/F.

Remember here that, as in section 2, we think of F =
⋃
s Fs as being a set of

elements of the form θ =
∨
i εipi. For this proof it is easiest to use the topological

view of Q/F as a Π0
1 class represented by a computable tree T =

⋃
s Ts.

1

We will define a ∆0
2 map α from 2<ω to 2<ω and a Π0

1 class T̂ . For a node σ(θ)
in T we will ensure that
• α(σ(θ)) exists iff σ ∈ T ,
• α induces a homeomorphism from the Π0

1 class [T ] to the Π0
1 class [T̂ ],

• [T̂ ] is thin.

These three things will suffice for the theorem. (To see this, let F̂ represent T̂ in
Q. The point is that any extension of F̂ in Q will be finitely generated over F̂ , as
F̂ is thin. Hence the extensions of F̂ will correspond to the α-pre-images of strings
σ̂ representing θ̂ 6∈ F̂ . But these are just the elements θ of F , as α represents a
homeomorphism.)

We will construct α = lims αs in stages. At stage 0, we simply set α(σ) = σ for
all σ ∈ 2<ω. We will need to meet the negative requirements

Nσ : σ ∈ T iff lim
s
αs(σ) exists ∈ T̂ .

Before we look at the precise nature of the satisfaction of the Nσ, we look at the
thinness requirements. Let Pe ⊂ 2<ω be the e-th primitive recursive tree, so that
[P0], [P1], . . . is an effective enumeration of all Π0

1 classes.
We need to ensure that we meet the requirements

Re : [Pe] ⊆ [T̂ ]→ ∃C(C clopen & [Pe] = C ∩ [T̂ ]).

Let We denote the set 2<ω − [Pe], the c.e. set of strings in the complement of
[Pe]. The easiest way to understand the construction of a thin class is in the case
that [T̂ ] is perfect, which is covered by the case that T = 2<ω. Thus, here we will
assume that σ ∈ F for all σ, and hence we will need that lims αs(σ) exists for all
σ ∈ 2<ω.

Now for all σ with |σ| = e we regard Nσ as having higher priority than Rj for
j ≥ e.

The construction is similar to an e-state maximal set construction. The basic
action is that we will try to define α(σ) ∈ W|σ| if possible. Thus we will have a
computable approximation αs(σ) to α(σ).

At stage s we will have an approximation to T̂s of a certain height h(s) ≥ s, and
[T̂ ]s will be represented by those nodes ρ on T̂s such that ∃τ ∈ T̂s(|τ | = h(s)∧ρ � τ).
h(s) will be chosen so that αs(σ) will be defined in T̂s for all σ ∈ 2s. In fact, we
simply ensure that 2s equals α−1

s ([T̂ ]s).

1Recall that θ =
∨k
i=1 εipi is represented by a string σ(θ) as in Lemma 2.5. A string σ(θ)

representing θ =
∨
i εipi and all of its extensions dies at stage t if we see θ enter Ft.
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Figure 1. Example of the mapping α.

If no Re acts at stage s + 1 we simply extend α and its domain in the obvious
way. That is, we set h(s+ 1) = h(s) + 1, and for all strings σ of length s+ 1 we set
αs+1(σ ∗ i) = αs(σ) ∗ i for i ∈ {0, 1}.

We act for the sake of R|σ| if we see some ν ∈ [T̂ ]s such that
• ν ∈W|σ|s (since all its extensions in Pe,s are killed by stage s),
• ∃σ(|σ| = e+ 1 ∧ αs(σ) ≺ ν (so that ν is long enough to not injure any Nγ of

higher priority),
• σ is not e-killed; that is, of the low e-state.
Note that we might as well take ν to have length s. The action is to redefine

αs+1(σ) = ν (forcing α(σ) ∈ We).
The details are then to extend the tree so that the partial isomorphism αs+1 is

well defined. In detail, we then extend the tree so that T̂s+1 pulls back to 2s+1. That
is, for all τ not extending αs(σ) with τ having length s, let αs+1(τ ∗ i) = αs(τ) ∗ i,
as above. Now for all β with |αs(σ)| + |β| ≤ s + 1, define αs+1(σ ∗ β) = ν ∗ β.
Declare σ as e-killed; having the high e-state. Initialize all Rj for j > e.

Finally, declare as terminal any ρ on T̂s extending αs(σ) but incomparable with
αs+1(σ). See Figure 1, where σ = 1 ∗ 0.

Notice that this action injures Nτ for all τ with σ � τ, and Rj for j > e. The
argument is finite injury. Since we e-kill σ when Re receives attention via σ, one
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can see that once Re has priority, it can only further receive attention 2e+1 many
times. Therefore, lims αs(σ) exists for all σ ∈ 2<ω, and the Ne are met. The Re
are met as follows. Go to a stage se such that for all s ≥ se, Re does not receive
attention at s, and Re has priority at stage se. Suppose that [Pe] ⊆ [T̂ ]. Then we
see that for each σ of length e + 1, the paths in [T̂ ] above α(σ) are either disjoint
from or equal to the paths in [Pe] above α(σ). Hence [Pe] = [T̂ ]∩C, where C is the
clopen set determined by the finite collection of θ where the two classes are equal.
This concludes the proof that there is a perfect thin class.

Now to complete the proof at hand all we need to do is to indicate the necessary
modifications needed in the case that the domain of α is not all of 2<ω but is also
in a state of formation. First we say that σ is active if σ has not yet been killed in
T at stage s. That is, σ ∈ [T ]s. Our action at stage s+ 1 is that if σ becomes killed
then we will immediately kill αs(σ) and all its extensions in [T̂ ]s, by declaring all
its h(s)-long extensions as terminal. Finally, for Re to receive attention, we replace
• σ is not currently e-killed

by
• σ is not currently e-killed and σ is active.
This concludes the proof of Theorem 4.4.

Actually the proof above has a number of interesting corollaries. For instance,
we can get a cheap proof of a result of Cenzer, Downey, Jockusch and Shore [3].

Corollary 4.5 (Cenzer et al. [3], Theorem 2.2). (i) For each computable ordinal
β there is a countable thin Π0

1 class [T̂ ] of Cantor-Bendixson rank β.
(ii) Furthermore, if the rank is at least one, then we can take T̂ to be a computable

tree with no dead ends.

Proof. (i) follows from the above construction by choosing the template class [T ] to
have rank β. It is very well known that there are countable Π0

1 classes of arbitrary
rank. Now for (ii). Note that there is something to prove here since even if we
choose the template tree to have no dead ends, it does not mean that the thin class
[T̂ ] will have no dead ends. (ii) follows by modifying the construction as follows.
When Re receives attention at stage s + 1, and we move αs+1(σ) from αs(σ) to
ν, don’t kill the strings ρ avoided, but just declare that they will have the trivial
extension henceforth: we directly put ρ ∗ 0 ∗ 0 ∗ ... into [T̂ ] and allow no other
extension of ρ, with priority e. The argument still goes through.

We also get the following corollary concerning the complexity of the lattices of
Π0

1 subclasses of a (thin) class.

Corollary 4.6. Let Pe denote the e-th primitive computable tree. Then {〈e, i〉 :
L([Pe], ↓) ∼= L([Pi], ↓)} is Σ1

1-complete.

Proof. It is well known that the pairs e, i such that the computable Boolean al-
gebra Be is isomorphic to the computable Boolean algebra Bi are Σ1

1-complete.
Since we know of no explicit proof of this in the literature, here is a proof. It is
well-known (e.g. Rogers [25]) that the collection of paths through Kleene’s O is
Σ1

1 complete. For each computable ordinal β, construct a canonical computable
Boolean algebra as the interval algebra Intal(ωβ). These algebras are isomorphic
iff the corresponding ordinals are the same.
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It would be interesting to know if the analog of the Slaman-Woodin ([27]) con-
jecture holds:

Open Question. Is {〈e, i〉 : Pe automorphic to Pi} Σ1
1 complete?

The analogous result for the lattice of computably enumerable sets was proven
by Cholak, Downey and Harrington [6].

5. Perfect Thin Classes

We now turn to perfect classes, our main concern. Recall that for a topological
space X, the set Xd of derived points of X is the set of x such that x ∈ cl(X−{x}).
If x ∈ X−Xd then we say that x is an isolated point. A topological space is called
perfect if it has no isolated points, that is, if X = Xd. In the Cantor space we have
the following lemma, as noted in Cenzer, Downey, Jockusch and Shore [3].

Lemma 5.1. For any thin Π0
1 class P and any x ∈ P , x is computable if and only

if x is isolated in P.

Proof. Clearly, if {x} is computable then {x} is a Π0
1 subclass of P. Since P is a

thin Π0
1 class, {x} is a relatively clopen subclass of P and hence x is isolated.

The converse is trivial.

Lemma 5.2. P is a perfect thin Π0
1-class if and only if L(2ω)(P, ↓) is an atomless

Boolean algebra.

Proof. Let P be a perfect thin Π0
1 class. Then L(P, ↓) is a Boolean algebra by

Lemma 4.3. Suppose L(P, ↓) is not atomless and let G be an atom. Then G = {x}
for some x ∈ 2ω, and it follows that {x} is computable. Hence by Lemma 5.1, x is
isolated in P , contradicting the assumption that P is perfect. Conversely, suppose
that P is not perfect, but L(P, ↓) is an atomless Boolean algebra. Let x be an
isolated point of P . Then x is computable and hence {x} is an atom of L(P ).

Let x be an element of a Boolean algebra B and let Ux be the set of all ultrafilters
on B containing x. Further, let S(B) be the set {Ux | x ∈ B}. One version of
the Stone representation theorem seen earlier is that every Boolean algebra B is
isomorphic to a subset of P(S(B)), the power set Boolean algebra of S(B). When
we consider S(B) as a topological space with basic open sets {Ux | x ∈ B}, called
the Stone space, then we get the following characterization of Boolean algebras.

Theorem 5.3 (Stone). A Boolean algebra B is atomless if and only if the Stone
space of B is perfect.

Interpreting L(Q) as the lattice of c.e. logical theories, we can similarly say that
a theory A is perfect if its corresponding Π0

1-class is perfect.
We then have the interpretation of Lemma 5.3 in the setting of logical theories.

Theorem 5.4. 1. A c.e. theory A is perfect if and only if A is consistent and
is essentially undecidable.

2. “A is perfect” is definable in L(Q).

For our purposes, the consequence of Theorem 5.4 we need is the following.

Corollary 5.5. “A is a perfect maximal theory” is definable in L(Q).
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In section 7 we use the fact that being a perfect maximal theory is definable to
obtain theorems for L(Q) that are analogous to Soare’s and Martin’s theorems for
E , the lattice of c.e. sets.

To finish this section we briefly discuss Martin-Pour-El theories, which were the
first maximal theories to be constructed.

Martin–Pour-El theories are maximal perfect theories with a special set of gen-
erators. From Downey [9] we recall the following definitions in L(Q).

Definition 5.6. A c.e. theory T is well-generated if it is generated by a pair of sets
{pi | i ∈ A} and {¬pi | i ∈ B}. (Here if T is consistent then A ∩B = ∅.)

Definition 5.7. A c.e. theory T is a Martin–Pour-El theory if it is well-generated
and maximal.

Notice that if T is Martin–Pour-El then it is essentially undecidable, since ω −
(A ∪ B) is infinite. The reason that we concern ourselves with maximal theories
rather than Martin–Pour-El ones is the following.

Theorem 5.8. “ T is Martin–Pour-El” is not definable in L(Q). In fact, there is
an automorphism of L(Q) taking a Martin–Pour-El theory to a theory which is not
Martin–Pour-El.

This result is, of course, an immediate consequence of the main result of Section
7 (any two thin perfect Π0

1 classes are automorphic; but a Martin–Pour-El theory
corresponds to a thin perfect Π0

1 class and there are thin perfect Π0
1 classes which

do not correspond to a Martin–Pour-El theory).
However, there is a very straightforward proof which runs as follows, and which

we give for completeness. First we note the following. Let θ and ψ be any two
nontrivial elements of Q. Then there is a computable automorphism of Q sending
θ to ψ. In particular, there is a computable automorphism Φ of Q taking p1 to
p1 ∨ p2, where M = 〈pi : i ∈ A;¬pj : j ∈ B〉 is Martin–Pour-El and 1 ∈ A.2 If
the image of M were well-generated, then one of p2 or p1 would need to be in this
image, and it is easy to argue that this cannot be the case.

6. Automorphisms of L(Q).

Take a computable copy of the free Boolean algebra Q. Recall that L(Q) denotes
the lattice of c.e. theories of Q. In this section we study the automorphism group
of L(Q).

Theorem 6.1. Every automorphism of L(Q) is induced by a unique automorphism
of Q.

Proof. Suppose Φ : L(Q) 7→ L(Q) is an automorphism. Let p0, p1, . . . be a count-
able set of generators for Q. Since being a principal theory is definable in the

2To see this piece of folklore, the easiest way is to use yet another representation of Q, namely
the interval algebra representation. Recall that every computable Boolean algebra is computably
isomorphic to the algebra of left closed right open subsets of a computable linear ordering. For the
free algebra we can take p1 7→ [0, 1/2), ¬p1 7→ [1/2, 1), p2 7→ [0, 1/4)∪ [1/2, 3/4), etc. Rather than
writing out all the painful details, we demonstrate the relevant isomorphism for our purposes. We
show that p1 7→ p1 ∨ p2 is possible. So we send [0, 1/2) 7→ [0, 3/4). The linear map is defined

piecewise as follows. For x ∈ [0, 1/2) map x to 3/2 ·x. For x ∈ [1/2, 1) map x to 1− 1−x
2
. This will

induce the desired automorphism of Q. (The general case is essentially the same but has more
pieces.)
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language of theories of Q, if A is a principal theory, then Φ(A) must also be a
principal theory. Let A0 = 〈p0〉, A1 = 〈p1〉, . . . , and so on.

Define φ(pi) = θi, where Φ(Ai) = 〈θi〉. We now extend φ in the natural way to
an automorphism of Q as follows. Let

φ(pi ∨ pj) = φ(pi) ∨ φ(pj),

φ(pi ∧ pj) = φ(pi) ∧ φ(pj),

φ(¬pi) = ¬φ(pi).

For a formula θ, define φ(θ) by induction from the above definitions.
Since “F is principal” is definable, and Φ is 1-1, we see that φ(a) = φ(b) if and

only if a = b. Now suppose a ∈ Q. Then 〈a〉 is a principal theory. Since Φ is an
automorphism, there is a θ ∈ Q such that Φ(〈θ〉) = 〈a〉. It follows that φ(θ) = a.
Hence φ is 1-1 and onto.

To show φ is order-preserving, let a, b ∈ Q. Then a ≤ b if and only if 〈b〉 ⊆ 〈a〉
if and only if Φ(〈b〉) ⊆ Φ(〈a〉) if and only if 〈θb〉 ⊆ 〈θa〉, where 〈θb〉 = Φ(〈b〉) and
〈θa〉 = Φ(〈a〉). Furthermore, this occurs if and only if θa ≤ θb. Since we must have
φ(b) = θb and φ(a) = θa, then φ(a) ≤ φ(b), as required.

Therefore φ : Q 7→ Q is an automorphism.
We claim that φ induces Φ. That is, for Ŵ = {φ(θ) : θ ∈ W}, we claim Φ(W ) =

Ŵ . Otherwise there is some ν 6∈ Ŵ with ν ∈ Φ(W ); or some ν ∈ Ŵ − Φ(W ).
Either case results in a contradiction because of the definability of principality and
the definition of φ.

Finally we see that φ is unique. To see this, suppose φ1 and φ2 are automorphisms
of Q inducing automorphisms of L(Q), Φ1 and Φ2 respectively. We must show that
φ1 6= φ2 implies Φ1 6= Φ2. Suppose φ1(a) 6= φ2(a). For a contradiction assume
Φ1(〈a〉) = Φ2(〈a〉) = 〈θ〉. Then 〈θ〉 is a principal theory and φ1(a) = θ = φ2(a).
Hence Φ1(〈a〉) 6= Φ2(〈a〉).

Theorem 6.2 (Remmel). There are 2ℵ0 automorphisms of L(Q).

Proof. Remmel proves this theorem from the interval algebra perspective of Q,
adapting ideas from Lachlan [20] to the Boolean setting. Here we will also use
similar ideas to construct 2ℵ0 automorphisms, but in the setting of L(2<ω). Then
from the duality we obtain 2ℵ0 automorphisms between Π0

1-classes, and hence 2ℵ0

automorphisms of L(Q).
Let F0, F1, F2, . . . be a computably enumerable listing of all c.e. 2<ω-filters in

L(2<ω). We first construct a sequence of strings (σs)s≥0 as follows. Recall that for
σ ∈ 2<ω, ext(σ) = {τ | σ � τ} and, for nonempty σ, σ− denotes the string of
length |σ| − 1 contained in σ.

Let σ0 = λ.
Suppose σn is defined, and define

σn+1 =

{
τ ∗ 0 for τ = (µν)(ν ∈ ext(σn) ∩ Fn) if ext(σn) ∩ Fn 6= ∅,
σn ∗ 0 if ext(σn) ∩ Fn = ∅.

Now let f : N 7→ {0, 1}. and define a mapping γf (ν) by strings, inducing an
automorphism Φf , as follows:

1. Let γf (σ0 ∗ τ) = σ0 ∗ τ for all τ such that σ−1 6≺ σ0 ∗ τ.



4914 P. CHOLAK, R. COLES, R. DOWNEY, AND E. HERRMANN

2. Suppose γf (σ) is defined for all σ with σ−n 6≺ σ. We define γf (σ) for all σ with
σ−n ≺ σ and σ−n+1 6≺ σ. Suppose σ = σ−n ∗ i ∗ τ. Then let

γf (σ) =

{
γf (σ−n ) ∗ i ∗ τ if f(n) = 0,
γf (σ−n ) ∗ (1− i) ∗ τ if f(n) = 1.

We then define Φf (F ) to be {γf(ν) : ν ∈ F}.
Then, given a c.e. 2<ω-filter F, we claim Φf (F ) is also a c.e. 2<ω-filter, and

Φ−1
f (F ) exists and is a c.e. 2<ω-filter. Observe that γ preserves ≺ and length.

Suppose that F = Fn. First note that for all strings ν not extending σn+1, we can
effectively calculate γf (ν), by knowing γf (σj) for j < n+ 1. To demonstrate that
Φf (F ) is c.e., it thus suffices to argue for strings extending σn+1. There are two
cases. Either there is no extension of σn in Fn, in which case there is nothing to
prove, or there is some extension of σn in Fn. In the latter case, σn+1 = τ ∗ 0 ∈ Fn,
and hence the action of Φf is the identity on the filter Fn∩ext(σn+1). The argument
for Φ−1 is similar. For F = Fn, the inverse is determined by a finite number of
computable partial maps given by the σi for i ≤ n. Finally, if f 6= g and n is the
least number such that f(n) 6= g(n), then Φf (ext(σn)) 6= Φg(ext(σn)).

Hence there are 2ℵ0 automorphisms of L(2<ω) and hence of L(Q).

We have seen that every automorphism of L(Q) is induced by an automorphism
of Q and hence by its action on a generating set. One obvious approach to con-
structing automorphisms of L(Q) would be to induce such an automorphism as a
permutation on {pi | i ∈ ω}, or some variation of this. The next two results demon-
strate that if there are non-computable automorphisms of L(Q), they cannot be
constructed along these lines. The ideas in the proofs to follow go back to Shore,
first appearing in Kalantari’s thesis.

Theorem 6.3. Every automorphism induced by a permutation of literals is a com-
putable automorphism.

Proof. Let Φ : L(Q) 7→ L(Q) be an automorphism of L(Q) induced by the auto-
morphism φ : Q 7→ Q, where φ is a permutation of literals p0, p1, . . . .

We need the following 4 sets:

P1 = {p2i | i ∈ ω},

P2 = {p2i+1 | i ∈ ω},

P3 = {p2i ∨ p2i+1 | i ∈ ω},

P4 = {p2i+1 ∨ p2i+2 | i ∈ ω}.

Now since pj 7→ pij for some ij , it follows that each Pi has an image set P̂i.
(This uses the fact that if ph 7→ pih and pk 7→ pik then ph ∨ pk 7→ pih ∨ pik .)

Suppose we also know φ(p0) = pi0 . We first show that φ is a computable per-
mutation of literals. To find φ(p1), find the unique member of P̂2, pi1 say, such
that pi0 ∨ pi1 ∈ P̂3. Then φ(p1) = pi1 . (The point here is that there is a unique
pj (namely p1) in P2 with p0 ∨ p1 ∈ P3, and hence, by the properties of automor-
phisms, and since the map is induced by a permutation of literals, the same must
be true of the images.) Now repeat for p2, looking for the unique pi2 ∈ P̂1 such
that pi1 ∨pi2 ∈ P̂4. Clearly φ is a computable permutation of the literals, and hence
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is a computable automorphism of L. Since φ induces Φ, we must have that Φ is a
computable automorphism of L(Q).

We remark that Theorem 6.3 only relies on certain independence properties of the
pi and Boolean combinations of the pi, and has suitable generalizations, which say
that every automorphism induced by a bijection between two sets of c.e. suitably
independent generators of Q is a computable automorphism of L(Q).

One of our goals is to eventually prove that any two perfect thin classes are
automorphic. The following result tells us that any such automorphism must be
complicated. Recall that a function f presents an automorphism Φ if for all e we
have Wf(e) = Φ(We), where here We denotes the eth c.e. theory.

It is an immediate corollary of the proof of Theorem 6.1 that the complexity
of the presentation of an automorphism aligns itself with the complexity of the
underlying automorphism of Q.

Corollary 6.4. Suppose that Φ is an automorphism of L(Q) presentable com-
putably in a. Then Φ is presentable by an automorphism of Q computable from
a, and conversely. In particular, every computable automorphism of L(Q) is in-
duced by a computable automorphism of Q.

Proof. We note that if Φ is an automorphism of L(Q) then we can, in the presen-
tation of Φ, determine its image on a set of generators {pi | i ∈ ω} and hence deter-
mine φ(pi) for the induced map φ, and hence φ(θ) for all θ ∈ Q. From this one can
always compute an index for the image of the set W under Φ as {φ(θ) : θ ∈W}.

Most of the early constructions of automorphisms of the lattice of c.e. sets were
effective in the sense that we could take f to be computable. Soare [28] revealed
that this is not always the case by showing that all maximal sets were automorphic,
yet there were maximal sets that were not automorphic by any ∆2 automorphism.
(That is, f could be chosen to be computable from the halting problem.) Despite
the fact that our methods are very different, we can establish analogous results here
for maximal theories, and, indeed, for Martin Pour-El theories.

Theorem 6.5. There are two Martin–Pour-El theories that are not ∆0
2 automor-

phic.

Proof. We first recall how to construct a Martin–Pour-El theory

T = 〈{pi : i ∈ A} ∪ {¬pj : j ∈ B}〉
by sketching the proof from Downey [9]. For this proof, we let We denote the
e-th c.e. theory, which is thought of as the e-th collection of formulas of the form∨
i∈F εipi, where, as usual, εipi is one of pi or ¬pi. We aim to meet the following

set of requirements for all e ∈ N :

Re : ∃θ(〈T, θ〉 = 〈T,We〉).
Let d0[s] < d1[s] < d2[s] < . . . be a list of the literals {pi : i 6∈ A∪B[s]}, ordered

by least index.
To ensure our theory is perfect we meet the additional requirements

Ne : lim
s
de[s] exists.

To meet Re we construct a finite set of formulas Qe = limsQe[s] such that
x =

∧
Qe is the witness for Re. The argument is finite injury. The basic action is

simple:
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If we see some least y ∈ We[s] such that y 6∈ 〈T [s]∪Qe[s]〉, then we say Re requires
attention via y at stage s + 1. For the least e for which Re requires attention we
say Re receives attention, and we define the set

L(e, y)[s+ 1] = {¬εidi[s] | εidi[s] occurs in y and i ≥ e}.
We then set T [s + 1] = 〈T [s] ∪ L(e, y)[s + 1]〉 and let Qe[s + 1] = Qe[s] ∪ {y}.
The result of this action is that if R requires attention via y at stage s + 1 then
A[s + 1] ` y ↔ z, where z is a Boolean combination of {d0[s], d1[s], . . . de−1[s]}
(see Lemma 6.6 below). Since lims di[s] = di can be shown to exist for all i by
induction, once Re has priority and the limits have been reached for i < e, Re

can only require attention 22e times because each time it requires attention a new
Boolean combination of {d0, d1, . . . de−1} is logically equivalent to y.

Lemma 6.6. If Re receives attention at stage s+1 via y, then there exists a Boolean
combination z of

{d0[s], d1[s], . . . , de−1[s]} = {d0[s+ 1], d1[s+ 1], . . . , de−1[s+ 1]}
such that T [s+ 1] ` y ↔ z.

Proof. Write y as a disjunction in the following way:∨
i<e

εidi[s] ∨
∨
i≥e

εidi[s] ∨
∨

εipi∈T [s]

εipi ∨
∨

¬εipi∈T [s]

εipi.

Thus y has the form z ∨ x ∨ m ∨ n. Since ` z → y, it suffices to show that
T [s+ 1] ` y → z. Now if m 6= 0 then y ∈ T [s], since ` m → y and m ∈ T [s]. But
then Re does not require attention via y, and therefore we must have m = 0. Now
¬n ∈ T [s+ 1] by definition of n and ¬x ∈ T [s+ 1] by construction, and so we must
have T [s+ 1] ` y → z as desired.

The goal is to construct two Martin–Pour-El theories T and T̂ which are not ∆0
2

automorphic. For a c.e. theory H , consider set

H∗ = {e : We ⊆ H}.
If T and T̂ are ∆0

2 automorphic, then T ∗ ≤T T̂ ∗ ⊕ ∅′. Thus it suffices to construct
T and T̂ so that T̂ ∗ ≤ ∅′ yet T ∗ 6≤ ∅′. Let T̂ be any low Martin–Pour-El theory
(Downey [9]). Then T̂ ∗ ≤T T̂ ′ ≤T ∅′. Thus it suffices to construct a T that is
Martin–Pour-El and meets the requirements Se below:

Se : ¬∀i[T ∗(i) = lim
s
ϕe(i, s)],

where ϕe denotes the e-th partial computable binary function. (In fact, we can
suppose that ϕe(i, s) is primitive computable.) For the requirement e the witness
Hi is chosen by the recursion theorem, and we need to ensure that if the limit
ϕe(i) = lims ϕe(i, s) exists, then it is different from T ∗(i). Hence we say that Se
requires attention at stage s, if

T ∗(i)[s] = ϕe(i, s).

If Se requires attention and ϕe(i, s) = 0, let Ts+1 = 〈Ts ∪ Hi[s]〉. If ϕe(i, s) = 0,
choose a fresh dj [s] with j ≥ s, and put dj [s] into Hi[s + 1] keeping it out of Ts′
for s′ ≥ s with priority e, while ϕe(i, s′) = 1. Note that once Si receives attention j
times, then we will never choose dj [s] as a witness to be put into Hi. Hence, in the
same way, this will only injure the Ni finitely often, and is completely compatible
with the Martin–Pour-El construction above.
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The proof above was suggested by the referee, and it replaced the original direct
argument. Jockusch has asked whether a Martin–Pour-El theory of high degree can
be ∆0

2-automorphic to one of low degree.

7. An Invariant Class for Aut(L(Q))

In this section we will give an analogue in L(Q) to Soare’s and Martin’s theorems
for the lattice of c.e. sets E , namely, an invariant class defined by an orbit of
“maximal objects” in the automorphism group of L(Q). We first remind the reader
of some definitions.

Definition 7.1. A strong array is a sequence of disjoint finite sets {Fn}n∈N such
that there is a computable function f with Fn = Df(n), where Dy denotes the finite
set with canonical index y.

Further, a strong array is a very strong array if the following additional properties
also hold:

1.
⋃
n∈N Fn = N,

2. 0 < |Fn| < |Fn+1| for all n ∈ N.
Definition 7.2. A c.e. set A is array noncomputable (anc) relative to a very strong
array F = {Fn}n∈N iff

(∀e)(∃n)(We ∩ Fn = A ∩ Fn).

Then a c.e. degree a is array noncomputable (relative to F) if there is a c.e. set
A ∈ a such that A is array noncomputable (relative to F).

Downey, Jockusch and Stob [12] showed that if F is a very strong array and
a contains a c.e. set which is anc relative to some very strong array, then a also
contains one which is anc relative to F . That is, the array does not matter. In
[12], those authors demonstrated that the anc degrees formed a class containing all
non-low2 c.e. degrees and some, but not all, low degrees, and that the anc degrees
are closed upwards. The interest in anc degrees come from the fact that a number
of constructions from the literature result in objects of exactly anc degrees. For
instance, 4-tuples of c.e. sets A1, A2, B1, B2 with the property that every separating
set of A1 and A2 is Turing incomparable with every separating set of B1 and B2

have the property that A1⊕A2⊕B1⊕B2 is of anc degree. Furthermore, if a is anc
then a contains a 4-tuple of this form. A number of further results on anc degrees
can be found in [12] and [13].

Of relevance to us here are the following results from Downey, Jockusch and Stob
[12].

Theorem 7.3 (Downey, Jockusch and Stob). If M is a Martin–Pour-El theory,
then M has anc degree.

Theorem 7.4 (Downey, Jockusch and Stob). Each anc degree contains a Martin–
Pour-El theory.

Corollary 7.5. Every anc degree contains a perfect maximal theory.

Proof. Martin–Pour-El theories are maximal and perfect.

As an analog with E , an invariant class of c.e. degrees C is one where there is a
set of c.e. theories Ĉ closed under automorphisms of L(Q) such that

C = {deg(C) | C ∈ Ĉ}.
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In the lattice of computably enumerable sets, Martin [21] established that the
high c.e. degrees were invariant since the were precisely the degrees of the max-
imal (and hyperhypersimple) sets, which are definable in E . We would like to
demonstrate that the anc degrees are an invariant class for L(Q). The theorems
above are quite suggestive of this via maximal theories. We have seen that being
Martin–Pour-El is not invariant under automorphisms, but maximality is. Being
a Martin–Pour-El theory depends upon being well-generated, but in the topolog-
ical setting of perfect thin Π0

1-classes we can dispense with the property of being
well-generated and prove the following theorem, which improves Theorem 7.3 and
shows that the anc degrees are the analog of the high degrees for L(Q).

Theorem 7.6. Every perfect thin Π0
1 class has anc degree.

Proof. The proof is a kind of topological analogue of Theorem 4.9 of Downey,
Jockusch and Stob [12]. The presentation of our proof runs parallel to their proof.

Let P be a perfect thin Π0
1 class. Then P = [T ] for some computable tree T. In

this and the next theorem, we find that splitting nodes play an important role.

Definition 7.7. Define split(P ) to be the set

{σ : Both σ ∗ 0 and σ ∗ 1 have extensions in P}
of nodes in 2<ω. Since P is perfect, there is a unique isomorphism φP taking
(2<ω,≺) to (split(P ),≺) with

σ1 ≤L σ2 iff φS(σ1) ≤L φS(σ2).

We order the nodes of 2<ω first by length, then by lexicographic order. This
ordering induces a corresponding ordering of (split(P ),≺).

Since split(P ) is a co-c.e. set of strings, we can only approximate the canonical
map φP by a computable approximation lims φP,s, which we will denote by φs to
save on notation.

(We want to be careful with our approximation of T , so that if φs(ν) exists then
φt(ν) exists for all t ≥ s. Choose a computable function h sufficiently large, that
at stage s, if we define T̂ [0] = 2<ω and

T̂ [s] = {σ ∈ T : ∃γ ∈ T (|γ| = h(s) ∧ σ � γ)},

then T̂ [s] contains φs(ν) for all ν ∈ 2<ω with |ν| ≤ 2s+1. T̂ [s] is the approximation,
at stage s, to the initial segments of members of P .)

Since the anc degrees are closed upwards, it is enough to construct a set A of
anc degree with A ≤T P. Let {Fn}n∈N be a given very strong array. We suppose
that |Fn| = n+ 1. We have the following requirements for all e ∈ ω:

Re : ∃n (We ∩ Fn = A ∩ Fn).

Here We denotes the e-th c.e. set. We reserve F〈e,0〉, F〈e,1〉, . . . for meeting require-
ment Re and define the following computable function:

g(e, 0) = 21+|F〈e,1〉|,

g(e, i) = 2g(e,i−1)+1+|F〈e,i+1〉|.

To ensure that A ≤T P we insist that x ∈ A[s+ 1]−A[s] and x ∈ F〈e,i〉 implies
that φs(ν) 6= φs+1(ν) for some ν ∈ 2<ω with |ν| ≤ g(e, i). Notice that this ensures
that A ≤T P , since we can generate the φs(ν) from the extendible nodes of T . For



PERFECT THIN Π0
1 CLASSES 4919

the construction below, and its verification, the reader should note that g(e, i) is
far in excess of |We ∩ F〈e,i〉|.

The Construction. At stage 0, A[0] = ∅.
At stage s+1 for every e and i, if We[s]∩F〈e,i〉 6= A[s]∩F〈e,i〉 and φs(ν) 6= φs+1(ν)

for some ν with |ν| ≤ g(e, i), enumerate all of We[s+ 1] ∩ F〈e,i〉 into A[s+ 1].

The Verification. We now demonstrate that every requirement Re is satisfied.
Suppose that Re is the requirement with least e that is not satisfied. That means
that We ∩ Fn 6= A ∩ Fn for all n. We show how to construct a Π0

1 class Q ⊆ P
which contradicts the thinness property of P. In fact we do this in the setting of
L(2<ω)-c.e. filters and construct a nonprincipal extension V of the 2<ω-filter M
consisting of strings with no c.e. extension in P .

The splitting nodes play a big part. Let s0 be a stage where φs(σ) = φ(σ) for
all strings σ with |σ| = g(e, 0). We define V from the parameter s0. V is defined
slowly, predicated on our failure to meet Re.

Initially, we wait for a stage s1 > s0 where We ∩ F〈e,0〉 6= A ∩ F〈e,0〉[s1]. At
this stage put σ(0, s1) = φs1(0g(e,0)) ∗ 1 into V [s1 + 1], and define a parameter
τ(0, s1) = 0g(e,0). The reader should note that by the properties of s0, σ0,s1 is not
a member of T̂ .

We do nothing until a stage s2 occurs where We∩F〈e,1〉 6= A∩F〈e,1〉[s2]. At such
a stage s2 we put σ(1, s2) = φs2(0g(e,1)) ∗ 1 into V , setting τ(1, s2) = 0g(e,1)−g(e,0).

Now at stage t > s2, while We ∩ F〈e,1〉 6= A ∩ F〈e,1〉[s2], we treat s2 as the same
as s0 and continue similarly for g(e, 2), etc. Note that if no changes occur to φs(ν)
for |ν| ≤ g(e, 1) after stage s2, then additionally σ(1, s2) 6∈ 〈M ∪ {σ0,s1}〉. And we
are well on the way to defining a non-finite extension of M .

The only problem is that perhaps we really do get a permission from T̂ below
max|ν|≤g(e,1) φs(ν). At the stage t where such a permission occurs, our action is to
move right. That is, as given in the construction, we would correct We ∩ F〈e,1〉 =
A∩F〈e,1〉[t], and put τ(0, t) = 0g(e,0)−1 ∗1. At the next stage t2 where We∩F〈e,1〉 =
A∩F〈e,1〉[t2], we would use the string σ(1, t2) = φt2(τ(0, t)∗0g(e,1)−g(e,0))∗1 (which
equals φt2 (τ(0, t) ∗ τ(1, t)) ∗ 1, ) in place of σ(1, s2).

More generally, we will have a set of strings τ(i, s) whose initial value is

0g(e,i)−g(e,i−1).

Each time permitting allows us to correctA∩F〈e,i+1〉, we will move τ(e, i) one string
to the right, amongst the strings ν of length g(e, i), and additionally initialize τ(e, j)
for j > i. At the next stage u that we have the inequality We∩F〈e,i〉 6= A∩F〈e,i〉[u],
we put σ(i, u) = φu(τ(0, u) ∗ τ(1, u) ∗ · · · τ(i, u) ∗ 1) into V .

The key point is that for each i, lims τ(i, s) and lims σ(i, s) both exist. This
is because we only define σ(i, s) in response to We on F〈e,i〉 and only change this
in response to T̂ permission. Since the assumption is that we fail to meet Re, we
cannot get 〈e, i〉 permission, and hence will only need to redefine the τ and σ at
most 〈e, i〉 − 1 times. By construction, we see that the sequence σ(i) = lims σ(i, s)
is a sequence independent over M , and hence V is not a principal extension of M .

So from part 2 of Theorems 4.2 and 5.4 (the definability of the properties of thin-
ness and perfection), Theorem 7.6 and Corollary 7.5 above we have the following.

Theorem 7.8. The anc degrees form an invariant class for the automorphism
group of L(Q).
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This is the analogue of Martin’s theorem for E . We are now in a position to
establish an analogue of Soare’s theorem for E .

Theorem 7.9. Any two perfect thin Π0
1 classes are automorphic.

Proof. Let S and T be two perfect thin filters in L(2<ω). Let PS = {x ∈ 2ω :
∀n(x � n 6∈ S)} denote S’s associated Π0

1 class, and similarly PT . Let {σi : i ∈ ω}
and {τi : i ∈ ω} be two 1-1 computable enumerations of computably enumerable
bases of S and T respectively, given via Lemma 3.7.

Any computable permutation p of ω induces an isomorphism from L(S, ↓) to
L(T, ↓), as described below:

Let F ∈ L(S, ↓). Let B be a basis of F . Then B = B1 ∪B2 with B1 and B2 the
disjoint sets described via

B1 = {θ ∈ B : (∃s)[θ ≺ σs]},

B2 = {θ ∈ B : (∃s)[σs � θ]}.

(Note that disjointness follows by transitivity of ≺ and the fact that B is a basis.)
Note that F is also generated by the basis B′ = B′1 ∪B′2, where

B′1 = {σs : (∃θ ∈ B1)[θ ≺ σs]},

B′2 = {σsν : (∃θ ∈ B2)[σs � θ ∧ θ = σsν]}.

Now we will map B to B̂, where B̂ = B̂1 ∪ B̂2, with

B̂1 = {τp(s) : σs ∈ B′1} and B̂2 = {τp(s)ν : σsν ∈ B′2}.

The image of F is then the filter F̂ generated by B̂. Because p is a permutation,
in a similar fashion, one can see that this map Γ is additionally onto, and hence is
an isomorphism from L(S, ↓) to L(T, ↓). Since F̂ is found effectively from F , this
is a computable isomorphism.

Note that the computable isomorphism above is induced by a computable map
from the basis {σi : i ∈ ω} to {τi : i ∈ ω} given by σi 7→ τp(i). In the remainder of
the proof, we will show how to define the computable permutation p(i) so that the
isomorphism can be extended to an automorphism of L(2<ω).

From the previous theorem, the splitting nodes of PS will be represented by φS(ν)
and similarly ΦT (ν) (Definition 7.7.) That is, split(PS) = {φS(ν) : ν ∈ 2<ω}. For
f ∈ 2ω, let

φS(f) =
⋃
{φS(ν) : ν ≺ f}.

Thus φS (and, similarly, φT ) defines a natural homomorphism from 2ω to S (resp.
T ).

The automorphism Φ of L(2ω) taking PS to PT is induced by a bijection ∆ :
2ω 7→ 2ω. The map ∆ is determined by the conditions that ∆(φS(f)) = φT (f) and
∆(σif) = τp(i)f , where p is is a computable permutation of ω. These conditions
are not in conflict since, for all f and i, σi 6≺ φS(f) and τi 6≺ φT (f).

It is easy to see that ∆ induces an automorphism of 2ω taking PS to PT provided
that

• for each Π0
1 class P , ∆(P ) and ∆−1(P ) are Π0

1 classes.
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We must define the permutation p to make this so.
The principal condition needed is that p is a computable permutation of ω with

(∀α ∈ 2<ω)(∃s0)(∀s ≥ s0)[φS(α) � σs iff φT (α) � τ(p(s))].
Assume that p has the above property.

Lemma 7.10. If Q is clopen, then ∆(Q) is clopen.

Proof. It suffices to prove this when Q = I(σ) for some string σ. We may assume,
without loss of generality, that σ = σî σ

′ for some i and σ′, or σ = φS(ν) for some
ν. If σ = σî σ then ∆(I(σ)) = I(τp(i) σ̂). The second case is that σ = φS(ν).

By the above property of p, for almost all s

φS(ν) � σs ↔ φT (ν) � τp(s).
There is a finite collection H of indices such that for all i ∈ H , φS(ν) 6� σp−1(i), yet
φT (ν) � τi, and similarly a finite collection J such that for all j ∈ J , φS(ν) � σj
yet φT (ν) 6� τp(j). This allows us to define

∆(I(φS(ν)) =

I(φT (ν)) ∪

⋃
j∈J

I(τp(j))

 ∩(⋂
i∈H

I(τi)

)
.

Lemma 7.11. If P is a Π0
1 class, then so are ∆(P ) and ∆−1(P ).

Proof. As we have seen above, for any F0 ⊆ PS , the mapping F0 7→ 〈{τp(i)ν : σiν ∈
F0}〉 induced by ∆ is a computable isomorphism from L(S, ↓) to L(T, ↓), and hence
from L(PS , ↑) to L(PT , ↑).

We claim that any F ∈ L(2<ω) is of the form

〈{φS(ν) : ν ∈ H} ∪ F0〉
for some finite set H , and F0 ∈ L(2<ω), with F0 ⊆ S. To see this, let F0 = F ∩ S.
To obtain H , note that PS ∩ PF = PS ∩ Q for some clopen set Q, as PS is thin.
Note also that PS = [T ], where T is the (noncomputable) tree of all strings σ with
σ � φS(ν) for some ν ∈ 2<ω. The set T − Q can be expressed as a finite union
of intervals I(σ) for σ ∈ T , and hence

⋃
ν∈H0

I(φS(ν)), for some finite H0 ⊂ 2<ω.
By König’s Lemma, if ν ∈ H0, then for all sufficiently large τ with ν � τ we
have φS(τ) ∈ F . Choose n so large that it exceeds the length of all strings in H0,
and φS(σ) ∈ F for all strings σ of length n which extend any string in H0. Let
H = {ν′ : (∃ν)[ν ∈ H0 ∧ ν � ν′ ∧ |ν′| = n]}. Then this H works, since ν ∈ H
implies I(ν) ∩ PS ⊆ (2ω − PF ).

Let P = PF be a Π0
1 class. As above, we have F of the form 〈{φS(ν) : ν ∈

H} ∪ F0〉, and hence P of the form Q ∩ P0 for some clopen Q and Π0
1 subclass P0

of P . Then ∆(P ) = ∆(Q) ∩∆(P0). But we have proven that ∆(Q) is a Π0
1 class

since Q is clopen, and ∆(P0) is a Π0
1 class as p is computable. Hence ∆(P ) is a Π0

1

class. The proof for ∆−1 is essentially symmetrical.
That almost concludes the proof of the theorem. It remains to prove that there

is a permutation p which is computable and satisfies the hypothesis above.
We have already noted that split(G) is a Π0

1 set for G ∈ {S, T }. Let splits(G)
be strings which appear to be splits on G at stage s. Define φs,S(ν) be the unique
computable isomorphism taking (2<ω,≺) to (splits(S),≺) with

σ1 ≤L σ2 iff φs,S(σ1) ≤L φs,S(σ2),
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(and similarly there is a unique φs,T ). Then lims φs,S(α) = φS(α) (and similarly
for T ).

Now we will define p stagewise using φs,S and φs,T . At an even stage e, find
the least i ≤ e such that σi is not in the domain of pe−1 (if no such i exists, do
nothing). Since lims φs,S(α) = φS(α), lims φs,T (α) = φT (α) and {s : φT (α) ≺ τs}
is infinite (otherwise T is not thin), there exist t and j such that τj is not in the
range of pe−1 and, for all α, φt,S(α) � σi iff φt,T (α) � τj . Let p(i) = j. At odd
stages we will take similar action ensuring p is onto. It is easy to see this meets the
hypothesis of p.

Corollary 7.12. Any two perfect thin Π0
1 classes are ∆3-automorphic.

Proof. It is enough to show that the complexity of the automorphism we con-
structed in the above proof is ∆3. In particular, our goal is to find a ∆3 function f
such that if We is a c.e. filter then Φ(We) = Wf(e). The value of Φ(We) depends on
whether We ⊆ S or not. Determining which of these cases holds is ∆3. (Inclusion
for c.e. sets is a complete Π2 relation. So inclusion for c.e. filters is a complete Π2

relation.) If We ⊆ S then, as we noted above, Φ(We) can be found effectively from
the map p. Otherwise, by carefully examining the last two lemmas, we can see that
Φ(We) can be found effectively in 0′′.

8. Remarks

One can look more generally at automorphisms of the classes. As we saw in
Theorem 4.4, for any ∆0

2 Boolean algebra B, there is a theory F such thatQ/F ∼= B,
where F corresponds to a thin Π1

0-class. We have see that if B is an atomless Boolean
algebra, then this is enough to guarantee an orbit. Are there any other such B?

The strongest theorem would be that if B1
∼= B2 then F1 is automorphic to F2

(where Bi corresponds to Fi as above). This would require significant technology,
since there are computable Boolean algebras that are not even arithmetically iso-
morphic. This is even true of rank 1 Boolean algebras (Downey-Jockusch [11]). A
good test case is to consider whether, when B1 and B2 are computable copies of
the Boolean algebra of finite and cofinite sets, are B1 and B2 automorphic?3

The proof technique from Theorem 7.6 is enough to establish the following:

Theorem 8.1. Suppose that S and T are thin 2<ω c.e. filters with L(S, ↑) isomor-
phic to L(T, ↑). Let R be a computable tree representing the ∆0

2 Boolean algebra
isomorphic to L(S, ↑). Let φS be any isomorphism from split(PR) to split(PS),
and define φT similarly. Again let σi and τi denote bases for S and T , respec-
tively. Suppose that p is any permutation such that the map σi 7→ τp(i) induces an
isomorphism from L(S, ↓) to L(T, ↓).

If p also satisfies

(∀α ∈ 2<ω)(∃s0)(∀s ≥ s0)[φS(α) � σs iff φT (α) � τ(p(s))],
then S and T are automorphic.

Another area of interest is the lattice of subfilters of a fixed ultrafilter. Here,
=∗ is a congruence. We already know this is a rich object, since we can effectively
embed E∗ here (Downey [8, 9]).

3Since the first draft of this paper, Cenzer and Remmel have obtained some results about this
case. See [4].
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