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MAXIMAL SEMIGROUPS IN SEMI-SIMPLE LIE GROUPS

LUIZ A. B. SAN MARTIN

Abstract. The maximal semigroups with nonempty interior in a semi-simple
Lie group with finite center are characterized as compression semigroups of
subsets in the flag manifolds of the group. For this purpose a convexity theory,
called here B-convexity, based on the open Bruhat cells is developed. It turns
out that a semigroup with nonempty interior is maximal if and only if it is the
compression semigroup of the interior of a B-convex set.

1. Introduction

The purpose of this paper is to characterize the maximal semigroups with non-
empty interior in semi-simple Lie groups with finite center. The main result is
Theorem 5.4 which gives a precise description of the maximal semigroups through
their actions on the flag manifolds of the group.

When studying semigroups embedded into groups many different questions have
a natural formulation and solution by means of the knowledge of the maximal
semigroups on a specific group. This makes the problem of determining the maximal
semigroups one of the major ones in the theory of semigroups. For semigroups in Lie
groups J. Lawson [8], appealing to the Levi decomposition of a Lie algebra, divided
the task of classifying – or at least understanding – the maximal semigroups, by
considering two main classes namely the semigroups of solvable type and those of
semi-simple type, according to the kind of Lie group containing them. In order
to understand the maximal semigroups in a general Lie group G it is required to
have a classification of these two types, and then mix them up in G. In [8] Lawson
himself provided a classification of the maximal semigroups with nonempty interior
in solvable groups: There is a one-to-one correspondence between the maximal
subsemigroups and the half-spaces in the Lie algebra bounded by a hyperplane
subalgebra. Thus for solvable groups the maximal semigroups have an algebraic
nature. This classification is extended to compact extensions of solvable groups in
[8] (see also Hilgert and Neeb [6]), and to semigroups in lattices of solvable groups
(see do Rocio and San Martin [11]).

In a semi-simple Lie group G with finite center it was proved in San Martin
and Tonelli [14] that any maximal semigroup S ⊂ G with nonempty interior is a
compression semigroup of a subset C of one of the minimal flag manifolds of G:

S = SC = {g ∈ G : gC ⊂ C}.
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However, in order to have a complete picture of the maximal semigroups in G, it is
required to find the appropriate family of sets C such that SC is indeed maximal. In
[14] this was done only for the real rank one simple Lie groups. Here we provide the
appropriate sets for general semi-simple groups, generalizing the rank one case. The
approach is through a convexity theory for subsets of the flag manifolds. Precisely,
we say that a subset of a flag manifold is B-convex if it is the intersection of all open
Bruhat cells containing it. This notion of convexity is formally defined by a convex
hull operator on subsets. This operator, in turn, comes from a duality operator
mapping subsets of a flag manifold into subsets of the dual flag manifold. Having
settled this convexity theory we prove that a semigroup with nonvoid interior in
G is maximal if and only if it is the compression semigroup of the interior of a B-
convex set in a minimal flag manifold. We point out that the same characterization
also holds for partial maximal semigroups in the following sense: In [14] it was
established that there are different classes of semigroups with nonempty interior in
a semi-simple Lie group, namely, one class for each flag manifold of the group (see
Section 4 below). A partial maximal semigroup (called Θ-maximal) is a semigroup
which is maximal within the class given by a flag manifold. These partial maximal
semigroups are also described by compression of B-convex sets, but in this case on
flag manifolds different from the minimal ones.

In some simple examples, the B-convex sets are rather arbitrary subsets. For
instance in a real rank one group any nonempty subset of the flag manifold is
B-convex. Although in general the B-convex sets are not as trivial as that, their
defining conditions are quite faint, reflecting in the existence of a great profusion
of nonconjugate maximal semigroups. This richness is in the realm of the structure
of semi-simple Lie groups. It can be revealed with a further understanding of the
B-convex sets.

2. Preliminaries

In this section we give the notations and basic facts about semi-simple Lie alge-
bras and the associated flag manifolds which are used throughout the paper.

Let g be a noncompact semi-simple Lie algebra. We make the following standard
choices in g. Let θ be a Cartan involution of g and g = k⊕ s the associated Cartan
decomposition with k standing for the subalgebra of θ-fixed points. Select a maximal
abelian subalgebra a ⊂ s and let Π be the set of restricted roots of the pair (g, a).
For a root α ∈ Π, its root space is denoted by gα. Choose a simple system of roots
Σ ⊂ Π and denote by Π+ the set of positive roots spanned by Σ. We let a+ stand
for the Weyl chamber associated to Π+ and

n± =
∑
α∈Π±

gα

for the nilpotent subalgebras associated with Π+ and Π− = −Π+, respectively.
Denote by m the centralizer of a in k.

The subalgebra p = m ⊕ a ⊕ n+ is the standard minimal parabolic subalgebra
of g. More generally, if Θ 6= Σ is a subset of Σ we denote by pΘ the parabolic
subalgebra

pΘ = n− (Θ)⊕ p.

Here n− (Θ) is the subalgebra spanned by the root spaces g−α, α ∈ 〈Θ〉, where 〈Θ〉
is the set of positive roots generated by Θ. Of course, p = p∅.
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Let G be a Lie group with Lie algebra g. We assume always that G has finite
center. In this case the subgroup K = exp k is compact. For g ∈ G and X ∈ g

we put g · X for the adjoint action of g in X . The parabolic subgroup PΘ is the
normalizer of pΘ in G:

PΘ = {g ∈ G : g · pΘ = pΘ}.
Its Lie algebra is pΘ. The flag manifold BΘ = G/PΘ is realized as the set {g · pΘ :
g ∈ G} of parabolic subalgebras conjugate to pΘ. Alternatively, let n

+
Θ stand for the

nilpotent radical (nilradical) of pΘ. Explicitly, n
+
Θ =

∑
α gα with the sum extended

through the positive roots outside 〈Θ〉. It is well known that the normalizer of n
+
Θ

in g and G are pΘ and PΘ, respectively. Hence BΘ is realized also as the subset
{g · n+

Θ : g ∈ G} of subalgebras conjugate to n
+
Θ. We denote the maximal flag

manifold B∅ simply by B.
From these standard constructions the set of flag manifolds becomes parameter-

ized by the proper subsets of the fixed simple system of roots Σ. If Θ1 ⊂ Θ2 are
subsets of Σ then PΘ1 ⊂ PΘ2 so there exists a natural fibration BΘ1 → BΘ2 given
by gPΘ1 → gPΘ2 . The maximal flag manifold B fibers over all BΘ. We denote
these fibrations by π, indistinctly of the specific flag manifolds. If they are to be
emphasized the projection is written πΘ1

Θ2
: BΘ1 → BΘ2 .

In the sequel the notion of the flag manifold dual to BΘ will be required: Let W
be the Weyl group of G and denote by w0 ∈ W its principal involution, that is, the
element of maximal length as a product of reflections with respect to the simple
roots in Σ. Alternatively w0 is the only element of W such that w0 (Σ) = −Σ.
Put ι = −w0. Then ι (Σ) = Σ, so that it is an involutive automorphism of the
Dynkin diagram associated with Σ. For the sake of simplicity we write Θ∗ = ι (Θ),
if Θ ⊂ Σ. The flag manifold BΘ∗ is said to be dual to BΘ.

Put N± = exp n±. The decomposition of BΘ into the N−-orbits is the Bruhat
decomposition of BΘ. These orbits are given by N−w · pΘ, with w ∈ W , so that
its number is |W/WΘ| where WΘ stands for the subgroup of W generated by the
reflections with respect to the simple roots in Θ. Just one of these orbits is open
and dense in BΘ, namely N− · pΘ. We refer to this orbit as an open (Bruhat)
cell in BΘ. This open cell has an alternative description through incidence with
a nilpotent subalgebra, which will be largely used in the sequel. Let n

−
Θ be the

nilpotent subalgebra spanned by the root spaces complementary to pΘ in g:

n
−
Θ =

∑
α

gα

with the sum extended through the negative roots outside −〈Θ〉. Since the Cartan
involution θ takes a root α into −α, it follows that n

−
Θ = θ

(
n

+
Θ

)
. Also, n− = θ (n+)

and n+ normalizes n
+
Θ hence n

−
Θ is normalized by n− and thus by N−.

Lemma 2.1. For a parabolic subalgebra q ∈ BΘ the following statements are equiv-
alent:

1. q belongs to the open cell N− · pΘ,
2. q ∩ n

−
Θ = 0, and

3. n ∩ n
−
Θ = 0 where n is the nilradical of q.

Proof. Take w ∈ W with w · pΘ 6= pΘ. Then dim
(
w · pΘ ∩ n

−
Θ

)
≥ 1 since w

interchanges root spaces, dim
(
w · pΘ ∩ n

−
Θ

)
≥ 1. Now N− normalizes n

−
Θ. Hence

N− ·
(
w · pΘ ∩ n

−
Θ

)
⊂ n
−
Θ
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therefore any q ∈ N−w · pΘ has nontrivial intersection with n
−
Θ. On the other hand

if q = n · pΘ with n ∈ N−, then q ∩ n
−
Θ = 0 for otherwise n−1 ·

(
q ∩ n

−
Θ

)
= pΘ ∩ n

−
Θ

would have positive dimension. This shows the equivalence between the first two
statements.

The last equivalence follows the same way from the fact that w · n+
Θ ∩ n

−
Θ 6= 0 if

w · pΘ 6= pΘ (see Warner [15], Theorem 1.2.4.8).

In the sequel we say that a subset σ ⊂ BΘ is an open cell if σ = g (N− · pΘ) for
some g ∈ G. Of course any such open cell is the open orbit of a group conjugate to
N−. By the above lemma an open cell is realized as the set of parabolic subalgebras
q ∈ BΘ which have null intersection with a conjugate of n

−
Θ. Now we recognize the

set of conjugates of n
−
Θ.

Lemma 2.2. The set of subalgebras G · n−Θ identifies with the flag manifold BΘ∗

dual to BΘ.

Proof. Since n
−
Θ = θ

(
n

+
Θ

)
this is the nilradical of the parabolic subalgebra θ (pΘ).

Hence the conjugates of n
−
Θ are in one-to-one correspondence with a flag manifold

BΘ′ . To see that Θ′ = Θ∗ observe that the restriction of w0θ to a is the involution
ι. Hence w0θ (pΘ) = pΘ∗ . Therefore the set of conjugates of θ (pΘ) is BΘ∗ and thus
this is the flag manifold of the conjugates of n

−
Θ.

Notation. The set of open Bruhat cells in BΘ is denoted by BΘ and its bijection
with BΘ∗ by x ∈ BΘ∗ 7→ σx ∈ BΘ, where σx is the set of parabolic subalgebras in BΘ

transversal to the nilradical of x. The complement of σx is denoted by κx = BΘ\σx.

The following properties of the open cells are readily seen from the definitions.

Lemma 2.3. Take g ∈ G and x ∈ BΘ∗ . Then gσx = σgx and gκx = κgx. Also,
any projection π : BΘ → BΘ′ is equivariant so that π (σ) ∈ BΘ′ if σ is an open cell
in BΘ.

From Lemma 2.1 it follows that if p ∈ BΘ and q ∈ BΘ∗ , then p ∈ σq if and only
if nil (p) ∩ nil (q) = 0 where nil (p) stands for the nilradical of p. This implies the
following statement at once.

Proposition 2.4. Let x ∈ BΘ and y ∈ BΘ∗. Then x ∈ σy if and only if y ∈ σx.

Now we discuss the regular elements and their actions. We say that an element in
g (respectively in G) is split-regular if it is conjugate to some H ∈ a+ (respectively
h ∈ A+ = exp a+). More generally, X ∈ g will be said to be Θ-regular if it is
conjugate to H ∈ cl (a+) such that

Θ = {α ∈ Σ : α (H) = 0}.
Analogously, g ∈ G is Θ-regular if g = expX with X a Θ-regular element of the
Lie algebra. Of course, split-regularity and ∅-regularity are the same thing. Let
h = expH ∈ A+ be Θ′-regular. Then the eigenvalues of its adjoint Ad (h) in n

−
Θ

are < 1 if Θ′ ⊂ Θ. This implies that hk · q→ pΘ, as k → +∞, for any q ∈ N− · pΘ.
In other words, the open cell N− · pΘ is a stable manifold for the action of h in BΘ,
having pΘ as attractor. The existence of such stable manifold is carried over to an
arbitrary Θ′-regular element using the fact that it is conjugate to some h ∈ A+:

Lemma 2.5. If h ∈ G is Θ′-regular then for any flag manifold BΘ, with Θ′ ⊂ Θ
there exists x ∈ BΘ and σ ∈ BΘ with x ∈ σ and such that hiy → x, i → +∞, for
all y ∈ σ.
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With the notations of this lemma we say that x is the attractor of h and σ
its stable manifold. In particular split-regular elements have attractors and stable
manifolds in any flag manifold. We denote by σ (h) the stable manifold of the
regular element h.

More generally for a split-regular h its set of fixed-points in the maximal flag
manifold B is in bijection with W . These fixed-points are the same for every
element in the Weyl chamber A+ containing h. Hence each Weyl chamber settles
a bijection of W with a subset of B. The bijection is unique if we require that the
identity 1 ∈ W goes to the attractor of h ∈ A+. In order to emphasize which Weyl
chamber is under consideration we write WA+ for the image in B of this bijection,
and identify it withW . Using the bijection a fixed-point b of A+ is related to some
w ∈ W . In this case we say that b is the fixed-point of type w of h ∈ A+.

The following lemma shows that for any pair (x, σ) with x ∈ σ one can find a
regular element having x as attractor and σ as stable manifold. It will be used
frequently in the study of maximal semigroups.

Lemma 2.6. Take σ ∈ BΘ and x ∈ σ. Then there exists a Θ-regular element
h ∈ G such that x is its attractor and σ = σ (h).

Proof. Let b0 be the base point of BΘ = G/PΘ and σ = N−b0. If Θ′ ⊂ Θ then b0
is the attractor for any Θ′-regular element in the closure of the Weyl chamber A+

and σ is the stable manifold. Given x ∈ σ there exists n ∈ N− such that x = nb0.
So that h1 = nhn−1 has x as attractor and σ as stable manifold if h ∈ clA+ is
Θ′-regular. This shows the lemma for this specific σ. Since G is transitive on BΘ

the lemma follows by conjugation with arbitrary g ∈ G.

3. B-convexity

Roughly speaking a subset C of a flag manifold BΘ is said to be B-convex pro-
vided C is the intersection of all open Bruhat cells containing it. This concept of
convexity is easier to develop with the aid of a convex hull operator on subsets
of the flag manifolds and a duality operator ∗ that assigns to a subset C ⊂ BΘ a
subset C∗ of the dual flag manifold BΘ∗ . Precisely,

C∗ = {x ∈ BΘ∗ : C ⊂ σx}.(3.1)

Of course, this duality operator can be defined also for a subset D ⊂ BΘ∗ giving
rise to its dual D∗ ⊂ BΘ. Hence it makes sense to write C∗∗, which is contained in
BΘ if C ⊂ BΘ. We put coB (C) = C∗∗ and call this subset the B-convex hull of C.

Accordingly C is said to be B-convex if C = coB (C).
Following Goodman and Pollack [4] (see also Goodman [3]) a convex hull operator

co (·) deserving this name must satisfy:
1. C ⊂ co (C) for any subset C,
2. co (·) is the identity on singletons,
3. co (·) is increasing with respect to inclusion of sets, and
4. co (·) is idempotent.
Let us discuss briefly these properties for the B-convex hull operator. For the

first one we distinguish the cases when C∗ is empty. Clearly the dual ∅∗ of the
empty set is the whole dual flag manifold so that coB (C) = C∗∗ = BΘ if C ⊂ BΘ

and C∗ = ∅. Hence C ⊂ coB (C) in this case. On the other hand a nonempty
subset C is said to be admissible if C∗ 6= ∅, i.e., if C ⊂ σy for some y ∈ BΘ∗ . For
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an admissible C its B-convex hull is seen to be the intersection of the open cells
containing it. In fact, C∗∗ = {y ∈ BΘ : C∗ ⊂ σy}. By Proposition 2.4, x ∈ σy if
and only if y ∈ σx. Since C∗ 6= ∅, it follows that y ∈ C∗∗ if and only if y ∈ σx for
all x ∈ C∗. But any Bruhat cell containing C is σx for some x ∈ C∗. Hence for an
admissible subset we have the following alternative definition.

Lemma 3.1. Suppose that C ⊂ BΘ is admissible. Then

coB (C) =
⋂
{σ ∈ BΘ : C ⊂ σ}.(3.2)

Of course this implies that C ⊂ coB (C). Furthermore we note that if C is
B-convex then either C = ∅, BΘ or C is admissible, for otherwise coB (C) = BΘ.

Since it is irrelevant for our purposes here we do not dwell on the B-convexity of
the singletons. We just note that if x, y ∈ BΘ then there exists σ ∈ BΘ with x /∈ σ
and y ∈ σ so that {y} is indeed B-convex. Finally the last two of the above listed
properties follow from the following statements about the duality operator:

Proposition 3.2. For a flag manifold BΘ the following hold:
1. If C1 ⊂ C2 ⊂ BΘ, then C∗1 ⊃ C∗2 .
2. Let C ⊂ BΘ. Then C∗ is B-convex in BΘ∗ .

Proof. 1. Assuming that C1 ⊂ C2, take x ∈ C∗2 . Then C2 ⊂ σx so that C1 ⊂ σx.
This implies that x ∈ C∗1 .

2. If C is not admissible then C∗ = ∅, BΘ∗ and its B-convexity is trivial. Assum-
ing that C∗ 6= ∅ we must check that C∗ = (C∗)∗∗. The inclusion C∗ ⊂ (C∗)∗∗

is equivalent to C∗ ⊂ coB (C∗), showed above. On the other hand take
y ∈ (C∗)∗∗. Then x ∈ σy for every x ∈ C∗∗. In particular x ∈ σy for all
x ∈ C because C is contained in C∗∗. By Proposition 2.4, y ∈ σx, implying
that y ∈ C∗, showing that (C∗)∗∗ ⊂ C∗.

From this proposition we easily get the following properties of the operator
coB (·):
Proposition 3.3. For a flag manifold BΘ the following hold:

1. If C1 ⊂ C2, then coB (C1) ⊂ coB (C2).
2. If C ⊂ BΘ, then coB (C) = coB (coB (C)).

Proof. The first property is a direct consequence of the previous proposition. Also
by the proposition coB (C) is B-convex, so that coB (C) = coB (coB (C)).

3.1. Examples. The examples below illustrate that the B-convex sets may be
either arbitrary sets or sets which resemble the standard convex sets in affine spaces
or in Riemannian manifolds.

1. In case g is a Lie algebra with real rank one there exists just one flag man-
ifold B which is diffeomorphic to a sphere in some dimension. The Bruhat
decomposition of B has two components—the open one and its complement
which is a singleton. Thus B consists of the subsets B\ {x}, x ∈ B. Therefore
any subset of B is B-convex.

2. Let g = sl (n,R). The flag manifolds are the standard manifolds of flags
of subspaces in Rn. In particular the Grassmannians, including the projec-
tive space, are flag manifolds of Lie groups associated with sl (n,R). Let
us focus attention on the Grassmannian Grk (n) of k-dimensional subspaces
of Rn. A direct check of the isotropy subalgebras of the Sl (n,R)-action on
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Grk (n) shows that its dual is the Grassmannian Grn−k (n) of subspaces hav-
ing complementary dimension. In more concrete terms this duality is given
by incidence between k-dimensional and (n− k)-dimensional subspaces of Rn.
Indeed an open cell is the stable manifold of the attractor for the action of a
split regular element h in the group. In the present case h is a diagonalizable
matrix in Sl (n,R) having positive and distinct eigenvalues. If {e1, . . . , en} is
a basis of eigenvectors of h, then the subspace spanned by {e1, . . . , ek} is the
attractor of h in Grk (n). Its stable manifold is easily seen to be the open and
dense subset of k-dimensional subspaces transversal to span{ek+1, . . . , en}.
This implies that for each U ∈ Grn−k (n) its associated open cell is

σU = {V ∈ Grk (n) : V ∩ U = 0},
while κU is the set of k-dimensional subspaces meeting U nontrivially. It
follows that ∅ 6= C ⊂ Grk (n) is admissible if and only if there exists a
(n− k)-dimensional subspace U such that V ∩ U = 0 for all V ∈ C. Note
that as in the case of rank one groups there are rather arbitrary B-convex
subsets in the Grassmannians. In fact, for any admissible D ⊂ Grn−k (n), its
dual D∗ is B-convex in Grk (n).

For k = 1 we can single out a nice class of B-convex sets, namely the
classical convex subsets in the projective space Pn−1: Let W ⊂ Rn be a
pointed convex cone and denote by [W ] the set of lines in Pn−1 contained in
W . Since W is pointed [W ] is admissible. Also, W is the intersection of the
half-spaces in Rn containing it. Hence [W ] is B-convex in Pn−1. Of course,
not every B-convex set is constructed this way from a convex cone.

3. We continue with g = sl (n,R). Let r = (r1 < · · · < rm) be a sequence of
integers with 1 ≤ r1 and rm ≤ n− 1 and denote by F (r) the manifold of flags

(V1 ⊂ · · · ⊂ Vm)

of subspaces of Rn with dimVi = ri. Put r̄ = (n− rm < · · · < n− r1). Then
F (r̄) is the flag manifold dual to F (r). As in the Grassmannian case this can
be seen either by looking at the isotropy subalgebras or by verifying directly
that the open cells are given by incidence between the subspaces in a flag.
Indeed, if U = (U1 ⊂ · · · ⊂ Um) ∈ F (̄r), then

σU = {(V1 ⊂ · · · ⊂ Vm) : Vi ∩ Um−i+1 = 0, i = 1, . . . ,m}
is an open cell in F (r).

3.2. Topology. Up to this point we have considered B-convexity for arbitrary
subsets of the flag manifolds, looking at the incidence of parabolic subalgebras
only. Now we consider some topological properties of the duality and B-convex hull
operators.

Since a flag manifold BΘ is a homogenous space of G, it is endowed with the quo-
tient topology, rendering it a compact metrizable space. This topology is given also
by embedding BΘ in a Grassmannian, either by identifying it with the subalgebras
conjugate to pΘ or to n

+
Θ. Here the topology in a Grassmannian is the standard

one. A basic property of this topology is: Let L be a vector space with dimL = n.
Denote by Grk (L) the Grassmannian of k-dimensional subspaces of L. Suppose
that ξ0 ∈ Grk (L) and η0 ∈ Grn−k (L) are transversal, i.e., ξ0 ∩ η0 = 0. Then there
are neighborhoods A 3 ξ0 and B 3 η0 in Grk (L) and Grn−k (L), respectively, such
that ξ ∩ η = 0 for all ξ ∈ A and η ∈ B.
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Now recall that an open cell σq, q ∈ BΘ∗ , is the set of parabolic subalgebras
in BΘ which are transversal to the nilradical nil (q) of q. Since the dimension of
nil (q) complements the dimension of any p ∈ BΘ, the above transversality property
implies the

Lemma 3.4. Let x0 ∈ BΘ and y0 ∈ BΘ∗ be such that y0 ∈ σx0 (and hence x0 ∈
σy0). Then there are neighborhoods U 3 x0 and V 3 y0 in BΘ and BΘ∗ respectively
such that x ∈ σy (and hence y ∈ σx), for all x ∈ U and y ∈ V .

Another basic property of the topology in the flag manifolds is related to se-
quences in the complements κy of the open cells σy:

Lemma 3.5. Let yj ∈ BΘ∗ be a sequence with lim yj = y. If x ∈ κy then there
exists a sequence xj ∈ κyj such that limxj = x.

Proof. By transitivity of G in BΘ∗ there exists a sequence gj ∈ G with gj → 1 and
such that yj = gjy. The required sequence is xj = gjx. In fact, xj ∈ κyj = gjκy
and xj → x.

From these lemmas we get the following topological properties of the duality
operator which are required in the study of maximal semigroups.

Proposition 3.6. Suppose that C ⊂ BΘ is compact and admissible. Then C∗ is
open.

Proof. Suppose that C 6= ∅ 6= C∗ and take x ∈ C and y ∈ C∗. By Lemma 3.4
above there are neighborhoods Ux 3 x and Vx 3 y such that z ∈ σw for all z ∈ Ux
and w ∈ Vx. By compactness there exists a finite covering

C ⊂ Ux1 ∪ · · · ∪ Uxl .

Then V = Vx1 ∩ · · · ∩ Vxl is a neighborhood of y contained in C∗.

Proposition 3.7. Let C ⊂ BΘ be admissible with intC 6= ∅. Then cl (C∗) ⊂ σx
for all x ∈ intC. Hence cl (C∗) ⊂ (intC)∗ and cl (C∗) is admissible.

Proof. Take x ∈ intC. Let y ∈ cl (C∗) and yj ∈ C∗ be such that lim yj = y. We
must check that x ∈ σy. Suppose to the contrary that x ∈ κy. Then by Lemma 3.5
there exists a sequence xj ∈ κyj with limxj = x. This implies that xj ∈ intC for
large j. But this contradicts the fact that yj ∈ C∗ ⊂ (intC)∗.

Proposition 3.8. Let C ⊂ BΘ be open and such that clC is admissible. Then C∗

is closed and int (C∗) = (clC)∗.

Proof. Since C is open, Proposition 3.7 implies that cl (C∗) ⊂ C∗ so that C∗

is closed. Furthermore, by Proposition 3.2, (clC)∗ ⊂ C∗. But (clC)∗ is open
hence (clC)∗ ⊂ int (C∗). For the reverse inclusion suppose that there exists x ∈
int (C∗) \ (clC)∗. Then x ∈ κy for some y ∈ clC. Take a sequence yj ∈ C such
that lim yj = y. By Lemma 3.5 there exists a sequence xj ∈ κyj with limxj = x.
Hence, for large j, xj ∈ int (C∗) ⊂ C∗ and xj ∈ κyj with yj ∈ C, which is a
contradiction.

Applying this proposition twice we get the following information about the B-
convex hull of a closed subset.
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Proposition 3.9. Let C ⊂ BΘ be a closed admissible subset with intC 6= ∅. Then
coB (C) is closed and has nonempty interior

int (coB (C)) = (cl (C∗))∗ .

Proof. By Proposition 3.6, C∗ is open hence coB (C) = C∗∗ is closed. The above
proposition applied to C∗ implies that

int (C∗∗) = (cl (C∗))∗ .

This open set is not empty because cl (C∗) is admissible by Proposition 3.7.

3.3. Invariance. The relevance of B-convexity for semigroups in G stays in the
following invariance properties of the dual and the B-convex hull operators.

Proposition 3.10. Let g ∈ G and C ⊂ BΘ. Then (gC)∗ = g (C∗).

Proof. Take a parabolic subalgebra p ∈ C∗ and denote its nilradical by n. By
definition q∩n = 0 for every parabolic subalgebra q ∈ C. Now g ·n is the nilradical
of g · p, and

g · q ∩ g · n = g · (q ∩ n) = 0

if q ∈ C. This implies that g · p ∈ (gC)∗ and hence that g (C∗) ⊂ (gC)∗. Applying
this inclusion to gC and g−1 we have g−1

(
(gC)∗

)
⊂ C∗ so that (gC)∗ ⊂ g (C∗),

concluding the proof.

Corollary 3.11. Let g ∈ G and C ⊂ BΘ be such that gC ⊂ C. Then g−1 (C∗) ⊂
C∗.

Proof. Proposition 3.3 ensures that (gC)∗ ⊃ C∗. Hence by the above proposition
g (C∗) ⊃ C∗ which is equivalent to g−1 (C∗) ⊂ C∗.

Corollary 3.12. Let g ∈ G and C ⊂ BΘ. Then g (coB (C)) = coB (gC). Therefore
gC is B-convex if C is B-convex.

Proof. Follows from the proposition and the equality coB (C) = C∗∗.

Now we can prove that the B-convex hull operator maps invariant subsets into
invariant subsets. This will be used in the description of maximal semigroups.

Proposition 3.13. Suppose that g ∈ G and C ⊂ BΘ are such that gC ⊂ C. Then
g (coB (C)) ⊂ coB (C).

Proof. Follows immediately from the previous corollary and Proposition 3.3.

As a consequence of these facts we get the following localization type property
of the B-convex sets:

Proposition 3.14. The family of open B-convex sets is a basis for the topology of
BΘ.

Proof. Let C ⊂ BΘ∗ be a compact admissible subset with intC 6= ∅. From the
previous subsection we know that C∗ is open and its closure is admissible. Clearly
C∗ is an open B-convex set. From it we generate a basis for the open sets in BΘ.
First take x ∈ C∗ and an open cell σ ⊃ clC∗. By Lemma 2.6 there exists a split-
regular h ∈ G such that x is its attractor and σ = σ (h). The sequence hk contracts
σ into x as k → +∞. Since cl (C∗) is a compact subset of σ, the contraction is
uniform in cl (C∗). This means that for any neighborhood U of x there exists k0 > 0
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such that hkC∗ ⊂ U for k ≥ k0. Therefore the open B-convex sets form a basis for
the neighborhoods of x. The proposition follows then by transitivity of G and the
fact that g ∈ G maps B-convex sets into B-convex sets.

Remark 3.15. It was observed by D. Mittenhuber in personal communication that
the above results about B-convex are fully extended to a general pair of relations
R1 ⊂ X × Y and R2 ⊂ Y ×X , relating the sets X and Y , as far as the relations
satisfy the symmetric property xR1y if and only if yR2x.

4. Semigroups

In this section we consider the action on the flag manifolds of semigroups in
semi-simple Lie groups. We complement the results of San Martin [12] and San
Martin and Tonelli [14], paving the way for the characterization of the maximal
semigroups.

4.1. Topological introduction. Before looking at the semigroup actions on the
flag manifolds we recall some terminology of a topological nature which hold in a
more general context. In this subsection we let G be a topological group acting
continuously in a topological space M . Let S ⊂ G be a semigroup with intS 6= ∅.

Its action on M induces the pre-order relation x � y if y ∈ cl (Sx), x, y ∈ M .
Let ∼ be the equivalence relation associated with �, namely x ∼ y if x � y and
y � x. An equivalence class D of ∼ satisfies D ⊂ cl (Sx) for all x ∈ D, and is
maximal with this property. The pre-order in M induces a partial order in the
quotient M/ ∼ which is also denoted by �.

A control set for S in M is an equivalence class D of ∼ having the property
that there exists x ∈ D and g ∈ intS with gx = x. We note that this definition of
control set amounts to the effective control sets of [14]. Given a control set D the
fixed-point set

D0 = {x ∈ D : ∃g ∈ intS, gx = x}

is known to be open and dense in D. It is called the core or set of transitivity of
D (see [14]). This second name comes from the fact that for all x, y ∈ D0 there
exists g ∈ S such that gx = y. We denote by D (S) the set of control sets of S.
It is partially ordered by � in M/ ∼. In case M is compact there are invariant
control sets. These are control sets which are maximal with respect to �. They are
closed subsets of M . The same way there are minimal control sets, which are open
and coincide with the cores of the invariant control sets of the inverse semigroup
S−1 = {g−1 : g ∈ S}.

The domain of attraction A (D) of a control set D is defined by

A (D) = {x ∈M : ∃g ∈ S, gx ∈ D}.

For a subset C contained in M we denote by SC its compression semigroup in
G:

SC = {g ∈ G : gC ⊂ C}.

It follows immediately that SC = Sint(C) if C = cl (intC). We refer to Colonius and
Kliemann [2] for a detailed development of these concepts in the context of control
systems.
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4.2. Flag manifolds. We return here to the flag manifold setting with S a semi-
group with nonvoid interior in the semi-simple group G.

Consider for a moment the maximal flag manifold B = B∅. From [14] we know
that for each w ∈ W there exists a control set D (w) such that x ∈ D (w)0 if and
only if x is the fixed point of type w for some split-regular h ∈ intS. Moreover, any
control set D is D (w) for some w ∈ W . The assignment w 7→ D (w) permits us to
single out, from S, a flag manifold B (S) as follows: Take a split-regular h ∈ intS
and denote by A+ = exp a+ the Weyl chamber containing h. Recall that we write
WA+ to the set of A+-fixed-points in B, and identify it with W . Let 1 ∈ WA+ be
the identity. Then the control set D (1) is the only invariant control set in B. The
same way the control set D (w0) is the only minimal control set in B where w0 is
the principal involution of W .

The subset WA+ (S) = {w ∈ W : D (w) = D (1)} is a parabolic subgroup of
WA+ , that is, it is generated by the reflections with respect to the simple roots in
a proper subset Θ (S) ⊂ Σ. Here Σ is the simple system of roots associated with
a+. We put B (S) = BΘ(S). A decisive property of this special flag manifold is that
the invariant control set of S on it is an admissible subset, i.e., is contained in open
Bruhat cells. Precisely,

Proposition 4.1. With the above notations let C ⊂ B (S) be the invariant control
set. Then C is contained in the stable manifold σ (h) for any split-regular h ∈ intS.
Moreover if Θ ⊂ Θ (S) and π : BΘ → B (S) is the canonical fibration, then π−1 (C)
is the invariant control set for S in BΘ.

Proof. See Proposition 4.8 and Theorem 4.3 in [14].

In the sequel we say that the semigroup is of parabolic type Θ if Θ (S) = Θ, i.e.,
B (S) = BΘ. We emphasize that any proper semigroup with nonempty interior is of
parabolic type Θ for some Θ. Furthermore if S ⊂ T are semigroups with nonempty
interior, then any control set of S is contained in just one control set of T , and T
is of parabolic type Θ′ ⊃ Θ if S is of parabolic type Θ.

Another piece of information provided by the subgroup WA+ (S) concerns the
number of control sets in the flag manifold BΘ. It is given by the order of the double
coset space WA+ (S) \W/WΘ, where WΘ is the parabolic subgroup generated by
the reflections in Θ.

For a semigroup of parabolic type Θ its invariant control set in BΘ is an admis-
sible subset which is the closure of its interior. The next proposition complements
this statement by showing that every subset of BΘ having these properties is the
invariant control set of some semigroup of parabolic type Θ.

Proposition 4.2. Suppose that C ⊂ BΘ is admissible and satisfies C = cl (intC).
Then the compression semigroup

SC = {g ∈ G : gC ⊂ C}
has nonempty interior. Moreover C is the invariant control set of SC in BΘ, C0 =
intC and the parabolic type of SC is Θ.

Proof. Take x ∈ intC and let σ be an open cell containing C. By Lemma 2.6
there exists a split-regular h ∈ G such that x is its attractor and σ = σ (h). The
sequence hk contracts σ into x as k → +∞. Since C is a compact subset of σ, the
contraction is uniform in C. This means that for any neighborhood U of x there
exists k0 > 0 such that hkC ⊂ U for k ≥ k0. In particular if we take U ⊂ C we
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find that g = hk0 belongs to SC . Furthermore the subset {f : f (C) ⊂ U} is open
in the compact-open topology on the continuous maps of BΘ. By the continuity of
the G-action we have then that g ∈ intSC showing the first part of the proposition.

For the second statement note that C is invariant under SC . Moreover, we
found a split-regular g ∈ intS having x as the attractor for arbitrary x ∈ intC.
This implies that C is the invariant control set of SC because attractors for the
split-regular elements in intS are contained in the core of the invariant control
set.

5. Maximal semigroups

A subsemigroup S of a group L is said to be maximal if it is not a group and is
not contained properly in any semigroup T ⊂ L, T 6= L. It is well known that any
proper semigroup with interior points is contained in a maximal semigroup, which
is by force closed. See Hilgert, Hofmann and Lawson [5] for a proof of this fact
using the Lemma of Zorn.

For semigroups with nonempty interior in semi-simple Lie groups we can enlarge
the notion of maximality by taking into account the parabolic type of the semigroup.
As before let G be a semi-simple Lie group.

Definition 5.1. We say that a semigroup S ⊂ G with intS 6= ∅ is Θ-maximal or
maximal with respect to BΘ if its parabolic type is Θ and is not properly contained
in any semigroup of parabolic type Θ.

It will be proved below that the Θ-maximal semigroups are essentially the com-
pression semigroups of the B-convex sets in BΘ. Before providing the proof for this
fact we make the following remarks:

Let S be a Θ-maximal semigroup and denote by C its invariant control set in
BΘ. Since C is S-invariant it follows that S ⊂ SC where SC is the compression
semigroup

SC = {g ∈ G : gC ⊂ C}.

By Proposition 4.2, SC is of parabolic type Θ. Therefore S is the compression
semigroup of its invariant control set in BΘ if it is Θ-maximal. Suppose there exists
Θ′ 6= Σ containing Θ properly and let π : BΘ → BΘ′ . Then π (C) is admissible in
BΘ′ . Moreover int (π (C)) is dense in π (C) because π is an open map. Hence Sπ(C)

is of parabolic type Θ′ by Proposition 4.2. Since π is equivariant under the actions
of G in BΘ and BΘ′ it follows that S ⊂ Sπ(C). This inclusion is proper. In fact, the
invariant control set of Sπ(C) in BΘ is π−1 (π (C)) because Sπ(C) is of parabolic type
Θ′. But C is admissible in BΘ, so that no fiber of π is contained in C. This implies
that C 6= π−1 (π (C)). Hence the two semigroups have different invariant control
sets. Therefore S 6= Sπ(C). From this we deduce that any semigroup of parabolic
type Θ is contained properly in a semigroup of parabolic type Θ′ ⊃ Θ if Θ 6= Θ′. In
particular a Θ-maximal semigroup is not maximal unless Θ is maximal in Σ, that
is, the complement of a singleton. In this case BΘ is a minimal flag manifold.

Conversely, if Θ is maximal and S is a Θ-maximal semigroup then S is maximal.
In fact, if T ⊂ S and T 6= S then T is of parabolic type Θ′ ⊃ Θ. Since S is
Θ-maximal this implies that Θ′ 6= Θ, but then T cannot be a proper semigroup.

Now, thanks to the invariance of the B-convex hull of a subset it follows easily
that a Θ-maximal semigroup is the compression semigroup of a B-convex set in BΘ:
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Proposition 5.2. Suppose that S is a Θ-maximal semigroup and denote by C its
invariant control set in BΘ. Put K = cl (int (coB (C))). Then C = K and

S = SC = {g ∈ G : gC ⊂ C}.
Proof. If g ∈ S then gC ⊂ C so that Proposition 3.13 ensures that g (coB (C)) ⊂
coB (C). By continuity gK ⊂ K. Hence S is contained in the compression semi-
group SK of K. By definition of a semigroup of parabolic type Θ, C is admissible
in BΘ. This implies that K is contained in an open cell σ of BΘ. It follows that K
is a nonempty admissible subset satisfying K = cl (intK). Therefore Proposition
4.2 implies that SK is of parabolic type Θ. Now by assumption S is Θ-maximal.
Hence S = SK . Invoking Proposition 4.2 again we have that the invariant control
set of SK is K so that C = K concluding the proof.

This proposition has the following converse which ensures that the compression
semigroup of the interior of a B-convex set is maximal.

Proposition 5.3. Let C ⊂ BΘ be a proper closed B-convex set with intC 6= ∅. Put
K = cl (intC). Then the compression semigroup SK is Θ-maximal.

Proof. By definition of B-convexity C is admissible. Then Proposition 3.9 implies
that K is admissible. Since K = cl (intK) it follows from Proposition 4.2 that
intSK 6= ∅, SK is of parabolic type Θ and K is the invariant control set of SK .
To see the Θ-maximality take a semigroup T of parabolic type Θ with SK ⊂ T .
Denote by D the invariant control set of T in BΘ. From SK ⊂ T it follows that
K ⊂ D. Now, SK is a compression semigroup and D is T -invariant. Hence it is
enough to show that K = D to get T ⊂ SK and thus SK = T .

We prove first that D ⊂ coB (K). Suppose to the contrary that there exists
y ∈ D \ coB (K). By definition of B-convexity there exists an open cell σ ∈ BΘ

such that K ⊂ σ and y /∈ σ. Take x ∈ intK. By Lemma 2.6 there exists a split-
regular h ∈ G such that x is its attractor and σ = σ (h). Arguing as in the proof of
Proposition 4.2 we can assume, after replacing h by some of its powers hp, p ≥ 1,
that h ∈ intSK .

The limit y0 = limj→+∞ hjy is a fixed point of h different from the attractor x
because y /∈ σ (h). Since h ∈ intSK there exists a control set, say E, of SK such
that y0 ∈ E0. The fact that y0 is not the attractor of h implies that E 6= K. On
the other hand h ∈ T , y ∈ D and D is closed and T -invariant. Hence y0 ∈ D. But
E is entirely contained in a control set of T . Therefore E ⊂ D.

Now, both SK and T are of parabolic type Θ so that they have the same number
of control sets in BΘ. Since any control set of SK is contained in a control set of
T , the existence of E 6= K with K,E ⊂ D is a contradiction. This shows that
D ⊂ coB (K).

Therefore intD ⊂ int (coB (K)). But int (coB (K)) = intC by Proposition 3.9.
On the other hand D = cl (intD) because it is the invariant control set of a semi-
group with nonvoid interior. Hence D ⊂ cl (intC) = K. This implies that T = SK ,
showing that SK is Θ-maximal.

We summarize the previous propositions in the following final characterization
of maximal semigroups in semi-simple Lie groups.

Theorem 5.4. A semigroup S is Θ-maximal if and only if there exists a B-convex
set C with intC 6= ∅ such that S = SK , the compression semigroup of K = cl (intC).
In this case K is the invariant control set of S in BΘ and coB (K) ⊂ C.
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A semigroup S is maximal if and only if BΘ is a minimal flag manifold and S
is Θ-maximal.

6. Miscellanea

In this section we prove further results about maximal semigroups and provide
some examples.

6.1. Duality and minimal control set. Since a Θ-maximal semigroup S is the
compression semigroup of its invariant control set C every object related to S is
in principle obtained from C. We determine here the minimal control set using
the duality operator. This control set is the core of the invariant control set of
S−1 = {g−1 : g ∈ S} so we start by discussing this semigroup. Clearly S−1 has
nonempty interior if and only if intS 6= ∅. A consequence of Corollary 4.6 in [14] is
that B

(
S−1

)
is the flag manifold dual to B (S). Since there are imprecisions in the

statement and in the proof of that corollary we offer here a version of it.

Proposition 6.1. Take a split-regular h ∈ intS and let A+ = exp a+ be the Weyl
chamber containing h. Then

WA−
(
S−1

)
=WA+ (S)(6.1)

where A− = (A+)−1.

Proof. Let b0 be the attractor of h and w0 the principal involution with respect to
a+. We have w0A

+ = A− and that w0b0 is the repeller of h that is the attractor of
h−1. Let C and C− be the invariant control set for S and S−1 in B, respectively. By
definition w ∈ WA+ (S) if and only if D (w) = C. This means that wb0 ∈ C because
wb0 is the w-fixed-point of h and hence wb0 ∈ D (w). By Theorem 4.5 in [14]
D (ww0) = D (w0). In fact, this theorem ensures that WA+ (S)ww0 =WA+ (S)w0

is a consequence of w ∈ WA+ (S). Since w0 is the principal involution D (w0) is the
minimal control set, which is given by C−0 . Then we get from D (ww0) = D (w0)
that ww0b0 ∈ C−. On the other hand ww0b0 = w (w0b0) is the w-fixed-point for
h−1 because w0b0 is its attractor. Hence ww0b0 ∈ C− implies that w ∈ WA−

(
S−1

)
.

Therefore we have WA+ (S) ⊂ WA−
(
S−1

)
. The reverse inclusion follows from

this after remarking that S =
(
S−1

)−1 and A+ = (A−)−1.

From this proposition we can define B (S) and B
(
S−1

)
by taking the same Weyl

chamber A+ as reference. In doing this it emerges that B
(
S−1

)
is the dual of B (S).

Take a split-regular h ∈ intS and assume without loss of generality that h ∈
A+. If Σ is the associated simple system of roots, then WA+ (S) is generated by
reflections with respect to the subset Θ (S) ⊂ Σ. By formula (6.1) WA−

(
S−1

)
is

generated by the same set of reflections. However by definition of WA−
(
S−1

)
we

must look at the generators of this subgroup in the subsets of −Σ. This is of course
−Θ. Hence the parabolic subalgebra associated to Wa−

(
S−1

)
is

p
−
Θ = θ (p) + n

+ (Θ)(6.2)

where n+ (Θ) is the subalgebra spanned by gα with α ∈ −〈−Θ〉 = 〈Θ〉 and p

is the standard minimal parabolic subalgebra. Then B
(
S−1

)
= G/P−Θ . Now

w0 (−Θ) = ι (Θ) and w0p
−
Θ = pιΘ where

pιΘ = p + n
− (ι (Θ))
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and n− (ι (Θ)) is spanned by g−α with α ∈ 〈ι (Θ)〉. Hence B
(
S−1

)
= Bι(Θ) the dual

of B (S) = BΘ. Summarizing

Proposition 6.2. The flag B
(
S−1

)
is the dual to B (S).

Returning to the maximal semigroups, it follows easily from this proposition
that S is Θ-maximal if and only if S−1 is Θ∗-maximal. In fact, If T ⊃ S−1 is a
semigroup of parabolic type Θ∗, then S ⊂ T−1 and T−1 is of parabolic type Θ.
Hence S = T−1 showing that S−1 is Θ∗-maximal if S is Θ-maximal. Having this
fact in mind we can describe S−1 as a compression semigroup.

Proposition 6.3. Let S be a Θ-maximal semigroup and denote by C its invariant
control set in BΘ. Then the invariant control set of S−1 in BΘ∗ is cl (C∗). Moreover
S−1 is the compression semigroup Scl(C∗).

Proof. By the S-invariance of C it follows that C∗ is invariant under S−1 (see
Corollary 3.11). Hence cl (C∗) is S−1-invariant so that S ⊂ Scl(C∗). But cl (C∗) =
(intC)∗ hence by Theorem 5.4, Scl(C∗) is Θ∗-maximal. The equality S−1 = Scl(C∗)

follows then by the Θ∗-maximality of S−1.

This proposition allows the determination of the minimal control sets of the
maximal semigroup S = SC . In fact, in any flag manifold the minimal control
set of S is the set of transitivity of the invariant control set of S−1. Keeping the
above notations, the invariant control set of S−1 inBΘ∗ is D = cl (C∗) and its
set of transitivity is D0 = int (cl (C∗)), which contains C∗ densely. Moreover, let
π : B → BΘ∗ be the fibration from the maximal flag manifold. Then π−1 (D) is
the invariant control set for S−1 in B and its core is π−1 (D0) (see Proposition
4.1). Also, if BΘ′ is any flag manifold, the projection πΘ′ : B → BΘ′ maps control
sets and their cores into control sets and cores respectively. Hence the minimal
control set for S in BΘ′ is πΘ′

(
π−1 (D0)

)
. Since the projections between the flag

manifolds and their inverse images preserve closures and interiors of subsets we get
the minimal control set as the interior of the closure of πΘ′

(
π−1 (C∗)

)
.

The subset πΘ′
(
π−1 (C∗)

)
is easily described in terms of incidence of parabolic

subalgebras and their nilradicals: Think of a point x ∈ BΘ∗ as being the nilradical
of the corresponding parabolic subalgebra. Viewing the elements of B as minimal
parabolic subalgebras the fiber π−1{x} is the set of minimal parabolic subalgebras
containing x. On the other hand, if y ∈ B then πΘ′ (y) is the only parabolic
subalgebra in BΘ′ containing y. Hence the parabolic subalgebras in πΘ′

(
π−1{x}

)
contain x. Reciprocally if z ∈ BΘ′ is a parabolic subalgebra containing x, then
there exists a minimal parabolic subalgebra y ∈ π−1

Θ′ {z} containing x so that z ∈
πΘ′

(
π−1{x}

)
. Therefore πΘ′

(
π−1{x}

)
is the set of parabolic subalgebras in BΘ′

containing the nilradical x. Thus from the previous paragraph we can state:

Proposition 6.4. Let S = SC be a Θ-maximal semigroup. Given a flag BΘ′ denote
by C∗ the set of parabolic subalgebras in BΘ′ containing the nilradical of the parabolic
subalgebras in C∗ ⊂ BΘ∗ . Then the minimal control set of S in BΘ′ is int

(
cl
(
C∗
))

.

We mention in passing that the other control sets, or more precisely their cores,
are determined from the invariant and the minimal control sets. This is true not
only for maximal semigroups but for an arbitrary semigroup S with nonempty
interior. The idea is that for any control D of S there exists a control set D− of
S−1 such that (D−)0 = D0. The intersection of their domains of attraction (under
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the actions of S and S−1 respectively) is D0. Now, in [13] it was proved that the
domain of attraction of a control set D (w) of S is built from the minimal control set
and an algebraic property of w, namely its minimal decomposition as a product of
simple reflections. In a symmetric way the domain of attraction of D (w)− depends
only on w and the minimal control set of S−1, that is, the invariant control set of
S. With this construction it is possible to describe the cores of the control sets by
incidence of parabolic subalgebras. Since this is not specific for maximal semigroups
we leave out the details.

6.2. Maximal semigroups containing a given semigroup.

6.2.1. General semigroups. As mentioned above any semigroup with nonvoid inte-
rior in a topological group is contained in a maximal one. This very general fact
can be improved in our context by means of Theorem 5.4. Starting with a semi-
group S of parabolic type Θ let C be its invariant control set in BΘ. Then coB (C)
is S-invariant and the arguments in the proof of Proposition 5.2 ensure that S is
contained in the Θ-maximal semigroup SK where K = cl (int (coB (C))). Also, if
Θ ⊂ Θ′ then the projection π : BΘ → BΘ′ is defined and the same argument ap-
plied to π (C) instead of C shows that S is contained in a Θ′-maximal semigroup.
In particular we recover the general result that there exists a maximal semigroup
containing S.

In general a semigroup S of parabolic type Θ can be contained in several Θ′-
maximal semigroups if Θ ⊂ Θ′, according to the B-convex sets left invariant by
S. The following statement exhibits a situation where uniqueness of the maximal
semigroup containing S holds.

Proposition 6.5. Let S = SC be a Θ-maximal semigroup with C = cl (intC) a
B-convex set. Suppose that for Θ ⊂ Θ′, π (C) is B-convex in BΘ′ . Then Sπ(C) is
the only Θ′-maximal semigroup containing S.

Proof. By Theorem 5.4 it follows that C is the invariant control set of S in BΘ

hence the S-invariant control set in BΘ′ is π (C). In particular π (C) is S-invariant
so that S ⊂ Sπ(C). By assumption π (C) is B-convex. Moreover, int (π (C)) is dense
in π (C) because π is an open map. Applying Theorem 5.4 again it follows that Sπ(C)

is indeed Θ′-maximal. Now let T be a Θ′-maximal semigroup containing S. Then
the invariant control set of T in BΘ′ , say D, contains π (C). Of course T = Sπ(C) if
D = π (C). On the other hand the arguments in the proof of Proposition 5.3 show
that D 6= π (C) contradicts the assumption that T is of parabolic type Θ′.

6.2.2. Lie semigroups. Let S be an infinitesimally generated semigroup of parabolic
type Θ, and denote by C its invariant control set in BΘ. Since S is connected, C is
also connected. Suppose that T is a maximal semigroup of parabolic type Θ′, with
Θ ⊂ Θ′ and S ⊂ T . Denote by D and C1 the invariant control set of T and S in
BΘ′ , respectively. Of course, C1 ⊂ D and C1 is connected.

Proposition 6.6. D is connected.

Proof. Take h ∈ intS, then h ∈ intT . Denote by b the attractor of h in BΘ′ and by
σ the corresponding stable manifold. We have b ∈ intC1 and D ⊂ σ. Hence for all
x ∈ D, hnx ∈ intC1 for some large n. But S is infinitesimally generated, so that
there exists a continuous path gt ∈ S, t ∈ [0, T ], such that g0 = 1 and gT = hn.
Since D is S-invariant, gtx ∈ D for all t ∈ [0, T ]. Hence there exists a continuous
path connecting x to C1, implying that D is connected.
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6.3. Examples.

6.3.1. Total positivity. A square matrix with real entries is said to be totally positive
provided its minors of all orders are nonnegative numbers. It is well known that the
set T of totally positive matrices in Sl (n,R) is a semigroup with nonvoid interior.
We consider here the maximality properties of a semigroup slightly larger than T :
An n× n matrix is said to be sign-regular if for every k = 1, . . . , n− 1, its minors
of order k have the same sign. The semigroup T of sign-regular matrices clearly
contains T . It is a compression semigroup as the following constructions shows.

Let Λk =
∧k Rn be the k-fold exterior product of Rn. The Grassmannian Grk (n)

embeds into the projective space of Λk as the set of lines spanned by the decompos-
able elements. Analogously the Grassmannian Gr+

k (n) of oriented k-dimensional
subspaces, which is a two-fold covering of Grk (n) embeds in a sphere of Λk. For
g ∈ Sl (n,R) denote also by g the induced linear map of Λk. Both Grassmannians
Grk (n) and Gr+

k (n) are invariant under g ∈ Sl (n,R).
Let β1 = {e1, . . . , en} be the standard basis of Rn and βk = {eI = ei1 ∧· · ·∧eik}

where I = (i1 < · · · < ik) the basis induced in Λk. This basis is orthonormal with
respect to the inner product 〈·, ·〉 in Λk coming from the standard inner product in
Rn. The positive orthant in Λk is determined by the inequalities 〈eI , ·〉 ≥ 0. We
denote by Ok its intersection with the oriented Grassmannian Gr+

k (n):

Ok = {v ∈ Gr+
k (n) : 〈v, eI〉 ≥ 0 for all I}.

Consider the compression semigroup

Tk = {g ∈ Sl (n,R) : gOk ⊂ Ok}.
Since the k-minors of g are the entries 〈geI , eJ〉 of the matrix of gk with respect to
βk, it follows that g ∈ Tk if and only if all its minors of order k are nonnegative.
Hence

T = T1 ∩ · · · ∩ Tn−1.

Put Ck = π (Ok) where π : Gr+
k (n)→ Grk (n) is the canonical projection and set

T k = {g ∈ Sl (n,R) : gCk ⊂ Ck}.
It is easily checked that g ∈ T k if and only if either g ∈ Tk or all the k-minors of g
are negative. Hence

T = T 1 ∩ · · · ∩ Tn−1.

Now we verify that Ck is B-convex. This will be a consequence of

Lemma 6.7. For V /∈ int (Ck) let V ⊥ be its orthocomplement in Rn. Then V ⊥ /∈
C∗k , i.e., there exists W ∈ Ck with dim

(
W ∩ V ⊥

)
≥ 1.

Proof. Take a basis {v1, . . . , vk} of V and let v = v1 ∧ · · · ∧ vk be the associated
decomposable vector in Λk.

If V is in the boundary of Ck, then 〈v, eI〉 = 0 for some basic element eI =
ei1 ∧ · · · ∧ eik . Put EI = span{ei1 , . . . , eik}. Then 〈v, eI〉 = 0 is equivalent to
dim

(
EI ∩ V ⊥

)
≥ 1. Since EI ∈ Ck this shows the lemma in case V ∈ Ck.

Assume that V /∈ Ck and consider the continuous map

fv : w ∈ Gr+
k (n) 7−→ 〈v, w〉 ∈ R.

By definition of Ck it follows that v /∈ ±Ok so that there are indices I, J such
that 〈v, eI〉 > 0 and 〈v, eJ〉 < 0. Let A be the subgroup of diagonal matrices with
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positive eigenvalues. This subgroup is connected and leaves invariant the orthant
Ok. Moreover it is easy to find g, h ∈ A and z ∈ Ok such that giz → eI and
hiz → eJ as i → +∞. Hence fv assumes positive and negative values in Az,
implying that there exists w = w1 ∧ · · · ∧ wk in Ok such that 〈v, w〉 = 0. Put
W = span{w1, . . . , wk}. Then 〈v, w〉 = 0 means that dim

(
W ∩ V ⊥

)
≥ 1. Since

W ∈ Ck this shows the lemma.

This lemma shows immediately that if an (n− k)-dimensional subspace U be-
longs to C∗k , then its orthocomplement U⊥ belongs to int (Ck). Reciprocally, take
V,W ∈ int (Ck) and choose bases {v1, . . . , vk} and {w1, . . . , wk} of V and W re-
spectively such that v = v1 ∧ · · · ∧ vk and w = w1 ∧ · · · ∧ wk are in int (Ok).
Then 〈v, w〉 > 0 because Ok is an orthant defined by an orthonormal basis. Hence
V ∩W⊥ = 0 = W ∩ V ⊥ so that V ⊥,W⊥ ∈ C∗k . Therefore

C∗k = {V ⊥ : V ∈ int (Ck)}.
The above lemma also shows that V /∈ C∗∗k if V /∈ Ck so that Ck = C∗∗k is B-convex.
Therefore,

Proposition 6.8. T k is maximal for all k = 1, . . . , n− 1.

We leave aside further discussions about the semigroup T , but mention that a
similar approach shows for any sequence r = (r1 < · · · < rm), the semigroup

T r = T r1 ∩ · · · ∩ T rm
is maximal with respect to F (r). In particular T is maximal with respect to the
maximal flag manifold.

We refer to Ando [1] for a survey about totally positivity matrices. See also
Lusztig [9] and references therein for a generalization to semi-simple groups.

6.3.2. A class of compression semigroups. The following example is a particular
instance of the compression semigroups considered by Hilgert and Neeb [7]. Let Q
be a quadratic form in Rn with matrix(

1k×k 0
0 −1(n−k)×(n−k)

)
.

Denote by β the corresponding nondegenerate bilinear form. Let C ⊂ Grk (n) be
the set of subspaces where Q is positive semi-definite and consider the compression
semigroup SC as a subsemigroup of Sl (n,R). The continuity of Q ensures that
C = cl (intC). Moreover, let U ∈ Grn−k (n) be such Q is negative definite on U .
Then Q is negative definite in any subspace of U . This implies that V ∩ U = 0 for
all V ∈ C. Hence C ⊂ σU so that C is admissible and U ∈ C∗. Therefore SC has
nonempty interior and is of parabolic type Grk (n).

Denote by D ⊂ Grn−k (n) the set of subspaces where Q is negative definite. We
have just seen that D ⊂ C∗ or equivalently C ⊂ D∗. We claim that C = D∗. To
check this use the well-known fact that if W ⊂ Rn is a subspace with dimW ≤ n−k
and such that Q is negative definite in W then it extends to a subspace U ⊃ W
with dimU = n− k and Q negative definite in U .

Now suppose that there exists V ∈ D∗ such that Q is not positive semi-definite
in V . Then there exists a subspace W ⊂ V where Q is negative definite. Since W
extends to an element of D this contradicts the fact that V is transversal to every
element of D. Hence D∗ ⊂ C and C = D∗.
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Therefore C is B-convex which implies that SC is maximal of parabolic type
Grk (n), and hence maximal in Sl (n,R).

6.4. Remarks and questions. Although Theorem 5.4 gives an exact character-
ization of the maximal semigroups in terms of B-convexity it is far from being
conclusive for the full understanding of the maximal semigroups. Specially in what
concerns specific classes of semigroups, like e.g. connected semigroups, infinitesi-
mally generated semigroups, etc. For deeper insights into the maximal semigroups
our results must be followed by a further development of the geometry of the B-
convex sets and their compression semigroups. Below we list some natural questions
and remarks pointing to this direction.

1. From the work of Lawson [8] one knows that a maximal semigroup S in a
solvable group G is total in the sense that G = S ∪ S−1. This property
cannot hold for semigroups in semi-simple groups because of the existence of
an open set of compact elements. However one can ask whether a maximal
semigroup is total with respect to a flag manifold BΘ, in the sense that BΘ

is the union of the S-control sets. With this kind of totality the action of
S on the flag manifold is completely clear since one knows the action inside
the control sets. At this regard we mention that under totality the proof of
Proposition 5.3 would be simplified since what is required there is to show that
a point outside the invariant control set belongs to the domain of attraction
of another control set.

2. If S is connected then its invariant control set (in any homogeneous space ofG)
is connected. This suggests the investigation of the compression semigroups
SC with C connected and B-convex. In general SC is not connected. This is
shown for instance by the compression semigroup in Sl (2,R) of an interval in
the projective line P1. It has two connected components ±Sl+ (2,R), where
Sl+ (2,R) is the semigroup of 2 × 2 matrices with positive entries. However
Sl+ (2,R) is connected and maximal with this property. Similar facts may
occur in general: There might be a class of connected B-convex sets which
are invariant control sets of semigroups which are maximal with the property
of being connected. This development certainly goes through the study of
the connected B-convex sets and the B-convex hull of connected sets, which
in general may not be connected. Of course the same kind of questions make
sense for Θ-maximal semigroups.

3. Similar remarks apply to the infinitesimally generated semigroups. Here one
of the basic questions seems to be a characterization of the maximal semi-
groups (and corresponding B-convex sets) whose tangent wedge generate a
semigroup with the same invariant control set (see D. Mittenhuber [10]).

4. It looks like that Proposition 6.5 can be improved by showing that the pro-
jection of a B-convex set is B-convex, at least for large classes of B-convex
sets.

References

[1] Ando, T.: Totally positive matrices. Linear Algebra Appl. 90 (1987), 165-219. MR 88b:15023

[2] Colonius, K. and W. Kliemann: “Dynamics and control”. Birkhäuser (2000). MR
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