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A MEASURABLE CARDINAL WITH A CLOSED UNBOUNDED
SET OF INACCESSIBLES FROM o(κ) = κ

WILLIAM MITCHELL

Abstract. We prove that o(κ) = κ is sufficient to construct a model V [C] in
which κ is measurable and C is a closed and unbounded subset of κ containing
only inaccessible cardinals of V . Gitik proved that o(κ) = κ is necessary.

We also calculate the consistency strength of the existence of such a set C
together with the assumption that κ is Mahlo, weakly compact, or Ramsey.
In addition we consider the possibility of having the set C generate the closed
unbounded ultrafilter of V while κ remains measurable, and show that Radin
forcing, which requires a weak repeat point, cannot be improved on.

1. Introduction

In [2], Gitik used a cardinal κ with o(κ) = κ+ 1 to give a forcing construction of
a model V [C] in which κ is measurable, while the set C is closed and unbounded in
κ and contains only inaccessibles of V . Gitik also showed that no such construction
is possible unless o(κ) ≥ κ in K. The main result of this paper is that the lower
bound o(κ) = κ is correct:

Theorem 1.1. The following are equiconsistent:
1. There is a cardinal κ with oK(κ) = κ.
2. There is a measurable cardinal κ and a closed unbounded subset C of κ such

that each member of C is inaccessible in K.

We begin with a proof of Gitik’s result that 1.1(2) implies that o(κ) = κ in
the core model K. This proof is essentially the same as that of Gitik, but is
reorganized to feature the Prikry generic sequence more prominently. Afterward
we will reexamine the proof to gain some further insight into the general problem.
The proof depends on the following lemma:

Lemma 1.2. Suppose that ~κ = (κn : n < ω ) is K-generic for Prikry forcing by a
measure U ∈ K on κ, and suppose that each κn is inaccessible and has a closed and
unbounded subset Cn containing only cardinals inaccessible in K. Then oK(κ) ≥ κ.

In order to see that the lemma implies the direction (2)=⇒(1) of theorem 1.1,
let κ and C be as in clause 1.1(2). Using the measure on κ, force to add a Prikry
sequence (κn : n < ω ) cofinal in κ. For all but finitely many n ∈ ω, the set Cn =
C ∩ κn is a closed and unbounded subset of κn containing only inaccessibles of K,
and hence the lemma implies that oK(κ) ≥ κ.
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Proof of lemma 1.2. Assume, towards a contradiction, that δ = oK(κ) < κ.
In order to allow a generalization of the proof, we will not use the assumption

that ~κ is a Prikry sequence until the end of the proof.
We begin by applying the covering lemma [3]. Let X be a precovering set such

that (κn : n < ω ) ∈ X and (Cn : n ∈ ω ) ∈ X and such that X contains all of its
limit ordinals of cofinality at most δ. The assertion that X is a precovering set
means that |X | < κ, that X ≺ Vτ for some τ > κ = supκn, and that X satisfies a
certain closure condition. The covering lemma asserts that such a precovering set
exists, and that if X is any such precovering set, then there is a function h ∈ K, an
ordinal ρ < κ, and a system CX of indiscernibles for K with the following properties,
where we write CX(λ) for

⋃
β<oK(λ) CX(λ, β).

1. domain(C) =
(

(α, β) ∈ X : β < oK(α)
)
, and C(α, β) ⊂ { ν ∈ α∩X : oK(ν) =

β }.
2. If ν ∈ X \ρ, then either ν ∈ h“ν or else ν ∈ CX(λ) where λ = inf(h“ν\ν) ≤ κ.
3. For any λ ∈ X , CX(λ) is closed in X ∩ λ.
4. If β0 < oK(λ) and ν is a ordinal of cofinality ω which is a limit point of⋃

β≥β0
CX(λ, β), then ν ∈ CX(λ, β) for some β > β0.

5. If ν ∈ CX(λ) ∪ {λ} and CX(λ) is bounded in X ∩ ν, then there is η ∈ X ∩ ν
such that h“η is cofinal in X ∩ ν.

We can assume, without loss of generality, that ρ < κ0. For each n < ω, let
λn be the least member of X ∩ h“κn. Then κn ≤ λn ≤ κ, and if λn > κn, then
κn ∈ CX(λn).

The proof of lemma 1.2 relies on two observations:

Claim 1.3. 1. For each n < ω, the set CX(λn) is cofinal in κn ∩X.
2. If X contains all of its limit points of cofinality at most oK(λn), then CX(λn)

is bounded in κn ∩X.

Proof of claim. For clause 1, suppose to the contrary that CX(λn) is bounded in
X ∩ κn. It follows by property 5 of the precovering set that there is η ∈ X ∩ κn so
that h“η is cofinal in X ∩ κn. Let A be the set of limit points of X ∩ h“η. Then
A is closed and unbounded in κ′n = sup(X ∩ κn), which has uncountable cofinality
since X contains all of its limit points of cofinality ω. Hence A ∩ Cn is closed and
unbounded in κ′n; but this is impossible since the ωth member τ of A∩Cn is singular
in K, since h“η is cofinal in τ , contradicting the assumption that every member of
Cn is inaccessible in K.

To prove clause 2, let τ = oK(λn) and define a sequence of ordinals ηξ for ξ ≤ τ ·ω,
as follows:

ηξ =


0 if ξ = 0,
supξ′<ξ ηξ′ if ξ is a limit ordinal,
inf
(
CX(λk, ι) \ ηξ−1

)
if ξ = τ · k + ι+ 1 and CX(λk, ι) 6⊂ ηξ,

ηξ−1 otherwise.

Since X contains all of its limit points of cofinality at most τ , each of the ordinals
ηξ is in X for ξ ≤ τ · ω. Furthermore, all of the ordinals ηξ are less than κn: The
ordinals η0 and ηξ+1 are less than κn by definition, while if ξ is a limit ordinal then
either ηξ = ηξ′ 6= κn for some ξ′ < ξ, or else ηξ is singular while κn is regular.

Thus η = ητ ·ω is in C(λn, β) for some β < oK(λn). For each k < ω it follows
that if ξk = τ · k + β then C(λn, β) \ ηξk 6= ∅ and hence ηξk < ηξk+1 ∈ C(λn, β).
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It follows that ητ ·ω is a limit point of C(λn, β), but this is impossible, as it would
follow by (3) that η ∈ C(λn, β′) for some β′ > β.

We can now complete the proof of lemma 1.2 by observing that the assumption
that ~κ is a Prikry sequence implies that λn = κ for all but finitely many n < ω.
Thus oK(λn) = o(κ) = δ, but this is impossible by claim 1.3 since the precovering
set X was chosen to contain all of its limit points of cofinality at most δ. Hence
oK(κ) ≥ κ.

1.1. A warm up. Before proving the other direction of theorem 1.1 we state the
similar but simpler theorem 1.5. One direction of the proof is given by a second
look at the proof of lemma 1.2, while other direction will be used to introduce some
of the ideas of the proof of the main theorem in an easier context.

Definition 1.4. We write E for the class of inaccessible cardinals of K, and D for
the class of cardinals λ ∈ E such that {α < λ : oK(α) = β } is stationary in λ for
all β < λ.

Gitik [2, theorem 1.1] proves that κ ∈ D is equiconsistent with the existence of
a closed, unbounded set C ⊂ E ∩κ, where κ is inaccessible. The following theorem
shows that this construction cannot be directly iterated to obtain infinitely many
such cardinals κ:

Theorem 1.5. The following are equiconsistent:
1. There is an infinite increasing sequence ~κ = (κn : n < ω ) of inaccessible car-

dinals such that for each n < ω there is a closed unbounded set Cn ⊂ κn ∩E.
2. There is an infinite increasing sequence ~λ of cardinals λn ∈ D with κ =

sup~λ = limn<ω o
K(λn).

Furthermore, the model in clause (1) can be constructed so that oK(κn) = 0 for all
n ∈ ω.

Proof of (1)=⇒(2). Assume that ~κ is a sequence satisfying condition (1) and, as in
the proof of lemma 1.2, pick a precovering set X and use it to define the sequence
~λ. We will show that δ = limn o

K(λn) ≥ κ. Suppose to the contrary that δ < κ,
and pick a second precovering set X ′ ⊃ X such that X ′ contains all of its limit
points of cofinality at most δ. We now need to apply one further consequence of
the covering lemma, which states that if the ordinals λ′n are defined from X ′ in the
same way as the ordinals λn were defined from X , then λ′n = λn for all but finitely
many n < ω. Thus there are infinitely many n < ω such that X ′ contains all of
its limit points of cofinality at most oK(λn). Since this contradicts claim 1.3, the
assumption that δ < κ must be false.

To complete the proof we need to show that λn ∈ D. Now κn ∈ D by Gitik’s
result. If κn = λn then we are done, so suppose κn < λn. Then κn ∈ C(λn, β) for
some β < oK(λn) so D ∩ λn ∈ U(λn, β). In particular D ∩ λn is stationary in λn,
but this implies that λn ∈ D.

The final sentence asserting that it is possible to have oK(κn) = 0 is included in
theorem 1.5 less for its intrinsic interest than because its proof introduces a basic
new idea needed for the proof of theorem 1.1.

This proof shows, in the language of [4, 5], that the sequence (κn : n < ω ) is
an accumulation point sequence for the sequence ( λn : n < ω ). The sequence ~λ is
determined by ~κ, modulo finite changes to the sequence. The exception for finite
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changes is critical for obtaining the measure U∗ on κ in the proof of theorem 1.1, as
in the ultrapower ult(V, Uκ,0) there is no suitable candidate for a cardinal λ which
would have the same relation to κ as the cardinals λn have to κn.

2. Definition of the forcing

Before describing the forcing used to prove the other direction of theorems 1.1
and 1.5, we describe some of the conventions used in this paper.

If p, p′ are forcing conditions, then we write p′ ≤ p to mean that p′ is stronger
than p. If G ⊂ P is generic and A is a set in V [G] such that V [A] = V [G], then we
will write G = G(A). In our applications the set G is always uniquely determined
by A.

By analogy with the usual restriction operator �, we use � for upward restriction:
If domain(h) = A is a set of ordinals, then h�ν = h�(A\ν+1). Thus h = h�(ν+1)∪
h�ν.

Since we are using the Prikry property for forcing notions in which the direct
extension order ≤∗ is not closed, we make the following definitions:

Definition 2.1. 1. A structure (P,≤,≤∗) satisfies the µ-Prikry property if ≤
and ≤∗ are partial orders with ≤∗ ⊂ ≤, and for any sequence ~σ of fewer than
µ sentences in the forcing language for (P,≤) and any condition p ∈ P there
is a condition p′ ≤∗ p which decides all sentences in ~σ.

2. (P,≤,≤∗) has the Prikry property if it has the 2-Prikry property.
3. We say that P is µ-closed if every ≤∗-descending sequence of length less than
µ has a lower bound in P .

4. We say that p ∈ P satisfies the µ-Prikry property (or is µ-closed) if { p′ ∈ P :
p′ ≤∗ p } satisfies the µ-Prikry property (or is µ-closed).

Since none of the forcing notions used in this paper have a forcing order ≤ which
is even countably closed, the use of the term “closed” to refer exclusively to the
direct extension order ≤∗ should not cause confusion.

Remark 2.2. If (P,≤,≤∗) is µ-closed and has the Prikry property, then it has the
µ-Prikry property.

We assume throughout the rest of this paper that the GCH holds in V , and
that ~U is a coherent sequence of measures in V . If these additional conditions do
not hold in V , then we can work in an inner model L[~U ] which does satisfy these
conditions, and which still satisfies the hypotheses of theorems 1.1 and 1.5.

We will write Uλ,β for the measure U on the sequence ~U such that crit(U) = λ
and o(U) = β. We will write U(λ) =

⋃
β<o(λ) Uλ,β .

2.1. Introducing the forcing. In the rest of section 2 we will define the forcing
for both the main theorem 1.1 and for the warm up theorem 1.5.

The basic partial order which Gitik uses to add a closed unbounded subset of
E is Pκ[E], which has as conditions the set of closed, bounded subsets of κ ∩ E,
ordered by end extension. This is the same ordering used in [1] to add a closed
unbounded subset of an arbitrary stationary subset E of ω1. It is easy to see that a
generic set G ⊂ Pκ[E] will always generate a closed and unbounded subset C =

⋃
G

of κ ∩ E, and that the problem is to arrange that κ is not collapsed; as it is, for
example, if E is the set of inaccessibles in the ground model. In order to avoid
this problem Gitik uses iterated Prikry-Magidor forcing as a preliminary forcing to



A MEASURABLE CARDINAL 4867

obtain an intermediate model with enough bounded, closed subsets of E so that
Pκ[E], defined in the intermediate model, is <κ-distributive. This distributivity
ensures that forcing with Pκ[E] does not collapse cardinals, change cofinalities or
add new bounded subsets of κ.

Thus Pκ[E] works well for adding a closed unbounded subset of E ∩ κ for a
single cardinal κ, but it is clear from lemma 1.5 that it cannot be simultaneously
applied to infinitely many cardinals κ. In order to leave κ measurable in the generic
extension, Gitik defines a variant of Pκ[E], which we call Q∗κ, for cardinals κ with
o(κ) ≥ κ. The forcing (Pκ[E],≤) is dense in (Q∗κ,≤), so that forcing with Q∗κ is
equivalent to forcing with Pκ[E], but because Q∗κ has the Prikry property and is
κ-closed it is possible to iterate it to deal with infinitely many cardinals.

The forcing Q∗κ is still not quite adequate for our problem. In order to be κ-
closed it requires o(κ) ≥ κ, and we only assume this for the single cardinal κ which
is to remain measurable. However Q∗λ is cf(o(λ))-closed, and under the hypothesis
of theorem 1.5 this will allow us to choose, for any γ < κ, a tail of the forcing which
is γ-closed. This is sufficient since distributivity can be used to deal with the lower
part of the forcing. The proof that κ remains measurable in V [C] does require that
Q∗κ be κ-closed and hence requires o(κ) = κ.

This still leaves a problem. Theorem 2.13 specifies that o(κn) = 0 for each of the
regular cardinals κn of V [C] such that C ∩ κn is unbounded in κn. As was pointed
out earlier, this was required primarily to provide an introduction to the idea of the
proof of theorem 1.1 where, because the desired measure U∗ on κ in V [C] extends
the order zero measure Uκ,0 in K, we have oK(κ) = 0 in M [C∗] = ult(V [C], U∗).
Thus, if Y is the set of of inaccessible limit points λ of C such that oK(λ) = 0 then
Y ∈ U∗. Since we will use our modification of Pλ[E] for each λ ∈ Y , we have to deal
with the restriction that Pλ[E] can only be used at finitely many cardinals λ. The
solution to this problem is suggested by Prikry forcing: a condition p contains only
finitely many instances of the forcing Pλ[E], but it also contains instances (γ,B, q)
of a new forcing notion Uγ,0×Q∗γ . The set B ∈ Uγ,0 is used, as in Prikry forcing, to
specify the set of cardinals λ at which an instance of Pλ[E] may eventually be added.
Until this time, the cf(o(γ))-closed condition q ∈ Q∗γ plays the role, uniformly for
all λ ∈ B, of the future instance of Pλ[E].

The formal definition of the forcing will be given in subsection 2.2 below. The
rest of this subsection 2.1 gives an informal description which includes a discussion
of our general framework for iterated forcing, an introduction to our notation and
ideas, and a brief survey of the four recipes which make up the forcing. It also
contains a number of half truths: in particular, it glosses over the fact that the
forcing is a backward Easton forcing, and mentions an important side condition ~B
only briefly .

We have chosen to present the forcing in a framework somewhat different from
that used by Gitik. We do not use Gitik’s preliminary forcing; instead the closed
sets needed to make the forcing distributive are incorporated, when needed, into
the main forcing. The final model is V [C], and as with Prikry-Magidor forcing it
has the property that PV [C](λ) ⊂ V [C ∩λ] for any λ < κ. In particular, cofinalities
are not changed except at limit points of C.

Partly as a benefit of this modification, this paper is self-contained and does not
assume a previous understanding of Gitik’s papers.

Our approach is suggested by a comparison of Pκ[E] and Prikry-Magidor-Radin
forcing. Recall that a Prikry-Magidor-Radin condition to add a subset of κ is a
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finite sequence of the form(
(γ0, Aγ0), . . . (γn−1, Aγn−1), (γn, Aγn)

)
(1)

where γ0 < · · · < γn−1 < γn = κ and each set Aγi is a member of U(γi) =⋂
β<o(γi)

Uγi,β. The direct extension ordering ≤∗ is defined by p′ ≤∗ p if p′ =(
(γ0, A

′
γ0

), . . . , (γn−1, A
′
γn−1

), (κ,A′κ)
)

has the same domain and A′γi ⊂ Aγi for
each i ≤ n. The forcing order p′ ≤ p includes the additional non-direct extension
in which p′ has new pairs (γ,Aγk ∩ γ), with γk−1 < γ < γk, such that γ ∈ Aγk and
Aγk ∩ γ ∈ U(γ).

If G is a generic subset of this forcing, then C =
⋃
{ domain p : p ∈ G } is a closed

subset of κ + 1 satisfying the following two properties: (i) C is a closed subset of
κ+ 1 with κ ∈ C and (ii) if λ ∈ C and A ⊂ λ is in the ground model then C ∩ A
is unbounded in λ if and only if A ∈ U(λ). Conversely, any set C satisfying these
properties is generic for Prikry-Magidor-Radin forcing.

A condition from either Pκ[E] or Prikry-Magidor-Radin forcing can be viewed
as a pair p_(κ, q), where p is a term denoting a closed, bounded subset of κ and
q is a recipe specifying the allowed end extensions of p. In the case of Pκ[E],
the term p is a closed set from the ground model and the recipe allows arbitrary
end extensions. In the case of a Prikry-Magidor-Radin condition (1), the term
p is

(
(γ0, Aγ0), . . . , (γn−1, Aγn−1)

)
, itself a Prikry-Magidor condition for a closed

and unbounded subset of γn−1, and the recipe is Aκ, which allows extensions of p
consisting of adding pairs (γ,Aκ ∩ γ) for cardinals γ ∈ Aκ \ γn−1 + 1.

As in Prikry-Magidor-Radin forcing, a condition in our forcing Rλ is a function
with a finite domain, which we can write as p = ( (γ0, q0), . . . , (γk−1, qk−1) ) where
γ0 < · · · < γk−1 < λ and qi specifies a recipe for extending p�γi = ((γ0, q0), . . . ,
(γi−1, qi−1)). A condition in Rλ will have domain contained in λ. We will use Rν,λ
for the sub-ordering of Rλ which adds a closed subset of λ \ ν+1, using conditions
which are (to the extent they are closed at all) ν+-closed. We will write R/p for
the set of conditions p′ ≤ p in Rλ.

If G is a generic subset of R/p, then V [G] = V [C], where C is the closed subset
of max(domain p) + 1 defined by

γ ∈ C ⇐⇒ ∃p′ ∈ G∀p′′ ≤ p′ γ ∈ domain p′′

⇐⇒ ∃p′ ∈ G
(
(γ, q) ∈ p is not an instance of the recipe Uγ,0 ×Q∗γ

)
.

That is, an instance (γ, q) of any of the first three recipes described below will force
that γ is a member of C and (except in the special case q ∈ Qλ with o(λ) = 0)
is also a limit point of C. The recipe Uγ,0 × Q∗γ is excluded because it does not
add a closed and unbounded subset of γ, but instead serves as a proxy for a future
instance of Pγ′ for some cardinal γ′ < γ.

We will write dpe for sup(domain p), and bpc for a cardinal γ (to be defined
specifically later) such that p 
 inf C > bpc. If p0 and p1 are conditions with
dp0e < bp1c, then we can concatenate p0 and p1 to obtain a third condition: p =
p0
_p1. As a minor abuse of notation we will identify a single instance (γ, q) of a

recipe with the condition ( (γ, q) ); for example by writing p0
_(γ, q)_p1.

If p = p0
_p1, then we will write Cpi for C ∩ (dpie+1 \ bpic+1). Thus p 
 C =

Cp = Cp0 ∪Cp1 . We will write “Cpi-term” to mean a term specifying a member of
V [Cpi ], which is to say a term in the forcing language for R/pi. Note that R/pi is
contained in Rbpic,dpie+1.



A MEASURABLE CARDINAL 4869

If p = p0
_p1, then R/p ≡ R/p0 ∗ Ṙ/p1. For conditions with finite length, we

can use this factorization to reduce the problem of defining the order on Rλ to the
case p ≤ (γ, q) and p ≤∗ (γ, q) where the right hand side is a single instance of one
of the recipes. We will assume len(p) is finite through the rest of this subsection.

We now finish the informal description with a survey of the four recipes which
we will use.

1. The recipe P . An instance of the recipe Pλ is designated in a condition by
the pair (λ, λ̄), with λ̄ < λ. This recipe is the analog of Gitik’s forcing Pλ[E]: A
condition of the form p_(λ, λ̄) allows as a direct extension any extension of the
form

p_p′_(λ, λ̄′) ≤∗ p_(λ, λ̄)(2)

where λ̄ < λ̄′ < λ, p′ ∈ Rλ̄,λ̄′+1, and every recipe in p′ is λ̄-closed. This latter
restriction means in particular that no instance of P can occur in p′. Such an
instance may occur in a condition p_p′′ ≤ (λ, λ̄) but such an instance must be
spawned in two steps: p_p′′ ≤ p_p′ ≤∗ p ∩ (λ, λ̄) where the instance of P is
spawned by an instance of the λ̄-closed recipe Uγ,0 ×Q∗γ in p′.

This is the only recipe permitting a direct extension which changes the domain
of the condition p of which it is a member. In all other cases direct extensions affect
only the instance of the recipe concerned. As a consequence, this is the only recipe
for which the direct extension ordering ≤∗ is not countably closed.

2. The recipe Q. This recipe is a generalization of Prikry-Magidor forcing.
An instance of Qλ is designated by a triple (λ,A, h), where o(λ) < λ, A ⊂ E,
A ∈ U(λ), and h is a function such that h(ν) is a ν-closed condition in Rν,λ for
each ν ∈ A. The basic non-direct extension of a condition (λ,A, h) has the form
(ν,A ∩ ν, h�ν)_h(ν)_(λ,A \ ν, h�ν) ≤ (λ,A, h). Thus, if p = p′_(λ,A, h), then p
forces that the generic set has the form

C = Cp′ ∪
⋃
ν∈C̄

(
{ν} ∪ Ch(ν)

)
∪ {λ}

where C̄ is a Prikry-Magidor generic subset of λ and Ch(ν) is generic for the forcing
R/h(ν). If ν and ν′ are successive members of C̄ then Ch(ν) ⊂ (ν, ν′).

The recipe Qλ is our adaptation of the way in which Gitik uses Prikry-Magidor
sequences generated by a preliminary forcing to obtain an intermediate model in
which Pλ[E] is <λ-distributive. This recipe, together with Pλ, is also used as
the basis for the remaining recipes. Notice that ν-completeness of h(ν) implies in
particular that h(ν) does not contain any instance of P .

If β < o(λ) then we write Qλ,β for the forcing defined exactly like Qλ, but using
only the measures Uκ,β′ for β′ < β.

3. The recipe Q∗. This is our adaptation of the forcing which Gitik uses in order
to preserve the measurability of κ. A instance of the recipe Q∗λ has one of the
two forms (λ, 0, λ̄) or (λ, β,A, h). An instance of the first form corresponds to an
instance (λ, λ̄) of the recipe Pλ and allows extensions like those given above as (2);
however those extensions, unlike those for P , are not direct. We will use these
instances to view (Pλ,≤) as a dense subset of (Q∗λ,≤).

In the second form, β is an ordinal with 0 < β < o(λ) and the triple (λ,A, h) is
an instance of Qλ,β . It has all of the direct extensions of Qλ,β, and in addition it
allows direct extensions of the form (λ, β′, A′, h′) ≤∗ (λ, β,A, h) with β′ > β and
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h′(ν) defined arbitrarily for β ≤ o(ν) < β′. The basic non-direct extension has the
following form:

(γ,A ∩ γ, h�γ)_(λ, 0, γ) ≤ (λ, β,A, h)(3)

where 0 < β < o(γ) and (γ,A ∩ γ, h�γ) ∈ Qγ .
The two forms are related by treating an instance (λ, 0, λ̄) of the first form

essentially as an instance (λ, 0,∅,∅) of the second form. Thus, as with Gitik’s
forcing, (Pλ,≤) is dense in (Qλ,≤). The direct extension order ≤∗ of Q∗λ is cf(o(λ))-
closed; this is a minor, but convenient, emendation of Gitik’s definition.

4. The final recipe, U × Q∗. This recipe is new to this paper and is the con-
struction which allows us to have the effect of iterating the forcing Pλ at infinitely
many cardinals λ. An instance of the recipe Uλ,0×Q∗λ has the form (λ,B, q) where
B ∈ Uλ,0 and q ∈ Q∗λ. It has direct extensions of the form (λ,B′, q′) ≤∗ (λ,B, q)
where B′ ⊂ B and q′ ≤∗ q in Q∗λ. It allows any of the non-direct extensions allowed
by Q∗λ, and in addition it has the following terminal extension, in which it dies after
spawning an instance of Pγ for some γ < λ:

(γ, γ̄) ≤ (λ,B, 0, γ̄)

where γ̄ < γ ∈ B. Thus the recipe Uλ,0 × Q∗λ may be viewed as a cf(o(λ))-closed
proxy for an instance of the recipe P .

The forcing notions for theorems 1.1 and 2.13 differ in their use of recipes U×Q∗.
The maximal condition for theorem 2.13 will contain infinitely many instances
Uλn,0×Q∗λn of this recipe; and an arbitrary condition will contain, except for these
instances of Uλn,0×Q∗λn and the instances of Pκn which they spawn, only instances
of the recipe Q. In the forcing for the main theorem 1.1, in contrast, instances of
Pλ will give rise to instances of Uγ,0 ×Q∗γ for γ < λ, and these in turn will spawn
new instances of Pγ′ for γ′ < γ.

This causes a difficulty in the proof of the Prikry property for theorem 1.1,
the solution to which requires an additional complication in the definition of the
forcing. Suppose that σ is a sentence, and we are looking for a condition p′ ≤∗ p
which decides σ. If (λ,B, q) is any individual instance of Uλ,0×Q∗λ in the condition
p, then there are two possible cases. The simplest is that there is B′ ⊂ B in Uλ
and q′ ≤∗ q such that for all γ ∈ B′, the sentence σ is decided by any non-direct
extension of q′ in which Uλ,0 ×Q∗λ spawns an instance of Pγ . In this case there is
no problem: after further shrinking B′ so that σ is always decided the same way,
the direct extension (λ,B′, q′) decides σ.

The other possibility is that there is B′ ⊂ B in Uλ such that if γ ∈ B′, then σ is
not decided by a non-direct extension spawning an instance of Pγ . In this case we
use the direct extension (λ,B′, q) ≤∗ (λ,B, q) to ensure that σ is not accidentally
decided by a non-direct extension using a cardinal γ /∈ B′. The problem is that we
must take this step not only for instances of Uγ,0×Q∗γ occurring in the condition p,
but for instances of Uγ′,0 ×Q∗γ′ which could occur in potential extensions p′′ ≤ p′.
This is accomplished by including an additional sequence ~B in the conditions. The
domain of ~B is the set of measurable cardinals below κ, and the values are sets
Bγ ∈ Uγ,0. It’s effect comes from the requirement that any new instance (γ,B, q)
of Uγ,0 ×Q∗γ in p′′ < p′ must satisfy B ⊂ Bγ .

The only place where the sequence ~B is used is in the proof of lemma 4.4, which
is needed to prove the Prikry property for the forcing for the main theorem. Other



A MEASURABLE CARDINAL 4871

than this, the sequence ~B has no essential effect on the arguments used to prove
theorem 1.5, and the proof of the Prikry property 4.7 for the main theorem consists
primarily of a verification that the proof used in the warm up carries over. The
effect of the sequence ~B is best seen in the proof of theorem 4.11, stating that κ
remains measurable, and in the statement and sufficiency proofs of theorem 5.3,
generalizing the main results to intermediate large cardinal properties.

2.2. The formal definition of the forcing. In this section we define two notions
of forcing: R′κ, to be used for the warm up theorem 1.5, and Rκ+1, to be used for
the main theorem 1.1. The reader may wish to ignore the more complicated forcing
Rκ+1 the first time through.

Note that the definitions 2.3 and 2.5 of the two forcing notions rely on the later
definition 2.6 to define their sets of conditions and on definitions 2.7 and 2.8 to
define their orderings. Definitions 2.6-2.8, in turn, rely on the definitions 2.10-2.15
of the individual recipes.

Recall that the hypothesis of theorem 1.5 gives an increasing sequence (λn :
n < ω) converging to κ, with κ = lim infn<κ o(λn).

Definition 2.3 (The forcing R′κ for theorem 1.5). A condition in the forcing R′κ
for the warm up theorem 1.5 is a function p as defined in definition 2.6 below, which
is below the maximal condition 1′ = ( (λn, Bn, 0, λn−1) : n < ω ), where Bn = { ν ∈
D ∩ (λn−1, λn) : o(ν) = 0 }.

Thus the maximal condition 1′ in R′κ consists of an infinite sequence of instances
of the recipe Uλn,0 × Q∗λn . Every condition in R′κ is a sequence of length ω, with
domain differing from that of 1′ only on a finite set.

If λ < κ then we write R′λ for { p�λ : p ∈ R′κ }. Thus every member of R′λ is a
finite sequence.

Definition 2.4. A measure one sequence ~B on an interval (γ, λ) is a function with
domain { ν ∈ D ∩ (γ, λ) : o(ν) > 0 } such that Bγ ∈ Uγ,0 for all γ in its domain.
We say that ~B′ ⊂ ~B if B′γ ⊂ Bγ for all γ in their common domain.

Definition 2.5 (The forcing Rκ+1 for theorem 1.1). The conditions in the forcing
Rκ+1 are pairs p = (p, ~B), where

1. p is a finite function in the set Rκ+1 from definition 2.6 below.
2. ~B is a measure one sequence on the interval (0, κ).

We will say that (p′, ~B′) ≤ (p, ~B) or (p′, ~B′) ≤∗ (p, ~B) if ~B′ ⊂ ~B, and if p′ and p

satisfy definitions 2.7 and 2.8 below (taking into account the sequence ~B).
The maximal element of Rκ+1 is (1, ~B1) where 1 = (κ, 0), a single instance of

Pκ, and B1
γ = { ν ∈ γ ∩D : o(ν) = 0 }.

Definition 2.6 (The underlying sets of R′λ and Rλ). We give a simultaneous def-
inition of the two sets; however it should be noted that, because the terms of the
forcings differ, the sets will also differ.

The conditions are sequences of pairs, p = ( (γ̇k, q̇k) : k < n ) with n ≤ ω, such
that

1. γ̇k is a Cp�k-term for an ordinal such that p�k 
 γ̇k−1 < γ̇k < λ for all k < n.
2. q̇k is a Cp�k-term for an instance at γ̇ of one of the recipes which were described

in the last subsection and are defined formally in definitions 2.10 through 2.15
below.
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Note that γ̇0 and q̇0 are terms in the trivial forcing R/∅, thus they are not really
terms at all but instead are sets in the ground model.

If p is in Rλ then we will write dpe for sup(domain p). We will write bpc for
b(γ0, q0)c, where (γ0, q0) is the first member of p. The definition of b(γ0, q0)c is
given as part of the definitions 2.10–2.15 of the individual recipes.

If p0 and p1 are in Rλ and p0 
 dp0e < bp1c, then p0
_p1 is also a condition.

More generally, if p0 is in Rλ and ṗ1 is a R/p0-term for a member of RV [Cp0 ]

λ such
that p0 
 dp0e < bṗ1c, then we can regard p0

_ṗ1 as a member of Rλ provided
that the condition p0 determines the length of the condition p1 denoted by ṗ1, as
well as the recipes used at each coordinate. There are only countably many finite
sequences of recipes, and hence the ω1-Prikry property of R/p0, once it has been
proved, will imply that there is always a condition p′0 ≤∗ p0 such that p′0

_ṗ1 can
be regarded as a condition in Rλ.

We will frequently omit dots on terms, and particularly on the pairs (γk, qk) in
a condition, unless the distinction is needed to clarify the argument.

Definition 2.7 (≤∗). The ordering ≤∗ is the smallest partial ordering satisfying
the following two rules:

1. If p′0, p′1 and p0 are finite sequences such that p′0 ≤∗ p0, and if ṗ′1 ≤∗ (γ̇, q̇)
according whichever of the definitions 2.10–2.15 is appropriate to the recipe
(γ̇, q̇), then p′0

_ṗ′1 ≤∗ p0
_(γ̇, q̇).

2. If p′ and p are in R′κ then p′ ≤∗ p if and only if p′�λ ≤∗ p�λ in R′λ for every
λ < κ.

Note that clause 1 is used for both for Rλ and, if λ < κ, for R′λ. Clause 2 is
used only for R′κ.

Definition 2.8 (≤). The ordering≤ onRλ andR′λ is the smallest partial ordering
determined by the following two rules:

1. We have p′0
_ṗ′1 ≤ p0

_(γ̇, q̇) whenever p′0 ≤ p0, and p′0 
 ṗ′1 ≤ (γ̇, q̇) under
whichever of definitions 2.10–2.15 is appropriate to the recipe of which (γ̇, q̇)
is an instance.

2. If p′ and p have length ω then p′ ≤ p if and only if there is some λ < len(p)
such that p′�λ ≤ p�λ and p′�λ ≤∗ p�λ.

Again, clause 2 applies only to R′κ.
In the case of Rλ, the measure one sequence will affect the orderings p ≤ (γ̇, q̇)

and p ≤∗ (γ̇, q̇), as specified in definition 2.15.
In all cases, the relation p′ ≤ p implies sup(domain p′) ≤ sup(domain p). It

follows that, as far as the forcing order≤ is concerned, we can assume that domain p
is determined for all conditions p:

Proposition 2.9. For any condition p there is p′ ≤ p such that all members of
domain p′ are determined, that is, if p′ = ( (γ̇i, q̇i) : i < n ), then there are ordinals
γi such that p′�i 
 γ̇i = γ̌i for each i < n.

Proof. If p ≤ 1′ in the forcing for lemma 1.5, then all but finitely many members
of domain(p) come from domain(1′) = ~λ and hence are already determined. Thus
we can assume that p is a finite sequence. Now if p = p′_(γ̇, q̇) is a finite sequence,
then we can find p′′ ≤ p′ so that p′′ determines the value of γ̇. Thus, if the propo-
sition is false, then there is a counterexample of the form p = p′_(γ, q̇), with γ
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determined. Pick such a counterexample with γ = sup(domain p) as small as pos-
sible. Then by the same argument there is p′′ ≤ p′ such that γ′′ = sup(domain p′′)
is determined and γ′′ ≤ sup(domain p′) < γ. But then p′′ is also a counterexample
to the proposition, contradicting the minimality of γ.

This proposition is less useful than might be hoped, due to the fact that it is
false if ≤ is replaced by ≤∗.

We now are now ready to give the definitions of the four recipes. For each recipe,
we will specify its set of instances together with rules for the direct extension order
q′ ≤∗ q and the forcing order p ≤ (λ, q). In addition we define the floor b(λ, q)c.

In the case of ≤, the extensions specified by these rules should be regarded as one-
step extensions; an arbitrary extension will be obtained from these by transitivity
and definition 2.8.

The recipe Pλ is the primary means by which ordinals can be added to the
domain of a condition p. It is also used to specify legal values of h(ν) in the recipe
for Qλ.

Definition 2.10 (The recipe P ). 1. The recipe Pλ is indicated by the pair (λ, λ̄),
with λ̄ < λ. We set b(λ, λ̄)c = λ̄; thus any condition p_(λ, λ̄) will satisfy
dpe < λ̄.

2. If λ̄ < λ̄′ < λ then (λ, λ̄′) ≤∗ (λ, λ̄).
3. In R′λ+1, the relations p_(λ, λ̄′) ≤ (λ, λ̄) and p_(λ, λ̄′) ≤∗ (λ, λ̄) are equiva-

lent, and hold if and only if bpc < λ̄, p 
 dpe < λ̄′, and p only uses instances
of the recipe Q.

4. In Rλ+1 and Rλ+1, the relation p_(λ, λ̄′) ≤∗ (λ, λ̄) holds whenever
(a) λ̄ < bpc and p 
 dpe < λ̄′.
(b) p is λ̄+-closed; that is, p involves only instances of Q, and of Q∗γ and

Uγ,0 ×Q∗γ for γ with o(γ) ≥ λ̄+.
(c) In the case of Rλ+1, (p_(λ, λ̄′), ~B′) ≤∗ ((λ, λ̄), ~B) requires that any in-

stance of Uγ,0 × Q∗γ in p satisfies condition 2.15(2) below. (This clause,
which depends on the sequence ~B, is ignored in defining ≤ in Rλ+1.)

5. The relation p_(λ, λ̄′) ≤ (λ, λ̄) holds in Rλ only if it follows from clause 4 and
definition 2.8, that is, if there is p′ such that p ≤ p′ and p′_(λ, λ̄′) ≤∗ (λ, λ̄).

Except where otherwise stated, the definitions for P also apply to instances of
Q∗ and U ×Q∗ representing instances of P .

Remark 2.11. The second coordinate λ̄ of (λ, λ̄) is used to prevent an overlapping
situation where η0 < η1 < γ0 < γ1 and instances of Pη0 and Pη1 are spawned from
instances of Uγ0,0 × Q∗γ0

and Uγ1,0 × Q∗γ1
, respectively. This is at best a minor

convenience for R′κ, but is probably necessary for Rκ+1.
In the case of Rλ, a non-direct inequality p_(λ, ξ′) ≤ (λ, ξ) can occur in two

steps, via an instance of Uγ,0 ×Q∗γ :

(η, ξ)_(λ, γ) ≤ (γ, 0, ξ)_(λ, γ) ≤∗ (λ, ξ).

The effect of the floor ξ of the condition (λ, ξ) is to ensure that the effect of having
γ ∈ domain p is preserved in the left hand extension above, that is, to ensure that
any extension (η, ξ)_p′_(λ, γ′) ≤ (ξ, ξ)_(λ, γ) ≤ (λ, ξ) satisfies bp′c > γ. This is
needed for the proof of lemma 4.4.
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Definition 2.12 (The recipe Q). 1. The recipeQλ is indicated by a triple (λ,A,
h), where A ∈ U(λ) and h is a function mapping ordinals ν ∈ A toRν+1-terms
h(ν) = ṗ denoting a condition p ∈ RV [C∩ν]

ν,λ such that 
 ṗ_(λ, dṗe) ≤∗ (λ, ν)
in R′λ+1 or in Rλ+1 as appropriate.

2. We say that (λ,A′, h′) ≤∗ (λ,A, h) if A′ ⊂ A and 
 h′(ν) ≤∗ h(ν) for all
ν ∈ A′. The measure one sequence ~B in Rλ does not come into play in this
case.

3. In addition, we have (subject, in the case of Rλ+1, to clause 2.15(2)) the
following non-direct extension:

p_h(γ)_(λ,A \ γ, h�γ) ≤ (λ,A, h)

whenever γ ∈ A, A∩γ ∈ U(γ) and p is a condition such that p ≤ (γ,A∩γ, h�γ)
and p determines the length and recipes of h(γ).

4. If β < o(λ) then we write Qλ,β for Qult(V,Uλ,β)
λ . Equivalently, Qλ,β can be

defined in V exactly like Qλ, except that
⋂
η<β Uλ,η is used instead of U(λ) =⋂

η<o(λ) Uλ,η.
5. We set b(λ,A, h)c =

⋂
A. We will use the same definition for instances of Q∗λ

or Uλ,0 ×Q∗λ derived from Qλ.

Clause 1 implies that h(ν) is ν+ closed.
The definition of ≤ in clause 3 essentially asserts that

(γ,A ∩ γ, h�γ)_h(γ)_(λ,A \ γ, h�γ) ≤ (λ,A, h),(4)

which, if the function h is ignored, is the basic one-step extension in Prikry-Magidor
forcing. However, the left side of (4) may not be a condition since (γ,A ∩ γ, h�γ)
may not determine, in Rγ+1 or R′γ+1, the size of domainh(ν) or the specific recipes
used in this condition.

Proposition 2.13. The ordering ≤∗ in Qλ is diagonally λ-closed in the follow-
ing sense: suppose that ( (λ,Aξ, hξ) : ξ < λ ) is a ≤∗-descending sequence of condi-
tions. Define A′ to be the diagonal intersection of the sets Aξ, and define h′(ν) =∧
ξ<ν hξ(ν). Then (λ,A′, h′) is in Qλ, and (λ,A′ \ ξ, h′) ≤∗ (λ,Aξ, hξ) for all

ξ < λ.

Note that
∧
ξ<ν hξ(ν) must exist, because the condition h(ν) is required to be

ν+-closed. We write (λ,A′, h′) = 4ξ<λ(λ,Aξ, hξ) for this diagonal limit.

Definition 2.14 (The recipe Q∗). 1. The recipe Q∗λ, which is only defined if
o(λ) is a nonzero limit ordinal, is indicated by either a triple (λ, 0, λ̄) such
that (λ, λ̄) ∈ Pλ, or by a quadruple (λ, β,A, h) such that 0 < β < min(o(λ), λ)
and (λ,A, h) ∈ Qλ,β .

2. The direct extension ≤∗ is defined by the following three rules:
(a) (λ, 0, λ̄′) ≤∗ (λ, 0, λ̄) if λ̄ ≤ λ̄′ < λ.
(b) (λ, β,A, h) ≤∗ (λ, 0, λ̄) if inf(A) ≥ λ̄.
(c) (λ, β′, A′, h′) ≤∗ (λ, β,A, h) if β′ ≥ β and (λ,A′<β, h

′�A′<β) ≤∗ (λ,A, h)
in Qλ,β , where A′<β = { ν ∈ A′ : o(ν) < β }.

3. There are two additional rules to define the forcing order ≤:
(a) p_(λ, 0, λ̄′) ≤ (λ, 0, λ̄) whenever p_(λ, λ̄′) ≤ (λ, λ̄) in Pλ.
(b) (γ,A ∩ γ, h�γ)_(λ, 0, γ) ≤ (λ, β,A, h) whenever o(γ) = β and (γ,A ∩

γ, h�γ) ∈ Qγ .
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By clauses 2a and 3a, an instance (λ, 0, λ̄) may be identified with the instance
(λ, λ̄) of Pλ. By clause 2b the form (λ, 0, λ̄) could be regarded as an instance
(λ, 0,∅,∅) of the second form of Q∗λ with β = 0, except that the latter lacks the
coordinate λ̄.

Definition 2.15 (Uλ,0 ×Q∗λ). 1. This recipe, which is only defined if o(λ) is
a nonzero limit ordinal, has one of the forms (λ,B, λ̄) or (λ,B, β,A, h). In
either case B ∈ P(D) ∩ Uλ,0 and (λ, 0, λ̄) or (λ, β,A, h) is in Q∗λ.

2. (See definition 2.8) If (p′, ~B′) and (p, ~B) are conditions in Rγ , then (p′, ~B′) ≤
(p, ~B) if (i) p′ ≤ p in Rγ , and (ii) for each ordinal γ ∈ domain(p′)\domain(p)
such that p′ has an instance (γ,B, q) of Uγ,0 ×Q∗γ we have B ⊂ Bγ .

3. If (λ,B′, q′) and (λ,B, q) are instances of Uλ,0 × Q∗λ, then (λ,B′, q′) ≤∗
(λ,B, q) if B′ ⊂ B and (λ, q′) ≤∗ (λ, q) as instances of Q∗λ.

4. The forcing order ≤ is defined by the following two additional rules:
(a) p_(λ,B, 0, λ̄) ≤ (λ,B, q) whenever p_(λ, 0, λ̄) ≤ (λ, q) in Q∗λ.
(b) (γ, λ̄) ≤ (λ,B, 0, λ̄) whenever γ ∈ B and o(γ) = 0.

This is the only recipe on λ which does not force λ ∈ C. As was pointed out
in an earlier remark, it is also the only way in which an instance of a recipe Pγ
(except for γ = κ in Rκ+1) will ever occur in a condition.

Remark 2.16. The difference between Rλ and Rλ appears only in Clause 2.15(2),
as this is the only place where the sequence ~B is used.

Notice that, in a sense precisely stated in proposition 4.3 below, the sequence
~B in a condition (p, ~B) has no essential effect on the appearance of new instances
of U ×Q∗. Instead, its real effect is to restrict the appearance of new instances of
P . If (p′, ~B′) ≤ (p, ~B) then any instance of Pγ in p′ with γ /∈ domain p must be
spawned, via rule 2.15(4b), by some instance of U ×Q∗ either in p or in a condition
intermediate between (p′, ~B′) and (p, ~B) ). It follows that if λ = inf(domain p \ γ)
then either (i) p has an instance (λ,B, q) of Uλ,0 × Q∗λ, and γ ∈ B or (ii) there is
some γ′ ∈ λ \ γ such that γ ∈ Bγ′ and cf(o(γ′)) ≥ dpe�γ.

3. The proof of theorem 1.5

Let C be a R′κ-generic subset of κ over V . The initial condition

1′ = ( (λn, 0, λn−1) : n < ω )

of R′κ consists of ω-many instances of the recipe Uλn,0 × Q∗λn , each of which will
spawn an instance of Pκn for some κn ∈ (λn−1, λn). Each of these instances of
Pκn generates a closed and unbounded subset C ∩ (λn−1, κn) of E ∩ κn, so we only
need to prove that no cardinals of V are collapsed in V [C] and that the ordinals
κn remain inaccessible in V [C].

Most of the arguments in this section will be reused in section 4, where we will
describe how to modify the proof to prove the analogous results for the forcing
Rκ+1 used for the main theorem.

For convenience, we will use P ′λ to mean the partial ordering with the same
universe as R′λ and with the order defined by p′ ≤P p if p′_(λ, dp′e) ≤ p_(λ, dpe)
in R′λ. Thus, regarded as a forcing notion, (P ′λ,≤P ) allows end extensions while
R′λ does not.

The following lemma is our adaptation of Gitik’s proof that the preliminary
forcing of [2] makes Pλ[E] distributive.
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Lemma 3.1 (Distributivity of P ′λ). Suppose that λ̄ < λ < κ, λ ∈ D and τ < λ.
Then for any sequence ~D = (Dξ : ξ < τ) of dense open subsets of (P ′λ,≤P ) there is
a condition p ∈ R′λ, with bpc ≥ λ̄, such that Dξ is dense in R′/p for all ξ < τ .

Hence, if Ḣ is a name for the generic subset of P ′λ then p forces that Ḣ∩Rdpe+1∩
Dξ 6= ∅ for all ξ < τ .

Proof. Let S be the set of ordinals γ < λ such that there is a set Xγ ≺ (Hλ+ ,∈)
with {λ, λ̄, (Dξ : ξ < τ )} ⊂ Xγ and γ = Xγ ∩ λ. Then S contains a closed and
unbounded subset of λ, so since λ ∈ D there is γ ∈ S with o(γ) = τ . Let A = { ν ∈
γ \ λ̄ : o(ν) < τ }. We will define a function h so that the condition p = (γ,A, h)
has the required property.

Let ν be an arbitrary member of A. Since γ is in S, Do(ν) is dense in R′γ . We
can factor R′γ = R′ν+1 ∗ Ṙ′ν+1,γ , and hence there is a R′ν+1 term ṗ1 denoting a
member of R′ν+1,γ such that 
R′ν+1

∃p0 ∈ G(C ∩ ν) p0
_ṗ1 ∈ Do(ν). Set h(ν) = ṗ1.

To see that p = (γ,A, h) has the required property, fix an arbitrary ordinal ξ < τ
and condition p′ = p′0

_(γ,A′, h′) ≤ (γ,A, h). We will find a condition p′′ ≤ p in
Dξ. Pick any ordinal ν ∈ A′ \ dp′0e with o(ν) = ξ and (ν,A′ ∩ ν, h′�ν) ∈ Qν . By
the choice of h(ν) there is p′′ ≤ p′0_(ν,A′ ∩ ν, h′�ν) such that p′′_h(ν) ∈ Dξ. Then
p′′_h(ν)_(γ,A′, h′) ≤ p′, and p′′_h(ν)_(γ,A′, h′) ∈ Dξ since Dξ is open.

Corollary 3.2. If λ ∈ D and C ⊂ λ is V -generic for R′λ+1, and f : τ → V is a
function in V [C] with τ < λ, then there is γ < λ such that f ∈ V [C ∩ γ].

Proof. Apply lemma 3.1 with Dξ = { p�λ : ∃x∃λ̄ p 
 ḟ(ξ) = x̌ }. Then the condition
p_(λ, γ) ≤ (λ, λ̄) from lemma 3.1, with γ = dpe, forces that ḟ ∈ V [C ∩ γ].

Lemma 3.3 (Prikry property for R′κ). If τ ≤ λ ≤ κ then R′τ,λ has the τ+-Prikry
property.

Proof. We assume as an induction hypothesis thatR′η,λ′ has the η+-Prikry property
for all η < λ′ < λ. The proof that R′τ,λ has the τ+-Prikry property falls into several
cases.

Case 3.3.1. λ = λ′ + 1.

We can assume that λ′ ∈ E, since otherwise R′λ = R′λ′ , which has the τ -Prikry
property by the induction hypothesis.

We claim that it suffices to show that any condition of the form (λ′, q) has the
τ -Prikry property. To see this, note that an arbitrary condition in R′τ,λ has the
form p_(γ̇, q̇), where q̇ is Cp-term for a recipe on some γ ≤ λ′. Since R′τ,λ′ has the
τ -Prikry property by the induction hypothesis, we can assume that p ‖R′

τ,λ′
γ̇ = λ′.

If p 
Rτ,λ′ γ̇ < λ′ then p_q̇ ∈ R′τ,λ′ , which has the τ -Prikry property, so we can
assume that p 
R′

τ,λ′
γ̇ = λ′.

We will work in V [Cp] and show there that there is a condition p′ ≤∗ (λ′, q)
which decides each sentence σξ. To see that this suffices, let ṗ′ be a Cp-term
for such a condition, so that p 
R′τ,λ ∀ξ < τ∃p̄ ∈ G(Cp) p̄_ṗ′ ‖Rτ,λ σξ. By
the induction hypothesis there is a condition p′′ ≤∗ p which decides the sentence
∃p̄ ∈ G(Cp) p̄_ṗ′ 
 σξ for each ξ < τ , but then p′′_ṗ′ ‖Rτ,λ σξ for each ξ < τ .

We use four subcases to show that (λ′, q) has the τ -Prikry property, one for each
of the recipes Pλ′ , Qλ′ , Q∗λ′ and Uλ′,0 × Q∗λ′ . The recipe Q∗λ′ is included, even
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though it is not used in R′τ,κ, since it is used in the proof for the case Uλ′,0 ×Q∗λ′
and also will be used to define the measure on κ in the proof of theorem 1.1.

Subcase 3.3.1a. (λ′, q) = (λ′, λ̄′), an instance of Pλ′ .

If we set Dξ = { p ∈ Pλ′ : ∃η p_(λ′, η) ‖ σξ }, then Dξ is dense and open in
(Pτ,λ′ ,≤P ). It follows by lemma 3.1 that there is p ∈ R′τ,λ′ such that p 
 ∀ξ <
τ∃p̄ ∈ G(Cp) p̄ ∈ Dξ. Since λ′ is regular and |τ ×R′/p′| < λ′, it follows that there
is η < λ′ so that p 
 ∀ξ < τ∃p̄ ∈ G(Cp) p̄_(λ′, η) ‖ σξ. SinceR′τ,λ′ has the τ -Prikry
property there is p′ ≤∗ p such that p′ ‖ ∃p̄ ∈ G(Cp) p̄_(λ′, η) 
 σξ for each ξ < κ,
but then p′_(λ′, η) ‖ σξ for each ξ < κ.

Subcase 3.3.1b. (λ′, q) is an instance of the recipe Qλ′ .

The proof of this subcase will take up more than half of the full length of the
proof of lemma 3.3. Since Qλ′ is <λ′-closed, it is sufficient to show that Qλ′ has
the Prikry property, that is, that for any single sentence σ and instance (λ′, A, h)
of Qλ′ there is (λ′, A′, h′) ≤∗ (λ′, A, h) which decides σ. Define, for a condition
(λ,A, h) and an ordinal ξ ∈ A such that (ξ, A ∩ ξ, h�ξ) ∈ Qξ, the condition

r(A, h, ξ) = (ξ, A u ξ, h�ξ)_h(ξ)

where

A u ξ = { ν ∈ A ∩ ξ : o(ν) < o(ξ) }.

Note that r(A, h, ξ), for an arbitrary condition (λ,A, h), is in general a term for
a member of R′ξ,λ, but not necessarily a condition.

Claim. For any condition (λ′, A, h) there is (λ′, A′, h′) ≤∗ (λ′, A, h) so that
r(A′, h′, ξ) is a condition for each ξ ∈ A′.

Proof. Fix some β < o(λ′). We will find (λ′, A′, h′) ≤∗ (λ′, A, h) so that r(A′, h′, ξ)
is a condition for each ξ ∈ A′ with o(ξ) = β. We can then find the condition
required by the claim as the limit of a descending sequence of length o(λ′).

For each ξ ∈ A with o(ξ) = β, use the induction hypothesis to pick Ãβ and
hβ so that (ξ, Ãβ , h̃β) ≤∗ (ξ, A u ξ, h�ξ) so that (ξ, Ãβ , h̃β) decides the size of
h(ξ) and the recipes appearing in it. Then there is a unique Ã and h̃ so that
Ā = { ξ ∈ A : o(ξ) = β and Ãξ = Ã ∩ ξ and h̃ξ = h̃�ξ } ∈ Uλ′,β.

Let A′ be the set of ν ∈ A such that if o(ν) < β, then ν ∈ Ã and if o(ν) = β,
then ν ∈ Ā. Set h′(ν) = h̃(ν) if o(ν) < β and h′(ν) = h(ν) otherwise.

Define p′ ≤′ p if p′ ≤ p and min(domain p′) = min(domain p). Thus p ≤′ r(A, h, ξ)
if and only if p has the form (ξ, Ā, h̄)_p1 where (ξ, Ā, h̄) ≤∗ (ξ, A u ξ, h�ξ) and
p1 ≤ h(ξ).

Claim. For all β < o(λ′), all p0 ∈ Rτ,λ, and all instances (λ′, A, h) of Qλ′ , there
is a condition (λ′, A′, h′) ≤∗ (λ′, A, h) so that if σ̄ is one of σ or ¬σ and if ν ∈
A′, p1 ≤′ r(A′, h′, ν) and (λ′, Ā, h̄) ≤∗ (λ′, A′, h′) are such that o(ν) = β and
p0
_p1

_(λ′, Ā, h̄) 
 σ̄, then

∀ν′ ∈ A′ \ dp0e
(
o(ν′) = β =⇒ p0

_r(A′, h′, ν′)_(λ′, A′, h′) 
 σ̄
)
.(5)
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Proof. We will define, by recursion on ν, a ≤∗-decreasing sequence of conditions
(λ′, Aν , hν) for ν < λ′. In addition, we will define for all ν < λ′ such that

ν ∈
⋂
ν′<ν

Aν and 4
ν′<ν

(ν,Aν′ u ν, hν′�ν) ∈ Qν ,(6)

conditions (ν, Ãν , h̃ν) ≤∗ 4ν′<ν(ν,Aν′ u ν, hν′�ν) and p̃ν ≤∗ hν(ν) so that one of
the following two cases hold:

p0
_(ν, Ãν , h̃ν)_p̃ν_(λ′, Aν+1, hν+1) ‖ σ,(7a)

∀p̄ ≤ (ν, Ãν , h̃ν)_p̃ν ∀(λ′, Ā, h̄) ≤∗ (λ′, Aν+1, hν+1) p̄0
_p̄_(λ′, Ā, h̄) 6‖ σ.(7b)

Set (λ′, A0, h0) = (λ′, A, h), and if ν is a limit ordinal then set (λ′, Aν , hν) =∧
ν′<ν(λ′, Aν′ , hν′). Now suppose that (λ′, Aν , hν) is defined. If (6) does not

hold then set (λ′, Aν+1, hν+1) = (λ′, Aν , hν); otherwise define (λ′, Aν+1, hν+1) ≤∗
(λ′, Aν , hν,) so that

p0
_p̄_(λ′, Aν+1, hν+1) ‖ σ(8)

for every p̄ ≤ 4ν′<ν(ν,Aν′ , hν′)_hν(ν) for which this is possible. This can be done
by specifying (λ′, Aν+1, hν+1) to be either a Rν+1-term for a member of Qλ′ or the
infinum of a ≤∗-descending sequence in Qλ′ .

Now use the Prikry property of Rλ′ to find

(ν, Ãν , h̃ν)_p̃ν ≤∗ 4
ν′<ν

(
ν, Ãν′ u ν, h̃ν�ν)_hν(ν)

which decides whether there is a condition p̄ ∈ G(Cp̃) such that (8) holds and, if
so, which way σ is decided.

This completes the definition of the conditions (ν, Ãν , h̃ν)_p̃ν_(λ′, Aν , hν). Set
(λ′, Aλ′ , hλ′) = 4ν<λ′(λ′, Aν , hν) and let X ∈ Uλ,β be a subset of Aλ′ such the
members ν of X agree on which of (7a) or (7b) is true and, if (7a) holds, whether
σ or ¬σ is forced. Then there is a unique (λ′, Ã, h̃) ∈ Qλ′,β so that

X ′ =
{
ν ∈ X : Ãν = Ã ∩ ν and h̃ν = h̃�ν

}
∈ Uλ,β .

Finally define h′ by

h′(ν) =


h̃(ν) if o(ν) < β,

p̃ν if o(ν) = β,

hλ′(ν) if o(ν) > β,

and let A′ be the set of ν ∈ Aλ′ such that ν ∈ Ã if o(ν) < β and ν ∈ X ′ if o(ν) = β.
If ν, p1, and (λ′, Ā, h̄) satisfy the hypothesis of the claim, then

p1 ≤ (ν,A′ u ν, h′�ν)_h′(ν) ≤∗ (ν, Ãν , h̃ν)_p̃ν

and

(λ′, Ā, h̄) ≤∗ (λ′, A′ \ ν+1, h′�ν) ≤∗ (λ′, Aν+1, hν+1),

so the conclusion of the claim follows.

By applying the claim to each β < o(λ′) in turn, we can find a descending sequence
of conditions (λ′, A′β , h

′
β) so that the single condition

∧
β(λ′, A′β , h

′
β) satisfies the

claim for all β < λ. Similarly, we can take a diagonal infinum over all p0 ∈ R′τ,λ′
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to find a single condition (λ′, A′, h′) which satisfies the claim for all β < o(λ′) and
all p0 ∈ R′τ,λ′ .

Fix such a condition (λ′, A′, h′) and write r(ν) = r(A′, h′, ν). Then the last
paragraph says that, whenever ν ∈ A and

p∗ = p0
_p1

_(λ′, A′′, h′′) ≤ p0
_r(ν)_(λ′, A′, h′)

is a condition such that p∗ 
 σ, then p0
_r(ν)_(λ′, A′, h′) 
 σ and in fact p0

_r(ν′)_

(λ′, A′, h′) 
 σ for each ν′ ∈ A′ \ dp0e with o(ν′) = o(ν). Furthermore, the same is
true of ¬σ in place of σ.

In order to complete the proof for subcase 3.3.1b we need to show that the
condition (λ′, A′, h′) decides the sentence σ. We will do so by showing that if any
condition p ≤ (λ′, A′, h′) forces σ, then (λ′, A′, h′) already forces σ. The same
argument works for ¬σ, and it follows that (λ′, A′, h′) ‖ σ.

Notice that any condition p ≤ (λ′, A′, h′) can be written in the form

p = p0
_p1

_ . . ._pk−1
_(λ′, Ā, h̄)(9)

≤ r(γ0)_r(γ1)_ . . ._r(γk−1)_(λ′, A′, h′),

where γ0 < γ1 < · · · < γk−1 < λ′ and pi ≤′ r(γi) for each i < k. To see this, note
that by definition 2.12 any condition p ≤ (λ′, A′, h′) must satisfy

p = p′0
_p′1

_(λ′, Ā, h̄) ≤ p′0_r(γ)_(λ′, A′, h′)

≤ p′0_(λ′, A′, h′) ≤ (λ′, A′, h′)

for some conditions p′0 and p′1 and some ordinal γ < λ′ with p′1 ≤ r(γ). We
can use the induction hypothesis to represent p′0

_(λ′, A′, h′) ≤ (λ′, A′, h′) and
p′1�γ+1 ≤ (γ,A′ ∩ γ, h′�γ) in the form of (9). Now, since r(A′ ∩ γ, h′�γ, γ′) =
r(A′, h′, γ′) for any γ′ ∈ A′ ∩ γ, these representations of p′0

_(λ′, Ā, h̄) ≤ (λ′, A′, h′)
and p′1_(λ′, Ā, h̄) ≤ (λ′, A′, h′) can be combined to represent p′ ≤ (λ′, A′, h′) in the
form (9).

Now suppose that there is a condition below (λ′, A′, h′) which forces σ, and let
p ≤ (λ′, A′, h′) be chosen with dp�λ′e as small as possible so that p 
 σ. By (9), p
can be written as p = p0

_p1
_(λ′, Ā, h̄), where p1 ≤′ r(ν) for some ν < λ′. Thus,

setting β = o(ν), p0
_r(ν′)_(λ′, A′, h′) 
 σ for all ν′ ∈ A′ \ dp0e+1 with o(ν′) = β.

We will show, under these assumptions, that { p′ ∈ R′τ,λ′+1 : p′ 
 σ } is dense below
p0
_(λ′, A′, h′). This will imply p0

_(λ′, A′, h′) 
 σ, which contradicts the choice of
p and hence completes the proof of subcase 3.3.1b for Qλ′ .

Let p′ ≤ p0
_(λ′, A′, h′) be arbitrary. Then, using (9),

p′ = p′0
_p′1

_ . . ._p′k−1
_(λ′, Ā, h̄) ≤ p0

_r(γ′1)_ . . ._r(γ′k−1)_(λ′, A′, h′)

where p′0 ≤ p0 and p′i ≤′ r(γ′i) for 0 < i < k. We can assume that o(γ′i) ≥ β
for some 0 < i < k, if necessary taking a further extension to add r(γk) for some
γk ∈ A′ \γk−1+1 with o(γk) = β. Let i0 be the least such i. We can further assume
that o(γi0 ) = β, since if o(γi0) > β then we could replace p′i0 with r(γ)_p′i0 for
some γ ∈ A′ ∩ (γi0−1, γi0) such that o(γ) = β. Then

p′ ≤ p0
_r(γ′1)_ . . ._r(γ′k−1)_(λ′, A′, h′)

≤ p0
_r(γ′1)_ . . ._r(γ′i0 )_(λ′, A′, h′)

≤ p0
_r(γ′i0 ) 
 σ

and hence p′ 
 σ.
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Subcase 3.3.1c. (λ′, q) is one of (λ′, 0, λ̄) or (λ, β,A, h), an instance of Q∗λ′ .

If (λ′, q) = (λ′, 0, λ̄) then set β = 0, A = h = ∅ and X = { ν ∈ λ′ \ λ̄ : o(ν) = 0 }.
Otherwise let X be the set of ν ∈ λ′ \ λ̄ such that o(ν) = β and (ν,A∩ν, h�ν) ∈ Qν .
In either case X ∈ Uλ,β .

For each ν ∈ X use subcase 3.3.1a to pick a Rτ,ν+1-term ṗν denoting a member
of R′ν,λ such that 
Rν ∀ξ < τ ṗν

_(λ′, 0, η) ‖R′ν,λ σξ for some η < λ′. By extending
ṗν , if necessary, we can assume that η = dṗνe.

Now use the τ -Prikry property of Rτ,ν+1 to find a condition (ν, Āν , h̄ν) ≤∗
(ν,A, h) in Qν so that

∀ξ < τ (ν, Āν , h̄ν) ‖R′ν+1
ṗν
_(λ′, 0, dṗνe) 
R′ν,λ σξ.

Thus (ν, Āν , h̄ν)_ṗν_(λ′, 0, dṗνe) ‖ σξ for each ν ∈ X and ξ < τ .
There is a unique condition (λ′, Ā, h̄) ≤∗ (λ′, A, h) in Qλ′,β so that

X ′ = { ν ∈ X : o(ν) = β and Āν = Ā ∩ ν and h̄ν = h̄�Āν } ∈ Uλ′,β .
Take X ′′ ⊂ X ′ in Uλ′,β so that the members ν of X ′′ agree on which way each of
the sentences σξ is decided by (ν, Āν , h̄ν)_ṗν_(λ′, 0, dṗνe), and set A′ = Ā ∪X ′′.
Finally, set h′(ν) = h̄(ν) if o(ν) < β and ṗν if o(ν) = β. Then the condition
(λ′, β + 1, A′, h′) ≤∗ (λ′, β, A, h) decides σξ for each ξ < τ .

Subcase 3.3.1d. (λ′, q) = (λ′, B, q′), an instance of Uλ′,0 ×Q∗λ′ .

In this case (λ′, q′) is an instance of Q∗λ′ . Let i : V → M = ult(V, Uλ′,0) be the
canonical embedding, and notice that if p ∈ Pλ′ then λ′ ∈ i(B) and hence

p_(λ′, 0, η) ≤ (λ′, q′) in R′λ ∗ Q̇∗λ′ ⇐⇒ p_(λ′, η) ≤ i(λ′, B, q′) in RMτ,i(λ′)+1

for every η ∈ λ′ \ λ̄. Now consider, for each ξ < τ , the following sentence σ̄ξ, where
Ḣ is the name for a V -generic subset of R′λ+1 with (λ′, 0, η) ∈ Ḣ :

∃r_(λ′, 0, η) ∈ Ḣ M |= r�λ′_(λ′, η) 
 i(σξ).
By the previous subcase 3.3.1c, there is a condition (λ′, q′′) = (λ′, β′, A′, h′) ≤∗
(λ′, q′) which decides the sentence σ̄ξ for each ξ < τ .

We now define, for each ξ < τ , a set Bξ ⊂ B so that (λ′, Bξ, q′′) ‖ σξ. We can
assume without loss of generality that (λ′, q′′) 
 σ̄ξ. It follows that if p_(λ′, 0, η) ≤
(λ′, q′′), then M |= p_(λ′, η) 
 i(σξ). However the relation “p_(λ′, 0, η) ≤ (λ′, q′′)”
is definable without using the ultrafilter Uλ′,0, and hence { (p, η) : p_(λ′, 0, η) ≤Q∗

λ′

(λ, q′′) } ∈M . Thus M satisfies the following statement:

∀p_(λ′, 0, η) ≤Q∗
λ′

(λ′, q′′) p_(λ′, η) 
 i(σξ).
Set q′′↓α = (α, β′, A′ ∩ α, h′�α) and let Bξ be the set of cardinals α ∈ B such that
(in V ):

∀p_(α, 0, η) ≤Q∗α (α, q′′↓α) p_(α, η) 
 σξ.
Then Bξ ∈ Uλ′,0 since λ′ ∈ i(Bξ), and (λ′, Bξ, q′′) 
 σξ.

Now setB′ =
⋂
ξ<τ Bξ. Then (λ′, B′, q′′) ≤∗ (λ′, B, q′) = (λ′, q) and (λ′, B′, q′′) ‖

σξ for each ξ < τ , as required.
This completes the proof of the final subcase of case 3.3.1, and we now turn to

the limit case:

Case 3.3.2. λ < κ is a limit cardinal.
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First note that if p ∈ R′τ,λ and γ = dpe is determined then p ∈ R′τ,γ+1, so p has
the τ -Prikry property by the induction hypothesis.

We now prove the lemma for arbitrary p ∈ R′τ,λ by induction on the length
n < ω of p. If n ≤ 1 then dpe is determined, so we can assume p = p0

_(γ̇, q̇) where
p0 has length n− 1.

Work for the moment in V [Cp0 ]. Set η = supCp0 , and suppose (γ̇, q̇) denotes

(γ, q) in V [Cp0 ]. Then (γ, q) ∈ R′η,γ+1

V [Cp0 ]
, so by the induction hypothesis there is

p′1 ≤∗ (γ, q) so that p′1 ‖ σξ in R′η,γ+1

V [Cp0 ]
for every ξ < τ .

Now return to working in V . Let ṗ′1 be a Cp0 -name for the condition p′1 above.
Then p0 
R′λ ∀ξ < τ ṗ′1 ‖R′η̇,λ σξ. By the induction hypothesis there is p′0 ≤∗ p0 so
that p′0 ‖R′λ ṗ

′
1 
R′η̇,λ σξ for all ξ < τ , and p′0 decides the length and recipes of ṗ′1.

Then p′0
_ṗ′1 ≤∗ p, and p′0

_ṗ′1 ‖R′λ σξ for all ξ < τ , as required.

Case 3.3.3. λ = κ.

In this case the conditions in R′τ,λ = R′τ,κ have length ω. Pick n0 < ω large
enough that domain(p) \λn0 = {λm : m ≥ λn0 } and cf(o(λm)) > τ for all m > n0.
We will show that p�λn0 has the τ -Prikry property in R′λn0 ,κ

; as usual, this suffices

because of the factorization R′τ,λ = R′τ,λn0+1 ∗ Ṙ′λn0 ,κ
together with the induction

hypothesis for R′τ,λn0+1. Also, since p�λn0 is τ+-closed it is sufficient to show
that p�λn0 has the Prikry property, that is, that for any single sentence σ there is
p′ ≤ p�λn0 so that p′ ‖ σ.

First we define a ≤∗-descending sequence of conditions ( pn : n0 ≤ n < ω ), with
pn0 = p�λn0 . Suppose that n > n0 and pn−1 has been defined. Let ṗn,1 be
a R′λn0 ,λn+1-term for a condition pn,1 ≤∗ pn−1�λn in Rλn,κ such that for any
condition p̄ ≤ pn�λn+1, either p̄_ṗ′n ‖ σ or else there is no p′ ≤∗ ṗ′n such that
p̄_p′ ‖ σ.

Now pick pn,0 ≤∗ pn�λn+1 so that pn,0 ‖ ∃p̄ ∈ G(C ∩ λn+1) p̄_ṗn,1 
 σ, and
set pn+1 = pn,0

_ṗn,1.
We claim that the condition p′ =

∧
n0<n<ω

pn decides σ. To see this, pick any
condition p̄ ≤ p′ such that p̄ ‖ σ. Then there is some n < ω so that p̄�λn ≤∗
p′�λn ≤∗ pn�λn. It follows that (p̄�λn + 1)_pn�λn ‖ σ, and since p̄�λn + 1 ≤
pn�(λn + 1) it follows that pn ‖ σ. Since p′ ≤∗ pn, it follows that p′ ‖ σ.

This completes the case λ = κ, and hence the proof of lemma 3.3.

Remark 3.4. We will use this same proof in section 4 for the proof of the τ -Prikry
property for the forcing Rτ,λ of the main theorem 1.1. The necessary modifications
will be described in detail there, but we summarize them here: In order of increasing
difficulty, we will need to (1) omit the final case λ = κ, since all conditions are finite,
(2) verify that the side condition ~B does not interfere with the constructions used
in this proof, and (3) use the sequence ~B to prove the analog of lemma 3.1 for
Rκ+1.

Lemma 3.5. Suppose C is R′κ-generic and x ∈ P(λ)∩V [C] for some λ < κ. Then
x ∈ V [C ∩ λ].

Proof. Let ẋ be a name for x such that 
 ẋ ⊂ λ, and let p ∈ G(C) force that
sup(C ∩λ) = γ ≤ λ. Then p can be written p = p0

_ṗ1 where dp0e = γ ≤ λ ≤ bp1c.
Now work in V [Cp0 ]. By lemma 3.3 p1 has the λ+-Prikry property and hence there
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is p′1 ≤∗ p1 which decides the sentence ξ ∈ ẋ for each ξ < λ. Then p′1 
R′/p0 ẋ =
{ ξ < λ : ṗ′1 
R′/ṗ1 ξ ∈ ẋ } ∈ V [Cp0 ] = V [C ∩ λ].

Corollary 3.6. No cardinals are collapsed by Rκ.

Proof. No cardinal greater than κ+ is collapsed since |R′κ| = κ+. No cardinal η ≤ κ
is collapsed by lemma 3.5.

To see that κ+ is not collapsed, let ḟ be an arbitrary R′κ name for a function
from κ into κ+. Define a ≤∗-decreasing sequence of conditions pn so that if p′ ≤ pn
is any condition such that p′�λn ≤∗ pn�λn and p′ 
 ḟ(ν) = η for some ν < λn,
then p′�λn+1_pn�λn 
 ḟ(ν) = η. Then

∧
n<ω pn forces that range ḟ ⊂ { η : ∃n <

ω∃ν < λn∃p′ ∈ R′λn+1 p
′_pn�λn 
 ḟ(ν) = η }, but this set has cardinality κ and

hence is bounded in κ+.

Corollary 3.7. Suppose that C is R′κ-generic, and let κn be the unique ordinal in
the interval λn−1 < κn < λn such that there is a condition p ∈ G(C) having an
instance (κn, κ̄n) (spawned by Uλn,0 × Q∗λn) of Pκn . Then for each n < ω, κn is
regular in V [C], and C ∩ κn is a closed and unbounded subset of κn ∩ E.

Proof. The assertion that C ∩ κn is a closed and unbounded subset of κn ∩ E is
immediate from the definition of the forcing. To see that κn is regular, let τ be any
function in V [C] which maps some ordinal η < κn into κn. Then τ ∈ V [C ∩ κn] by
lemma 3.5, and it follows from lemma 3.1 that there is p ∈ R′κn+1 ∩G(C ∩ κn + 1)
such that τ ∈ V [Cp�κn ] = V [C ∩ γ] where γ = dp�κne < κn. But then p forces that
τ is bounded in κn, since κn is inaccessible and |R′/(p�κn)| ≤ γ+ < κn.

This finishes the proof of theorem 1.5.

4. The proof of the main theorem 1.1

Now we turn to the proof of the direction (1) =⇒ (2) of theorem 1.1, using
the forcing Rκ+1 defined in definition 2.5. This involves proving the analog for this
forcing of results from section 3, notably of lemmas 3.1 and 3.3, and then of proving
that κ is still measurable in the generic extension V [C].

It was observed previously that three things are necessary to adapt the proof
of lemma 3.3 to this forcing. The first, omitting the case λ = κ, does not require
further comment. The third, proving the analog of the distributivity lemma 3.1, will
be addressed by lemmas 4.4 and 4.6 in subsection 4.1 below. In order to facilitate
the second, showing that the presence of the measure one sequence ~B does not
interfere with the constructions used in the proof of lemma 3.3, we begin with some
observations about the role of this sequence.

We have already established the convention of writing ~B′ ⊂ ~B when B′γ ⊂ Bγ

for each γ in their common domain. Similarly, if ~Bξ is a measure one sequence on
the same interval for each ξ < η, then we will write ~B′ =

⋂
ξ<η

~Bξ and ~B′′ = 4ξ Bξ
for the sequences with members B′γ =

⋂
ξ B

ξ
γ and B′′γ = { ν < γ : ν ∈

⋂
ξ<ν B

ξ
ν },

respectively.

Proposition 4.1. 1. If τ ≤ η < λ and ~Bξ is a measure one sequence on the
interval (η, λ) for each ξ < τ , then

⋂
ξ
~Bξ is also a measure one sequence on

the interval (η, λ).
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2. If 0 ≤ η < λ and ~Bξ is a measure one sequence on an interval (η, λ) for each
ξ < λ, then 4ξ<λ ~Bξ is also a measure one sequence on (η, λ).

The first clause implies that if a condition p ∈ Rλ is τ -closed then so is the condi-
tion (p, ~B) ∈ Rλ, regardless of ~B. The second clause implies that proposition 2.13,
asserting that Qλ is diagonally λ-closed, is still valid in Rλ+1.

Proposition 4.2. If λ is a cardinal then Rλ has the λ+-chain condition.

Proof. Any two conditions (p, ~B) and (p′, ~B′) with p = p′ are compatible, and
|Rλ| ≤ λ.

Proposition 4.3. Suppose that (p′, ~B′) ≤∗ (p, ~B). Then for any ~D ⊂ ~B there is
(p′′, ~B′′) ≤∗ (p′, ~B) such that (p′′, ~B′′) ≤∗ (p, ~D).

Furthermore, if (p′, ~B′) ≤ (p, ~B) and there is no instance of Pγ in p′ with γ ∈
domain(p′) \ domain(p), then there is (p′′, ~B′′) ≤∗ (p′, ~B) such that (p′′, ~B′′) ≤
(p, ~D).

Proof. We can take ~B′′ = ~D ∩ ~B′ and domain(p′′) = domain(p′). Now for every
γ ∈ domain(p′) \ domain(p) such that p′ has an instance (γ,B, q) of Uγ,0 × Q∗γ ,
replace this instance in p′′ with (γ,B′′γ ∩B, q).

We conclude these remarks with a final bit of notation. Notice that the only
effect a member Bγ of the sequence ~B in a condition p = (p, ~B) can have is on
an instance

(
γ, (B, q), ~B′

)
of Uγ,0 × Q∗γ in some condition p′ ≤ p. Since any such

instance must occur in the interval b(λ, q)c < γ < d(λ, q)e = λ associated with some
coordinate pλ = (λ, q) of p, it is useful to divide ~B into subsequences associated
with the coordinates of p. In order to make this explicit we will modify our notation
for members of Rλ; for example, instead of writing p =

(
p0
_(γ1, q1)_(γ2, q2), ~B

)
we will write

p = p0
_
(
γ1, q1, ~B

1
)
_
(
γ2, q2, ~B

2
)
.

Here p0 = (p0, ~B
0), as a member of Rdp0e+1, contains its own measure one sequence,

and ~Bi for i = 1, 2 are measure one sequences on the intervals (ηi, γi), where
ηi = b(γi, qi)c. As a further simplification we will frequently write

(
λ, q, ~B

)
, rather

than writing
(
λ, q, ~B�(bqc, λ)

)
to explicitly show the restriction of ~B to the correct

interval.

4.1. The Prikry property. The next two lemmas are, together, the analog of
lemma 3.1. The second is the direct analog of lemma 3.1, while the first is needed
to deal with the case of τ = 1. This is necessary because, in contrast to the forcing
R′λ+1, where p ≤ (λ, η) implies p ≤∗ (λ, η), the forcing Rλ+1 can have non-direct
extensions of the form(

γ, γ̄
)
_
(
λ, λ′

)
≤
(
λ′, (B, q)

)
_
(
λ, λ′

)
≤∗
(
λ, γ̄

)
,

factoring through an instance (B, q) of Uλ′,0 ×Q∗λ′ such that γ ∈ B. The sequence
~B was introduced in order to deal with this problem.

Lemma 4.4. Suppose that λ is inaccessible and λ̄ < λ. Then for any dense open
subset D of Pλ there is a condition p_

(
λ, η, ~B′

)
≤∗

(
λ, λ̄, ~B

)
such that {p′ :
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p′_
(
λ, η, ~B′

)
∈ D } is dense in R/p. Thus

p_
(
λ, η′, ~B′

)

 ∃p′ ∈ G(Cp) p′_

(
λ, η′, ~B′

)
∈ D.

Proof. First, note that it is sufficient to prove that

D′ = {p′ : ∃ηp′ , ~Bp′ p′_
(
λ, ηp′ , ~Bp′

)
∈ D }

is dense in R/p, since η = supp′ ηp′ < λ and ~B′ =
⋂

p′
~Bp′ is a measure one

sequence on the interval (η, λ).
Note that an extension p_

(
λ, ξ, ~B′

)
≤
(
λ, λ̄, ~B

)
is always direct unless p contains

an instance of Pγ for some ordinal γ. Let χ(p) be the largest such ordinal γ, or set
χ(p) = 0 if the extension is direct. Note that χ(p) will actually be a term; however
for any condition p there is a condition p′ ≤ p�χ(p) which determines the value
of the term χ(γ). Thus we can assume without loss of generality that the value of
χ(γ) is determined.

Let D∗ be the set of p ∈ Rλ such that D′ is dense in R/p, and note that D∗ 6= ∅
since D∗ ⊃ D′ ⊃ {p�λ : p ∈ D }.

Claim. There is a measure one sequence ~B′ ⊂ ~B with the following property:
Suppose p ∈ D∗ and p_(λ, ξ) ≤

(
λ, λ̄, ~B′

)
. If χ(p) 6= 0 then there is p′_(λ, dp′e) ≤(

λ, λ̄, ~B′
)

such that p′ ∈ D∗ and χ(p′) < χ(p).

Proof. First we define B′γ for an arbitrary γ ∈ domain ~B. For each η ∈ Bγ define
Xη to be the set of conditions p ∈ Rλ̄,η such that there is a measure one sequence
~Bp and a condition p∗ ∈ Rγ,λ satisfying the following two conditions:

p_
(
η, dpe, ~Bp

)
_p∗ ∈ D∗,(10a)

p_
(
η, dpe, ~Bp

)
_p∗ ≤∗ p_

(
η, dpe, ~B∗

)
_(λ, γ)

≤ p_
(
γ, (Bγ , 0, dpe), ~B

)
_
(
λ, γ

)
≤∗ p_

(
λ, λ̄, ~B

)
.

(10b)

If we set ~Bη = 4p
~Bp then we can assume without loss of generality that ~Bp = ~Bη

for all p ∈ Xη. Notice in addition that we would not have gained any generality
by using an arbitrary ordinal ξ in place of dpe in (10b), since for any condition
p_
(
η, ξ, ~Bp

)
, we can find p′ so that p′_

(
η, dpe, ~Bp

)
≤∗ p_

(
η, ξ, ~Bp

)
by simply

adding an ordinal ξ′ > ξ to the domain of p.
There is a unique set Xγ ⊂ Rγ and sequence ~B∗γ such that

B′ = { η ∈ Bγ : Xη = Xγ ∩ Vη and ~Bη = ~B∗γ�η } ∈ Uγ,0.

We set B′γ = B′.
This completes the definition of the sequence ~B′, and we now show that ~B′

satisfies the claim. Suppose that p_(λ, ξ) ≤
(
λ, λ̄, ~B′

)
is a condition such that

p ∈ D∗ and 0 < η = χ(p). Thus there is γ > η so that

p_
(
λ, dpe, ~B′

)
= p0

_
(
η, η̄, ~B∗γ

)
_p1

_
(
λ, dpe, ~B′

)
≤∗ p0

_
(
η, η̄, ~B∗γ

)
_
(
λ, γ, ~B′

)
≤ p0

_
(
γ, (B′γ , 0, η̄), ~B∗γ

)
_
(
λ, γ, ~B′

)
(11)

≤∗ p0
_
(
λ, λ̄, ~B′

)
.
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Then η ∈ B′γ by (11), and it follows that p0 ∈ Xγ . Thus, for each η > dp0e in B′γ
there is a condition p∗η so that p0

_
(
η, dp0e, ~B∗γ�η

)
_p∗η ∈ D∗. Now shrink to a set

B′′ ⊂ B′γ in Uγ,0 such that the length of p∗η and the recipes used by p∗η are the same
for all η ∈ B′′, and let ṗ∗ be a C ∩ γ-term so that

p0
_
(
η, dp0e, ~B′′

)

 ṗ∗ = p∗η(12)

for all η ∈ B′′. Finally, let p′ = p0
_
(
γ, (B′′, 0, dp0e), ~B′′

)
_ṗ∗. Then χ(p′) ≤

dp0e < η = χ(p), and p′ ∈ D∗ since for any condition p′′ ≤ p′ there is some η ∈ B′γ
such that the condition p0

_
(
η, dp0e, ~Bγ

)
∈ D∗ is comparable to p′′. This finishes

the proof of the claim.

Now take p_
(
λ, λ̄

)
≤
(
λ, λ̄, ~B′

)
with p ∈ D∗ and χ(p) as small as possible. It

follows from the claim that χ(p) = 0, that is, p_
(
λ, λ̄

)
≤∗
(
λ, λ̄, ~B′

)
.

Remark 4.5. Notice that this proof of lemma 4.4 requires the use of backward
Easton iteration in order to construct the term ṗ∗ in (12) above. This is the
only place in this paper where the use of backward Easton forcing is required
(although avoiding it in the proof of lemma 3.1 requires a slight strengthening of
the hypothesis). See [7] for details.

The next lemma is the direct analog of lemma 3.1 from section 3.

Lemma 4.6. Suppose that τ < λ ∈ D and
(
λ, λ̄, ~B

)
∈ Rλ+1. Then for any se-

quence ~D = (Dξ : ξ < τ) of dense open sets of conditions in Rλ+1 there is a condi-
tion p ∈ Rλ so that p_(λ, dpe) ≤∗

(
λ, λ̄, ~B

)
and D′ξ = {p : ∃η′, ~B′ p_

(
λ, η′, ~B′

)
}

is dense in R/p for for all ξ < τ .
Hence there is

(
λ, η′, ~B′

)
≤
(
λ, λ̄, ~B

)
so that p_

(
λ, η′, ~B′

)

 ∀ξ < τ∃p′ ∈

G(Cp) p′_
(
λ, η′, ~B′

)
∈ Dξ.

Proof. The proof is a straightforward modification of the proof of lemma 3.1. The
condition p will be

(
γ, (A, h), ~B1

)
_
(
λ, η′, ~B2

)
, where

(
γ, (A, h)

)
and

(
λ, η′

)
are as

in lemma 3.1, except that lemma 4.4 is needed to define h(ν). To define ~B1 and ~B2,
let Xγ ≺ Hλ+ be as in the proof of lemma 3.1 and pick ~Bp ∈ Xγ for each p ∈ Xγ so
that p_

(
λ, γ, ~Bp

)
∈ Dξ for each ξ < τ and p ∈ D′ξ. Now set ~B1 = 4p∈Xγ ( ~Bp�γ)

and ~B2 =
⋂

p∈Xγ ( ~Bp�γ).

Lemma 4.7. If τ < λ ≤ κ+ 1, then Rτ,λ has the τ+-Prikry property.

Proof. We have already covered two of the three needed modifications to the proof
of lemma 3.3 by omitting the special case for λ = κ, and by proving lemma 4.6 to
be used in place of lemma 3.1 for subcase 3.3.1a for the recipe Pλ′ .

The final modification, incorporating the measure one sequence ~B into the ar-
gument, does not require any actual changes, but it does require verifying that the
inclusion of the sequence ~B does not adversely affect the argument. As a first step
in this verification, notice that by proposition 4.3 the sequence ~B does not affect
the direct extension ordering

(
p′, ~B′

)
≤∗
(
p, ~B

)
in an essential way, except through

the requirement that ~B′ ⊂ ~B. By proposition 4.1 it follows that ≤∗ has the same
closure properties as the ordering p′ ≤∗ p has in Rκ. Thus all of the arguments
remain valid except possibly those involving the forcing order ≤ as well as the di-
rect extension ≤∗. Such arguments only occur in cases 3.3.1b and 3.3.1d. By the
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second paragraph of proposition 4.3 there is still no problem unless the non-direct
extension involves adding an instance of a recipe Pγ for some γ /∈ domain(p).

In case 3.3.1b, the only non-direct extension we need to construct comes from a
one-step extension using definition 2.12(3) for the recipe Q. Since h(ν) is required
by that definition to be ν-closed, it cannot contain any instances of Pγ ; hence the
measure one sequence will not be an obstacle.

The argument in case 3.3.1d does use direct extensions involving an instance
of Pγ ; however this instance is spawned from the instance of Uλ′,0 × Q∗λ′ already
present in the given condition p, and hence also is not affected by the measure one
sequence.

Thus the proof of lemma 3.3 carries over to prove the current lemma.

As in section 3, the Prikry property implies the following proposition:

Proposition 4.8. If x ⊂ η < λ and x ∈ V [C] where C is Rλ generic, then
x ∈ V [C ∩ η].

Proposition 4.9. If λ is a limit cardinal, then Pλ has the λ+-chain condition.

Proof. Let A ⊂ Rλ be an antichain. As with Prikry forcing, any two conditions
p_
(
λ, η, ~B

)
and p′_

(
λ, η′, ~B′

)
in A must have p 6= p′. Furthermore, by proposi-

tion 2.9 we may assume that for each condition p_
(
(λ, η), ~B

)
∈ A the cardinals in

domain(p) are determined, so that p ∈ Rλ′ for some λ′ < λ. Thus there are only
λ many choices for p.

In particular, Rκ+1 = Pκ has the κ+-chain condition.

Lemma 4.10. If C ⊂ λ is Rλ-generic, then the cardinals of V [C] are the same as
those of V .

Proof. Suppose the contrary, and let η+ be the least cardinal collapsed. By propo-
sition 4.8 it follows that η+ is collapsed in V [C ∩ η]. Since |Rλ| = λ we must have
η = sup(C ∩η), so that C ∩η is Rη+1-generic, and η is regular in V by the covering
lemma. Furthermore the recipe used at η must be Qη, since lemma 4.9 implies
that it is not Pη or (since it is equivalent to Pη) Q∗η, and Uη,0 × Q∗η would force
sup(C ∩ η) < η. It follows that η is singular in V [C ∩ η], but then the covering
lemma implies that η+ is not collapsed.

The use of the covering lemma can be eliminated as in the proof of lemma 3.6.

4.2. Measurability. It only remains to prove that κ remains measurable in V [C]:

Theorem 4.11. If o(κ) = κ and C ⊂ κ is Rκ+1-generic, then κ is measurable in
V [C].

Proof. Let i : V → M = ult(V, Uκ,0). Then i(Rκ+1) can be factored i(Rκ+1) =
Rκ+1 ∗ ṘM

κ,i(κ)+1 and the set C is Rκ+1-generic over M . We will work in V [C],

and consider the forcing notion R1 over M [C], which is equivalent to RM [C]
κ,i(κ)+1 but

uses the recipe Q∗i(κ) instead of Pi(κ) at i(κ).
Let A be the set of antichains (not necessarily maximal) of R1 in M [C]. Then

|A|M [C] = i(κ+) since R1 has the i(κ+)-chain condition in M [C] by lemma 4.9,
and hence |A|V = κ+. Now the condition 1∗ =

(
i(κ), (0, κ), i( ~B1)

)
has the Prikry

property in M [C], and it is κ+-closed in V [C] since it is κ+-closed in M [C], so we
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can define a ≤∗-descending sequence of conditions qξ ≤∗
(
i(κ), (0, κ)

)
for ξ < κ+

so that for each a ∈ A there is some ξ < κ+ and ~B on the interval (κ, i(κ)) so that
M [C] |=

(
i(κ), qξ, ~B

)
‖R/1∗ G(Ċ�κ) ∩ a 6= ∅.

Let G∗ be the set of conditions p ∈ R/1∗ such that
(
i(κ), qξ, ~B

)
≤∗ p for some

ξ < κ+ and some measure one sequence ~B on the interval (κ, i(κ)). The set G∗

is not generic, but any two of its elements are compatible, and if S is any set of
sentences of the forcing language for R1 with |S| ≤ κ, then there is p∗ ∈ G∗ such
that p∗ ‖ σ for all σ ∈ S. Also,

(
i(κ), (0, γ), ~B

)
∈ G∗ for any γ < i(κ) and any

measure one sequence ~B.
Define U∗ ⊃ Uκ,0 in V [C] as follows: if ẋ is a Rκ+1-term for a subset x of κ,

then x ∈ U∗ if and only if there is p∗ ∈ G∗ such that p∗ 
 κ ∈ i(ẋ).
The crucial step in proving that U∗ is a normal ultrafilter on κ is the following

claim:

Claim 4.12. If p ∈ Rκ+1 then there is p∗ ∈ G∗ such that p_p∗ ≤ i(p).

Proof. Fix p = p0
_
(
κ, η, ~B

)
in Rκ+1. If we set p∗ =

(
i(κ), (0, γ), i( ~B)

)
∈ G∗ then,

using the identification of
(
i(κ), η

)
∈ Pi(κ) with

(
i(κ), (0, η)

)
∈ Q∗i(κ),

p_p∗ = p0
_
(
κ, η, ~B

)
_
(
i(κ), (0, γ), i( ~B)

)
≤ p0

_
(
γ, (B, 0, η), i( ~B)�γ

)
_
(
i(κ), (0, γ), i( ~B)

)
(13)

≤ p0
_
(
i(κ), (0, η), i( ~B)

)
= i(p),

where, in order to make (13) valid, γ is any ordinal in the interval κ < γ < i(κ)
such that

cf(o(γ)) > η and κ ∈ B = i( ~B)γ .(14)

In order to verify that there exists a ordinal γ satisfying (14), set β = η+ and
let A = { ν < κ : ∃γ > ν (o(γ) = β and ν ∈ Bγ) }. Then there is an ordinal γ
satisfying (14) if and only if κ ∈ i(A), that is, if and only if A ∈ Uκ,0. Now consider
the canonical embedding j : V → M ′ = ult(V, Uκ,β). Since M ′ |= o(κ) = β, we
have A = i(A) ∩ κ ⊃ i( ~B)κ ∈ UM

′

κ,0 = Uκ,0. Thus A ∈ Uκ,0, as required.

Now we can check that U∗ is well defined. Suppose that p ∈ G(C) and p 
 ẋ =
ẋ′. Then by the claim there is p∗ ∈ G∗ such that i(p) ≥ p_p∗, so p_p∗ 
 i(ẋ) =
i(ẋ′) in M [C]. We can assume that p∗ also decides κ ∈ i(ẋ), so p_p∗ 


(
κ ∈ i(ẋ)

if and only if κ ∈ i(ẋ′)
)
.

Finally, we verify that U∗ is a normal measure on κ. For any term ẋ denoting a
subset of κ there is a condition p∗ ∈ G∗ deciding both of the sentences κ ∈ i(ẋ) and
κ ∈ i(κ \ ẋ), so it must decide exactly one of them affirmatively. Hence exactly one
of the sets x and κ\x is in U∗. Similarly, U∗ is normal (and hence κ-complete) since
if ḟ is a term denoting a function f : κ→ κ, then there is a condition p∗ ∈ G∗ which
decides all of the κ-many sentences i(ḟ)(κ) = η for η < κ, as well as the sentence
i(ḟ)(κ) 6< κ. Again, p∗ must decide exactly one of these sentences affirmatively.

This finishes the proof of the main theorem 1.1.
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5. Extensions to these results

In this final section generalize these results in two directions: first we consider
the consistency strength of preserving other large cardinal properties between inac-
cessibility and measurability, and then we consider the possibility of strengthening
the hypothesis that C is contained in the set D of inaccessible cardinals of the
ground model.

Definition 5.1. 1. A sequence ~B is a full measure one sequence if Bγ ∈ U(γ) =⋂
β<o(γ) Uγ,β for all γ ∈ D.

2. Dβ is the filter on κ generated by the sets D ~B
β = { γ : o(γ) ≥ γ } ∪

⋃
{Bγ :

o(γ) ≥ β } for all full measure one sequences ~B.
3. D =

⋂
β<κDβ .

4. D∗ is the normal filter generated by the sets D ~B = 4β D
~B
β where ~B is a full

measure one sequence.

Note that D∗ is the smallest normal filter containing D.

Lemma 5.2. Suppose that C is a closed and unbounded subset of a cardinal κ ≥ ω2

such that every λ ∈ C is inaccessible in K, let C′ be the set of inaccessible cardinals
in C, and let ~B be a full measure sequence in K. Then C′ \ (β ∪D ~B

β ) is finite for

each β < κ, and hence C′ \D ~B is nonstationary.

Proof. The first claim follows immediately from the proof of lemma 1.2. The second
claim follows by Fodor’s theorem.

Theorem 5.3. Let Φ(κ,C) be the formula stating that C is a closed and unbounded
subset of κ containing only inaccessibles of K. Then we have the following equicon-
sistencies:

1. Con(ZFC + Φ(κ,C) + κ is Mahlo) if and only if Con(ZFC + every set in
D∗ is stationary).

2. Con(ZFC + Φ(κ,C) + κ is weakly compact) if and only if Con(ZFC + no
set in D is in the weakly compact ideal).

3. Con(ZFC + Φ(κ,C) + κ is Ramsey) if and only if Con(ZFC + κ →
(D+)<ω2 ), where D+ is the set of sets y ⊂ κ such that κ \ y /∈ D.

Proof of necessity. In order to show that the stated conditions are necessary, we
will show that if the property on the left holds, there is no inner model with a
Woodin cardinal, and K is Steel’s core model then the property on the right holds
in K. Note that we are proving slightly more than the equiconsistency asserted in
the theorem, for which it would be sufficient to assume that there is no inner model
with o(κ) = κ.

Necessity for Mahlo cardinals. Let EV be the set of inaccessible cardinals of
V . Then EV is stationary in κ since κ is Mahlo, and if D ∈ D∗ then EV \ D
is nonstationary in V by lemma 5.2. Thus D is stationary in V , and hence is
stationary in K.

Necessity for weakly compact cardinals. Suppose that D ∈ D∗, and let a Π1
1

formula φ and a set R ⊂ κ2 in K be given such that (κ,R) |= ∀Aφ(A) holds in K.
We need to show that there is a cardinal λ ∈ D of K such that (λ,R∩λ2) |= ∀Aφ(A)
holds in K.
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By lemma 5.2 there is a closed unbounded subset C1 ⊂ C such that every
inaccessible member of C1 is in D. If we let A′ be the structure (κ,R,C1) in V ,
then A′ |= (C1 is unbounded and ∀A ⊂ κ (A ∈ K =⇒ φ(A))). Since “A ∈ K”
can be expressed by a Σ1

1 formula over Vκ, this formula is Π1
1 and since κ is weakly

compact in V it follows that there is an inaccessible cardinal λ < κ in V such that
(λ,R ∩ λ2, C1 ∩ λ) |= (C1 ∩ λ is unbounded and ∀A ⊂ κ (A ∈ K =⇒ φ(A))).

Finally, λ ∈ D since λ is in C1 and λ is inaccessible in V , and in K we have
(λ,R ∩ λ2) |= ∀Aφ(A) as required.

Necessity for Ramsey cardinals. We need the following lemma:

Lemma 5.4. Assume that κ is Ramsey in V and that C ⊂ κ is closed and un-
bounded. Then for any function f : [κ]<ω → 2 in K there is a set D ∈ [κ]κ in K
which is homogeneous for f such that either o(ν) = ν for all ν ∈ D or else the set
of cardinals ν ∈ D ∩ C which are inaccessible in V is unbounded.

Sketch of proof. For the sake of brevity we simply outline the modifications of the
proof of the main theorem of [6] which are required to prove lemma 5.4. We
assume that the reader of this sketch is familiar with that paper and has a copy of
it available.

Let I0 be a set of indiscernibles for the structure S = (Vκ, f, C) such that |I0| = κ
and the ωth member of I0 is as small as possible. Thus I0 is normal for functions
definable in S, and in particular I0 ⊂ C. Use I0 to define an elementary substruc-
ture of Vκ, and proceed with the construction of [6], noting that δ of that paper is
equal to κ, since we are dealing with a Ramsey cardinal.

Now we modify the definition of the set I in corollary 3.10 in [6]: first, take I1 to
be the set of indiscernibles for κ from the tree T : thus ν ∈ I1 if and only if there is
ξ on the main branch of T such that ν = crit(iξ,κ) and iξ,κ(ν) = κ. The normality
of I0 can be used to show that j0,θ“I0 ⊂ I1. The normality of I0 also implies that
either o(ν) > ν for all ν ∈ I0, o(ν) = ν for all ν ∈ I0, or there is some γ0 < κ such
that I0 o(ν) = γ0 for all ν ∈ I0. If o(ν) > ν for ν ∈ I0, we use the observation in
the 2nd paragraph before corollary 3.10 of [6]: The final model Mδ of the tree T
contains, as a member, a measure of order κ on κ. ThusMδ contains, as a member,
a set D̄ of indiscernibles for jθ(f). Since ultrapowers of initial segments ofMδ are
well founded, this can be used to define a set D of indiscernibles in K satisfying
the first alternative in the statement of lemma 5.4.

For the other two cases, modify the definition of I in corollary 3.10 to be the set
of ν ∈ I1 such that o(ν) = γ0 or o(ν) = ν, depending on the value of o(ν) for ν ∈ I0.
The relation ∈0 used throughout the rest of the proof should be replaced by ∈γ0 or
∈ν , where ν ∈γ X if and only if ν ∈ X and o(ν) = γ. Note that our elimination
of the case o(ν) > ν allows us to skip the second case, x ∈ Uν,0 if o(ν) > 0, of the
definition of ∈0 in [6]. This simplification could have also been made in [6].

The set I defined in corollary 1.10 of [6] is closed and unbounded, while our set
I need not be stationary. A check of the rest of the proof shows that this does not
affect the proof: the only use of stationarity is in the first paragraph of the proof
of lemma 3.12 and that proof actually uses I1 rather than I. The set D ∈ K of
indiscernibles for f which is given by this construction will contain the original set
I0, and since every member of that set is inaccessible in V it satisfies the second
alternative of lemma 5.4. This completes the proof of lemma 5.4.
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Now suppose that κ is Ramsey in V , let f : [κ]<ω → 2 be a function in K and
let D ∈ K be the set of indiscernibles for f given by lemma 5.4, using the set C
from theorem 5.3. If o(ν) = ν for all ν ∈ D then D ∈ D ~B

β for any sequence ~B
and ordinal β, so we can assume the second alternative of the lemma: that the
set of ν ∈ D ∩ C which are inaccessible in V is unbounded in κ. Then for any
full measure one sequence ~B and any β < κ, lemma 5.2 implies that the set of
inaccessible cardinals in C \D ~B

β is bounded, and hence D ∩D ~B
β is unbounded in κ.

Thus D ∈ D+.
This completes the proof of necessity for all three clauses of theorem 5.3.

Proof of sufficiency. In order to prove the sufficiency of the condition on the right
in each clause of theorem 5.3, we show that if that condition holds in V then the
condition on the left holds in V [C], where C is generic for the forcing Rκ+1 used in
the proof of the main theorem (or, for a Ramsey cardinal, for a slight modification
of the forcing Rκ+1). First we introduce some notation.

If p = (p, ~B) ∈ Rκ+1 and λ ∈ D ~B \ dp�κe, then let add(p, λ) be the following
condition, which uses either Pλ or Q∗λ to add λ to the domain of p:

add(p, λ) =

{
p�κ_

(
λ, κp, ~B�λ

)
_
(
κ, κ′, ~B�κ′

)
if o(λ) < λ,

p�κ_
(
λ, (0, κp), ~B�λ

)
_
(
κ, λ, ~B�λ

)
if o(λ) ≥ λ,

where we write p = p�κ_
(
κ, κp, ~B

)
, and if o(λ) < λ then κ′ is the least ordinal

such that for all β < λ there is a γ < κ′ with cf(o(γ)) > β such that λ ∈ Bγ .
Note that if λ ∈ D ~B \ κp, then add(p, λ) ≤ p, and (except for the choice of κ′)

add(p, λ) is the weakest extension of p containing an instance of Pλ. Furthermore
if p′ ≤ p or p′ ≤∗ p and p′ agrees with p above λ then add(p′, λ) ≤ add(p, λ) or
add(p′, λ) ≤∗ add(p, λ), respectively.

Sufficiency for Mahlo cardinals. Let Ċ1 be a name for a closed and unbounded
subset of κ, and let p = (p, ~B) ∈ Rκ+1 be arbitrary. We will find a cardinal λ < κ

and a condition p′ ≤ p so that p′ forces that λ is an inaccessible limit point of Ċ1.
For each α < κ pick a condition pα = (pα, ~Bα) ≤∗ p�α in Rα,κ+1 so that there is
ηα < κ such that pα 
 inf(Ċ1 \α) < ηα. Let ~B′ be the diagonal intersection of the
sequences ~Bα, and write κα for κpα , so that pα = (pα�κα, ~Bα�κα)_

(
κ, κα, ~Bα�κα

)
.

Since D ~B′ is stationary by hypothesis, there is a cardinal λ ∈ D
~B′ such that

κ̄ < λ and ηα, κα < λ for each α < λ. Set p′ = add((p, ~B′), λ). Then p′ ≤ p and
p′ forces that λ is inaccessible in V [Ċ].

I claim that p′ forces that λ is a limit point of Ċ1, and hence is a member of Ċ1.
Suppose to the contrary that there is a condition p′′ ≤ p′ so that p′′ 
 Ċ1 ∩ λ ⊂ α
for some α < λ. By increasing α if necessary, we can assume that α ≥ dp′′�λe.
Since pα ≤∗ p, and since dp′′�λe < bpαc < κα < λ there is a p′α ≤∗ pα, with the
same domain as pα, so that

p′′′ = p′′�λ_p′α�κ_
(
λ, κα, ~Bα

)
_p′′�λ ≤ p′′.

Also, p′′′ ≤ pα, since by the definition of add(p, λ) the ordinal κ′ = κp′ is large

enough that λ ∈ D
~B′�κ′
β where β = dpα�λe. It follows that p′′′ 
 inf(Ċ1 \ α) ≤

ηα < λ, contrary to the choice of α. Thus λ is a limit point of C1.
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Sufficiency for weakly compact cardinals. We need introduce some further
notation before showing that κ has the tree property in V [C]. If p ∈ Rκ+1 and p =
p�κp_

(
κ, κp, ~B

)
then we write L(p) for (p�κp, κp), which we call the localization of

p. We write τ ~B for the converse operation: if τ = (p, η) then τ
~B = p_

(
κ, η, ~B�η

)
.

Let T be an arbitrary tree in V [C] such that each level and each branch of T has
size less than κ. We will show that T has height less that κ. We can assume that the
universe of T is contained in κ. Let CT = { ν : Tν ⊂ ν }, where Tν is the set of nodes
of T of height less than ν. Then there is a measure one sequence ~B = ~BT such that
if ν < ν′ < κp then p 
 ν <T ν′ if and only if L(p)~B 
 ν <T ν′, and p 
 ν ∈ CT if
and only if L(p)~B 
 ν ∈ CT . We will write T̃ for { (ν, ν′, L(p)) : p 
 ν′ < ν }, and
C̃T for { (ν, L(p)) : p 
 ν ∈ CT }.

We will represent arbitrary subsets of κ similarly: we say that a pair (Ã, ~BA)
represents the set A = { ν : ∃(ν, τ) ∈ Ã (τ ~B

A ∈ G) } where G = G(C). Notice that
for any subset A of κ there is a pair (Ã, ~BA) which represents A, and furthermore
the subsets of κ which are contained in a branch of T are exactly those sets A
which can be represented by a pair (Ã, ~BA) which satisfy the following first order
conditions over the structure (Vκ, Ã, ~BA, T̃ , C̃, ~B):

1. ~BA ⊂ ~BT .
2. ∀(ν, τ0) ∈ Ã∀τ1 (τ ~B

A

1 ≤ τ ~BA0 =⇒ (ν, τ1) ∈ Ã).
3. ∀ν < ν′ < κ∀τ ((ν, τ) ∈ Ã and (ν′, τ) ∈ Ã =⇒ (ν, ν′, τ) ∈ T̃ ).

We need a Π1
1 formula in V which asserts that 
 Ṫ has no branches of length κ.

The formula will assert that no pair (Ã, ~BA) represents a subset of a branch of size
κ, so we need to verify that the assertion that “p0 forces that A = { ν : ∃(ν, τ) ∈ Ã :
τ
~BA ∈ G } is bounded in κ” can be stated by a first order formula over Vκ which

will have the same meaning over Vλ for any λ ∈ D ~BT . Note that we can assume
that every such λ is weakly compact.

We state the following claim for arbitrary weakly compact λ, with the same
notation as for κ. If Y ⊂ Rλ+1 then we write Y− for { p : p 
 G ∩ Y = ∅ }.

Claim 5.5. Suppose λ is weakly compact in V , and that (Xν : ν < λ ) is a sequence
of subsets of Rλ+1 such that L[Xν] = {L(p) : p ∈ Xν } is uniformly first order
definable over Vλ. Then L[(

⋃
ν<λXν)−] is first order definable over Vλ.

Proof of claim. In order to determine whether an given localization τ is in
L[(
⋃
ν<λXν)−], we define a tree Sτ . A node of Sτ of height η < λ is a mea-

sure one sequence ~Y defined on the interval (0, η), such that for no ν < η is there a
condition p ∈ Xν with L(p) ∈ Vη and p ≤ τ

~Y_ ~B�η. Note that S is definable from
the sequence of sets L[Xν ] for ν < λ. Furthermore a condition p with L(p) = τ such
that p 
 G ∩

⋃
ν<λXν = ∅ corresponds to an unbounded branch

(
~Bp�η : η < κ

)
through Sτ . Thus τ is in L[(

⋃
ν<λXν)−] if and only if Sτ has an unbounded branch,

and since λ is weakly compact this holds iff the tree Sτ has height λ, which is a
first order statement about τ in Vλ.

Now set Xν = { τ : (ν, τ) ∈ Ã }. Then Yν = L[(
⋃
ν′>ν Xν′)−] is the set of localiza-

tions L(p) such that p 
 Ȧ ⊂ ν, and Y = L[(
⋃
ν Yν)−] is the set of localizations L(p)

such that p 
 Ȧ is unbounded. Thus Y is first order definable, but Y is empty if and
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only if 
 sup(Ȧ) < λ. Thus there is a Π1
1 formula Φ such that (Vκ, T̃ , C̃, ~BT ) |= Φ

if and only if 
 Ṫ has no unbounded branches.
Now, since D ~BT is in the weakly compact filter in V , there is λ ∈ D ~BT such that

(λ, T̃ ∩ Vλ, ~BT �λ, C̃ ∩ Vλ) ≺ (κ, T̃ , ~B, C̃),(15a)

(λ, T̃ ∩ Vλ, ~B�λ, C̃ ∩ Vλ) |= Φ.(15b)

Let p′ = add(p, λ), and for arbitrary τ write τ ~B,λ = add(τ ~B , λ). Then τ ~B,λ ≤ p′,
and τ0 ≤ ~B τ1 iff τ

~B,λ
0 ≤ τ

~B,λ
1 . It follows that p′ forces that Tλ and CT are

represented by T̃ ∩ Vλ, C̃ ∩ Vλ, and ~B�λ just as T and CT are represented by T̃

and ~B. In particular, (15a) implies that Tλ ⊂ λ. Finally, (15b) implies that Tλ has
no branches of length λ. It follows that T has no branches of length λ, so T has
height at most λ.

Sufficiency for Ramsey cardinals. For this proof we need to modify the forcing
Rκ+1 slightly by adding a new recipe, Q0

γ , which is defined only for measurable
cardinals γ with o(γ) = 1. An instance of this recipe is indicated by a triple
(γ,A, ~f) where A ∈ Uγ and ~f is a sequence of functions fn with domain A such
that if η ∈ A then fn(η) is an η-closed condition in Rη,γ . The closed set Cp of γ
added by a condition p = (γ,A, ~f) has the form

⋃
n<ω Cfn(αn) where {αn : n < ω }

is a Prikry sequence in γ. A basic non-direct extension (corresponding to clause 3
of definition 2.12) has the form

f0(α)_(γ,A \ df0(α)e, 〈fn : 1 ≤ n < ω〉) ≤ (γ,A, ~f).

Note one significant difference between Q0
γ and Qγ : the former does not include

the Prikry sequence in C, while the latter does. Note that a condition of the form
p_(γ,A, ~f)_(λ, λ̄) forces that for each n the generic set G(C) contains a condition
p_f0(γ0)_ . . ._fn(γn)_(λ, dfn(γn)e).

Let C ⊂ κ be generic for this modified version of Rκ+1, and suppose ḣ is a name
for a function h : [κ]<ω → 2 in V [C]. We will find a set I∗ ∈ [κ]κ in V [C] which is
homogeneous for h.

Fix ~B0 so that if ν < dpe and p 
 ḣ(~ν) = i then L(p)~B
0 
 ḣ(~ν) = i, and

define the function h̃ by h̃(τ, ~ν) = i if τ ~B
0 
 h(~ν) = i. Now let I ∈ D+ be a set

of indiscernibles in V for the structure S = (Vκ, h̃, ~B0), using, as in the proof of
lemma 5.4, Silver’s trick of picking the set I with the smallest possible ωth member
so that I is normal in the following sense: if λ ∈ [I]n, x ∈ Vλ0 , and τ(x,~λ) < λ0

where τ is any function which is first order definable (without parameters) in S,
then τ(x,~λ′) = τ(x,~λ) for every ~λ′ ∈ [I \ λ0]n.

We will define a measure one sequence ~Bω ⊂ ~B0, along with conditions tγ for
γ in a cofinal set T ⊂ κ, with the following property: Define pk(λ̄, ~λ,~γ) to be the
condition

(16)
(
λk, λ̄, ~B

ω
)
_tγk

_
(
λk−1, γk, ~B

ω
)
_tγk−1

_ . . .

_
(
λ1, γ2, ~B

ω
)
_tγ1

_
(
κ, γ1, ~B

ω
)

for any sequence ~λ ∈ [I]k and ~γ ∈ [T ]k such that

λk < γk < λk−1 < γk−1 < · · · < λ1 < γ1 < κ.(17)
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Then for each k ∈ ω there is a set X ⊂ Pκ of conditions such that (i) for each
λ ∈ I, the set of conditions p ∩ (λ, λ, ~B) with p ∈ X is dense below (0, λ, ~Bω), and
(ii) if p ∈ X then there is some i ∈ {0, 1} such that p_pk(dpe, ~λ,~γ) 
 ḣ(~λ) = ı̌ for
any ~λ ∈ [I \ dpe]k and ~γ ∈ [T ]k satisfying (17).

Assume that we have defined the sequence ~Bω and conditions tγ , and define I∗

to be the set of cardinals λ ∈ I such that G(C) contains a condition including a
sequence (λ, λ, ~Bω)_tγ for some λ < λ and γ ∈ T \ λ + 1. The following claim
then completes, modulo the construction of ~Bω and tγ , the proof of sufficiency for
Ramsey cardinals:

Claim 5.6. The set I∗ is a set of cardinality κ which is homogeneous for h.

Proof of claim. To see that I∗ is homogeneous, notice that if ~λ ∈ [I∗]k then there
is a witnessing sequence ~γ and a condition p ∈ Rλk such that p_pk(~λ,~γ) ∈ G(C)
and p_pk(~λ,~γ) forces h(~λ) = i for some i ∈ {0, 1}. Then any other sequence
~λ′ ∈ [I∗]k also has a witnessing sequence ~γ′ ∈ [T ]k such that p_pk(~λ′, ~γ′) ∈ G(C),
and p_pk(~λ′, ~γ′) also forces ḣ(~λ′) = ı̌.

To see that |I∗| = κ, let p = p0
_(κ, κ̄, ~B) ≤ p0

_(κ, dp0e, ~B0) be arbitrary, and
suppose κ < α < κ. Since I ∈ D+, we can find a cardinal λ ∈ I ∩D ~B

α , and since T
is unbounded in κ we can find a cardinal γ ∈ T \(λ+1). Then, using lemma 4.3, we
can find a condition t′γ ≤∗ tγ so that p′ = p0

_
(
λ, α, ~Bω

)
_t′γ

_
(
κ, γ, ~B

)
≤ p. Then

p′ 
 λ ∈ I∗ \ α, and since α and p′ were arbitrary it follows that I∗ is unbounded
in κ.

We construct tγ and ~Bω out of simpler components, working down towards the
bottom level where the components are definable in the structure S.

First, tγ = (γ,A, ~f) is an instance of the recipe Q0
γ , where

T = { γ : o(γ) = 1 and γ =
⋃

(I ∩ γ) },
fn(ν) = τn(inf(I \ ν)),

A = { ν < γ : o(ν) = 0 and
⋃
n

fn“ν ⊂ Vν and ν =
⋃

(I ∩ ν) }.

Notice that the hypothesis I ∈ D+ implies that T is cofinal in κ.
Down one more level, set

τn(λ) =
∧

n≤s<ω
τsn(λ),

~Bω =
⋂
n<ω

~Bn.

Here 〈τ in(λ) : n ≤ i < ω〉 will be a ≤∗-descending sequence of λ-closed conditions
in Rλ,κ.

This is the bottom level, and the conditions ~pk(λ̄, ~λ,~γ) of (16) derive their
properties from the components τni (λ) and ~Bn. To make this more precise, write
τn(~λn) = τn1 (λn1 )_ . . ._τnn (λnn) and

pn(λ̄, ~λn, . . . , ~λ1) =
(
λn0 , λ̄,

~Bn
)
_τn(~λn)_

. . ._
(
λ1

0, dτ2(~λ2)e, ~Bn
)
_τ1(~λ1)_(κ, dτ1(~λ1)e, ~B0),
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where 〈λmi : 0 ≤ i ≤ m ≤ n〉 is any sequence in [I]n(n+3)/2 such that

λn0 < · · · < λnn < λn−1
0 < · · · < λ1

0 < λ1
1 < κ.(18)

Notice that the condition pk(λ̄, ~λ,~γ) forces that pk(λ̄, ~λk, . . . , ~λ1) ∈ G(C) for some
sequences ~λn, . . . , ~λ1 satisfying (18) such that λm = λm0 for each 1 ≤ m ≤ k.

Also notice that the fact that pn is definable in S, together with the fact that the
sequence of parameters is from I, automatically implies that their properties are
independent of the choice of ~λn, . . . , ~λ1. Hence the derived properties of pk(λ̄, ~λ,~γ)
are independent of the choice of ~λ and ~γ.

In order to define the function pn by recursion on n, we actually require a
stronger property than the property needed for pκ(λ̄, ~λ,~γ):

We will say that a condition p fully decides h for ~λ if, setting η = bpc, one of
the following two conditions is satisfied for each ~ν ∈ [η]<ω and p′ ∈ Rη:

1. p′_p 
 ḣ(~ν_~λ) = ı̌ for some i ∈ {0, 1}.
2. If p′′ ≤ p is any condition such that p′_p′′ 
 ḣ(~ν,~λ) = ı̌ for some i ∈
{0, 1}, then p has an instance of the recipe Pγ at γ = inf(domain p), and
p′_p′′�γ_p 
 ḣ(~ν_~λ).

The last expression is slightly sloppy, in that p should be modified so that bpc =
dp′′�γe.

We will maintain as a recursion hypothesis that, for any λ̄ < λn0 , the conditions
pn(λ̄, ~λn, . . . , ~λ1) fully decide h for ~λ =

(
λn0 , . . . , λ

1
0

)
and, in addition, if 1 ≤ i ≤ n

then the intermediate condition

τni (λni )_ . . ._τnn (λnn)_pn−1(dτnn (λnn)e, ~λn−1, . . . , ~λ1)(19)

fully decides h for 〈λn−1
0 , . . . , λ0

0〉.
We take p0(λ̄) = (κ, λ̄, ~B0) where the sequence ~B0 was defined at the beginning

of the proof. Now suppose that the functions ~Bk and τki for i ≤ k < n have been
defined so that pn−1(λ̄, ~λn−1, . . . , ~λ1) fully decides h for ~λ =

(
λn−1

0 , . . . , λ1
0

)
.

First, taking i = n in (19), use lemma 4.6 to define τnn (λnn) to be the least λnn-
closed condition in Rλnn,λ

n−1
0

such that (19) fully decides h for ~λ for all λ̄ < λnn.
Now successively define the terms τni (λni ) ≤∗ τn−1

i (λni ), in decreasing order of the
integers i in the interval n > i > 0, so that (19) continues to fully decide h for ~λ.
This construction uses the fact that τn−1

i (λni ) is a λni -closed condition. For each
condition p′, the condition (19) will either satisfy clause 1 or will satisfy clause 2
vacuously.

Finally, complete the definition of pn(λ̄, ~λn, . . . , ~λ1) by defining ~Bn(λn0 ) so that
if λ̄ < λn0 then pn(λ̄, ~λn, . . . , ~λ1) fully decides h for 〈λn0 , . . . , λ1

0〉. The sequence
~Bn(λn0 ) is constructed as a diagonal intersection 4p,~ν ~Bp,~ν where ~Bp,~ν ⊂ ~Bn−1�λn0
is chosen so that the condition

p_
(
λn0 , dpe, ~B~p,~ν

)
_τn0 (λn0 )_ . . ._τnn (λnn)_pn−1(dτnn (λnn)e, ~λn−1, . . . , ~λn)

decides, if possible, the value of h(~ν,~λ).
This completes the definition of the conditions τni (λni ) and sequences ~Bn, and

hence of the conditions tγ and sequences ~Bω. The definition of τni (λni ) appears to
depend on the larger ordinals in the sequence 〈~λn, . . . , ~λ1〉; however because all of
the ordinals λmj are members of I and the definition can be carried out in S, the
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normality of the set I of indiscernibles implies that τni (λni ) actually depends only
on the ordinal λni .

This choice of τni (λ) and ~Bn ensure that the conditions pk(λ̄, ~λ,~γ) of (16) have
the required properties, and hence the set I∗ constructed from them is a set of
indiscernibles for h in V [C]. Since h was arbitrary, it follows that κ is Ramsey in
V [C]. This completes the proof of sufficiency of the condition for Ramsey cardinals,
which is the last part of the proof of theorem 5.3.

Another direction in which the ideas of [2] and of this paper could be extended
would be by strengthening the requirements on C. Replacing E with a smaller
class E′ doesn’t give anything new: It is straightforward to verify that the results
hold true for any E′ ⊂ E, so long as o(λ) is calculated using only measures U
such that E′ ∩ crit(U) ∈ U . A more ambitious idea would be to ask that C
be eventually contained in every member of an appropriate filter. The following
theorem shows that this is routine, at least for Gitik’s result about the preservation
of an inaccessible cardinal, for the filter generated by the closed unbounded filter
together with the set E of inaccessible cardinals:

Theorem 5.7. If κ ∈ D then there is a generic extension V [C] of V such that κ
is regular in V [C] and C is a closed and unbounded subset of κ which contains only
regular cardinals of V and which is eventually contained in every closed, unbounded
subset of κ in V .

Proof. We use a modification R′′κ+1 of the forcing R′κ. Instead of using an instance
of the recipe Pκ, we use a recipe P ′′κ which has instances of the form (κ, c) where c
is a closed unbounded subset of κ. The ordering for P ′κ is the same as that for Pκ
in R′κ except for the added condition that p_(κ, c′) ≤ (κ, c) holds only when c′ ⊂ c
and p 
 Cp ⊂ c.

Clearly the result of this forcing is a closed and unbounded set C ⊂ κ with the
required property. Indeed, all of the arguments of section 3 can easily been seen to
extend to this forcing, with the possible exception of lemma 3.1. Thus we will look
at the proof of lemma 3.1.

Let (κ, c) be an arbitrary condition, and let (Dξ : ξ < τ ) be a sequence of open
dense subsets of R′′τ,κ. Let γ and Yγ be such that o(γ) = τ , Yγ ≺ Hκ++ with
|Yγ | = γ = κ∩Yγ , and all of the relevant sets are members of Yγ . We want to find a
condition (γ,A, h)_(κ, c′) such that if ξ < τ then { p ≤ (γ,A, h) : p_(κ, c′) ∈ Dξ }
is dense in R′′/(γ,A, h).

For each p ∈ R′′γ there is a closed and unbounded subset cp of κ so that for all
ξ < τ , either p_(κ, cp) ∈ Dξ or else there is no closed and unbounded c′ ⊂ κ so
that p_(κ, c′) ∈ Dξ. Since Yγ ≺ Hκ++ , we can take the function p 7→ cp to be in
Yγ . Set c′ = 4p∈R′′γ cp. Then c′ ∈ Yγ and c′∩γ is a closed and unbounded subset of
γ. Set A = { ν ∈ c′ ∩ γ : o(γ) < τ } and define h in Yγ as in the proof of lemma 3.1,
so that for all ν ∈ A,


R′′ν+1

(
h(ν) ⊂ c′ and ∀ξ < τ∃p̄ ∈ G(C ∩ ν+1)∃c̄ p̄_h(ν)_(κ, c̄) ∈ Dξ

)
.

Then, just as in lemma 3.1, the condition
(
γ, (A, h)

)
_
(
κ, c′

)
forces that

G(C ∩ γ) ∩ Dξ 6= ∅ for all ξ < τ .

It is natural to ask whether theorem 1.1 can similarly be extended to give a model
V [C] in which κ is measurable, C ⊂ E, and C generates the closed unbounded filter
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of V . Radin forcing, using a stronger hypothesis, does provide such a model. In
fact the set C given by Radin forcing has the apparently stronger property that it
generates the filter

⋂
β<o(κ) U(κ, β) of V .

A measure U = U(κ, δ) is called a weak repeat point if for all B ∈ U there is
β < δ such that B ∈ U(κ, β). The following theorem is essentially due to Radin
([9], see also [8]):

Theorem 5.8. If there is a weak repeat point on κ in V , then Radin forcing can
be used to obtain a closed and unbounded set C ⊂ κ so that κ is still measurable in
V [C] and C \ x is bounded for every set x ∈

⋂
β<o(κ) U(κ, β).

The existence of a weak repeat point is weaker than o(κ) = κ++, but much
stronger than o(κ) = κ+.

The following theorem shows that in this case the result using Radin forcing is
the best possible: not only can the hypothesis not be weakened, but if C generates
the closed unbounded filter then it necessarily generates the filter

⋂
β<o(κ) U(κ, β)

of V .

Theorem 5.9. If κ is measurable and there is a closed unbounded subset C of κ
which is almost contained in every closed unbounded set X ∈ K, then there is a
weak repeat point on κ in K.

Proof. The key observation is that, like a Radin generic set, C is eventually con-
tained in every set X ∈

⋂
β<o(κ) U(κ, β). To see this, let U be the measure on κ in

V and let i : V → M = ult(V, U). By the covering lemma, i�K : K → KM is an
iterated ultrapower, so let I be the set of indiscernibles for measures on i(κ) in KM

generated by this iteration. Thus I = { jα(κ) : α < θ } where (Kα : α < θ ) are the
models in the iterated ultrapower and jα : K = K0 → Kα are the associated em-
beddings, with i�K = jθ. Then I ⊂ i(X) for any set X ∈

⋂
β<o(κ) U(κ, β), so it is

sufficient to show that i(C)\κ ⊂ I. Suppose to the contrary that ν ∈ i(C)\ (κ∪I).
Then there is some n < ω, some function f : [κ]n → κ in K, and some sequence
~c ∈ [ν]n so that ν ≤ i(f)(~c).

Now let X ′ = { ξ < κ : f“[ξ]n ⊂ ξ }, so that ν /∈ i(X ′). But X ′ is a closed and
unbounded subset of κ, so C \X ′ is bounded in κ and hence i(C) \κ ⊂ i(X ′). This
contradicts the assumption that ν ∈ i(C) \X ′, and this contradiction finishes the
proof of the claim.

Now let U(κ, β) be the first ultrafilter used in the iterated ultrapower, so that
U ∩K = U(κ, β). We now finish the proof of the theorem by showing that U(κ, β)
is a repeat point. Suppose to the contrary that B ∈ U(κ, β) but B /∈ U(κ, β′) for
any β′ < β. By replacing B if necessary with B′ = { ν ∈ B : ∀γ < o(ν)B ∩ ν /∈
U(ν, γ) } ∈ U(κ, β) we can assume that B /∈ U(κ, β′) for all β′ 6= β. Furthermore
C ∩B is unbounded in κ, since κ ∈ i(C)∩ i(B) = i(C ∩B). Now if A ∈ PK(κ) then
A ∈ U(κ, β) if and only if A∪(κ\B) ∈

⋂
γ<o(κ) U(κ, γ), and this holds if and only if

C \(A∪(κ\B)) is bounded in κ, that is, if and only if C∩B is eventually contained
in A. Since C∩B ∈M it follows that U(κ, β) ∈M , and hence U(κ, β) ∈ KM . This
is impossible, since U(κ, β) /∈ K1 = ult(K,U(κ, β)), and this contradiction shows
that β is a repeat point.
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