TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 353, Number 12, Pages 4779–4800 S 0002-9947(01)02833-1 Article electronically published on June 21, 2001

RANDOM VARIABLE DILATION EQUATION AND MULTIDIMENSIONAL PRESCALE FUNCTIONS

JULIE BELOCK AND VLADIMIR DOBRIC

ABSTRACT. A random variable Z satisfying the random variable dilation equation $MZ \stackrel{d}{=} Z + G$, where G is a discrete random variable independent of Z with values in a lattice $\Gamma \subset \mathbf{R}^d$ and weights $\{c_k\}_{k \in \Gamma}$ and M is an expanding and Γ -preserving matrix, if absolutely continuous with respect to Lebesgue measure, will have a density φ which will satisfy a dilation equation

$$\varphi(x) = \left|\det M\right| \sum_{k \in \Gamma} c_k \varphi(Mx - k)$$

We have obtained necessary and sufficient conditions for the existence of the density φ and a simple sufficient condition for φ 's existence in terms of the weights $\{c_k\}_{k\in\Gamma}$. Wavelets in \mathbf{R}^d can be generated in several ways. One is through a multiresolution analysis of $L^{2}(\mathbf{R}^{d})$ generated by a compactly supported prescale function φ . The prescale function will satisfy a dilation equation and its lattice translates will form a Riesz basis for the closed linear span of the translates. The sufficient condition for the existence of φ allows a tractable method for designing candidates for multidimensional prescale functions, which includes the case of multidimensional splines. We also show that this sufficient condition is necessary in the case when φ is a prescale function.

1. INTRODUCTION

Multiresolution analysis on \mathbf{R}^d is one possible framework for construction of wavelet bases. Let Γ be a lattice in \mathbf{R}^d and let $M : \mathbf{R}^d \to \mathbf{R}^d$ be an expansive linear transformation, that is, all eigenvalues of M have modulus greater than 1, such that $M\Gamma \subseteq \Gamma$. Then $m = |\det M|$ is an integer, greater than one, equal to the order of the group $\Gamma/M\Gamma$. A multiresolution analysis associated to Γ and M with prescale function φ is an increasing sequence of subspaces of $L^2(\mathbf{R}^d)$. $\cdots \subseteq V_{-1} \subseteq V_0 \subseteq V_1 \subseteq \cdots$ satisfying the following four conditions:

- (i) $\bigcup V_j$ is dense in $L^2(\mathbf{R}^d)$;
- (ii) $\bigcap_{j}^{j} V_{j} = \{0\};$
- $\begin{array}{l} \text{(iii)} \ f\left(\cdot\right) \in V_{j} \Leftrightarrow f\left(M^{-j}\cdot\right) \in V_{0};\\ \text{(iv)} \ \left\{\varphi\left(\cdot-\gamma\right)\right\}_{\gamma \in \Gamma} \text{ is a Riesz basis for } V_{0}. \end{array}$

©2001 American Mathematical Society

Received by the editors January 10, 2000 and, in revised form, January 8, 2001. 2000 Mathematics Subject Classification. Primary 60A10, 60G50; Secondary 42C40, 42C15. Key words and phrases. Dilation equations, tilings, wavelets.

A wavelet basis associated to the multiresolution analysis is an orthonormal basis for $L^2(\mathbf{R}^d)$ of the form $\{m^{j/2}\psi_k(M^j\cdot-\gamma): j\in Z, \gamma\in\Gamma, 1\leq k\leq m\}$ where

$$\psi_{k}(x) = \sum_{\gamma \in \Gamma} a_{k}(\gamma) \varphi \left(Mx - \gamma\right)$$

and $\{a_k(\gamma)\}_{\gamma\in\Gamma}$ is square summable for $1 \leq k \leq m$. The functions $\{\psi_k\}_{k=1}^m$ are called the *wavelet generators*. When the lattice translates of φ form an orthonormal basis of V_0 we take $\psi_1 := \varphi$.

Conditions (iii) and (iv) together imply that the set $\{\varphi(M \cdot -\gamma)\}_{\gamma \in \Gamma}$ is a Riesz basis for the subspace V_1 . Since $\varphi \in V_0 \subseteq V_1$, we can write

(1.1)
$$\varphi(x) = \sum_{\gamma \in \Gamma} a(\gamma) \varphi(Mx - \gamma);$$

equation (1.1) is called a *dilation equation*.

One way to understand (1.1) is through a probabilistic approach. Consider a discrete random variable G with values in a subset Γ_1 of Γ and a random variable Z, independent of G, with values in \mathbf{R}^d , both defined on a complete probability space (Ω, \mathcal{F}, P) , which satisfy

$$(1.2) MZ \stackrel{a}{=} Z + G.$$

Here, $\stackrel{d}{=}$ denotes equality of the corresponding laws. Assume that Z is absolutely continuous with respect to Lebesgue measure and denote its density by φ . Equation (1.2) implies that φ satisfies the dilation equation (1.1) with $a(\gamma) = |\det M| P(G = \gamma)$. Our approach to constructing candidates for prescale functions comes from understanding the structure of the solution of this random variable dilation equation.

In the one-dimensional case with M = 2, Gundy and Zhang [6] proved that Z is absolutely continuous with respect to Lebesgue measure if and only if the fractional part of Z is uniform. They also gave a sufficient condition for the uniformity of the fractional part. In the higher dimensional case, we show that the statements of Gundy and Zhang hold true when a proper notion of the "fractional" part of a random variable is introduced. We have found the theory of self-affine tilings of \mathbf{R}^d and use of the digit representation of the fractional part of Z to be the correct framework for the higher dimensional case. The major difficulty in generalizing the results to higher dimensions comes from the fact that M may not be merely an expansion but may include a rotation. Such an M causes a tile to have, in general, a fractal boundary. The boundary difficulties called for some new techniques of proofs beyond those used in [6].

In Section 2 we introduce notation needed to express an explicit solution Z to (1.2). Definitions of the "fractional" and "integer" parts of an \mathbb{R}^d -valued random variable Z are given based on concepts of self-affine tilings. We also give some basic results regarding the fractional part of Z. In Section 3 we give necessary and sufficient conditions under which the random variable Z will have a density, in terms of the fractional part of Z. In Section 4 we give a simple sufficient condition on the weights on the values of G which guarantee absolute continuity of Z. In Section 5 we give examples of density functions obtained using these results. In Section 6 we show that the sufficient condition of Section 4 is also necessary when φ is a prescale function.

DILATION EQUATION

2. Basic properties of a random variable dilation equation solution

In order to write an explicit solution of (1.2), some definitions are needed. Let G_1, G_2, \ldots be an i.i.d. sequence of random variables defined on the space (Ω, \mathcal{F}, P) , with $G_1 \stackrel{d}{=} G$. Recall that G is discrete with values in the lattice. Assume

$$\sum_{j=1}^{\infty} M^{-j} G_j < \infty \text{ a.s.}$$

Then the sequence $\{Z_k\}$ defined by

(2.1)
$$Z_k = \sum_{j=1}^{\infty} M^{-j} G_{j+k} \text{ for } k = 1, 2, \dots$$

is a sequence of random variables. Note that the following two properties hold:

$$MZ_k = M(\sum_{j=1}^{\infty} M^{-j}G_{j+k}) = G_{k+1} + \sum_{j=2}^{\infty} M^{-j+1}G_{j+k} = G_{k+1} + Z_{k+1},$$

and

 $Z_0 \stackrel{d}{=} Z_k$, and G_k is independent of Z_k .

Therefore for any k, Z_k solves the dilation equation (1.2).

The fractional part of Z will play an essential role in what follows. In order to define the fractional part of Z, we first invoke some basic facts about self-affine tilings. Let Γ_0 denote a set of coset representatives of $\Gamma/M\Gamma$, and without loss of generality, we assume $0 \in \Gamma_0$. A self-affine tiling of \mathbf{R}^d consists of a closed set T with nonempty interior such that

(2.2)
$$\bigcup_{\gamma \in \Gamma} (T + \gamma) = \mathbf{R}^d \text{ and } \bigcup_{\gamma \in \Gamma_0} (T + \gamma) = MT.$$

Clearly a tiling depends on the choice of Γ_0 . In dimensions d = 2 and 3, one can always find a Γ_0 that admits a self-affine tiling, and in higher dimensions it can be done for $m = |\det M| > d$ [10]. For the remainder of the paper, we will assume that Γ_0 admits a self-affine tiling.

The lattice translates of the interior of T are disjoint and $int T \neq \emptyset$ [1], so if $x \in \bigcup_{\gamma \in \Gamma} (int T + \gamma)$, then $x \in int T + \gamma_x$ where γ_x denotes the unique element of Γ giving the location of the point x. If $x \notin \bigcup_{\gamma \in \Gamma} (int T + \gamma)$, then we say x is a *boundary* point and note that $x \in \bigcap_{\gamma \in \Gamma_1} (T + \gamma)$, for some finite $\Gamma_1 \subseteq \Gamma$. The fact that Γ_1 is finite follows from the compactness of T.

Define $[\cdot]: \mathbf{R}^d \to \Gamma$ by

$$[x] = \begin{cases} \gamma_x & \text{if } x \in \bigcup_{\gamma \in \Gamma} (int T + \gamma), \\ \max_{\gamma \in \Gamma_1} \gamma & \text{if } x \text{ is a boundary point,} \end{cases}$$

where "max" is meant in the sense of the dictionary ordering of \mathbf{R}^{d} .

Proposition 1. $[\cdot]$ is Borel-measurable.

Proof. We only need to consider $\{x \mid [x] = \gamma\}$ for a fixed $\gamma \in \Gamma$. Since T is compact and Γ is countable,

$$[\gamma_1]^{-1} = (int T + \gamma_1) \cup \bigcup_{\gamma \in \Gamma} ((T + \gamma) \cap (T + \gamma_1))$$

is a Borel set.

For any $x \in \mathbf{R}^d$ we will call [x] the *integer part of* x and (x) = x - [x] the fractional part of x. By Proposition 1, [Z] is a random variable and therefore so is (Z) = Z - [Z]. Notice that (Z) takes values in the tile T.

A point $t \in \mathbf{R}^d$ is in T if and only if

(2.3)
$$t = \sum_{j=1}^{\infty} M^{-j} \gamma_j,$$

where for all $j, \gamma_j \in \Gamma_0$ [5]. Based on the expansion (2.3), define functions $\xi_j : \Omega \to \Gamma_0, j = 1, 2, ...,$ by

(2.4)
$$(Z_0) = \sum_{j=1}^{\infty} M^{-j} \xi_j;$$

that is, $\xi_j(\omega)$ is the element of Γ_0 which appears in the *j*th term of the tile expansion of $(Z_0)(\omega)$. If there is more than one expansion for a tile point, simply choose one of them.

Proposition 2. Assume that $P((Z_0) \in \partial T) = 0$. Then $\{\xi_j\}_{j=1}^{\infty}$ is a sequence of random variables and for each k

$$(Z_k) = \sum_{j=1}^{\infty} M^{-j} \xi_{j+k} \quad a.s.$$

Proof. From the dilation equation (1.2) and from the decomposition of Z_0 into its fractional and integer parts, we obtain

$$M[Z_0] + M(Z_0) = MZ_0 = G_1 + Z_1 = G_1 + [Z_1] + (Z_1).$$

Using (2.4) it follows that

(2.5)
$$M[Z_0] + \xi_1 + \sum_{j=1}^{\infty} M^{-j} \xi_{j+1} = G_1 + [Z_1] + (Z_1).$$

The definition of a lattice tiling implies $(\gamma + T) \cap (\gamma' + int T) = \emptyset$ if and only if $\gamma \neq \gamma'$. So, if $(Z_1) \in int T$, then by (2.5), we have

(2.6)
$$M[Z_0] + \xi_1 = G_1 + [Z_1] \text{ and } (Z_1) = \sum_{j=1}^{\infty} M^{-j} \xi_{j+1}.$$

Since $P((Z_0) \in \partial T) = 0$ and since $Z_1 \stackrel{d}{=} Z_0$, it follows that $P((Z_1) \in int T) = 1$, and therefore

$$(Z_1) = \sum_{j=1}^{\infty} M^{-j} \xi_{j+1} \ a.s.$$

By (2.6) $\xi_1 = G_1 + [Z_1] - M[Z_0]$ almost surely and so ξ_1 is a random variable.

The proof is completed by induction on k.

4782

Define $h: \Gamma \to \Gamma_0$ to be the map which assigns to each element of Γ its coset representative.

Proposition 3. Suppose $P((Z_0) \in \partial T) = 0$. Then for

 $k = 1, 2, \dots, \qquad \xi_k = h([Z_k] + G_k) \ a.s.$

Proof. $P((Z_0) \in \partial T) = 0$ implies that (2.6) holds. So $\xi_1 = h(G_1 + [Z_1])$ since coset representatives are unique.

Proposition 2, the fact that $Z_k = [Z_k] + (Z_k)$, and the dilation equation (1.2) together lead to

$$M[Z_k] + \xi_{k+1} + (Z_{k+1}) = G_{k+1} + [Z_{k+1}] + (Z_{k+1})$$
 a.s.

This implies that $M[Z_k] + \xi_{k+1} = G_{k+1} + [Z_{k+1}]$ a.s. since $P((Z_{k+1}) \in \partial T) = 0$. The uniqueness of coset representatives ensures $\xi_{k+1} = h(G_{k+1} + [Z_{k+1}])$ a.s.

Define $g: (\mathbf{R}^d)^{\infty} \to \mathbf{R}^d$ by

$$g(x_1, x_2, ...) = x_1 + \left[\sum_{j=1}^{\infty} M^{-j} x_{j+1}\right].$$

The measurability of g follows from Proposition 1 and from the fact that the projection map is a measurable function.

Proposition 4. Let $Y_k := (h \circ g)(G_k, G_{k+1}, ...)$. Then $Y_1, Y_2, ...$ is a stationary and ergodic sequence of random variables.

Proof. The proof follows from the fact that $h \circ g$ is measurable and $\{G_k\}_{k=1}^{\infty}$ is i.i.d.

Corollary 1. If $P((Z_0) \in \partial T) = 0$, the sequence $\xi_1, \xi_2, ...$ is stationary and ergodic.

Proof. If $P((Z_0) \in \partial T) = 0$, Proposition 4 implies $\xi_k = Y_k$ a.s.

3. Necessary and sufficient conditions for absolute continuity of Z

Throughout this section let $\lambda_T := \frac{\lambda}{\lambda(T)}$ denote Lebesgue measure normalized by the measure of the tile T (if $\Gamma = \mathbf{Z}^d$, then $\lambda(T) = 1$)).

Theorem 1. Let M, Γ , Γ_0 and random variables G, Z and ξ_k be as defined in the previous sections. Suppose G has values in a finite set Γ_1 such that $\Gamma_0 \subseteq \Gamma_1 \subset \Gamma$. Then the following are equivalent:

- 1) The law of (Z) is λ_T on T;
- 2) The ξ_k are independent and uniformly distributed on Γ_0 ;
- 3) The law of Z is absolutely continuous with respect to λ .

Proof. $(1\Rightarrow3)$ Since G is bounded, so is Z, and therefore [Z] takes on only finitely many values. Let Γ_2 be the range of [Z]. One solution of equation (1.2) is $Z \stackrel{d}{=} \sum_{k=1}^{\infty} M^{-k}G_k$. Jessen and Wintner's theorem [8] implies that the law of Z must be either purely discrete, purely singular, or purely absolutely continuous. We will rule out the discrete and singular cases. First, suppose Z is purely discrete. Then P(Z = z) > 0 for some z. Now,

$$\begin{array}{rcl} 0 & < & P(Z=z) = P\left([Z]+(Z)=z\right) \\ & = & \sum_{\gamma \in \Gamma_2} P\left([Z]+(Z)=z \mid \, [Z]=\gamma\right) P\left([Z]=\gamma\right) \end{array}$$

implies that there exists a $\gamma \in \Gamma_1$ such that

$$P((Z) = z - \gamma \mid [Z] = \gamma) P([Z] = \gamma) > 0,$$

contradicting the assumption that (Z) is uniform.

Second, suppose Z is purely singular with respect to Lebesgue measure. Then there exists B such that $P(Z \in B) = 1$ and $\lambda_T(B) = 0$. So

$$P([Z] + (Z) \in B) = \sum_{\gamma \in \Gamma_2} P([Z] + (Z) \in B \mid [Z] = \gamma) P([Z] = \gamma) = 1,$$

which implies that there exists a $\gamma \in \Gamma_2$ such that

$$P\left((Z) \in B - \gamma \mid [Z] = \gamma\right) P\left([Z] = \gamma\right) \ge \frac{1}{|\Gamma_2|}$$

But under the assumption that (Z) is uniform, $P((Z) \in B - \gamma) = \lambda_T (B - \gamma) = \lambda_T (B) = 0$, a contradiction.

- Next, $2) \Rightarrow 1$). This proof will be broken into three main steps:
- (i) assumption 2) implies $P((Z_0) \in \partial T) = 0$;
- (ii) $\nu := \pounds(Z)$ and λ_T agree on sets of the type $M^{-k}T + M^{-k}\gamma, \gamma \in \Gamma$;
- (iii) ν and λ_T agree on all closed balls.

Remark. The first step is trivial in one dimension. For example, if M = 2, $\Gamma = \mathbf{Z}$ and $\Gamma_0 = \{0, 1\}$, then T = [0, 1] and

$$P\left(\sum_{k=1}^{\infty} 2^{-k} \xi_k \in \partial T\right) = P\left(\xi_k = 0 \text{ for all } k \text{ or } \xi_k = 1 \text{ for all } k\right) = 0$$

i) For each n = 0, 1, 2, ... let

$$W_n = \sum_{k=1}^{\infty} M^{-k} \xi_{k+n}$$

Notice that the range of W_n is in T and since the sequence $\{\xi_k\}_{k=1}^{\infty}$ is i.i.d., $W_n \stackrel{d}{=} W_0$, n = 1, 2, ...

Claim. $P(W_0 \in int T) > 0.$

Proof. Since $int T \neq \emptyset$ [10], let $B(x; r) \subset int T$ be an open ball centered at x with radius r. Then $x = \sum_{i=1}^{\infty} M^{-i} \gamma_i(x)$, where $\gamma_i(x) \in \Gamma_0$ for all i [5]. Choose k large enough so that

$$\sum_{i=k}^{\infty} \left\| M^{-i} \right\| \max\left\{ \left\| \gamma \right\| \mid \gamma \in \Gamma_0 \right\} < \frac{r}{2}.$$

Let
$$y = \sum_{i=1}^{k-1} M^{-i} \gamma_i(x)$$
. Note that $y \in B(x; \frac{r}{2})$. Let
 $S = \{t \in T \mid \gamma_i(t) = \gamma_i(x) \text{ for } i = 1, 2, \dots, k-1\}.$

Then $S \subseteq B(x; r)$ and

$$P(W_0 \in S) = P(\xi_1 = \gamma_1(x), ..., \xi_{k-1} = \gamma_{k-1}(x)) = \frac{1}{m^{k-1}}$$

So $P(W_0 \in S) > 0$, which together with $S \subset int T$ implies $P(W_0 \in int T) > 0$. \square

One property of a tiling is that distinct tiles may only intersect on their boundaries. If we set $\Gamma_{\partial} = \{\gamma \in \Gamma \setminus \{0\} \mid T \cap (T + \gamma) \neq \emptyset\}$, then

(3.1)
$$\partial T = \bigcup_{\gamma \in \Gamma_{\partial}} \left(T \cap (T + \gamma) \right).$$

Claim. $\{W_n \in \partial T\} \subseteq \{W_{n+1} \in \partial T\}$ for $n = 0, 1, 2, \dots$

Proof. Suppose $\omega \in \{W_0 \in \partial T\}$; that is,

$$\sum_{k=1}^{\infty} M^{-k} \xi_k\left(\omega\right) \in \partial T.$$

Applying M to both sides and using properties of tiles yields

(3.2)
$$W_{1}(\omega) = \sum_{k=1}^{\infty} M^{-k} \xi_{k+1}(\omega) \in \partial MT - \xi_{1}(\omega).$$

Set $\gamma_1 := \xi_1(\omega)$. By the self-affine property of the tiling, $\partial MT \subseteq \bigcup_{\gamma \in \Gamma_0} (\gamma + \partial T)$. Therefore, (3.2) becomes

$$W_{1}(\omega) \in \bigcup_{\gamma \in \Gamma_{0}} \left((\gamma - \gamma_{1}) + \partial T \right)$$

implying that for at least one $\gamma \in \Gamma_0$, $W_1(\omega) \in (\gamma - \gamma_1) + \partial T$. So

$$W_1(\omega) \in ((\gamma - \gamma_1) + \partial T) \cap T.$$

If $\gamma = \gamma_1$, then $W_1(\omega) \in \partial T$; if $\gamma \neq \gamma_1$, then $int T \cap (\gamma - \gamma_1 + int T) = \emptyset$, so $W_1(\omega) \in \partial T$. We have shown that $\{W_0 \in \partial T\} \subseteq \{W_1 \in \partial T\}$. By the same argument, $\{W_n \in \partial T\} \subseteq \{W_{n+1} \in \partial T\}$ for each n.

Claim.
$$P(W_0 \in \partial T) = 0.$$

Suppose not. Set $B_k = \{W_k \in \partial T\}$ and $B = \bigcup_{k=0}^{\infty} B_k$. Notice that since the B_k

are nested, $B \in \bigcap_{n=1}^{\infty} \sigma(\xi_n, \xi_{n+1}, ...)$. By the Kolmogorov 0-1 law for independent random variables P(B) = 1, because $\{W_0 \in \partial T\} \subset B$ and $P(W_0 \in \partial T) > 0$. Furthermore,

$$\mathbf{l} = P\left(B\right) = \lim_{k \to \infty} P\left(W_k \in \partial T\right) = P\left(W_0 \in \partial T\right),$$

with the last equality following from the fact that the sequence ξ_1, ξ_2, \ldots is i.i.d. But this is a contradiction of the fact that $P(W_0 \in int T) > 0$. So $P(W_0 \in \partial T) = 0$.

Since $W_0 = (Z_0)$ almost surely we have shown that $P((Z_0) \in \partial T) = 0$, concluding the first step.

(ii) To begin the second step of the proof, fix $\gamma \in \Gamma$ and $k \in \mathbf{N}$. Then

$$\lambda(M^{-k}T + M^{-k}\gamma) = \lambda(M^{-k}T) = \frac{\lambda(T)}{m^k}.$$

By Proposition 2 and (i)
$$(Z_k) = \sum_{i=1}^{\infty} M^{-i}\xi_{i+k}$$
 a.s. Now,

$$P\left((Z_0) \in M^{-k}T + M^{-k}\gamma\right) = P\left(M^k\left(Z_0\right) \in T + \gamma\right)$$

$$= P\left(M^k \sum_{i=1}^{\infty} M^{-i}\xi_i \in T + \gamma\right)$$

$$= P\left(\sum_{j=1-k}^{0} M^{-j}\xi_{j+k} + \sum_{j=1}^{\infty} M^{-j}\xi_{j+k} \in T + \gamma\right)$$

$$= P\left(L\left(k\right) + (Z_k) \in T + \gamma\right),$$

where $L(k) := \sum_{j=1-k}^{0} M^{-j} \xi_{j+k}$. Notice that L(k) is a function of finitely many ξ_i and has values in the lattice; therefore,

$$P(L(k) + (Z_k) \in T + \gamma) = \sum_{\gamma'} P((Z_k) \in T + \gamma - \gamma', L(k) = \gamma')$$
$$= P((Z_k) \in T, L(k) = \gamma).$$

The last equality follows since all the terms in the sum are zero except when $\gamma' = \gamma$ as a consequence of $P((Z_k) \in \partial T) = 0$. Furthermore,

(3.3)

$$P((Z_{k}) \in T, L(k) = \gamma) = P(L(k) = \gamma)$$

$$= P(M^{k-1}\xi_{1} + \dots + M\xi_{k-1} + \xi_{k} = \gamma)$$

$$= P(M(M^{k-2}\xi_{1} + \dots + \xi_{k-1}) + \xi_{k} = \gamma).$$

Since each $\gamma \in \Gamma$ has a unique representation $\gamma = \gamma_0 + M \gamma''$, (3.3) becomes

$$P\left(\xi_{k} = \gamma_{0}, M^{k-2}\xi_{1} + \dots + \xi_{k-1} = \gamma''\right)$$

= $P\left(\xi_{k} = \gamma_{0}, \xi_{k-1} = \gamma_{1}, M^{k-3}\xi_{1} + \dots + \xi_{k-2} = \gamma'''\right)$
= $P\left(\xi_{k} = \gamma_{0}, \xi_{k-1} = \gamma_{1}, \dots, \xi_{1} = \gamma_{k-1}\right)$
= $\prod_{i=1}^{k} P\left(\xi_{i} = \gamma_{k-i}\right) = \frac{1}{m^{k}}.$

So $\pounds((Z))$ and $\frac{\lambda}{\lambda(T)}$ are equal on sets of the type $M^{-k}T + M^{-k}\gamma, \gamma \in \Gamma$ and $k \in N$. (iii) We now show that $\pounds((Z))$ and λ areas on all closed balls in \mathbf{P}^d

(iii) We now show that $\mathcal{L}((Z))$ and λ_T agree on all closed balls in \mathbf{R}^d .

Set $\nu := \pounds((Z))$, and suppose there is a closed ball B(x,r) on which the measures do not agree. Assume first that $\nu(B(x,r) \cap T) > \lambda_T(B(x,r) \cap T)$. There exists $\eta > 0$, such that $\nu(B(x,r) \cap T) > \lambda_T(B(x,r+\eta) \cap T)$. Choose k_0 such that $diam(M^{-k_0}T) < \frac{\eta}{2}$. Set

$$D = \bigcup \left\{ M^{-k_0}T + M^{-k_0}\gamma \mid \gamma \in M^{k_0}B\left(x, r + \frac{\eta}{2}\right) \right\}.$$

Claim. $B(x,r) \subseteq D \subseteq B(x,r+\eta)$.

Proof. Let $y \in B(x, r)$. Since $\mathbf{R}^d = \bigcup_{\gamma \in \Gamma} (M^{-k_0}T + M^{-k_0}\gamma)$, there is a $\gamma \in \Gamma$ such that $y \in M^{-k_0}T + M^{-k_0}\gamma$. So $y = z + M^{-k_0}\gamma$, for some $z \in M^{-k_0}T$. If $z \in M^{-k_0}T$, then $\|z\| \leq diam(M^{-k_0}T)$ since $0 \in T$. Now

$$||M^{-k_0}\gamma - x|| \le ||y - x|| + ||z|| \le r + diam(M^{-k_0}T) \le r + \frac{\eta}{2},$$

that is,

$$M^{-k_0}\gamma \in B\left(x,r+\frac{\eta}{2}\right),$$

which means $y \in D$.

Now suppose that $y \in D$. Then $y = z + M^{-k_0}\gamma$ for some $z \in M^{-k_0}T$ and $\gamma \in B(x, r + \frac{\eta}{2})$, and

$$||y - x|| \le ||M^{-k_0}\gamma - x|| + ||z|| \le r + \eta;$$

so $y \in B(x, r + \eta)$. This completes the proof of the claim.

Thus $\lambda_T (B(x, r + \eta) \cap T) \ge \lambda_T (D \cap T)$ and $\nu (D \cap T) \ge \nu (B(x, r) \cap T)$. If we can show that $\lambda_T (D \cap T) = \nu (D \cap T)$, we will obtain a contradiction. To see this, recall that by the self-affine property of the tiling, we can write

(3.4)
$$T = \bigcup_{\gamma \in \Gamma_{k_0}} M^{-k_0} T + M^{-k_0} \gamma ,$$

where $\Gamma_{k_0} = \Gamma_0 + M \Gamma_0 + \dots + M^{k_0 - 1} \Gamma_0$. If $\gamma \in \Gamma_{k_0}$, then $M^{-k_0}T + M^{-k_0}\gamma \subset T$, so $int(M^{-k_0}T + M^{-k_0}\gamma) \subset T$. If $\gamma \notin \Gamma_{k_0}$, then $T \cap int(M^{-k_0}T + M^{-k_0}\gamma) = \emptyset$. If not, there is an x in $T \cap int(M^{-k_0}T + M^{-k_0}\gamma)$. Since $x \in T$, x is in one of the sets in the right-hand side of (3.4); that is, $x \in M^{-k_0}T + M^{-k_0}\gamma'$, where $\gamma' \in \Gamma_{k_0}$. So

$$x \in (M^{-k_0}T + M^{-k_0}\gamma') \cap int(M^{-k_0}T + M^{-k_0}\gamma),$$

which implies $M^{k_0}x \in (T + \gamma') \cap int(T + \gamma)$. This contradicts the fact that distinct translates of T are disjoint except at the boundary. So,

either
$$int(M^{-k_0}T + M^{-k_0}\gamma) \subset T$$
 or $int(M^{-k_0}T + M^{-k_0}\gamma) \subset T^c$

Set $C = \Gamma_{k_0} \cap M^{k_0} B\left(x, r + \frac{\eta}{2}\right)$ and $C' = \left(\Gamma \setminus \Gamma_{k_0}\right) \cap M^{k_0} B\left(x, r + \frac{\eta}{2}\right)$. Then

$$D \cap T = \left(\left(\bigcup_{\gamma \in C} M^{-k_0} T + M^{-k_0} \gamma \right) \cap T \right) \cup \left(\left(\bigcup_{\gamma \in C'} M^{-k_0} T + M^{-k_0} \gamma \right) \cap T \right)$$

The second intersection consists only of boundary points of T. Since $\nu(\partial T) = 0$, then

$$\nu\left(D\cap T\right) = \nu\left(\left(\bigcup_{\gamma\in C} M^{-k_0}T + M^{-k_0}\gamma\right)\cap T\right)$$

and $\nu \left(\partial \left(M^{-k_0}T + M^{-k_0}\gamma \right) \right) = 0$. The Lebesgue measure of ∂T is zero [10], so $\lambda \left(\partial M^{-k_0}T \right) = 0$. Thus we have

$$\lambda_T (D \cap T) = \lambda_T \left(\bigcup_{\gamma \in \Gamma_{k_0}} M^{-k_0} T + M^{-k_0} \gamma \right)$$

=
$$\sum_{\gamma \in \Gamma_{k_0}} \lambda_T \left(M^{-k_0} T + M^{-k_0} \gamma \right)$$

=
$$\sum_{\gamma \in \Gamma_{k_0}} \nu \left(M^{-k_0} T + M^{-k_0} \gamma \right)$$

=
$$\nu \left(\bigcup_{\gamma \in \Gamma_{k_0}} M^{-k_0} T + M^{-k_0} \gamma \right) = \nu \left(D \cap T \right)$$

As mentioned above, the fact that $\lambda_T (D \cap T) = \nu (D \cap T)$ implies

$$\lambda_{T} \left(B \left(x, r + \eta \right) \cap T \right) \ge \nu \left(B \left(x, r \right) \cap T \right)$$

which contradicts $\nu (B(x,r) \cap T) > \lambda_T (B(x,r) \cap T)$. So we conclude that $\lambda_T \leq \nu$ on all closed balls. Repeating the proof with the roles of ν and λ_T reversed yields that ν and λ_T agree on all closed balls.

Hoffmann-Jørgensen proved that Radon probabilities which agree on all closed balls in \mathbf{R}^d agree on all Borel sets. (Corollary 5 in [7]), which completes the proof that $2) \Rightarrow 1$).

In order to prove 3) \Rightarrow 2), we need a version of the Kakutani Dichotomy for stationary ergodic sequences.

Lemma 1. Let $\{\xi'_k\}_{k=1}^{\infty}$ be a stationary, ergodic sequence, such that each ξ'_k is uniform with values in Γ_0 . Let $\{\xi_k\}_{k=1}^{\infty}$ be a stationary, ergodic sequence, such that each ξ_k has values in Γ_0 , but is not uniform. Then $\mu = \pounds(\xi_1, \xi_2, ...)$ and $\mu' = \pounds(\xi'_1, \xi'_2, ...)$ are mutually singular.

Proof. Let $\mu = \mu_a + \mu_s$, where $\mu_a \ll \mu'$ and $\mu_s \perp \mu'$. Suppose $\mu_a(\Omega) > 0$.

Since $\mu \neq \mu'$, there must be a cylindrical set A such that $\mu_a(A) \neq \mu'(A)$. (If not, then $\mu_a = \mu'$, which implies $\mu = \mu'$, contradicting the assumption that $\mu \neq \mu'$.) Let $f = 1_A$, then we get

$$\int_{\Omega} f(x_1, ..., x_n) d\mu_a(x) \neq \int_{\Omega} f(x_1, ..., x_n) d\mu'(x)$$
$$E_{\mu_a}(f) \neq E_{\mu'}(f).$$

Set $c = E_{\mu_a}(f)$ and $c' = E_{\mu'}(f)$. The fact that $\{\xi_k\}_{k=1}^{\infty}$ and $\{\xi'_k\}_{k=1}^{\infty}$ are ergodic sequences means that the shift operator is an ergodic operator for (Ω, S, μ) and (Ω, S, μ') respectively, where $\Omega = \Gamma_0^{\infty}$. Applying the Ergodic Theorem (with f) and the fact that the sequences are stationary, it follows that

1)
$$\frac{1}{k} \sum_{i=0}^{k-1} f(x_{1+i}, \dots, x_{n+i}) \xrightarrow{k \to \infty} c \text{ a.s. } \mu_a,$$

2)
$$\frac{1}{k} \sum_{i=0}^{k-1} f(x_{1+i}, \dots, x_{n+i}) \xrightarrow{k \to \infty} c' \text{ a.s. } \mu'.$$

So, 1) is true for all $\{x_i\}_{i=1}^{\infty} \in \Omega \setminus N$, where $\mu_a(N) = 0$ and 2) is true for all $\{x_i\}_{i=1}^{\infty} \in \Omega \setminus N'$, where $\mu'(N') = 0$.

Define $M := N \cup N'$. Notice that $\mu_a(M) \leq \mu_a(N) + \mu_a(N') = \mu_a(N')$. Since $\mu_a \ll \mu'$ and $\mu'(N') = 0$, we have $\mu_a(N') = 0$ and so $\mu_a(M) = 0$. We have assumed that $\mu_a(\Omega) > 0$; therefore, $\mu_a(M) = 0$ implies that $\mu_a(\Omega \setminus M) > 0$; that is, $\mu_a((\Omega \setminus N) \cap (\Omega \setminus N')) > 0$, which means that there is a sequence $\{x_i\}_{i=1}^{\infty} \in (\Omega \setminus N) \cap (\Omega \setminus N')$ such that

$$\frac{1}{k} \sum_{i=0}^{k-1} f(x_{1+i}, \dots, x_{n+i}) \xrightarrow{k \to \infty} c \text{ and } \frac{1}{k} \sum_{i=1}^{k-1} f(x_{1+i}, \dots, x_{n+i}) \xrightarrow{k \to \infty} c'$$

This is a contradiction, since $c \neq c'$. Therefore, $\mu_a = 0$ and thus, $\mu \perp \mu'$.

Now we are ready to show that $3) \Rightarrow 2$.

First, we note that $\mathcal{L}(Z) \ll \lambda_T$ implies that $\mathcal{L}(Z) \ll \lambda_T$. To see this, observe that for $E \in \mathcal{B}(\mathbf{R}^d)$,

$$(3.5) \qquad P\left((Z) \in E\right) = P\left(Z - [Z] \in E\right) = \sum_{\gamma \in \Gamma} P\left(Z \in E + \gamma, [Z] = \gamma\right)$$
$$\leq \sum_{\gamma \in \Gamma} P\left(Z \in E + \gamma\right).$$

If $\lambda_T(E) = 0$, then $\lambda_T(E + \gamma) = 0$ and so $P(Z \in E + \gamma) = 0$ for all $\gamma \in \Gamma$ by the assumption of absolute continuity of $\pounds(Z)$. Then (3.5) implies $P((Z) \in E) = 0$. So $\pounds((Z)) << \lambda_T$.

Since $\lambda(\partial T) = 0$, $\pounds((Z)) << \lambda_T$ implies that $P((Z) \in \partial T) = 0$. Therefore, if we define $s: \Gamma_0^{\infty} \to \mathbf{R}$ by

$$s(x_1, x_2, ...) := \sum_{i=1}^{\infty} M^{-i} x_i,$$

If Γ_0^{∞} is equipped with the product topology, s is continuous. By Proposition 2, for every Borel set F the following holds true:

(3.6)
$$\pounds ((Z)) (F) = \pounds \left(\sum_{i=1}^{\infty} M^{-i} \xi_i \right) (F) = P \left(s \left(\xi_1, \xi_2, \ldots \right) \in F \right)$$
$$= P \left(\left(\xi_1, \xi_2, \ldots \right) \in s^{-1}(F) \right) = \mu \left(s^{-1}(F) \right),$$

where $\mu = \pounds (\xi_1, \xi_2, ...)$. Corollary 1 assures that the sequence $\{\xi_k\}_{k=1}^{\infty}$ is stationary and ergodic. Let $\mu' = \pounds (\xi'_1, \xi'_2, ...)$, where $\{\xi'_k\}_{k=1}^{\infty}$ is an i.i.d. sequence with ξ'_1 uniform on Γ_0 . Suppose that $\mu \neq \mu'$. Then by Lemma 1, $\mu \perp \mu'$. So there is a set $B \subset \mathfrak{B}(\Gamma_0^{\infty})$ such that $\mu(B) = 1$ and $\mu'(B) = 0$. Set A = s(B). Since Γ_0^{∞} is a Polish space and s is continuous, A being the continuous image of a Borel set, is an analytic set. As such, A is universally measurable [13]. Let C and D be Borel sets so that $C \subseteq A \subseteq D$ and $\lambda(C) = \lambda(A) = \lambda(D)$. Since the Lebesgue measure of boundary of a tile is 0, we may assume that C does not contain any points on the boundary of tiles (the union of the tiles boundaries is a Borel set). This implies that $s^{-1}(C) \subseteq B$. From the proof of 2) \Rightarrow 1) it follows that $\pounds(s(\xi'_1, \xi'_2, ...)) = \lambda_T$. Now

$$0 = \mu'(B) = P((\xi'_1, \xi'_2, \dots) \in B) \ge P((\xi'_1, \xi'_2, \dots) \in s^{-1}(C))$$

= $P(s(\xi'_1, \xi'_2, \dots) \in C) = \lambda_T(C) = \lambda_T(A).$

We also have that

$$1 = \mu(B) = P((\xi_1, \xi_2, \dots) \in B) \le P(s(\xi_1, \xi_2, \dots) \in D) = \pounds((Z))(A)$$

where the last equality follows from (3.6). This contradicts the fact that $\pounds((Z)) << \lambda_T$. Therefore $\mu = \mu'$, i.e. ξ_i , i = 1, 2, ..., are i.i.d. and ξ_1 is uniform on Γ_0 . This completes the proof of $3 \ge 2$ and thus of Theorem 1.

4. Conditions for independence of $\{\xi_k\}$

In Theorem 1, the existence of a density of the solution Z to (1.2) is equivalent to the fact that the stationary, ergodic sequence $\{\xi_k\}_{k=1}^{\infty}$ is a sequence of independent random variables and that ξ_1 is uniform on Γ_0 . In this section we first investigate the effects of uniformity of ξ_1 on the distributions of G_1 and $[Z_1]$; the results are then summarized in Theorem 2. In Theorem 3, we give a sufficient condition on G_1 for the independence and uniformity of the sequence $\{\xi_k\}_{k=1}^{\infty}$.

By Proposition 3, $\xi_k = h (G_k + [Z_k])$ a.s., provided that $P((Z_0) \in \partial T) = 0$. In order to describe the effects of uniformity of ξ_k , it suffices to consider the relationship between G_1 , $[Z_1]$ and ξ_1 .

Let $p_i = P([Z_1] \cong \gamma_i)$ and $q_i = P(G_1 \cong \gamma_i)$ for $i = 0, 1, \ldots, m-1$, where $\gamma \cong \gamma_i$ means that the lattice point γ is in the coset represented by γ_i . Recalling that G_1 and Z_1 are independent we have

$$P(\xi_{1} = \gamma_{k}) = P(h(G_{1} + [Z_{1}]) = \gamma_{k})$$

$$= \sum_{\gamma_{i} + \gamma_{j} \cong \gamma_{k}} P(G_{1} \cong \gamma_{i}, [Z_{1}] \cong \gamma_{j})$$

$$= \sum_{\gamma_{i} + \gamma_{j} \cong \gamma_{k}} P(G_{1} \cong \gamma_{i}) P([Z_{1}] \cong \gamma_{j})$$

$$= \sum_{\gamma_{i} + \gamma_{j} \cong \gamma_{k}} q_{i} p_{j}.$$

Due to the uniqueness of equivalence class representatives, there are exactly m terms in the right-hand sides the equation. Now if $p_i = \frac{1}{m}$ for all i or $q_i = \frac{1}{m}$ for all i then ξ_i are uniform. Assuming that ξ_1 is uniform on $\Gamma_0 = \{\gamma_0, \ldots, \gamma_{m-1}\}$ we have,

$$\frac{1}{m} = q_0 p_0 + q_1 p_1 + \dots + q_{m-1} p_{m-1},$$

$$\frac{1}{m} = q_{m-1} p_0 + q_0 p_1 + \dots + q_{m-2} p_{m-1},$$

$$\frac{1}{m} = q_{m-2} p_0 + q_{m-1} p_1 + \dots + q_{m-3} p_{m-1},$$

$$\dots$$

$$\frac{1}{m} = q_1 p_0 + q_2 p_1 + \dots + q_0 p_{m-1},$$

or, in matrix form, $QX = \frac{1}{m} \begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix}^T$, where $X = \begin{bmatrix} p_0 & p_1 & \cdots & p_{m-1} \end{bmatrix}^T$. Notice that the rows as well as the columns of Q sum to 1. Without loss of generality, we may assume that $q_0 \ge q_1 \ge \cdots \ge q_{m-1}$; if not, just reindex Γ_0 so that this ordering holds. It is obvious that $p_i = \frac{1}{m}, i = 0, \dots, m-1$, is a solution of the system; we will show that it is unique by showing that the eigenvalues of the matrix Q are different from zero.

Let α_k be the *k*th root of $z^m = 1$. Direct computation shows that the eigenvalues of Q are $\eta_k = \sum_{j=0}^{m-1} q_j \alpha_k^j$ and the associated eigenvectors are

$$v_k = \begin{bmatrix} 1 & \alpha_k & \alpha_k^2 & \cdots & \alpha_k^{m-1} \end{bmatrix}^T$$

for k = 0, 1, ..., m - 1.

Remark 1. If $k \in \{0, 1, ..., m-1\}$ and m are relatively prime, then

$$\left\{ e^{\frac{2\pi i j k}{m}} | j = 0, 1, ..., m - 1 \right\}$$

is equal to the set of distinct roots of $z^m = 1$.

Definition 1. We say that the set $\{q_j\}_{j=0}^{m-1}$ has a cycle of length r if

$$q_0 = q_1 = \dots = q_{r-1},$$

$$q_r = q_{r+1} = \dots = q_{2r-1},$$

$$\dots,$$

$$q_{m-r} = \dots = q_{m-1}.$$

The trivial case r = 1 is excluded.

So, for example, the set $\{\frac{1}{4}, \frac{1}{4}, \frac{1}{5}, \frac{1}{5}, \frac{1}{20}\}$ has a cycle of length 2 while the set $\{\frac{1}{4}, \frac{1}{4}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}\}$ has no cycle. Note that if $\{q_j\}_{j=0}^{m-1}$ has a cycle of length r, then r divides m.

Lemma 2. Zero is an eigenvalue of Q if and only if $\{q_j\}_{j=0}^{m-1}$ has a cycle.

Proof. (\Leftarrow) The case of a cycle of length *m* is trivial.

Now consider a cycle of length r, where r < m. Denote the greatest common divisor of m and r by (m, r). We claim that $\eta_{\frac{m}{r}} = 0$ (recall that r divides m). Since $\{q_j\}_{j=0}^{m-1}$ has a cycle of length r and $\frac{2\pi i j \frac{m}{r}}{m} = \frac{2\pi i j}{r}$, we have

$$\eta_{\overline{r}}^{\underline{m}} = \sum_{j=0}^{r-1} q_j e^{\frac{2\pi i j}{r}} + \sum_{j=r}^{2r-1} q_j e^{\frac{2\pi i j}{r}} + \dots + \sum_{j=(m,r)-1}^{m-1} q_j e^{\frac{2\pi i j}{r}}$$
$$= q_0 \sum_{j=0}^{r-1} e^{\frac{2\pi i j}{r}} + q_r \sum_{j=r}^{2r-1} e^{\frac{2\pi i j}{r}} + \dots + q_{(m,r)-1} \sum_{j=(m,r)-1}^{m-1} e^{\frac{2\pi i j}{r}}$$
$$= 0$$

 (\Rightarrow) The assumption that there is no cycle implies $q_0 > q_{m-1}$. First we will show that $\eta_k \neq 0$ in the case that (k, m) = 1. Define $l_0 := \max \{k : q_k = q_0\}$ and inductively $l_{i+1} := \max \{k : q_k = q_{l_i+1}\}, i = 0, 1, 2, \ldots, n-2$, that is, there are n different values in the set of q's. Notice that $l_{n-1} = m - 1$ and $q_{l_0} = q_0$. Now,

$$\eta_k \left(1 - e^{\frac{2\pi i k}{m}}\right)$$

$$= q_0 + (q_1 - q_0) e^{\frac{2\pi i k}{m}} + \dots + (q_{m-1} - q_{m-2}) e^{\frac{2\pi i k(m-1)}{m}} - q_{m-1} e^{\frac{2\pi i km}{m}}$$

$$= (q_0 - q_{m-1}) + (q_1 - q_0) e^{\frac{2\pi i k}{m}} + \dots + (q_{m-1} - q_{m-2}) e^{\frac{2\pi i k(m-1)}{m}}$$

$$= (q_{l_0} - q_{l_{n-1}}) + (q_{l_0+1} - q_{l_0}) e^{\frac{2\pi i k}{m}(l_0+1)} + (q_{l_1+1} - q_{l_1}) e^{\frac{2\pi i k}{m}(l_1+1)}$$

$$+ \dots + (q_{l_{n-2}+1} - q_{l_{n-2}}) e^{\frac{2\pi i k}{m}(l_{n-2}+1)}.$$

If we set

$$z_0 = (q_{l_0} - q_{l_0+1}) e^{\frac{2\pi i k}{m} (l_0+1)} + \dots + (q_{l_{n-2}} - q_{l_{n-2}+1}) e^{\frac{2\pi i k}{m} (l_{n-2}+1)},$$

we have $\eta_k \left(1 - e^{\frac{2\pi i k}{m}} \right) = q_0 - q_{m-1} - z_0$, and

$$\left|\eta_k\left(1-e^{\frac{2\pi i k}{m}}\right)\right| \ge q_0 - q_{m-1} - |z_0|.$$

We claim $|z_0| < q_0 - q_{m-1}$. Observe

$$\begin{aligned} |z_0| &\leq q_{l_0} - q_{l_0+1} \\ &+ \left| (q_{l_1} - q_{l_1+1}) e^{\frac{2\pi i k}{m} (l_1+1)} + \dots + (q_{l_{n-2}} - q_{l_{n-2}+1}) e^{\frac{2\pi i k}{m} (l_{n-2}+1)} \right| \\ &\leq q_{l_0} - q_{l_{n-4}+1} + \left| (q_{l_{n-3}} - q_{l_{n-3}+1}) + (q_{l_{n-2}} - q_{l_{n-2}+1}) e^{\frac{2\pi i k}{m} (l_{n-2} - l_{n-3})} \right|. \end{aligned}$$

Since k > 0, and k and m are relatively prime, $e^{\frac{2\pi i k}{m}(l_{n-2}-l_{n-3})}$ has a nonzero imaginary part and so $(q_{l_{n-2}} - q_{l_{n-2}+1}) e^{\frac{2\pi i k}{m}(l_{n-2}-l_{n-3})}$ cannot be a positive scalar multiple of $q_{l_{n-3}} - q_{l_{n-3}+1}$. Therefore

$$\begin{aligned} |z_0| &< q_{l_0} - q_{l_{n-4}+1} + q_{l_{n-3}} - q_{l_{n-3}+1} + \left| \left(q_{l_{n-2}} - q_{l_{n-2}+1} \right) e^{\frac{2\pi i k}{m} (l_{n-2} - l_{n-3})} \right| \\ &= q_0 - q_{m-1}. \end{aligned}$$

So $\left|\eta_k\left(1-e^{\frac{2\pi ik}{m}}\right)\right| \ge q_0 - q_{m-1} - |z_0| > 0$, which completes the case (k,m) = 1. Suppose now that (k,m) > 1. Set

$$m_1 := \frac{m}{(k,m)}, k_1 := \frac{k}{(k,m)} \text{ and } q'_j = \sum_{i \cong j} q_i,$$

where $i \cong j \text{ means } i = j \mod m_1$. Notice that $q'_0 \ge q'_1 \ge \cdots \ge q'_{m_1-1}$ and $(k_1, m_1) =$ 1. Rewriting η_k as

$$\eta_k = \sum_{j=0}^{m-1} q_j e^{\frac{2\pi i j k}{m}} = \sum_{j=0}^{m_1-1} q'_j e^{\frac{2\pi i j k_1}{m_1}},$$

we may apply the previous case because the absence of a cycle implies $q'_0 > q'_{m_1-1}$.

We can summarize the above in the following theorem: (Recall that p_i = $P([Z_1] \cong \gamma_i)$ and $q_i = P(G_1 \cong \gamma_i)$.)

Theorem 2. The random variable ξ_1 is uniform on Γ_0 if and only if one of the following two statements holds:

- (i) if $\{q_j\}_{j=1}^{m-1}$ has no cycles, then $p_i = \frac{1}{m}$ for $i = 0, \dots, m-1$, or (ii) if $\{p_j\}_{j=1}^{m-1}$ has no cycles, then $q_i = \frac{1}{m}$ for $i = 0, \dots, m-1$.

The next theorem gives a condition on the distribution of G_1 which will guarantee the independence of the sequence $\{\xi_k\}_{k=1}^{\infty}$.

Theorem 3. If $P(G_1 \cong \gamma_i) = \frac{1}{m}$ for i = 1, ..., m, then $\xi_1, \xi_2, ...$ are independent and ξ_1 is uniform.

Proof. Uniformity of ξ_1 follows from Theorem 2. Let $k_1 < k_2 < \cdots < k_n$. We proceed by induction on n.

Suppose n = 2. Then

$$P(\xi_{k_1} = \gamma_{k_1}, \xi_{k_2} = \gamma_{k_2}) = P(G_{k_1} + [Z_{k_1}] \cong \gamma_{k_1}, \xi_{k_2} = \gamma_{k_2})$$

=
$$\sum_{i=0}^{m-1} P(G_{k_1} \cong \gamma_i, [Z_{k_1}] \cong \gamma_{j(i)}, \xi_{k_2} = \gamma_{k_2})$$

=
$$\sum_{i=0}^{m-1} P(G_{k_1} \cong \gamma_i) P([Z_{k_1}] \cong \gamma_{j(i)}, \xi_{k_2} = \gamma_{k_2})$$

where $\gamma_i + \gamma_{j(i)} \cong \gamma_{k_1}$, and the last equality is due to the fact that G_{k_1} is independent of $[Z_{k_1}]$ and of ξ_{k_2} . Notice that when γ_i runs through Γ_0 , so does $\gamma_{j(i)}$, and since $P(G_{k_1} \cong \gamma_i) = \frac{1}{m}$, we obtain

$$P(\xi_{k_1} = \gamma_{k_1}, \xi_{k_2} = \gamma_{k_2}) = \frac{1}{m} \sum_{i=0}^{m-1} P([Z_{k_1}] \cong \gamma_{j(i)}, \xi_{k_2} = \gamma_{k_2})$$
$$= \frac{1}{m} P(\xi_{k_2} = \gamma_{k_2})$$
$$= P(\xi_{k_1} = \gamma_{k_1}) P(\xi_{k_2} = \gamma_{k_2}).$$

Now assume $P(\xi_{k_1} = \gamma_{k_1}, ..., \xi_{k_n} = \gamma_{k_n}) = \prod_{i=1}^n P(\xi_{k_i} = \gamma_{k_i})$. Consider $P(\xi_{k_1} = \gamma_{k_1}, ..., \xi_{k_n} = \gamma_{k_n}, \xi_{k_{n+1}} = \gamma_{k_{n+1}})$

$$P\left(\xi_{k_{1}} = \gamma_{k_{1}}, ..., \xi_{k_{n}} = \gamma_{k_{n}}, \xi_{k_{n+1}} = \gamma_{k_{n+1}}\right)$$

= $P\left(\xi_{k_{1}} = \gamma_{k_{1}}, ..., G_{k_{n}} + [Z_{k_{n}}] \cong \gamma_{k_{n}}, \xi_{k_{n+1}} = \gamma_{k_{n+1}}\right)$
= $\sum_{i=0}^{m-1} P\left(\xi_{k_{1}} = \gamma_{k_{1}}, ..., G_{k_{n}} \cong \gamma_{i}, [Z_{k_{n}}] \cong \gamma_{j(i)}, \xi_{k_{n+1}} = \gamma_{k_{n+1}}\right)$

where $\gamma_i + \gamma_{j(i)} \cong \gamma_{k_n}$. Now, G_{k_n} is independent of $[Z_{k_n}]$ and of $\xi_{k_{n+1}}$; by the inductive hypothesis, G_{k_n} is also independent of $\xi_{k_1}, \ldots, \xi_{k_{n-1}}$. Thus

$$\sum_{i=0}^{m-1} P\left(\xi_{k_1} = \gamma_{k_1}, ..., G_{k_n} \cong \gamma_i, [Z_{k_n}] \cong \gamma_{j(i)}, \xi_{k_{n+1}} = \gamma_{k_{n+1}}\right)$$
$$= \sum_{i=0}^{m-1} P\left(G_{k_n} \cong \gamma_i\right) P\left(\xi_{k_1} = \gamma_{k_1}, ..., [Z_{k_n}] \cong \gamma_{j(i)}, \xi_{k_{n+1}} = \gamma_{k_{n+1}}\right)$$
$$= \frac{1}{m} \sum_{i=0}^{m-1} P\left(\xi_{k_1} = \gamma_{k_1}, ..., [Z_{k_n}] \cong \gamma_{j(i)}, \xi_{k_{n+1}} = \gamma_{k_{n+1}}\right)$$
$$= \frac{1}{m} P\left(\xi_{k_1} = \gamma_{k_1}, ..., \xi_{k_{n-1}} = \gamma_{k_{n-1}}, \xi_{k_{n+1}} = \gamma_{k_{n+1}}\right)$$
$$= P\left(\xi_{k_n} = \gamma_{k_n}\right) \prod_{i \neq n, i=1}^{n+1} P\left(\xi_{k_i} = \gamma_{k_i}\right)$$

by the inductive hypothesis. So by induction, we have shown that $\{\xi_k\}_{k=1}^{\infty}$ is an independent sequence.

Remark. Theorem 2 is symmetric in [Z] and G, but Theorem 3 is not; that is, if $P([Z_k] = \gamma) = \frac{1}{m}$ for all $\gamma \in \Gamma_0$ but $P(G_k = \gamma_0) > \frac{1}{m}$ for some $\gamma_0 \in \Gamma_0$, the

sequence $\{\xi_k\}_{k=1}^{\infty}$ is not necessarily independent. This is illustrated in the following example: M = 2, $\Gamma = \mathbb{Z}$ (the integers) and $\Gamma_0 = \{0, 1\}$. Let G be such that $P(G=0) = P(G=1) = P(G=2) = \frac{1}{3}$. So $P(G \cong 0) = P(G$ is even) $= \frac{2}{3}$ and $P(G \cong 1) = P(G$ is odd) $= \frac{1}{3}$. Then we have

$$P([Z_1] \text{ even}) = P(0 \le Z_1 < 1) + P(Z_1 = 2)$$

= $P(G_1 = 0) + P(G_1 = 1, G_2 = 0) + \cdots$
= $\frac{1}{3} \sum_{k=0}^{\infty} \left(\frac{1}{3}\right)^k = \frac{1}{2}.$

Therefore ξ_1 is uniform on Γ_0 by Theorem 2. However, the sequence $\{\xi_k\}_{k=1}^{\infty}$ is not independent. Consider $P(\xi_1 = 0, \xi_2 = 0)$:

$$P(\xi_1 = 0, \xi_2 = 0)$$

= $P(G_1 + [Z_1] \cong 0, \xi_2 = 0)$
= $P(G_1 \cong 0, [Z_1] \cong 0, \xi_2 = 0) + P(G_1 \cong 1, [Z_1] \cong 1, \xi_2 = 0)$
= $\frac{2}{3}P([Z_1] \cong 0, \xi_2 = 0) + \frac{1}{3}P([Z_1] \cong 1, \xi_2 = 0).$

To compute the two remaining probabilities, note that

$$[Z_1] = \left[\sum_{k=1}^{\infty} 2^{-k} G_{k+1}\right] = \left[\frac{G_2 + [Z_2]}{2} + \frac{(Z_2)}{2}\right].$$

If $\xi_2 = 0$, $G_2 + [Z_2]$ is even, so in this case, $[Z_1] = \frac{G_2 + [Z_2]}{2}$, and if $[Z_1] = \frac{G_2 + [Z_2]}{2}$, then $\xi_2 = 0$. This implies that

$$\begin{aligned} \frac{2}{3}P\left([Z_1] &\cong 0, \xi_2 = 0\right) + \frac{1}{3}P\left([Z_1] \cong 1, \xi_2 = 0\right) \\ &= \frac{2}{3}P\left([Z_1] \cong 0, [Z_1] = \frac{G_2 + [Z_2]}{2}\right) + \frac{1}{3}P\left([Z_1] \cong 1, [Z_1] = \frac{G_2 + [Z_2]}{2}\right) \\ &= \frac{2}{3}P\left(G_2 + [Z_2] \cong 0 \mod 4\right) + \frac{1}{3}P\left(G_2 + [Z_2] \cong 2 \mod 4\right) \\ &= \frac{2}{3}\left(P\left(G_2 = 0, [Z_2] = 0\right) + P\left(G_2 = 2, [Z_2] = 2\right)\right) \\ &+ \frac{1}{3}\left(P\left(G_2 = 0, [Z_2] = 2\right) + P\left(G_2 = 2, [Z_2] = 0\right) + P\left(G_2 = 1, [Z_2] = 1\right)\right) \\ &= \frac{2}{3}\left(\frac{1}{2} \cdot \frac{1}{3} + 0\right) + \frac{1}{3}\left(0 + \frac{1}{3} \cdot \frac{1}{2} + \frac{1}{3} \cdot \frac{1}{2}\right) \\ &= \frac{2}{9} \neq \frac{1}{4} = P\left(\xi_1 = 0\right)P\left(\xi_2 = 0\right).\end{aligned}$$

Since the sequence $\{\xi_k\}_{k=1}^{\infty}$ is not independent, by Theorem 1, $\pounds(Z)$ is not absolutely continuous with respect to Lebesgue measure for this example. Thus, the assumption that ξ_1 is uniform does not necessarily imply the independence of the sequence $\{\xi_k\}_{k=1}^{\infty}$.

If the range of G is Γ_0 , then [Z] = 0. In this case $G = \xi_1$ and the application of Theorem 3 yields the following:

Corollary 2. Suppose that the range of G is Γ_0 . Then

$$\varphi(x) = \sum_{\gamma \in \Gamma_0} c(\gamma) \varphi(Mx - \gamma).$$

has a functional solution if and only if $P(G = \gamma) = c(\gamma) = \frac{1}{m}$.

The result of Corollary 2 is known. It was first proved by Grochenig and Madych (Theorem 2 in [5]) using different methods. The solution of the dilation equation in this case is $\varphi = \frac{1}{\sqrt{\lambda(T)}} \mathbf{1}_T$. Scaling functions that are indicator functions over the tile are used to construct "Haar-type" wavelet bases as discussed in detail in [5].

5. Examples

In this section we give several examples of density functions obtained by assigning probabilities so that the hypotheses of Theorem 3 are satisfied.

In most cases, there is no closed form for the density function [14]; those which cannot be computed explicitly can be numerically approximated by computing the function values on the points of $\{M^{-k}\Gamma \mid k = 0, \ldots, k_0\}$ for some k_0 , via the dilation equation. To obtain the approximation of the graph of φ , first the values of φ at the integers are found by considering the vector of integer values as an eigenvector of eigenvalue 1 for a matrix of coefficients [14]. Then, using the scaling relation (1.1), the values of φ can be found at all points in $M^{-1}\Gamma$. Repeatedly applying (1.1) k_0 times and plotting the results gives an approximation to the graph of φ . Questions of convergence of the approximations are discussed in [3].

For each of the following examples, the eigenvalue problem for a matrix corresponding to a set containing the support of φ was solved to obtain the values at the lattice points. Then the above algorithm was applied, resulting in approximately 2000 points plotted for each graph approximation.

Example 1. Let d = 1, M = 2, $\Gamma = \mathbb{Z}$ and $\Gamma_0 = \{0, 1\}$. Suppose the range of G is $\Gamma_1 = \{0, 1, 2, 3\}$ with the following weight assignments: c(0) = .2, c(1) = .4, c(2) = .3, c(3) = .1. Then the density function φ is continuous [2] and is pictured in Figure 1 along with a four-coefficient spline function for comparison.

Example 2. Suppose d = 2, $\Gamma = \mathbb{Z}^2$, $\Gamma_0 = \{(0,0), (1,0), (0,1), (1,1)\}$ and

$$M = \left[\begin{array}{cc} 2 & 0 \\ 0 & 2 \end{array} \right].$$

Define G to have values in $\Gamma_1 = [0,2]^2 \cap \mathbb{Z}^2$ with the following probability distribution:

$$c((0,0)) = c((2,0)) = c((0,2)) = c((2,2)) = \frac{1}{16}$$

$$c((1,0)) = c((0,1)) = c((2,1)) = c((1,2)) = \frac{1}{8},$$

$$c((1,1)) = \frac{1}{4}.$$

Since G is clearly the convolution of two independent copies of a uniform random variable on the unit square, φ is continuous. The graph of the density function is pictured in Figure 2.

FIGURE 1.

FIGURE 2.

Example 3. Let d = 2, $M = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$, $\Gamma = \mathbb{Z}^2$ and $\Gamma_0 = \{(0,0), (1,0)\}$. Define G to have values in $\Gamma_1 = \{(0,0), (1,0), (2,0)\}$ with the following distribution: $c((0,0)) = \frac{1}{4}$, $c((1,0)) = \frac{1}{2}$, $c((2,0)) = \frac{1}{4}$. The graph of the density function is pictured in Figure 3. The density is a convolution of two indicator functions of the twin dragon tile and therefore it is continuous.

FIGURE 3.

6. A NECESSARY CONDITION FOR MULTIDIMENSIONAL PRESCALE FUNCTIONS

Suppose φ is a functional solution of the dilation equation (1.1). If the lattice translates of φ form a Riesz basis, that is, for some positive constants C_1, C_2

$$C_1 \sqrt{\sum (a(\gamma))^2} \le \left\| \sum a(\gamma) \varphi(\cdot - \gamma) \right\|_{L^2(\mathbf{R}^d)} \le C_2 \sqrt{\sum (a(\gamma))^2},$$

then φ is said to be *stable*. We show that the condition $\sum_{\gamma \cong \delta} c(\gamma) = \frac{1}{m}$ for each $\delta \in \Gamma_0$, where $m = |\det M|$, which was sufficient for the existence of a functional solution to (1.1), is necessary for the stability of φ .

The Fourier transform version of the dilation equation (1.1) is

(6.1)
$$\widehat{\varphi}\left(\zeta\right) = \widehat{\varphi}\left(M^{*-1}\zeta\right) A\left(M^{*-1}\zeta\right),$$

where $A(\zeta) = \sum_{\gamma \in \Gamma} c(\gamma) e^{-i\gamma \cdot \zeta}$. Stability of φ is equivalent to

(6.2)
$$0 < C_1 \le \sum_{k \in \Gamma} \left| \widehat{\varphi} \left(\zeta + 2\pi k \right) \right|^2 \le C_2 \text{ a.e.}$$

In the case that the coefficient sequence $c := \{c(\gamma)\}_{\gamma \in \Gamma}$ is finitely supported, the function in (6.2) is a polynomial [12] and so the inequality must hold everywhere. In the theorem below, which is known (see, for example, [9]), we will assume that the equation holds everywhere. This is not a restriction as proved in [4]. For completeness we include a short proof.

Theorem 4. Let $\varphi \in L^2(\mathbf{R}^d)$ be a solution of the dilation equation (1.1). Suppose φ is stable and that equation (6.2) holds everywhere. Then $\sum_{\gamma \cong \gamma_0} c(\gamma) = \frac{1}{m}$ for each $\gamma_0 \in \Gamma_0$.

Proof. Without loss of generality, we assume $\Gamma = \mathbf{Z}^d$. Since φ is stable, (6.2) holds. Applying equation (6.1) we obtain

$$0 < C_{1} \leq \sum_{k \in \mathbf{Z}^{d}} |\widehat{\varphi} \left(\zeta + 2\pi k \right)|^{2} \\ = \sum_{\gamma \in \Gamma_{0}} |A \left(M^{*-1} \zeta + 2\pi M^{*-1} \gamma \right)|^{2} \sum_{k' \in \mathbf{Z}^{d}} \left| \widehat{\varphi} \left(M^{*-1} \zeta + 2\pi \left(M^{*-1} \gamma + k' \right) \right) \right|^{2}.$$

For $\zeta = 0$, we get

$$\sum_{k \in \mathbf{Z}^{d}} \left| \widehat{\varphi} \left(2\pi k \right) \right|^{2} = \sum_{\gamma \in \Gamma_{0} \setminus \{0\}} \left| A \left(2\pi M^{*-1} \gamma \right) \right|^{2} \sum_{k' \in \mathbf{Z}^{d}} \left| \widehat{\varphi} \left(2\pi \left(M^{*-1} \gamma + k' \right) \right) \right|^{2} + \left| A \left(0 \right) \right|^{2} \sum_{k' \in \mathbf{Z}^{d}} \left| \widehat{\varphi} \left(2\pi k' \right) \right|^{2}.$$

Since by [3] A(0) = 1, and since $\sum_{k' \in \mathbf{Z}^d} \left| \widehat{\varphi} \left(2\pi \left(M^{*-1} \gamma + k' \right) \right) \right|^2 \ge C_1 > 0$, we have

$$\sum_{k \in \mathbf{Z}^d} c(k) e^{-i2\pi \left(M^{*-1}\gamma\right) \cdot k} = 0 \text{ for each } \gamma \in \Gamma_0 \setminus \{0\},$$

which, after letting $k = \gamma_k + Mn_k$, $\gamma_k \in \Gamma_0$, $n_k \in \mathbb{Z}^d$ and setting $\sum_{k \cong \delta} c (\gamma_k + Mn_k) = q_{\delta}$ leads to

(6.3)
$$0 = \sum_{\delta \in \Gamma_0} e^{-i2\pi\gamma \cdot M^{-1}\delta} q_{\delta}$$

Claim. $\sum_{\delta \in \Gamma_0} e^{-i2\pi \gamma \cdot M^{-1}\delta} = 0$ for each $\gamma \in \Gamma_0 \setminus \{0\}$.

Notice that the set $\left\{ e^{-i2\pi\gamma\cdot M^{-1}\delta} \mid \delta \in \Gamma_0 \right\}$ is a group on the unit circle. If

(6.4)
$$\sum_{\delta \in \Gamma_0} e^{-i2\pi \gamma \cdot M^{-1}\delta} = r \neq 0,$$

then for every $\gamma \in \Gamma_0 \setminus \{0\}$ there is a $\delta \in \Gamma_0$ so that $e^{-i2\pi\gamma \cdot M^{-1}\delta} \neq 1$. (If not, $e^{-i2\pi\gamma \cdot M^{-1}\delta} = 1$ for all $\delta \in \Gamma_0$ implies that

$$0 = \sum_{\delta \in \Gamma_0} \sum_{k:k \cong \delta} c\left(\gamma_k + M n_k\right) = \sum c\left(\gamma\right),$$

contradicting $\sum c(\gamma) = 1$.) Multiplying both sides of (6.4) by $e^{-i2\pi\gamma \cdot M^{-1}p}$ where $p \in \Gamma_0$ is such that $e^{-i2\pi\gamma \cdot M^{-1}p} \neq 1$, we obtain

$$\sum_{\delta \in \Gamma_0} e^{-i2\pi\gamma \cdot M^{-1}(\delta+p)} = r e^{-i2\pi\gamma \cdot M^{-1}p}.$$

Note that since $\delta + p = \delta' + Mk$, where $\delta' \in \Gamma_0$ and $k \in \mathbf{Z}^d$, then $\sum_{\delta \in \Gamma_0} e^{-i2\pi\gamma \cdot M^{-1}(\delta+p)}$ includes all the elements of the group and nothing more, and therefore it is equal to r. So $r = re^{-i2\pi\gamma \cdot M^{-1}p}$, contradicting $e^{-i2\pi\gamma \cdot M^{-1}p} \neq 1$.

4798

The set of m-1 equations $\sum_{\delta \in \Gamma_0} e^{-i2\pi \gamma \cdot M^{-1}\delta} q_{\delta} = 0$ for each $\gamma \in \Gamma_0 \setminus \{0\}$, along with the constraint $\sum_{\delta \in \Gamma_0} q_{\delta} = 1$, comprises a system of m equations with m variables q_{δ} . Notice that $q_{\delta} = \frac{1}{m}$ for each $\delta \in \Gamma_0$ is a solution. The coefficient matrix for this system is given by

$$U = \left(e^{-i2\pi\gamma_i \cdot M^{-1}\gamma_j} \right)_{0 \le i,j \le m-1}.$$

By (6.3), $UU^* = mI_m$, and so det $U \neq 0$. Therefore $q_{\delta} = \frac{1}{m}$ for all $\delta \in \Gamma_0$ is the unique solution of the system, which concludes the proof of the theorem.

If, as in the previous section, we let $c(\gamma) = P(G = \gamma)$, the above theorem says that $P(G \cong \gamma) = \frac{1}{m}$ for each $\gamma \in \Gamma_0$ is necessary in order for the density φ to be stable. However, this condition, which by Theorems 1 and 3 guarantees that φ is absolutely continuous, is not sufficient for the stability of φ . Consider the following example: $\Gamma = \mathbf{Z}, M = 2$ with the constants assigned as follows:

$$c(0) = c(2) = c(3) = c(5) = \frac{1}{8},$$

 $c(1) = c(4) = \frac{1}{4}.$

Notice that the two cosets have equal weight and so by Theorems 1 and 3 the solution φ of the dilation equation will be a density function. However, it is shown in [11] that φ is not stable.

References

- C. Bandt, Self-similar sets. V. Integer matrices and fractal tilings of Rⁿ, Proc. Amer. Math. Soc., 112, (2) (1991), pp. 549-562. MR 92d:58093
- D. Colella and C. Heil, Dilation equations and the smoothness of compactly supported wavelets in Wavelets: Mathematics and Applications (J. Benedetto and M. Frazier, eds.), CRC Press, Boca Raton, FL, 1994, pp. 163-201. MR 94j:42049
- I. Daubechies, *Ten Lectures on Wavelets*, CMBS Regional Conference Series in Applied Mathematics, Vol. 61, SIAM, Philadelphia, PA, 1992. MR 93e:42045
- V. Dobric, R.F. Gundy, P. Hitczenko, Characterizations of orthonormal scale functions: a probabilistic approach, J. Geom. Anal. 10 (2000), pp. 417–434. CMP 2001:04
- K. Gröchenig and W. R. Madych, Multiresolution analysis, Haar bases and self-similar tilings of Rⁿ, IEEE Trans. Inform. Theory, 38 (2) (1992), pp. 556-567. MR 93i:42001
- R. Gundy and C. Zhang, "Dilation equations," Lehigh University Probability Seminar, Fall, 1994.
- J. Hoffmann-Jørgensen, Measures which agree on balls, Math. Scand., 37 (1975), pp. 319-326. MR 53:13509
- B. Jessen and A. Wintner, Distribution functions and the Riemann zeta function, Trans. Amer. Math. Soc., 38 (1935), pp. 44-88. CMP 95:18
- Q. Jiang, Multivariate matrix refinable functions with arbitrary matrix dilation, Trans. Amer. Math. Soc., 351 (6) (1999), pp. 2407-2438. MR 99i:42047
- J. Lagarias and Y. Wang, Self-Affine Tiles in Rⁿ, Adv. Math., 121 (1996), pp. 21-49. MR 97d:52034
- W. Lawton, S. L. Lee, Z. Shen, Stability and orthonormality of multivariate refinable functions, SIAM J. Math. Anal., 28 (4) (1997), pp. 999-1014. MR 98d:41027
- P. G. Lemarie, Fonctions a support compact dans les analyses multi-resolutions, Rev. Mat. Iberoamericana, 7 (2) (1991), pp. 157-182. MR 93b:42046

13. C. A., Rogers, Analytic Sets, Academic Press, New York, 1980.

 G. Strang, Wavelet transforms versus Fourier transforms, Bull. Amer. Math. Soc., 28 (2) (1993), pp. 288-305. MR 94b:42017

DEPARTMENT OF MATHEMATICS, WEST CHESTER UNIVERSITY OF PENNSYLVANIA, WEST CHESTER, PENNSYLVANIA 19383

 $Current \ address:$ Department of Mathematics, Salem State College, Salem, Massachusetts01970

E-mail address: jbelock@salemstate.edu

Department of Mathematics, Lehigh University, 14 Packer Avenue, Bethlehem, Pennsylvania18015

E-mail address: vd00@lehigh.edu

URL: http://www.lehigh.edu/~vd00/vd00.html