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ON THE WELLPOSEDNESS OF CONSTITUTIVE LAWS
INVOLVING DISSIPATION POTENTIALS

WOLFGANG DESCH AND RONALD GRIMMER

Abstract. We consider a material with memory whose constitutive law is
formulated in terms of internal state variables using convex potentials for the
free energy and the dissipation. Given the stress at a material point depend-
ing on time, existence of a strain and a set of inner variables satisfying the
constitutive law is proved. We require strong coercivity assumptions on the
potentials, but none of the potentials need be quadratic.

As a technical tool we generalize the notion of an Orlicz space to a cone
“normed” by a convex functional which is not necessarily balanced. Duality
and reflexivity in such cones are investigated.

1. Introduction

1.1. Survey. The rheological behavior of a deformable material is described by
the constitutive law. For a perfectly elastic material, the stress σ(t) at time t is
completely determined by the present strain ε(t). Energy dissipating phenomena
like viscoelasticity, elastoplasticity and viscoplasticity, however, are characterized
by the fact that σ(t) depends on the whole history of the strain up to time t and
vice versa:

σ(t) = F(ε(t− ·)) or ε(t) = G(σ(t − ·)).(1.1)

The operators F and G, mapping a tensor valued function into a tensor, may be, for
instance, convolution operators in the case of viscoelasticity, or hysteresis operators
in the case of plasticity.

Instead of stating the constitutive relation (1.1) explicitely, the following model
assumes the existence of internal (”hidden”) state variables V , whose change reflects
the mechanism for energy dissipation.

(σ(t), A(t)) ∈ ∂ψ(ε(t), V (t)),

V̇ (t) ∈ ∂φ∗(−A(t)).
(1.2)

Here ε(t) ∈ RM and σ(t) ∈ RM describe the strain and stress at a material point
at time t. Depending on the geometry of the problem, they may be scalars or
symmetric 3 × 3-tensors, possibly with the restriction that the trace is 0 (in the
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incompressible case), identified with vectors from R6 orR5. V (t) ∈ RN is an internal
state variable (some kind of hidden strain), while A(t) ∈ RN is the corresponding
thermodynamic force (some hidden stress). Notice that the internal state variables
are usually purely hypothetical and not accessible to measurement. The potential ψ
gives the density of free energy (per unit mass), while φ governs the law of energy
dissipation by plasticity or viscoelastic damping. This model has been adapted
from [8, Section 2.4], and many particular instances of this formal framework are
found throughout the same monograph. We have restricted the consideration to
the isothermic case and omitted the effects of temperature and heat flux.

To obtain the constitutive relationship in explicit form (1.1), one has to solve

Problem 1.1. Given initial states ε(0) = ε0 ∈ RM , V (0) = V0 ∈ RN , and the
stress history σ(·) ∈W1,2([0, T ],RM), find ε(·), V (·), and A(·) solving (1.2).

Our paper will give sufficient conditions such that this problem admits at least
one solution.

In the case of linear elasticity and viscoelasticity this boils down to solving linear
differential equations. However, as soon as nonlinear elements enter the scene, the
explicit form of (1.1) is usually out of reach. Even worse, if φ and ψ are not smooth
enough so that (1.2) reduces to an ordinary differential equation with Lipschitz con-
tinuous right hand side, it can be rather laborious to prove existence and uniqueness
(“wellposedness”) of solutions. This situation appears inevitably, if plasticity or vis-
coplasticity are considered. Examples of sophisticated ad hoc reasoning to prove
the wellposedness of some seemingly simple elastoplastic constitutive models are
found in [3]. On a more abstract level, this case has been investigated quite in-
tensely in literature. We give a survey on existing results later. The key to these
results is the convex structure of the model, suggesting that there should be some
general theory of existence and uniqueness for (1.2) based on convexity rather than
smoothness of the right hand side.

Our paper is meant to be a step on the way to a general theory of wellposedness
for (1.2). We will give another set of sufficient conditions for the existence of
solutions to Problem 1.1. We will not require smoothness beyond convexity and
lower semi-continuity. Our conditions concern the growth and coercivity behavior
of both potentials.

1.2. Our conditions. Our growth assumptions on φ are rather restrictive, ruling
out rate independent phenomena of perfect plasticity and elastoplasticity, but well
suited for viscoplasticity like e.g. Odqvist’s law [8, p. 282]: (Here, σp is the inelastic
stress, corresponding to the variable −A in the abstract model. Its deviator is
denoted by σ′p.)

φ∗(σp) =
λ∗

N∗ + 1

(σeq
λ∗

)N∗+1

,

σ2
eq =

3
2
σ′p : σ′p.

On the other hand, we allow for very general free energy potentials ψ. Nonlinear
elastic potentials are well established in literature, take for instance the Neohookean
potential and its generalizations for rubber-like materials [14, p. 242]. Global Lip-
schitz continuity of the derivative may fail for instance, if the elastic potential is
infinite for some strains, like the following potential proposed to describe the elastic
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behavior of biological tissues in orthotropic experimental settings [15]:

ψ(ε) = −C ln(1−Q),

Q =
1
2

(a11E
2
11 + a22E

2
22 + 2a12E11E22),

Eii =
1
2

(ε2ii + 2εii) Green-St. Venant strain in direction i.

Such potentials describe materials that cannot be strained beyond a certain mar-
gin. Our setting includes constitutive laws built from very general and possibly
pathologic elastic elements combined with viscoplastic and viscoelastic elements.

From the viewpoint of particular constitutive laws, the combination of a non-
smooth elastic potential with viscoplasticity is certainly a special case of marginal
interest only. The main message of our work is the comparison to existing results
on the wellposedness of Problem 1.1: There seems to be a tradeoff between the co-
ercivity properties of φ and ψ. Whenever coercivity assumptions on φ are imposed,
assumptions on ψ can be relaxed. We expect, that a general theory of wellposedness
will require hypotheses on the coercivity of φ+ ψ and φ∗ + ψ∗.

1.3. Literature. To our knowledge, wellposedness of (1.2) has not been treated
in the literature in the full generality of the framework outlined above. It should
be anticipated that in many cases both φ and ψ are sufficiently smooth such that
the constitutive equations reduce to ordinary differential equations with Lipschitz
continuous right hand side. However, the references cited below, mostly motivated
by problems of elastoplasticity, show that frequently the assumption of smooth
potentials can be significantly relaxed if the convex structure of the equation is
exploited.

The assumption that ψ(ε, V ) is quadratic means that σ and A depend linearly on
the state, i.e., all elastic components of the model are Hookean. In [1] this is called
a constitutive equation of gradient type. There, existence and uniqueness of the
solution to the dynamic problem (i.e., the partial differential equation governing
motion of an elastoplastic body) is proved. The coercivity assumptions on φ are
no longer needed, in fact, the relation between A and V̇ need not even be given
by a subdifferential, but by any maximal monotone operator. The approach in [1]
consists in setting up the dynamic problem as a semigroup and choosing a suitable
norm which makes the generator an m-dissipative operator. Reference [1] does not
deal explicitely with (1.2), but the ideas in [1] can be easily modified to set up an
inhomogeneous evolution equation for the state (σ(t), ε(t), V (t)).

Reference [9] contains the discussion of a one-dimensional quasi-static problem
with the Prandtl-Reuss constitutive law. Here the free energy is again quadratic,
and φ∗ is the indicator function of the yield characteristic. This means rate-
independent dissipation, i.e., plasticity. Therefore, this reference provides also an
instructive example for the difficulties implied by the non-coercivity of φ.

Quasi-static problems, in a somewhat different setting with a quadratic free
energy potential, are also treated in [4, Chapter 3]. Here the irreversible phenomena
are modelled by a Lipschitz continuous perturbation of the linear elastic equation.
Existence of solutions for perfect plasticity is treated as a limiting case of Lipschitz
continuous problems. A partial uniqueness result, namely uniqueness of the stress
field, is inferred from the quadratic structure of the free energy.
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More general free energy potentials are treated in [7]. Again, φ∗ is the indicator
function of a convex set. Some coercivity and smoothness assumptions on ψ are
imposed. In particular, ψ is twice continuously differentiable with respect to V ,
and the Hessian is Lipschitz continuous. This, in turn, implies not only existence of
solutions but also uniqueness and Lipschitz continuous dependence on initial data.
In [7], the state space may be an infinite dimensional Hilbert space.

Our paper is almost complementary to the work cited above. The conditions on
the free energy potential ψ are relaxed to the level that almost no conditions on ψ
with respect to V are imposed. On the contrary, we require very strong coercivity
conditions on φ and its Fenchel conjugate φ∗, so that rate-independent phenomena
are ruled out. We hope to overcome this drawback by creating hybrids between the
conditions stated in the literature and our work in forthcoming research.

1.4. Orlicz spaces. A significant part of this paper is devoted to adapt technical
tools from the concept of Orlicz spaces. Nevertheless, the idea of the wellposedness
proof can be understood without these tools if the Orlicz spaces Lφ and Lφ

∗
in

this paper are replaced by Lp([0, T ],RN) and Lq([0, T ],RN) with 1 < p < ∞,
p−1 + q−1 = 1. This pertains exactly to the case of Odqvist’s law of viscoplasticity,
possibly complemented by a nonlinear elastic component.

For non-quadratic potentials, Orlicz spaces are the natural “energy spaces” sim-
ilar to L2 in the case of linear elasticity and viscoelasticity. The technical key in
our approach is an a priori estimate on the dissipated energy∫ T

0

[φ(V̇ (t)) + φ∗(−A(t))] dt,

which implies that V̇ (·) and−A(·) live in spaces constructed by the convex functions
φ and φ∗ very similarly as Orlicz spaces. It is some kind of reflexivity of these
spaces that enables us to set up weak compactness and thus convergence of some
approximating solutions. Therefore we need some tools concerning duality.

On this way we face a technical difficulty. The definition of an Orlicz space is
based on the integral ∫ T

0

ρ(|u(t)|) dt

where ρ : [0,∞)→ [0,∞] is a convex, lower semicontinuous function with ρ(0) = 0.
The only difficulty to generalize from ρ(|u|) to a general convex function φ(u) lies in
the possibility that φ(−u) 6= φ(u). Physically speaking, this means that the mate-
rial may behave quite differently under compression and extension, respectively. As
a mathematical consequence, the generalized “Orlicz space” is rather a cone than a
vector space. Since estimates holding for u are no longer automatically valid for −u
as well, all estimates are one-sided. This requires some changes in the notion of the
dual space, and some technical adaptations. Due to the strong growth conditions
on φ and φ∗, some properties of the spaces Lp with 1 < p <∞ can be carried over.
In particular, we obtain some properties close to reflexivity.

The tools of convex analysis needed in this paper can be found, for instance,
in the monographs [2, 13]. Moreover, [9] (mentioned already above) starts with a
compact, but very informative survey of convex analysis applied to elasticity. The
theory of Orlicz spaces is described in [5] and [10].



DISSIPATION POTENTIALS 5099

1.5. Structure of the paper. In the next section we adapt as much as we need
from the theory of Orlicz spaces. The core of our paper is Section 3 containing the
proof of existence for solutions of (1.2).

2. Orlicz space considerations

In this section we generalize the notion of an Orlicz space on an interval [0, T ] (see
[5, 10]). The purpose of this section is mainly to provide a tool of weak compactness
by an analog to the reflexivity of certain Orlicz spaces.

This section contains information about

2.1 Basic definitions,
2.2 Growth conditions,
2.3 Duality,
2.4 Notions of convergence,
2.5 Some technical lemmas.

2.1. Basic definitions. Throughout this section we assume

Hypothesis 2.1. Let φ : RN → [0,∞) be everywhere defined, convex, and contin-
uous. Moreover, we assume that φ is coercive, i.e.

lim
|x|→∞

1
|x|φ(x) =∞.

By φ∗ we denote, as usual, its Fenchel-Legendre transform

φ∗(x) = sup
y∈RN

[〈x, y〉 − φ(y)].

Remark 2.1. Hypothesis 2.1 implies that φ∗ is also everywhere defined, continuous
and coercive.

Proof. By [13, Theorems 2.35 and 11.8], for a convex, lower semicontinuous function
φ : RN → [0,∞], the following are equivalent:

(1) φ is bounded on bounded subsets of RN .
(2) φ is continuous everywhere in RN .
(3) φ∗ is coercive.

Definition 2.1. Let φ satisfy Hypothesis 2.1. We define

Lφ([0, T ],RN) =
{
u ∈ L1([0, T ],RN) | ∃α > 0 :

∫ T

0

φ(α−1u(t)) dt ≤ 1
}
.

By Lφ([0, T ],RN) we denote, as usual, the set of equivalence classes in Lφ([0, T ],RN)
with respect to equality almost everywhere. For u ∈ Lφ([0, T ],RN), we define

Nφ(u) = inf
{
α > 0 :

∫ T

0

φ(α−1u(t)) dt ≤ 1
}
.

In the classical theory, Nφ(u) is known as the Luxemburg norm of the function
u.
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Remark 2.2. Lφ([0, T ],RN) is a convex cone. Moreover, for u, v ∈ Lφ([0, T ],RN),
λ > 0, the following properties hold:

Nφ(u) ≥ 0, and Nφ(u) = 0 implies u = 0,

Nφ(u+ v) ≤ Nφ(u) +Nφ(v),

Nφ(λu) = λNφ(u),∫ T

0

|u(t)| dt ≤MNφ(u) with some M independent of u.

2.2. Growth conditions. The following growth conditions and their relation to
reflexivity of Orlicz spaces have already been investigated in [5, 10]:

Hypothesis 2.2.
(1) φ satisfies the ∆2-growth condition: There exist some K > 1, M > 0, such

that φ(2x) ≤ Kφ(x) for all x ∈ RN with |x| ≥M .
(2) φ satisfies the ∇2-growth condition: There exists some ` > 1, M > 0, such

that φ(x) ≤ 1
2`φ(`x) for all x ∈ RN with |x| ≥M .

Remark 2.3. Hypothesis 2.2 implies that φ∗ also satisfies ∆2 and ∇2.

Proof. For the case of even φ : R → [0,∞), the equivalence between the ∆2-
condition for φ and the ∇2-condition for φ∗ can be found in [5, Theorem 4.2], see
also [10, Section 2.3]. We give a direct proof not involving derivatives:

First assume that φ satisfies ∆2 with a constant K, and let ` = K/2. Given y,
choose x such that

φ(x) + φ∗(y) = 〈x, y〉.(2.1)

Since φ∗ is coercive, x is large when y is also. Therefore we get the estimate

〈x, y〉 =
1
2`
〈2x, `y〉 ≤ 1

2`
(φ(2x) + φ∗(`y)) ≤ K

2`
φ(x) +

1
2`
φ∗(`y).

Subtracting (2.1), we obtain
1
2`
φ∗(`y)− φ∗(y) ≥ 0.

On the other hand, assume that φ∗ satisfies∇2 with a constant ` and put K = 2`.
Given x, choose y such that (2.1) holds. We have

φ∗(y) + φ(x) = 〈y, x〉 = 2`〈1
`
y,

1
2
x〉 ≤ 2`φ∗(

1
`
y) + 2`φ(

1
2
x)

≤ φ∗(y) + 2`φ(
1
2
x).

If Hypothesis 2.2 holds, then Lφ([0, T ],RN) is contained in some reflexive
Lp([0, T ],RN) and vice versa, as the following lemma shows.

Lemma 2.4.
(1) If φ is bounded on bounded sets and satisfies the ∆2-growth condition, then

there exists some p ∈ (1,∞) such that Lp([0, T ],RN) ⊂ Lφ([0, T ],RN).
(2) If there exist constants C1, C2 > 0 such that φ(x) ≥ C2 if x ≥ C1, and if φ

satisfies the ∇2-growth condition, then there exists some p ∈ (1,∞) such that
Lφ([0, T ],RN) ⊂ Lp([0, T ],RN).
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Proof. 1) Let C1 ≥ 1 be sufficiently large such that φ(2x) ≤ Kφ(x) for |x| > C1, and
φ(x) ≤ C2 for |x| ≤ K. Then, by induction, if |y| ≤ 2nC1, we have φ(x) ≤ KnC2.
From this we infer that

φ(x) ≤
{
C2 if |x| ≤ C1,

C2K
1+log2(x/C1) else.

Therefore, in any case φ(x) ≤ C2(1 +KC−p1 xp) with p = log2(K).
2) Take ` according to the ∇2-growth condition. Immediately we conclude that

φ(x) ≥ (2`)kC2 whenever |x| ≥ `kC1 and k is a positive integer. This implies

φ(x) ≥ C2(2`)
log(|x|/C1`)

log(`) = C2(2`)−
log(C1`)

log(`) |x|
log(2`)
log(`)

whenever |x| ≥ C1`. This implies that Lφ([0, T ],RN) ⊂ Lp([0, T ],RN) with p =
1 + log 2

log(`) .

Monotone convergence plays a major role as a technical tool. For shorthand we
need the following definition:

Definition 2.2. Let un, u ∈ Lφ([0, T ],RN). We say that un converges monoton-
ically to u if there exists a sequence αn ∈ L∞([0, T ],R) such that 0 ≤ αn(t) ≤
αn+1(t) ≤ 1, αn(t)→ 1 almost everywhere, and un(t) = αn(t)u(t).

We emphasize the fact that monotonicity here is not understood in the sense of
an ordered vector space: The underlying ordering

u � v ⇐⇒ (∃α ∈ L∞([0, T ], [0, 1])) : u = αv

is not compatible with addition.

Lemma 2.5. Let φ satisfy Hypotheses 2.1 and 2.2. Let un and u be in Lφ([0, T ],RN)
such that un converges monotonically to u. Then Nφ(u− un)→ 0.

Proof. Given some ε = 2−m > 0, we want to show that for sufficiently large n we
have ∫ T

0

φ(
1
ε

(u(t)− un(t))) dt ≤ 1.

We define the set

Qn = {t ∈ [0, T ] : φ(2m(u(t)− un(t))) ≥ 1
2T
}.

Notice that the Lebesgue measure of Qn converges to 0. Using the constant K from
the ∆2-condition Hypothesis 2.2, we obtain the estimate∫ T

0

φ(2m(u(t)− un(t))) dt

≤
∫
Qn

φ(2m(u(t)− un(t))) dt +
∫

[0,T ]\Qn
φ(2m(u(t)− un(t))) dt

≤
∫
Qn

Kmφ(u(t)) dt+
1
2
.

Choosing n sufficiently large such that

Km

∫
Qn

φ(u(t)) dt <
1
2
,

we obtain the desired estimate.
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We provide also a weaker version of this lemma which does not require Hypoth-
esis 2.2:

Lemma 2.6. Let φ be bounded on bounded sets. Let wn be a bounded sequence in
L∞([0, T ],RN) such that wn(t)→ 0 almost everywhere as t→∞. Then Nφ(wn)→
0.

Proof. Let ‖wn‖L∞ ≤ C1. Given ε > 0, we put

C2 = sup
|x|≤C1

φ(
1
ε
x).

We define

Qn = {t ∈ [0, T ] | φ(
1
ε
wn(t)) >

1
2T
}.

Since wn → 0 a.e., the measure of Qn tends to 0 as n→∞. We choose n sufficiently
large such that the measure of Qn is bounded by 1/(2C2), and estimate∫ T

0

φ(
1
ε
wn(t)) dt =

∫
Qn

φ(
1
ε
wn(t)) dt+

∫
[0,T ]\Qn

φ(
1
ε
wn(t)) dt

≤ 1
2C2

C2 + T
1

2T
≤ 1,

thus Nφ(wn) ≤ ε.

2.3. Duality. We investigate the duality of the spaces Lφ([0, T ],RN) and
Lφ
∗
([0, T ],RN), which is well established for Orlicz spaces [10, Chapters 4.1, 4.2].

The following definition mimics the definition of the dual space of an Orlicz space:

Definition 2.3. By (Lφ)∗([0, T ],RN) we denote the set of all functions

F : Lφ([0, T ],RN)→ [−∞,∞)

with the following properties:

(1) F (u+ v) = F (u) + F (v) for all u, v ∈ Lφ([0, T ],RN).
(2) F (λu) = λF (u) for all u ∈ Lφ([0, T ],RN) and all λ ≥ 0.
(3) F (0) = 0.
(4) There exists a constant M > 0 such that F (u) ≤ MNφ(u) for all u ∈

Lφ([0, T ],RN).

Pφ∗([0, T ],RN) denotes the set of all F ∈ (Lφ)∗([0, T ],RN) satisfying the following
“monotone convergence property”

If un ∈ Lφ([0, T ],RN) converge monotonically to u (see Definition 2.2), then
F (u) = limn→∞ F (un) (the limit being finite or negative infinite).

For F ∈ (Lφ)∗([0, T ],RN) we define

Oφ∗(F ) = inf
{
M > 0 | ∀u ∈ Lφ([0, T ],RN) : F (u) ≤MNφ(u)

}
.

If φ is even, then Oφ∗ is the Orlicz norm ‖ · ‖φ∗ . However, we avoid the notation
by a norm symbol since in the general case Oφ∗ is no longer a norm. We also
emphasize that, according to the definition above, −∞ can be taken as a value of
F (u).
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Proposition 2.7. Let v ∈ Lφ
∗
([0, T ],RN). Then v can be identified with the fol-

lowing functional Fv ∈ Pφ∗([0, T ],RN):

Fv(u) =
∫ T

0

〈v(t), u(t)〉 dt ∈ [−∞,∞) for all u ∈ Lφ([0, T ],RN).

Moreover, Oφ∗(Fv) ≤ 2Nφ∗(v).

Proof. Let u ∈ Lφ([0, T ],RN). Without loss of generality, let Nφ(u) ≤ 1 and
Nφ∗(v) ≤ 1, so that ∫ T

0

φ(u(t)) dt ≤ 1 and
∫ T

0

φ∗(v(t)) dt ≤ 1.

Care must be taken handling the notion of the integral which may be negative
infinite. Let

M+ = {t ∈ [0, T ] | 〈v(t), u(t)〉 ≥ 0},
M− = {t ∈ [0, T ] | 〈v(t), u(t)〉 < 0}.

Notice that ∫
M+

〈v(t), u(t)〉 dt ≤
∫
M+

(φ∗(v(t)) + φ(u(t))) dt ≤ 2.

The integral of a negative measurable function, finite or not, can always be defined:∫
M−

〈v(t), u(t)〉 dt ∈ [−∞, 0].

Since one of the two integrals is always finite, the sum can be defined and satisfies

Fv(u) =
∫ T

0

〈v(t), u(t)〉 dt ≤ 2.

It is easy to see that Fv is additive and Fv(λu) = λFv(u) for positive λ. In order
to show that Fv ∈ Pφ∗([0, T ],RN), we have to check the monotone convergence
property. Let un converge monotonically to u. Thus we have measurable functions
αi : [0, T ]→ [0, 1] with ui(t) = αi(t)u(t), 0 ≤ α1(t) ≤ α2(t) ≤ · · · → 1. Construct-
ing M+ and M− as above, we infer from the principle of monotone convergence
that ∫

M±

〈v(t), ui(t)〉 dt =
∫
M±

αi(t)〈v(t), u(t)〉 dt →
∫
M±

〈v(t), u(t)〉 dt.

Again, we notice that one of the limits is finite, so that we can take their sum and
have ∫ T

0

〈v(t), ui(t)〉 dt→
∫ T

0

〈v(t), u(t)〉 dt.

There is also a converse estimate:

Proposition 2.8. If v ∈ L1([0, T ],RN) such that for each piecewise constant func-
tion u ∈ Lφ([0, T ],RN) we have∫ T

0

〈v(t), u(t)〉 dt ≤MNφ(u),

then v ∈ Lφ
∗
([0, T ],RN) and Nφ∗(v) ≤M .
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Proof. Without loss of generality we may assume that M = 1. In this case we have
to show that

∫ T
0 φ∗(v(t)) dt ≤ 1. We take the averaging approximation

vin =
n

T

∫ iT/n

(i−1)T/n

v(t) dt for n ∈ N, i = 1 · · ·n,

vn(t) = vin for t ∈ [
(i− 1)T

n
,
iT

n
).

Let u be any step function with Nφ(u) ≤ 1. We define the averaging approximations
un of u in the same way. A direct computation yields∫ T

0

〈vn(t), u(t)〉 dt =
∫ T

0

〈v(t), un(t)〉 dt.

Using Jensen’s inequality, we see that for n > T∫ T

0

φ(un(t)) dt =
n∑
i=1

T

n
φ(
n

T

∫ iT/n

(i−1)T/n

u(t) dt)

≤
n∑
i=1

∫ iT/n

(i−1)T/n

φ(u(t)) dt =
∫ T

0

φ(u(t)) dt ≤ 1.

Therefore, for such u we have
∫ T

0
〈vn(t), u(t)〉 dt ≤ 1.

Now choose zin ∈ RN such that

φ∗(vin) + φ(zin) = 〈vin, zin〉.

Suppose first that T
n

∑n
i=1 φ(zin) > 1. Then there exists a factor β < 1 such that

T
n

∑n
i=1 φ(βzin) = 1. Putting

u(t) = βzin for t ∈ [
(i− 1)T

n
,
iT

n
),

we obtain that
∫ T

0 φ(u(t)) dt ≤ 1. Therefore

T

n

n∑
i=1

φ∗(vin) =
T

n

n∑
i=1

〈vin, zin〉 −
T

n

n∑
i=1

φ(zin)

≤ 1
β

∫ T

0

〈vn(t), u(t)〉 dt− 1
β

T

n

n∑
i=1

φ(βzin) ≤ 1
β
− 1
β

= 0.

Now assume that T
n

∑n
i=1 φ(zin) ≤ 1. We repeat the same computation with β = 1

and obtain
T

n

n∑
i=1

φ∗(vin) ≤ 1− 0 = 1.

In either case we have proved that∫ T

0

φ∗vn(t) dt ≤ 1.

Now, since vn(t)→ v(t) almost everywhere, we infer that

φ∗(v(t)) ≤ lim inf
n→∞

φ∗(vn(t)).
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By Fatou’s Lemma we conclude that∫ T

0

φ∗(v(t)) dt ≤ 1.

Theorem 2.9. Suppose that φ satisfies Hypothesis 2.1. Then, using the identifi-
cation from Proposition 2.7, we have Pφ∗([0, T ],RN) = Lφ

∗
([0, T ],RN).

Proof. With respect to Propositions 2.7 and 2.8, all we have to show is that for
each F ∈ Pφ∗([0, T ],RN) there exists a unique function v ∈ LΦ∗([0, T ],RN) such
that F (u) =

∫ T
0 〈v(t), u(t)〉 dt for all u ∈ Lφ([0, T ],RN).

The uniqueness is easily proved. Suppose both v1 and v2 represent the same
functional F . Since φ is bounded on bounded sets, L∞([0, T ],RN) is contained in
Lφ([0, T ],RN), so that∫ T

0

〈v1(t), u(t)〉 =
∫ T

0

〈v2(t), u(t)〉 for all u ∈ L∞([0, T ],RN).

This implies that v1 = v2 almost everywhere.
More work is required to prove existence. Without loss of generality we assume

that F (u) ≤ Nφ(u) for all u ∈ Lφ([0, T ],RN). For any measurable Q ⊂ [0, T ] we
define

χQ(t) =

{
1 if t ∈ Q,
0 if t 6∈ Q.

Let x ∈ RN be such that φ(±x) ≤ 1/T . Then the functions ±χQx are in
Lφ([0, T ],RN), with Nφ(±χQx) ≤ 1. Therefore we can define µx(Q) = F (χQx),
mapping the Lebesgue σ-algebra into [−1, 1]. Since F is additive and has the mono-
tone convergence property (recall Definition 2.3), the set function µx is σ-additive,
i.e., it is a signed measure. If the Lebesgue measure of Q is zero, then χQx = 0
almost everywhere, so that µx(Q) = 0. Therefore, µx is absolutely continuous.
By the Radon-Nikodym theorem there exists vx ∈ L1([0, T ],R) such that for all
Lebesgue sets Q

µx(Q) =
∫
Q

vx(t) dt.

Since φ is continuous, we can choose a basis x1, · · · , xN of RN such that φ(±xi) ≤
1/T . Let yi be the dual basis 〈yi, xj〉 = δi,j and define

v(t) =
N∑
i=1

vxi(t)yi.

Then the additivity and homogeneity of F imply that for all step functions u(t) =∑n
j=1 χQj (t)uj with pairwise disjoint measurable Qj and vectors uj ∈ RN the

following identity holds:

F (u) =
N∑
j=1

N∑
i=1

F (χQjxi)〈yi, uj〉 =
∫ T

0

〈v(t), u(t)〉 dt.

Before we extend this identity to general u, we infer from Proposition 2.8 that
v ∈ Lφ

∗
([0, T ],RN) with Nφ∗(v) ≤ 1.
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Now we assume first that u is bounded. As a consequence, both u and −u
are contained in Lφ([0, T ],RN). Without loss of generality we may assume that
Nφ(u) ≤ 1 and Nφ(−u) ≤ 1. We take the averaging approximation

un(t) =
n

T

∫ iT/n

(i−1)T/n

u(s) ds for t ∈ [
(i− 1)T

n
,
iT

n
).

Clearly, un(t)→ u(t) almost everywhere. From the boundedness of u we infer that
un are uniformly bounded. The latter fact implies that∫ T

0

〈v(t), un(t)〉 →
∫ T

0

〈v(t), u(t)〉 as n→∞.

The uniform boundedness of un implies that ±un and ±(u−un) are also contained
in Lφ([0, T ],RN), so that in particular F (±un) = ±F (un) is defined. Moreover,
from Lemma 2.6 we see that Nφ(±(u− un))→ 0 as n→∞. Since

±F (u) = F (±un) + F (±(u− un)) ≤ ±F (un) +Nφ(±(u− un))

we infer that
±F (u) ≤ lim sup

n→∞
±F (un),

i.e.

F (u) = lim
n→∞

F (un) = lim
n→∞

∫ T

0

〈v(t), un(t)〉 dt =
∫ T

0

〈v(t), u(t)〉 dt.

Finally, we extend this result to general u ∈ Lφ([0, T ],RN). For this purpose we
define

un(t) =

{
u(t) if |u(t)| ≤ n,
0 else.

Notice that each un is bounded and converges monotonically to u. Therefore, by
the monotone convergence property

F (u) = lim
n→∞

F (un) = lim
n→∞

∫ T

0

〈v(t), un(t)〉 dt =
∫ T

0

〈v(t), u(t)〉 dt.

The theorem above implies reflexivity whenever all F ∈ (Lφ)∗([0, T ],RN) have
the monotone convergence property. This is the case in classical Orlicz spaces when
φ satisfies Hypothesis 2.2 (compare the reflexivity theorem [10, Corollary 4.1.9]).
If −Lφ([0, T ],RN) 6= Lφ([0, T ],RN), we will not have reflexivity in general, but we
can decompose F into a part f ∈ Lφ

∗
([0, T ],RN) and a “singular” part:

Theorem 2.10. Let φ satisfy Hypothesis 2.1 and Hypothesis 2.2. Then for each
F ∈ (Lφ)∗([0, T ],RN), there exists a unique F1 ∈ Pφ∗([0, T ],RN) such that F1(u) =
F (u) whenever ±u ∈ Lφ([0, T ],RN). Moreover we have

(1) F1(u) = limF (un) if un converge monotonically to u and ±un ∈ Lφ([0, T ],RN).
(2) F1(u) ≤ Oφ∗(F )Nφ(u).
(3) F (u) ≤ F1(u) for all u ∈ Lφ([0, T ],RN).

Proof. Let F ∈ (Lφ)∗([0, T ],RN). Without loss of generality we may assume that
Oφ∗(F ) ≤ 1. Suppose first that F1 ∈ Pφ∗([0, T ],RN) exists such that F1(u) = F (u)
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if ±u ∈ Lφ([0, T ],RN). Let un converge monotonically to u ∈ Lφ([0, T ],RN) such
that ±un ∈ Lφ([0, T ],RN). Then

F1(u) = lim
n→∞

F1(un) = lim
n→∞

F (un).

This implies assertion (1), assertion (2), and uniqueness. From Lemma 2.5 we infer
that Nφ(u − un) converges to 0 which implies assertion (3).

To prove the existence of such a decomposition, notice first that if un is any se-
quence converging monotonically to u, then limn→∞ F (un) exists (finite or negative
infinite). In fact, by Lemma 2.5 we have that F (un+k)−F (un) ≤ Nφ∗(u−un)→ 0,
which implies easily that lim supn→∞ F (un) ≤ lim infn→∞ F (un). Next we show
that the limit does not depend on the sequence un if ±un ∈ Lφ([0, T ],RN). For this
purpose, let un = αnu and vn = βnu be two sequences converging monotonically
to u such that ±un ∈ Lφ([0, T ],RN). For now, no restriction is imposed on −vn.
We start with the following estimates:

F (αmu) = −F (−αmu) ≥ F (αmβnu)−Nφ((1 − βn)(−αmu)),

F (βnu) ≤ F (αmβnu) +Nφ((1 − αm)βnu)

≤ F (αmβnu) +Nφ((1 − αm)u).

Using Lemma 2.5, we can first choose mk such that Nφ((1−αmk)u) ≤ 1
k . Then we

use that −umk ∈ Lφ([0, T ],RN) and choose nk such that Nφ((1− βnk)(−αmku)) ≤
1
k . The estimates above yield that F (umk) ≥ F (vnk)− 2

k . Therefore

lim
m→∞

F (um) ≥ lim
n→∞

F (vn).(2.2)

In particular, if also ±vn ∈ Lφ([0, T ],RN), then by symmetry F (um) and F (vn)
have the same limit.

We may now define F1u = limn→∞ F (un) where un is any sequence converg-
ing monotonically to u with ±un ∈ Lφ([0, T ],RN). It is easily seen that F1 ∈
(Lφ)∗([0, T ],RN) with Oφ∗(F1) ≤ 1. If ±u ∈ Lφ([0, T ],RN), then we may put
un = u and obtain F (u) = F1(u). To show that F1 ∈ Pφ∗([0, T ],RN), let
um = αmu be a sequence converging monotonically to u with ±um ∈ Lφ([0, T ],RN)
and vn = βnu a sequence converging monotonically to u (without the require-
ment that −vn ∈ Lφ([0, T ],RN)). From Lemma 2.5 we obtain immediately that
F1(u) ≤ limn→∞ F1(vn). On the other hand, applying (2.2) to F1 instead of F , we
see that F1(u) = limn→∞ F1(um) ≥ limn→∞ F1(vn).

By Theorem 2.10 and Theorem 2.9, we may define

Definition 2.4. Given F ∈ (Lφ)∗([0, T ],RN), let f ∈ Lφ
∗
([0, T ],RN) be such that∫ T

0

f(t)u(t) dt = F (u) for all u such that ± u ∈ Lφ([0, T ],RN).

We call f the function representative of F .

Example 2.1. Let N = 1, let

φ(x) =

{
x2 if x ≤ 0,
x4 else.

Then

Lφ([0, T ],R) = {f+ − f− | f+ ∈ L4([0, T ], [0,∞)), f− ∈ L2([0, T ], [0,∞))}.
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Notice that φ satisfies Hypothesis 2.2. Let

F (u) =

{∫ T
0
g(t)u(t) dt if u ∈ L4([0, T ],R),

−∞ else,

with g ∈ L2([0, T ],R). Then the function representative of F is

F1(u) =
∫ T

0

g(t)u(t) dt.

2.4. Notions of convergence. Since the difference of two functions in
Lφ([0, T ],RN) need not be contained in Lφ([0, T ],RN), the usual definition of a
metric by the Luxemburg norm must fail. We still may introduce a notion of weak∗

convergence. We have to modify the metric on the reals in order to include the
value −∞, which is a possible value of the functionals in (Lφ)∗([0, T ],RN). Strong
convergence can be defined by weak∗ convergence which is uniform on sets with
bounded Nφ.

Definition 2.5. Let (Fλ)λ∈Λ be a net in (Lφ)∗([0, T ],RN) and let

F ∈ (Lφ)∗([0, T ],RN).

We topologize the semi-closed interval [−∞,∞) by the metric d(x, y) = |ex − ey|.
(1) We say that Fλ converges to F weakly∗ if Fλ(u) → F (u) in [−∞,∞) for all

u ∈ Lφ([0, T ],RN).
(2) We say that Fλ converges to F strongly if Fλ(u) → F (u) in [−∞,∞) uni-

formly for all u ∈ Lφ([0, T ],RN) with Nφ(u) ≤ 1.

In the case of an Orlicz vector space, these notions of convergence are just weak∗

convergence and convergence with respect to the Orlicz norm. In Banach spaces,
the following lemma is the well-known weak∗ compactness of the closed unit ball.

Theorem 2.11. Let (Fλ)λ∈Λ be a net in (Lφ)∗([0, T ],RN), bounded in the sense
that Oφ∗(Fλ) ≤ C for all λ and some fixed constant C. Then there exists a subnet
Λ̃ of λ and a functional F ∈ (Lφ)∗([0, T ],RN) such that (Fλ)λ∈Λ̃ converges to F in
the weak∗ sense.

Proof. Let B = {u ∈ Lφ([0, T ],RN) | Nφ(u) ≤ 1}. By assumption, each Fλ maps
B into the compact set [−∞, C]. Due to Tikhonov’s theorem there exists a subnet
Λ̃ and a function F : B → [−∞, C] such that (Fλ(u))λ∈Λ̃ → F (u) for all u ∈ B. It is
now easy to extend F from B to the whole cone Lφ([0, T ],RN) by F (u) = µF ( 1

µu)
and to show that F is in fact additive and positive homogeneous.

Lemma 2.12. Let φ satisfy Hypotheses 2.1 and 2.2. Let (fλ)λ∈Λ be a net in
Lφ∗([0, T ],RN) and F ∈ (Lφ)∗([0, T ],RN) be such that fλ converges weakly∗ to
F . Moreover, let f be the function representative of F . Then

(1) fλ converges to f weakly in a suitable space Lq([0, T ],RN) with q ∈ (1,∞).
(2) ∫ T

0

φ∗(f(t)) dt ≤ lim inf
λ∈Λ

∫ T

0

φ∗(fλ(t)) dt.
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Proof. By Lemma 2.4, we have Lp([0, T ],RN) ⊂ Lφ([0, T ],RN) for some p ∈ (1,∞).
Evidently, for u ∈ Lp([0, T ],RN) we have ±u ∈ Lφ([0, T ],RN), thus∫ T

0

fλ(t)u(t) dt→ F (u(t)) =
∫ T

0

f(t)u(t) dt.

Consequently, fλ → f weakly in Lq with 1
p + 1

q = 1. Now part (2) is proved easily
using the weak closedness of convex closed sets in Lq([0, T ],RN) and the lower
semicontinuity of φ∗.

Lemma 2.13. Let (uλ)λ∈Λ be a net in Lφ([0, T ],RN) converging in the weak∗ sense
to U ∈ (Lφ)∗([0, T ],RN). Let u be the function representative of U . Let vλ(t) =∫ t

0 uλ dt and v(t) =
∫ t

0 u(t) dt. Then vλ → v uniformly on [0, T ]. In particular, vλ
converges to v strongly in Lφ

∗
([0, T ],RN).

Proof. By Lemma 2.12, uλ converges to u weakly in Lq([0, T ],RN) for some q ∈
(1,∞). It is well known that this implies uniform convergence of the antiderivatives.
Finally,

|
∫ T

0

〈vλ(t), f(t)〉 dt−
∫ T

0

〈v(t), f(t)〉 dt| ≤ ‖vλ − v‖∞
∫ T

0

|f(t)| dt.

The latter integral is bounded whenever Nφ(f) is bounded.

2.5. Some technical lemmas. We close this section with some technicalities.

Lemma 2.14. Let un be a sequence in L1([0, T ],R) converging to a function u(t)
almost everywhere. Suppose that there exists a sequence gn converging to a function
g almost everywhere and in the sense of L1([0, T ],R), such that |un(s)| ≤ gn(s)
almost everywhere. Then ∫ T

0

|un(s)− u(s)| ds→ 0.

Proof. Put

wn(s) = max[−g(s),min(g(s), un(s))].

Then |wn(s)| ≤ g(s), and∫ T

0

|wn(s)− un(s)| ds ≤
∫ T

0

|gn(s)− g(s)| ds.

Since the latter integral converges to 0, the sequence un converges in L1([0, T ],R)
if and only if the sequence wn converges. Moreover, wn converges to the same
limit as un almost everywhere. Therefore, the lemma follows from the dominated
convergence principle.

Lemma 2.15. Let v ∈ W1,1([0, T ],RN) be such that v̇ ∈ Lφ([0, T ],RN) and f ∈
Lφ
∗
([0, T ],RN). Let t ∈ (0, T ). Then

lim sup
h→0+

1
h

∫ t

0

〈v(s+ h)− v(s), f(s)〉 ds ≤
∫ t

0

〈v̇(s), f(s)〉 ds.
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Proof. Without loss of generality we may assume that Nφ(v̇) ≤ 1 and Nφ∗(f) ≤ 1.
For h > 0, put uh(s) = h−1〈v(s + h) − v(s), f(s)〉 and u0(s) = 〈v̇(s), f(s)〉. Then
uh(s)→ u0(s) almost everywhere as h→ 0. Moreover, by Jensen’s inequality,

uh(s) ≤ φ(
1
h

∫ s+h

s

v̇(τ) dτ) + φ∗(f(s)) ≤ 1
h

∫ s+h

s

φ(v̇(τ)) dτ + φ∗(f(s)).

For h ≥ 0 we decompose uh in its positive and negative part: uh(s) = u+
h (s)−u−h (s)

with u+
h (s) = max(uh(s), 0) and u−h (s) = max(−uh(s), 0). Put

gh(s) =
1
h

∫ s+h

s

φ(v̇(τ)) dτ + φ∗(f(s)).

Since φ(v̇) and φ∗(f) are integrable, we have that

gh → φ(v̇) + φ∗(f)

in L1([0, T ],R). For the positive part we obtain

|u+
h (s)| = u+

h (s) ≤ gh(s),

so that Lemma 2.14 implies that u+
h converges to u+

0 in L1([0, T ],R). For the
negative part we utilize Fatou’s Lemma and see that∫ t

0

u−0 (s) ds ≤ lim inf
h→0

∫ t

0

u−h (s) ds.

Summing up we have that∫ t

0

u0(s) ds ≥ lim sup
h→0

∫ t

0

uh(s) ds

which is the desired result.

We recall also the following special case of [12, Corollary 1B]:

Lemma 2.16. Let φ : RN → [0,∞] be convex and lower semicontinuous. Let
x ∈ L∞([0, T ],RN) and y ∈ L1([0, T ],RN) be such that for all u ∈ L∞([0, T ],RN)
the following holds:∫ T

0

φ(x(t) + u(t)) dt−
∫ T

0

φ(x(t)) dt ≥
∫ T

0

〈y(t), u(t)〉 dt.

Then y(t) ∈ ∂φ(x(t)) almost everywhere.

3. The existence theorem

3.1. Statement of the result. We rewrite problem (1.2) in the form

(σ(t), A(t)) ∈ ∂ψ(ε(t), V (t)),

V̇ (t) ∈ ∂φ∗(−A(t))
(3.1)

with initial conditions

ε(0) = ε0, V (0) = V0.(3.2)

Throughout this section, we assume that φ : RN → [0,∞) is a convex function
satisfying Hypotheses 2.1 and 2.2. The function ψ : RM × RN → [0,∞] is convex
and lower semicontinuous, with ψ(0, 0) = 0. Moreover, we assume
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Hypothesis 3.1.

(1) For arbitrary small C1 > 0 there exist constants C2, C3 > 0 such that for all
ξ ∈ RM , v ∈ RN

|ξ| ≤ C1ψ(ξ, v) + C2|v|+ C3.

(2) If ∞ > ψ( ξ1+ξ2
2 , v) ≥ 1

2ψ(ξ1, v) + 1
2ψ(ξ2, v) for some ξ1, ξ2 ∈ RM and some

v ∈ RN , then ξ1 = ξ2.
(3) For each L1 > 0 there exist constants L2, L3 > 0 such that for each v ∈ RN

with |v| ≤ L1 there exists ξ ∈ RM with |ξ| ≤ L2 and ψ(ξ, v) ≤ L3.

The data σ, ε0, and V0 satisfy the following hypothesis. Notice that we re-
quire fairly strong smoothness assumptions on σ, combined with a compatibility
assumption on the initial data.

Hypothesis 3.2. σ ∈W1,1([0, T ],RM), ε0 ∈ RM , V0 ∈ RN such that ψ(ε0, V0) <
∞ and there exists some A0 ∈ RN with (σ(0), A0) ∈ ∂ψ(ε0, V0).

The aim of this section is to prove the following theorem:

Theorem 3.1. If Hypotheses 2.1, 2.2, 3.1, and 3.2 are satisfied, then there exists
at least one set of functions

ε ∈ C([0, T ],RM), V ∈W1,1([0, T ],RN), −A ∈ Lφ
∗
([0, T ],RN)

such that V̇ ∈ Lφ([0, T ],RN), the equation (3.1) is satisfied almost everywhere, and
the initial conditions (3.2) hold.

The proof will be given by an approximation procedure and takes the remainder
of this section. This is a short outline:

(1) For λ > 0 we replace the subdifferentials ∂φ∗ and ∂ψ by their Yosida ap-
proximations. Consequently, the approximating problem yields an ordinary
differential equation with Lipschitz continuous right hand side. We will in-
vestigate the limit as λ→ 0.

(2) We derive a priori bounds on the approximating state V̇λ and costate Aλ
in suitable Orlicz spaces. Moreover we derive L∞ a priori bounds for the
approximating state ελ.

(3) We take the function representatives A and V̇ of weak∗ cluster points of the
approximating V̇λ and Aλ.

(4) We prove that ελ converges to a continuous function ε.
(5) We prove that ε, A, and V solve (3.1).

3.2. The approximating problem.

Definition 3.1. For λ > 0 we define the following approximate potentials:

φλ(x) = φ(x) +
λ

2
|x|2,

φ∗λ(x) = inf
y∈RN

(φ∗(y) +
1

2λ
|y − x|2),

ψλ(ξ, x) = inf
η∈RM , y∈RN

(ψ(η, y) +
1

2λ
|η − ξ|2 +

1
2λ
|y − x|2).
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With these potentials, we consider the approximating problem

(σλ(t), Aλ(t)) ∈ ∂ψλ(ελ(t), Vλ(t)),

V̇λ(t) ∈ ∂φ∗λ(−Aλ(t)),

ε̇λ(t) =
1
λ

(σ(t) − σλ(t)),

(3.3)

with initial conditions

ελ(0) = ε0, Vλ(0) = V0.(3.4)

Remark 3.2. The function φ∗λ as defined above is in fact the Fenchel-Legendre con-
jugate of φλ.

Proof. This follows from standard rules to calculate Fenchel transforms, see for
instance [13, 11(3), Example 11.11, Theorem 11.23].

Lemma 3.3. The subdifferentials ∂φ∗λ and ∂ψλ are Lipschitz continuous, in fact
∂φ∗λ(x) = 1

λ(x− Jλ(x)) with Jλ = (1− λ∂φ∗λ)−1. (A similar result holds for ∂ψλ.)

Proof. See [2, Theorem 5.2].

Lemma 3.4. For each λ > 0, problem (3.3) admits a unique solution.

Proof. Because of Lemma 3.3, this is an ordinary differential equation with a Lip-
schitz continuous right hand side in a Banach space.

Definition 3.2. Throughout the rest of this paper, let

ελ ∈ C1([0, T ],RM ), σλ ∈ C([0, T ],RM),

Vλ ∈ C1([0, T ],RN), Aλ ∈ C([0, T ],RN)

be a solution of (3.3), (3.4).

3.3. A priori estimates. We estimate ψλ(ε(t), V (t)), Nφ(V̇λ(·)) and Nφ∗(−Aλ(·))
in terms of the initial conditions and the energy fed into the system by the forcing
stress, i.e.,

∫ t
0
〈σ(s), ε̇λ(s)) ds. Subsequently, we will derive a priori bounds for the

energy input.

Lemma 3.5. The following estimate holds for all t ∈ [0, T ]:

ψλ(ελ(t), Vλ(t)) +
∫ t

0

φλ(V̇λ(s)) ds+
∫ t

0

φ∗λ(−Aλ(s)) ds

= ψλ(ε0, V0) +
∫ t

0

〈σλ(s), ε̇λ(s)〉 ds.
(3.5)

Proof. Since V̇λ ∈ ∂φ∗λ(−Aλ) we have the identity

〈−Aλ(s), V̇λ(s)〉 = φλ(V̇λ(s)) + φ∗λ(−Aλ(s)).
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Notice that ψλ is continuously differentiable and its gradient is given by the pair
(σλ, Aλ). The chain rule implies

ψλ(ελ(t), Vλ(t))

= ψλ(ε0, V0) +
∫ t

0

〈σλ(s), ε̇λ(s)〉 ds +
∫ t

0

〈Aλ(s), V̇λ(s)〉 ds

= ψλ(ε0, V0) +
∫ t

0

〈σλ(s), ε̇λ(s)〉 ds

−
∫ t

0

φλ(V̇λ(s)) ds−
∫ t

0

φ∗λ(−Aλ(s)) ds.

Lemma 3.6. Choose Bλ(t) ∈ RN such that

φ∗λ(−Aλ(t)) = φ∗(−Bλ(t)) +
1

2λ
|Aλ(t)−Bλ(t)|2.(3.6)

Then V̇λ(t) ∈ ∂φ∗(−Bλ(t)). Moreover, the following estimate holds

ψλ(ελ(t), Vλ(t)) +
∫ t

0

φ(V̇λ(s)) ds +
∫ t

0

φ∗(−Bλ(s)) ds

+
∫ t

0

λ

2
|V̇λ(s)|2 ds+

∫ t

0

1
λ
|σλ(s)− σ(s))|2 ds

+
∫ t

0

1
2λ
|Bλ(s)−Aλ(s)|2 ds

= ψ(ελ(t)− λσλ(t), Vλ(t)− λAλ(t))

+
∫ t

0

φ(V̇λ(s)) ds+
∫ t

0

φ∗(−Bλ(s)) ds

+
λ

2
|σλ(s)|2 ds+

λ

2
|Aλ(s)|2 ds+

∫ t

0

λ

2
|V̇λ(s)|2 ds

+
∫ t

0

1
λ
|σλ(s)− σ(s)|2 ds+

∫ t

0

1
2λ
|Bλ(s)−Aλ(s)|2 ds

≤ ψ(ε0, V0) +
∫ t

0

〈σ(s), ε̇λ(s)〉 ds.

(3.7)

Proof. LetX ∈ RN . Using the definition of φ∗λ and the fact that V̇λ(t) ∈ ∂φ∗λ(Aλ(t))
we have the following estimate:

φ∗(−Bλ(t) +X)− φ∗(−Bλ(t))

= φ∗(−Aλ(t) +X − (−Aλ(t) +Bλ(t)))

+
1

2λ
|Bλ(t)−Aλ(t)|2 − φ∗λ(−Aλ(t))

≥ φ∗λ(−Aλ(t) +X)− φ∗λ(−Aλ(t)) ≥ 〈V̇λ(t), X〉.

This shows that V̇λ(t) ∈ ∂φ∗(−Bλ(t)). Now notice that ψλ(ε0, V0) ≤ ψ(ε0, V0) and

〈σλ(s), ε̇λ(s)〉 = 〈σ(s), ε̇λ(s)〉 − 〈λε̇λ(s), ε̇λ(s)〉

= 〈σ(s), ε̇λ(s)〉 − 1
λ
|σλ(s)− σ(s)|2.
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Using the definitions of φλ and φ∗λ in estimate (3.5), we obtain

ψλ(ελ(t), Vλ(t)) +
∫ t

0

φ(V̇λ(s)) ds +
λ

2
|V̇λ(s)|2

+
∫ t

0

φ∗(−Bλ(s)) ds+
1

2λ

∫ t

0

|Aλ(s)−Bλ(s)|2 ds

≤ ψ(ε0, V0) +
∫ t

0

〈σ(s), ε̇λ(s)〉 ds− 1
λ

∫ t

0

|σλ(s)− σ(s)|2 ds.

Notice also that from (σλ(t), Aλ(t)) ∈ ∂ψλ(ελ(t), Vλ(t)) we infer that

ψλ(ελ(t), Vλ(t)) = ψ(ελ(t)− λσλ(t), Vλ(t)− λAλ(t)) +
λ

2
|σλ(t)|2 +

λ

2
|Aλ(t)|2.

All we need therefore is an estimate on the input energy. It is here the coercivity
hypothesis 3.1 comes in.

Lemma 3.7. If ψ satisfies Hypothesis 3.1, then for each C1 > 0 the constants C2

and C3 can be chosen such that for all λ ∈ (0, 1], ξ ∈ RM , v ∈ RN

|ξ| ≤ C3 + C2|v|+ C1ψλ(ξ, v).

Proof. First choose C3, C2 according to Hypothesis 3.1. Put

C̃3 = C3 +
1 + C2

2

2C1
.

For any ξ, η ∈ RM , v, w ∈ RN , λ ∈ (0, 1], we obtain the estimate

C̃3 + C2|v|+ C1(ψ(η, w) +
1

2λ
|η − ξ|2 +

1
2λ
|v − w|2)

≥ C3 +
1
2

(C1|ξ − η|2 − 2|ξ − η|+ 1
C1

)

+
1
2

(C1|v − w|2 − 2C2|v − w|+
C2

2

C1
)

+ C1ψ(η, w) + |ξ − η|+ C2|v − w| + C2|v|
≥ C3 + C2|w| + C1ψ(η, w) − |η|+ |ξ|
≥ |ξ|.

Given ξ and v, we take the infimum for all η, w and obtain

C̃3 + C2|v|+ C1ψλ(ξ, v) ≥ |ξ|.

Lemma 3.8. For all constants C2 > 0, C1 > 0 there exists some constant C4 > 0
(depending on V0 and T ) such that for all functions V ∈ W1,1([0, T ],RN) with
V (0) = V0 and all t ∈ (0, T ]

(C2 + 1)|V (t)| ≤ C1

∫ t

0

φ(V̇ (s)) ds + C4.
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Proof. Since φ is coercive, there exists some constant L > 0 such that C1φ(V̇ (s)) ≥
(C2 + 1)|V̇ (s)| whenever |V̇ (s)| ≥ L. Put

Q = {t ∈ [0, T ] | |V̇ (t)| ≥ L}.

Then

(C2 + 1)|V (t)| ≤ (C2 + 1)|V0|+ (C2 + 1)
∫ t

0

|V̇ (s)| ds

≤ (C2 + 1)|V0|+ (C2 + 1)
∫

[0,t]\Q
|V̇ (s)| ds+ (C2 + 1)

∫
[0,t]∩Q

|V̇ (s)| ds

≤ (C2 + 1)|V0|+ (C2 + 1)TL+ C1

∫
[0,t]∩Q

φ(V̇ (s)) ds.

The desired estimate follows with C4 = (C2 + 1)(|V0|+ TL).

Lemma 3.9. Given V0 ∈ RN , ε0 ∈ RM and σ ∈ W1,1([0, T ],RM ), there exist
uniform bounds independent of λ ∈ (0, 1] for the following terms:

sup
t∈[0,T ]

ψλ(ελ(t), Vλ(t)), sup
t∈[0,T ]

|ελ(t)|, sup
t∈[0,T ]

|Vλ(t)|, sup
t∈[0,T ]

λ1/2|σλ(t)|,

1
2λ

∫ T

0

|Bλ(t)−Aλ(t)|2 dt, 1
λ

∫ T

0

|σλ(t)− σ(t)|2 dt,∫ T

0

φ(V̇λ(t)) dt,
∫ T

0

φ∗(−Bλ(t)) dt.

Proof. Because of Lemma 3.6, all estimates follow if we can find a priori bounds
for ∫ t

0

〈σ(s), ε̇λ(s)〉 ds = 〈σ(t), ελ(t)〉 − 〈σ(0), ε0〉 −
∫ t

0

〈σ̇(s), ελ(s)〉 ds.

Since σ ∈W1,1([0, T ],RM) is fixed, all we need is a uniform bound for ελ(t). Take
t ∈ (0, T ] and choose C1, · · · , C4 according to the Lemmas 3.7 and 3.8, such that
C5 < 1, where C5 is defined by

C5 = C1(
∫ T

0

|σ̇(s)| ds+ sup
s∈[0,T ]

(|σ(s)|)).

We use again Lemmas 3.6, 3.7, and 3.8:

ελ(t) + |Vλ(t)|
≤ C3 + (C2 + 1)|Vλ(t)|+ C1ψλ(ελ(t), Vλ(t))

≤ C3 + C4 + C1

∫ t

0

φ(V̇λ(s)) ds+ C1ψλ(ελ(t), Vλ(t))

≤ C3 + C4

+ C1[ψ(ε0, V0) + 〈σ(t), ελ(t)〉 − 〈σ(0), ε0〉 −
∫ t

0

〈σ̇(s), ελ(s)〉 ds]

≤ C3 + C4 + C1ψ(ε0, V0) + C1|σ(0)| |ε0|+ C5 sup
s∈[0,t]

(|ελ(s)|)

= C6 + C5 sup
s∈[0,t]

(|ελ(s)|+ |Vλ(s)|)
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with some positive constant C6. Since C5 < 1, we infer

|ελ(t)|+ |Vλ(t)| ≤ C6

1− C5
.

3.4. Limits of approximating solutions. Our a priori bounds imply that we
may extract weakly∗-convergent nets. Since we have no theorem on separability,
we need to be somewhat careful about using sequences or nets.

Lemma 3.10. There exists a net Λ ⊂ (0, 1), Λ→ 0, such that Bλ and V̇λ converge
to some Ã ∈ (Lφ)∗([0, T ],RN) and W̃ ∈ (Lφ

∗
)∗([0, T ],RN), respectively, in the

weak ∗ sense, and σλ converges to σ almost everywhere.

Proof. Since σλ → σ in L2([0, T ],RM) as λ → 0, there exists a sequence λn such
that σλn(t) → σ(t) for all t not contained in a null-set N . From this sequence, we
extract a subnet Λ according to Theorem 2.11 such that V̇λ and Bλ converge in the
weak∗ sense.

Definition 3.3. Throughout the rest of this paper we consider a net Λ → 0 ac-
cording to Lemma 3.10. Moreover, let A ∈ Lφ

∗
([0, T ],RN) and V̇ ∈ Lφ([0, T ],RN)

be the function representatives of Ã and W̃ , resp. We define V ∈W1,1([0, T ],RN)
by V (t) = V0 +

∫ t
0
V̇ (s) ds.

Lemma 3.11. Vλ converges uniformly to V along the net Λ.

Proof. See Lemma 2.13.

3.5. Convergence of ελ.

Lemma 3.12. Let ψ satisfy Hypothesis 3.1. Let vλ, aλ ∈ RN , ξλ, τλ ∈ RM , µλ ∈
[0, 1] be nets such that τλ → τ , vλ → v, µλ → 0, and (τλ, aλ) ∈ ∂ψ(ξλ, vλ − µλaλ).

Then the net ξλ converges to some ξ ∈ RM , and there is some a ∈ RN such that
(τ, a) ∈ ∂ψ(ξ, v).

Moreover, ξ is uniquely determined by v, τ , and the property that there exists
some a with (τ, a) ∈ ∂ψ(ξ, v).

Proof. We start proving the uniqueness of ξ. Suppose (τ, ai) ∈ ∂ψ(ξi, v) for i = 1, 2.
Then

ψ(
ξ1 + ξ2

2
, v) ≥ ψ(ξ1, v) + 〈τ, ξ2 − ξ1

2
〉,

ψ(
ξ1 + ξ2

2
, v) ≥ ψ(ξ2, v) + 〈τ, ξ1 − ξ2

2
〉.

Summing up the two inequalities, we obtain

ψ(
ξ1 + ξ2

2
, v) ≥ 1

2
ψ(ξ1, v) +

1
2
ψ(ξ2, v).

By Hypothesis 3.1 (2) we infer that ξ1 = ξ2.
Now we prove convergence: Let bλ = 1

|aλ|aλ. Then the net vλ + bλ is bounded,
and by Hypothesis 3.1 (3) we infer that there exists a net ηλ such that ξλ + ηλ and
ψ(ξλ + ηλ, vλ + bλ) are bounded. Now

ψ(ξλ + ηλ, vλ + bλ)− 〈τλ, ηλ〉
≥ ψ(ξλ, vλ − µλaλ) + 〈aλ, bλ + µλaλ〉
≥ ψ(ξλ, vλ − µλaλ) + |aλ|.
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This implies that the nets aλ and ψ(ξλ, vλ − µλaλ) are bounded. From Hypothesis
3.1 (1) we infer immediately that the net ξλ is bounded. By compactness, there are
subnets ξν and aν converging to some ξ and a, respectively. Since a subdifferential
is a closed operator, it is easily seen that (τ, a) ∈ ∂ψ(ξ, v). However, this relation
determines ξ uniquely in terms of v and τ , so that any subnet of ξλ converges to
the same ξ.

Lemma 3.13. There exists a continuous function ε ∈ C([0, T ],RM) such that
ε(0) = ε0, and ελ converges to ε along Λ almost everywhere on [0, T ]. Moreover,
for almost all t there exists some Â(t) such that (σ(t), Â(t)) ∈ ∂ψ(ε(t), V (t)).

Proof. We use the fact that (σλ, Aλ) ∈ ∂ψ(ελ−λσλ, Vλ−λAλ). Whenever σλ(t)→
σ(t), i.e., almost everywhere, Lemma 3.12 (with µλ = λ) implies that ελ(t) con-
verges to some ε(t) and the limit satisfies (σ(t), Â(t)) ∈ ∂ψ(ε(t), V (t)) for a suitable
Â(t). Once again, Lemma 3.12 (with µλ = 0) may be used to show that ε(t)
depends continuously on σ(t) and V (t), thus ε is a continuous function. Since
(σ(0), A0) ∈ ∂ψ(ε0, V0), and ε(0) is determined uniquely by this property, we have
ε(0) = ε0.

3.6. The limiting functions provide a solution.

Lemma 3.14. For all t ∈ [0, T ] we have

lim inf
λ∈Λ

ψλ(ελ(t), Vλ(t)) ≥ ψ(ε(t), V (t)).

Proof. Choose ηλ and Wλ such that

ψλ(ελ(t), Vλ(t)) = ψ(ηλ(t),Wλ(t)) +
1

2λ
[|ηλ(t)− ελ(t)|2 + |Wλ(t)− Vλ(t)|2].

By Lemma 3.9, ψλ(ελ(t), Vλ(t)) remains bounded as λ→ 0, so that |ηλ(t)−ελ(t)|2 +
|Wλ(t) − Vλ(t)|2 → 0. Consequently ηλ(t) → ε(t) and Wλ(t) → V (t). Since ψ is
lower semicontinuous, we infer that

lim inf
λ→0

ψλ(ελ(t), Vλ(t)) ≥ lim inf
λ→0

ψ(ηλ(t),Wλ(t)) ≥ ψ(ε(t), V (t)).

Lemma 3.15. For any η ∈ L∞([0, T ],RM ), W ∈ L∞([0, T ],RN) we have∫ t

0

ψ(ε(s) + η(s), V (s) +W (s)) ds−
∫ t

0

ψ(ε(s), V (s)) ds

≥
∫ t

0

〈σ(s), η(s)〉 ds +
∫ t

0

〈A(s),W (s)〉 ds.

In particular, (σ(t), A(t)) ∈ ∂ψ(ε(t), V (t)) for almost all t.
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Proof. ∫ t

0

ψ(ε(s) + η(s), V (s) +W (s)) ds−
∫ t

0

ψ(ε(s), V (s)) ds

≥
∫ t

0

[ψλ(ε(s) + η(s), V (s) +W (s))− ψλ(ελ(s), Vλ(s))] ds

+
∫ t

0

[ψλ(ελ(s), Vλ(s))− ψ(ε(s), V (s))] ds

≥
∫ t

0

[〈σλ(s), ε(s) + η(s)− ελ(s)〉 + 〈Aλ(s), V (s) +W (s)− Vλ(s)〉] ds

+
∫ t

0

[ψλ(ελ(s), Vλ(s))− ψ(ε(s), V (s))] ds.

Now take limits for λ→ 0. From Lemma 2.13 we infer that∫ t

0

〈Aλ(s), V (s)− Vλ(s)〉 dt→ 0.

Using Lemma 3.14 we get the desired inequality. Finally Lemma 2.16 implies that
(σ(t), A(t)) ∈ ∂ψ(ε(t), V (t)) almost everywhere.

Lemma 3.16. Let t be a Lebesgue point of the function ψ(ε(·), V (·)), i.e.,

lim
h→0

1
h

∫ t+h

t

ψ(ε(s), V (s)) ds = ψ(ε(t), V (t)).

Then

ψ(ε(t), V (t)) − ψ(ε(0), V (0))

≥ 〈σ(t), ε(t)〉 − 〈σ(0), ε(0)〉 −
∫ t

0

〈σ̇(s), ε(s)〉 ds +
∫ t

0

〈A(s), V̇ (s)〉 ds.

Proof. Let h > 0. We apply Lemma 3.15 with η(s) = ε(s + h)− ε(s) and W (s) =
V (s+ h)− V (s).

1
h

∫ t+h

t

ψ(ε(s), V (s)) ds− 1
h

∫ h

0

ψ(ε(s), V (s)) ds

=
1
h

∫ t

0

[ψ(ε(s+ h), V (s+ h))− ψ(ε(s), V (s))] ds

≥ 1
h

∫ t

0

〈ε(s+ h)− ε(s), σ(s)〉 ds +
1
h

∫ t

0

〈V (s+ h)− V (s), A(s)〉 ds

=
1
h

∫ t+h

t

〈σ(s− h), ε(s)〉 ds− 1
h

∫ h

0

〈σ(s), ε(s)〉 ds

+
∫ t

h

〈 1
h

(σ(s− h)− σ(s)), ε(s)〉 ds

−
∫ t

0

〈 1
h

(V (s+ h)− V (s)),−A(s)〉 ds.
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We take limits for h → 0 and use Lemma 2.15. Notice also that ψ(ε0, V0) ≤
lim infs→0 ψ(ε(s), V (s)). Therefore

ψ(ε(t), V (t)) − ψ(ε0, V0)

≥ 〈σ(t), ε(t)〉 − 〈σ(0), ε0〉 −
∫ t

0

〈σ̇(s), ε(s)〉 ds−
∫ t

0

〈V̇ (s),−A(s)〉 ds.

Lemma 3.17. For almost all t ∈ [0, T ], we have V̇ (t) ∈ ∂φ∗(−A(t)).

Proof. Integration by parts in Lemma 3.6 yields

ψ(ελ(t)− λσλ(t), Vλ(t)− λAλ(t))

+
∫ t

0

φ(V̇λ(s)) ds +
∫ t

0

φ∗(−Bλ(s)) ds

≤ ψ(ε0, V0) + 〈ελ(t), σ(t)〉 − 〈ε0, σ(0)〉 −
∫ t

0

〈σ̇(s), ελ(s)〉 ds.

Using the lower semicontinuity of the convex functions involved, we obtain at any
point t where ελ(t)→ ε(t)

ψ(ε(t), V (t)) +
∫ t

0

φ(V̇ (s)) ds+
∫ t

0

φ∗(−A(s)) ds

≤ ψ(ε0, V0) + 〈ε(t), σ(t)〉 − 〈ε0, σ(0)〉 −
∫ t

0

〈σ̇(s), ε(s)〉 ds.

If t is a Lebesgue point of ψ(ε(t), V (t)), we may compare with Lemma 3.16 and
obtain ∫ t

0

φ(V̇ (s)) ds +
∫ t

0

φ∗(−A(s)) ds ≤ −
∫ t

0

〈V̇ (s), A(s)〉 ds.

Since φ(V̇ (s)) + φ∗(−A(s)) ≥ 〈V̇ (s),−A(s)〉 everywhere, we infer that φ(V̇ (s)) +
φ∗(−A(s)) = 〈V̇ (s),−A(s)〉 almost everywhere, which says that V̇ (s) ∈ ∂φ∗(−A(s))
almost everywhere.
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