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DIOPHANTINE APPROXIMATION, BESSEL FUNCTIONS AND
RADIALLY SYMMETRIC PERIODIC SOLUTIONS OF

SEMILINEAR WAVE EQUATIONS IN A BALL

J. BERKOVITS AND J. MAWHIN

Abstract. The aim of this paper is to consider the radially-symmetric per-
iodic-Dirichlet problem on [0, T ]× Bn[a] for the equation

utt −∆u = f(t, |x|, u),

where ∆ is the classical Laplacian operator, and Bn[a] denotes the open ball
of center 0 and radius a in Rn. When α = a/T is a sufficiently large irrational
with bounded partial quotients, we combine some number theory techniques
with the asymptotic properties of the Bessel functions to show that 0 is not
an accumulation point of the spectrum of the linear part. This result is used
to obtain existence conditions for the nonlinear problem.

1. Introduction

The arithmetical properties of the ratio α = a/T play an important role in the
solvability of the periodic-Dirichlet problem over [0, T ] × [0, a] for the semilinear
wave equation

utt − uxx = f(t, x, u),

or the one of the radially-symmetric periodic-Dirichlet problem over [0, T ]×Bn[a],
for the equation

utt −∆u = f(t, |x|, u),

where ∆ is the classical Laplacian operator in Rn, and Bn[a] denotes the open
ball of center 0 and radius a in Rn. The main reason is that the nature of the
spectrum of the corresponding linear problem depends in an essential way upon
the arithmetical nature of α. This was already noticed by Borel in 1895 [7]. Such a
spectrum is made of isolated eigenvalues when α is rational and can be the real line
for some irrational values of this ratio. References on this question can be found in
[16].

In particular, it was proved in [5], using the asymptotic behavior of the Bessel
functions, that if α = 1/4 and n is even, the spectrum of the radially symmetric
periodic-Dirichlet problem over [0, T ] × Bn[a] for the wave operator D2

tt − ∆ is
made of eigenvalues with finite multiplicity, which accumulate only at −∞ and
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+∞. When α has the same value and n is odd, there may be eigenvalues having
infinite multiplicity (for example λ = 0 has infinite multiplicity when n = 1 or 3).

It has been proved in [3] that if α = 1/4, n > 3 is odd and if we set

qn =
1
π2

(n− 1)(n− 3),

then every element of the spectrum outside of [−2πqn,−qn] is an isolated eigenvalue
with finite multiplicity, and that 0 is not in the spectrum. Moreover, it follows from
the methods of this paper that there exists an accumulation point of the spectrum
on the interval [−2πqn,−qn]. Similar results hold when α is an arbitrary rational
number [3].

In the case where α is irrational, little is known about the corresponding spec-
trum. A class of irrationals α for which the resolvent of the one-dimensional
periodic-Dirichlet problem over [0, T ]× [0, a] contains a neighbourhood of the origin
was defined independently and differently in [14] and [17], the equivalence of their
results being proved in [4]. This class, namely the irrational numbers with bounded
partial quotients [21], is studied in Section 2.

The aim of this paper is to consider the case of the radially-symmetric periodic-
Dirichlet problem on [0, T ]×Bn[a], when α belongs to the same class of irrationals,
and to combine the number theory techniques used in [4] and the asymptotic prop-
erties of the Bessel functions used in [5] and [3] to show in Theorem 1 of Section 3
that, for sufficiently large α with bounded partial quotients, 0 is not an accumula-
tion point of the spectrum.

This result is combined with nonlinear techniques introduced in [15] to obtain,
in Section 4, some existence conditions for the nonlinear problem (Theorems 2 to
5), which provide extensions of the results of [14] and [17] to radially symmetric
solutions of the periodic-Dirichlet problem for semilinear wave equations on a ball.

2. Irrational numbers with bounded partial quotients

Let

α = [a0, a1, a2, . . . ]

be the continued fraction decomposition of the real number α [11, 18, 19]. Recall
that it is obtained as follows: put a0 = [α], where [·] denotes the integer part. Then

α = a0 +
1
α1

with α1 > 1, and we set a1 = [α1]. If a0, a1, . . . , an−1 and α1, α2, . . . , αn−1 are
known, then

αn−1 = an−1 +
1
αn
,

with αn > 1 and we set an = [αn]. It can be shown [18] that this process does
not terminate if and only if α is irrational. The integers a0, a1, . . . are the partial
quotients of α; the numbers α1, α2, . . . are the complete quotients of α and the
rationals

pn
qn

= [a0, a1, . . . , an] = a0 +
1
a1+

1
a2+

. . .
1
an
,

with pn, qn relatively prime integers, called the convergents of α, are such that

pn/qn → α as n→∞.
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It is well known that the pn, qn are recursively defined by the relations

p0 = a0, q0 = 1, p1 = a0a1 + 1, q1 = a1,

pn = anpn−1 + pn−2, qn = anqn−1 + qn−2.

The following lemmas are proved, for example, in [4].

Lemma 1. To each irrational number α corresponds a unique (extended) number
M(α) ∈ [

√
5,∞] having the following properties.

i. For each positive number µ < M(α) there exist infinitely many pairs (pi, qi)
with qi 6= 0, such that ∣∣∣∣α− pi

qi

∣∣∣∣ ≤ 1
µq2
i

.

ii. If M(α) is finite, then, for each µ > M(α), there are only finitely many pairs
(pi, qi) satisfying the inequality∣∣∣∣α− pi

qi

∣∣∣∣ ≤ 1
µq2
i

.

The extended real number M(α) is called the Lagrange or the Markoff constant
of α. If we set

M(α) =
{
M ∈ R+

0 : infinitely many (pi, qi) satisfy
∣∣∣∣α− pi

qi

∣∣∣∣ ≤ 1
Mq2

i

}
,

then M(α) is an interval and Lemma 1 clearly states that M(α) = supM(α).

Lemma 2. M(α) is finite if and only if the sequence (ai)i∈N of partial quotients
of α is bounded.

Now let us define the set N (α) by{
M ∈ R+

0 : infinitely many (p, q) ∈ Z× (Z \ {0}) satisfy
∣∣∣∣α− p

q

∣∣∣∣ ≤ 1
Mq2

}
.

Clearly N (α) is an interval and N (α) ⊃M(α). It is known [18, 20] that if M > 2
and M ∈ N (α), then M ∈M(α), and that

√
5 ∈M(α). Thus,

M(α) = supM(α) = supN (α).

Any α for which the sequence (ai)i∈N of partial quotients of α is bounded is said
to have bounded partial quotients. The reader can consult the interesting survey
[21] on real numbers with bounded partial quotients which ‘appear in many dif-
ferent fields of mathematics and computer science : Diophantine approximation,
fractal geometry, transcendental number theory, ergodic theory, numerical analysis,
pseudo-random number generation, dynamical systems, and formal language the-
ory’. The set of irrational numbers with bounded partial quotients coincide with
the set of numbers of constant type, which are the numbers α such that

q‖qα‖ ≥ 1
r

for some real number r ≥ 1 and all integers q ≥ 0, where ‖θ‖ denotes the distance
between the irrational number θ and the closest integer. Also,

1
M(α)

= lim inf
q→∞

q‖qα‖.

For a proof of the equivalence, see e.g. [13].
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By a classical theorem of Lagrange (see e.g. [11]), all real quadratic irrationals
have bounded partial quotients. In particular, M(Φ) =

√
5, where Φ = 1+

√
5

2 is the
golden section. It follows from results of Borel [7, 8] and Bernstein [6] that the set
of irrational numbers having bounded partial quotients is a dense uncountable and
null subset of the real line, and from a result of Jarnik [12], that any intersection
of this set with a bounded interval has Hausdorff dimension one. Examples of
transcendental numbers with bounded partial quotients are given by

f(n) =
∞∑
i=0

1
n2i

,

for n ≥ 2 an integer [21], and by continued fractions of the form

[0, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, . . . ],

where each group of 2j partial quotients 1 is followed by a group of 2j partial
quotients 2 (j = 0, 1, 2, . . . ) [2].

If α is an irrational number, we need some properties on the behavior of the
function M(α) under the action of the group of transformations T defined by

β = T (α) =
aα+ b

cα+ d
,(1)

where a, b, c, d ∈ Z are such that ad− bc 6= 0. Notice that then

α = T−1(β) =
−dβ + b

cβ − a ,(2)

and

(−d)(−a)− bc = ad− bc.(3)

Lemma 3. If β = aα+b
cα+d , for some a, b, c, d ∈ Z such that ad− bc 6= 0, then

M(α) ≤ |ad− bc|M(β), M(β) ≤ |ad− bc|M(α).(4)

Proof. Let M ∈ N (α). Then we can find a sequence
(
rj
sj

)
j∈Z+

of rational numbers

such that, for each j ∈ N, one has∣∣∣∣α− rj
sj

∣∣∣∣ ≤ 1
Ms2

j

.

Now ∣∣∣∣β − arj + bsj
crj + dsj

∣∣∣∣ = |ad− bc|
|α− rj

sj
|∣∣∣c rjsj + d

∣∣∣ |cα+ d|
.

Let ε > 0. Then there exists jε ∈ N such that

1
|cα+ d| ≤

1 + ε∣∣∣c rjsj + d
∣∣∣

whenever j ≥ jε. Therefore,∣∣∣∣β − arj + bsj
crj + dsj

∣∣∣∣ ≤ (1 + ε)|ad− bc|

M
(
c
rj
sj

+ d
)2

s2
j

=
(1 + ε)|ad− bc|

M

1
(crj + dsj)2

,
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whenever j ≥ jε. Consequently, M
|ad−bc|(1+ε) ∈ N (β) for each ε > 0, which implies,

letting ε→ 0+, that

M

|ad− bc| ≤M(β),

for all M ∈ N (α), and hence that

M(α)
|ad− bc| ≤M(β).

The second inequality in (4) follows from the first one and relations (2) and (3).

Lemma 3 has a few immediate consequences.

Corollary 1. If β = aα+b
cα+d with a, b, c, d ∈ Z such that ad − bc 6= 0, then β has

bounded partial quotients if and only if α has bounded partial quotients.

Corollary 2. If p and q ∈ Z, with p, q 6= 0, then

M

(
p

q
α

)
≤ |pq|M(α).

The modular group is the group of transformations defined by (4) with |ad−bc| =
1. Lemma 3 shows that M(α) is invariant under the action of the modular group. In
particular, the Lagrange-Markoff constant is invariant under translations through
integers so that, if {α} = α− [α], one has

M(α) = M({α}).
Two real numbers α and β are called equivalent if relation (1) holds with |ad−

bc| = 1. Equivalent numbers have the same Lagrange-Markoff constant.

3. The linear radially symmetric periodic-Dirichlet problem

for the wave equation

The problem consists in finding the conditions for the existence of weak radially
symmetric solutions for the linear periodic-Dirichlet problem on a ball

utt −∆u− λu = h(t, |x|), (t, x) ∈ R ×Bn[a],
u(t, x) = 0, (t, x) ∈ R × Sn−1

a ,

u(0, x)− u(T, x) = ut(0, x)− ut(T, x) = 0, x ∈ Bn[a].

Here, Sn−1
a = {x ∈ Rn, |x| = a}, and h(·, | · |) ∈ L2 ([0, T ]×Bn[a]). The above

problem can be written in the equivalent form, letting r = |x|,

utt − urr −
n− 1
r

ur − λu = h(t, r), (t, r) ∈ ]0, T [× ]0, a[,

ur(t, 0) = u(t, a) = 0, t ∈ ]0, T [,(5)
u(0, r)− u(T, r) = ut(0, r)− ut(T, r) = 0, r ∈ ]0, a[.

By a solution of (5) we mean, like in [22], a weak solution in the following sense.
Let D denote the class of radially symmetric functions ϕ ∈ C∞([0, T ]× Bn[a],R)
which are T -periodic in time for each x ∈ Bn[a], and have compact support in
Bn[a] for each t ∈ [0, T ]. Let H denote the vector space of radially symmetric
functions u ∈ L2([0, T ] × Bn[a],R). Equipped with the usual L2-norm ‖ · ‖ and
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inner product 〈·, ·〉, H is a Hilbert space. We say that u ∈ H is a weak solution of
(5) provided that∫ T

0

∫ a

0

[
u

(
ϕtt − ϕrr −

n− 1
r

ϕr − λϕ
)
− hϕ

]
rn−1 drdt = 0

for every ϕ ∈ D .
Let us first reproduce, for the reader’s convenience, some results of [22] for the

case where h = 0, i.e. for the linear eigenvalue problem

utt − urr −
n− 1
r

ur − λu = 0, (t, r) ∈ ]0, T [×]0, a[,

ur(t, 0) = u(t, a) = 0, t ∈ ]0, T [,(6)
u(0, r)− u(T, r) = ut(0, r)− ut(T, r) = 0, r ∈ ]0, a[.

By a classical method of separation of variables, we set ϕ(t, r) = τ(t)ρ(r) and derive
that ρ must satisfy the equation

r2ρ′′ + (n− 1)rρ′ + r2µ2ρ = 0, 0 < r < a,

ρ(a) = 0,(7)
ρ bounded on [0, a],

where µ2 = λ +
(

2kπ
T

)2
for any integer k ≥ 0, the corresponding functions τk

being linear combinations of cos(2kπt/T ) and sin(2kπt/T ). The change of variables
ψ(r) = r

n−2
2 ρ(r) transforms (7) into

r2ψ′′ + rψ′ +

[
µ2r2 −

(
n− 2

2

)2
]
ψ = 0, 0 < r < a,(8)

ψ(a) = 0, ψ(r) = 0(r
n−2

2 ) as r → 0+.

This is the classical eigenvalue problem for the Bessel equation of order

ν =
n− 2

2
.

If Jν(x) denote the Bessel function of the first kind of order ν, then y = Jν(x)
satisfies

x2y′′ + xy′ + (x2 − ν2)y = 0, x > 0,
Jν(x) = 0(xν) as x→ 0+

(cf. [1], [23]). Consequently, ψ(r) = Jν(µr), with µ such that Jν(µa) = 0, which
gives the eigenvalues

µ2
n,j =

(αn,j
a

)2

, (j ≥ 1),

where

αn,j := xν,j

is the j-th positive zero of Jν , and the corresponding eigenfuctions

ψn,j(r) = Jν

(αn,jr
a

)
, (j ≥ 1).
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Hence problem (6) has the eigenvalues and eigenfunctions

λ
(n)
j,k =

(αn,j
a

)2

−
(

2kπ
T

)2

=
( π

4a

)2
[(

4αn,j
π

)2

− (8kα)2

]
,(9)

ϕnj,k(t, r) =
{

cos(2kπt/T )
sin(2kπt/T )

}
r

2−n
2 Jn−2

2

(αn,j r
a

)
(10)

for k ≥ 0 and j ≥ 1, with α = a
T . It is clear that for each n ≥ 1, the sequence{

λ
(n)
j,k

}
is unbounded from above and below. We shall denote by

Σnα = cl

{( π
4a

)2
[(

4αn,j
π

)2

− (8kα)2

]
: j ≥ 1, k ≥ 0

}
,(11)

the spectrum of (6).
We recall, for the reader’s convenience, a number of properties of the zeros of

Bessel functions which will be used in this paper (see [1, 22, 23]).
(B1) Jν has an infinite sequence of distinct positive zeros (xν,j)

∞
j=1 tending to

infinity.
(B2) xν,j+1 − xν,j := dν,j → π as j →∞.
(B3) xν,j = bν,j − εν,j , where bν,j = (j + ν

2 −
1
4 )π, (j ≥ 1), and

εν,j > 0, limj→∞ εν,j = 0, (ν > 1
2 ),

ε 1
2 ,j

= 0,
ε0,j < 0, limj→∞ ε0,j = 0,
ε− 1

2 ,j
= 0.

(B4)

π(ν2 − 1
4

)

2dν,jxν,j+1
< εν,j <

π(ν2 − 1
4 )

xν,j
,

(
j ≥ 2, ν > 1

2

)
,

1
8x0,j+1

< −ε0,j <
π

4x0,j−1
, (j ≥ 2, ν = 0) .

Using (B4), we can obtain further estimates for bν,jεν,j if ν > 1
2 , j ≥ 2 :

bν,jεν,j <
π
(
ν2 − 1

4

)
xν,j−1

bν,j =
π(n− 1)(n− 3)

4
bν,j−1 + π

bν,j−1 − εν,j−1
.

Therefore, given ε > 0, we can find jε ∈ N such that

bν,jεν,j ≤
π(n− 1)(n− 3)

4
+ ε(12)

whenever j ≥ jε. Similarly,

b0,j |ε0,j | <
π

4
b0,j
x0,j−1

,

so that, given ε > 0, we can find jε ∈ N such that

b0,j |ε0,j| ≤
π

4
+ ε(13)

whenever j ≥ jε.
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To simplify the notations, set, for n ≥ 1, j ≥ 1,

cn,j :=
4
π
bν,j = 4j + n− 3,

δn,j :=
4
π
εν,j , (n 6= 2), δ2,j := − 4

π
ε0,j.

Then, for n ≥ 1, j ≥ 1, we have

4
π
αn,j = cn,j − δn,j , (n 6= 2),

4
π
α2,j = c2,j + δ2,j .

Assume now that α is irrational and has a bounded sequence of partial quotients,
so that, by the results of Section 2, M(α) <∞. Set

mα = min
p,q∈Z+

pqM

(
8p
q
α

)
.(14)

Notice that it follows from Corollary 2 that

M

(
8p
q
α

)
≤ 8pqM(α),

and hence

mα ≤ 8M(α) = 8M({α}).(15)

Theorem 1. Assume that α = a
T is irrational, that M(α) <∞ and that

α >
|(n− 1)(n− 3)|

2π
mα,(16)

where mα is defined in (14). Then 0 is not an accumulation point of Σnα.

Proof. a) n 6= 2. Assume that 0 is an accumulation point of Σnα. Then we can find

a sequence
{
λ

(n)
jl,kl

}∞
l=1

of eigenvalues such that λ(n)
jl,kl
→ 0 if l→∞. In other terms,

c2n,jl + δ2
n,jl − 2cn,jlδn,jl − (8klα)2 → 0,

if l→∞, which, because of liml→∞ δn,jl = 0, is equivalent to

(cn,jl − 8|kl|α)(cn,jl + 8|kl|α)− 2cn,jlδn,jl → 0,(17)

if l→∞. If we write (17) in the form

|kl|
(
cn,jl
|kl|
− 8α

)
(cn,jl + 8α|kl|)− 2cn,jlδn,jl

= k2
l

(
cn,jl
|kl|
− 8α

)(
cn,jl
|kl|

+ 8α
)
− 2cn,jlδn,jl → 0,(18)

and observe that, by (12), 2cn,jlδn,jl is bounded, and that cn,jl + 8α|kl| is bounded
below, then necessarily we have

|kl|
(
cn,jl
|kl|
− 8α

)
→ 0,

and hence also
cn,jl
|kl|

→ 8α,
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if l→∞. Consequently, writing now (18) in the form

k2
l

(
cn,jl
|kl|
− 8α

)
· 16α− 2cn,jlδn,jl + k2

l

(
cn,jl
|kl|
− 8α

)2

→ 0

if l→∞, we deduce that

k2
l

(
cn,jl
|kl|
− 8α

)
· 8α− cn,jlδn,jl → 0,

when l →∞. Consequently, for each p, q ∈ Z+, we have

1
pq

(klq)2

(
pcn,jl
q|kl|

− 8pα
q

)
· 8α− cn,jlδn,jl → 0,

when l →∞. Let ε > 0. There exists lε ∈ N such that

(klq)2

∣∣∣∣pcn,jlq|kl|
− 8pα

q

∣∣∣∣ ≤ pq

8α
cn,jlδn,jl + ε =

2pq
απ2

bν,jlεν,jl + ε,

whenever l ≥ lε. Using (12), we see that there exists l′ε ∈ N such that

(klq)2

∣∣∣∣pcn,jlq|kl|
− 8pα

q

∣∣∣∣ ≤ pq(n− 1)(n− 3)
2πα

+ 2ε,

whenever l ≥ l′ε. Combining this result with the definition of the function M(α),
we see that

1
pq(n−1)(n−3)

2πα + 2ε
≤M

(
8pα
q

)
,

for each ε > 0, and hence

2πα
pq(n− 1)(n− 3)

≤M
(

8pα
q

)
.

In other terms,

α ≤ (n− 1)(n− 3)
2π

pqM

(
8pα
q

)
,

for all p, q ∈ Z+, and hence

α ≤ (n− 1)(n− 3)
2π

mα,

a contradiction.
b) n = 2. Assume again by contradiction that 0 is an accumulation point of

Σnα. Then we can find a sequence
{
λ

(2)
jl,kl

}∞
l=1

of eigenvalues such that λ(2)
jl,kl
→ 0 if

l→∞. In other terms,

(c2,jl + δ2,jl)
2 − (8klα)2 → 0,

if l→∞, which is equivalent to

(c2,jl − 8|kl|α)(c2,jl + 8|kl|α) + 2c2,jlδ2,jl → 0,(19)

if l→∞. Proceeding as in the first part of the proof, we deduce that

k2
l

(
c2,jl
|kl|
− 8α

)
· 8α+ c2,jlδ2,jl → 0,
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when l →∞. Consequently, for each p, q ∈ Z+, we have

1
pq

(klq)2

(
pc2,jl
q|kl|

− 8pα
q

)
· 8α+ c2,jlδ2,jl → 0,

when l →∞. Let ε > 0. There exists lε ∈ N such that

(klq)2

∣∣∣∣pc2,jlq|kl|
− 8pα

q

∣∣∣∣ ≤ pq

8α
c2,jlδ2,jl + ε =

2pq
απ2

bν,jlεν,jl + ε,

whenever l ≥ lε. Using (13), we see that there exists l′ε ∈ N such that

(klq)2

∣∣∣∣pcn,jlq|kl|
− 8pα

q

∣∣∣∣ ≤ pq

2πα
+ 2ε,

whenever l ≥ l′ε. Reasoning as in the first part of the proof, we see that

2πα
pq
≤M

(
8pα
q

)
,

for all p, q ∈ Z+, and hence

2πα ≤ mα,

a contradiction.

Remark 1. We know that

λ
(1)
j,k =

( π
2a

)2 [
(2j − 1)2 − (4kα)2

]
,

and

λ
(3)
j,k =

( π
2a

)2 [
(2j)2 − (4kα)2

]
.

As α is irrational, we see that, when n = 1 or n = 3, 0 is not an eigenvalue.

Remark 2. By the above proof, we can see that if 0 is an eigenvalue, its multiplicity
is finite.

4. Application to the radially symmetric semilinear wave equation

Now let J = [0, T ]× [0, a] and g : J × R→ R be a function such that g(·, ·, u) is
measurable on J for each u ∈ R and g(t, r, ·) is continuous on R for a.e. (t, r) ∈ J .
Moreover, assume that g satisfies the linear growth condition

|g(t, r, u)| ≤ c0|u|+ h0(t, x), (t, x) ∈ J, u ∈ R,
where c0 ≥ 0 and h0 ∈ H . As before, α = a/T is assumed to be irrational.

We consider the weak radially symmetric solutions of the semilinear wave equa-
tion on a ball

utt − urr −
n− 1
r

ur − g(t, r, u) = h(t, r), (t, r) ∈ ]0, T [×]0, a[,

ur(t, 0) = u(t, a) = 0, t ∈ ]0, T [,(20)
u(0, r)− u(T, r) = ut(0, r) − ut(T, r) = 0, r ∈ ]0, a[,

where h ∈ H. We recall that u ∈ H is a weak solution of this problem, provided∫ T

0

∫ a

0

[
u

(
ϕtt − ϕrr −

n− 1
r

ϕr

)
− (g(·, ·, u) + h)ϕ

]
rn−1drdt = 0
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for every ϕ ∈ D. We define the abstract realization L in H of the radial symmetric
wave operator with the periodic-Dirichlet conditions on [0, T ] × Bn[a] as follows.
Each u ∈ H can be writen as the Fourier series

u ∼
∑

k≥0, j≥1

uj,kϕ
n
j,k,

where uj,k = 〈u, ϕnj,k〉, and the ϕnj,k are the eigenfunctions defined in (10). Let

D(L) =

u ∈ H :
∑

k≥0, j≥1

[(αn,j
a

)2

−
(

2kπ
T

)2
]2

|uj,k|2 <∞

 ,

and

L : D(L)→ H, u→ Lu =
∑

k≥0, j≥1

[(αn,j
a

)2

−
(

2kπ
T

)2
]
uj,kφ

n
j,k.

Then L is a self-adjoint operator in H , with spectrum σ(L) = Σnα given by (11).
If we call N the Nemytski operator generated in H by g, we get the equivalent
abstract equation

Lu−N(u) = h, u ∈ D(L).(21)

In view of Theorem 1 we can now apply the abstract results obtained in [4]. For
any l /∈ σ(L), we denote by dl the distance of l to σ(L). As L is self-adjoint, we
have

‖(L− lI)−1‖ = d−1
l .

Now Theorem 1 states that there are open (maximal) intervals ]l−, 0[ and ]0, l+[,
which have empty intersection with the spectrum σ(L). When n 6= 1 or 3, the point
l = 0 may be an eigenvalue, but, in that case, it follows from Remark 2 that its
multiplicity is finite. Our first existence result for (20) is on the line of Theorem 2
in [4].

Theorem 2. Assume that n is different from 1 and 3, that α = a/T is irrational,
has a bounded sequence of partial quotients and satisfies condition

α >
|(n− 1)(n− 3)|

2π
mα,(22)

where mα is defined in (14). Assume also that there exist constants β0, β1, γ and
some h1 ∈ H such that the following assumptions are satisfied.

(i) β0 ≤ g(t,r,u)−g(t,r,v)
u−v ≤ β1,

(ii)
∣∣∣g(t, r, u)− l−

2 u
∣∣∣ ≤ γ|u|+ h1(t, r),

for a.e. (t, r) ∈ [0, T ]× [0, a], all u ∈ R and all v 6= u ∈ R. If

l− ≤ β0 ≤ β1 ≤ 0 and 0 ≤ γ < −l−
2
,

then problem (20) has at least one weak solution for each h ∈ H.
Moreover, if condition (i) holds, together with inequalities,

l− < β0 ≤ β1 < 0,
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then problem (20) has, for each h ∈ H, a unique weak solution which can be ob-
tained, from any u0 ∈ D(L), by the iterative process defined by

Luk+1 −
l−
2
uk+1 = h+N(uk)− l−

2
uk, (k ∈ N).(23)

Proof. It follows from assumptions (i) and (ii) that one has

l−
2
≤
g(t, r, u)− l−

2 u−
(
g(t, r, v)− l−

2 v
)

u− v ≤ − l−
2
,

for a.e. (t, r) ∈ [0, T ]× [0, a] and all u 6= v ∈ R. Hence,∣∣∣∣g(t, r, u)− l−
2
u−

(
g(t, r, v)− l−

2
v

)∣∣∣∣ ≤ − l−2 |u− v|,
for a.e. (t, r) ∈ [0, T ]× [0, a] and all u, v ∈ R. On the other hand, we have dl = − l−2
and the first part of the result follows from the first part of Lemma 1 in [4]. The
second part follows in a similar way from the second part of Lemma 1 in [4].

Of course one can state and prove a similar result based upon l+ instead of l−.

Theorem 3. Assume that n is different from 1 and 3, that α = a/T is irrational,
has a bounded sequence of partial quotients and satisfies condition (22). Assume
also that there exist constants β0, β1, γ and some h1 ∈ H such that the following
assumptions are satisfied.

(i) β0 ≤ g(t,r,u)−g(t,r,v)
u−v ≤ β1,

(ii)
∣∣∣g(t, r, u)− l+

2 u
∣∣∣ ≤ γ|u|+ h1(t, r),

for a.e. (t, r) ∈ [0, T ]× [0, a], all u ∈ R and all v 6= u ∈ R. If

0 ≤ β0 ≤ β1 ≤ l+ and 0 ≤ γ < l+
2
,

then problem (20) has at least one weak solution for each h ∈ H.
Moreover, if condition (i) holds together with inequalities

0 < β0 ≤ β1 < l+,

then problem (20) has, for each h ∈ H, a unique weak solution which can be ob-
tained, from any u0 ∈ D(L), by the iterative process defined in (23).

The same technique, taking into account that 0 is not an eigenvalue, can be used
to prove a better result when n = 1 or 3.

Theorem 4. Assume that n = 1 or 3, that α = a/T is irrational and has a bounded
sequence of partial quotients. Assume also that there exist constants β0, β1, γ and
some h1 ∈ H such that the following assumptions are satisfied.

(i) β0 ≤ g(t,r,u)−g(t,r,v)
u−v ≤ β1,

(ii)
∣∣∣g(t, r, u)− (l−+l+)

2 u
∣∣∣ ≤ γ|u|+ h1(t, r),

for a.e. (t, r) ∈ [0, T ]× [0, a], all u ∈ R and all v 6= u ∈ R. If

l− ≤ β0 ≤ β1 ≤ l+ and 0 ≤ γ < (l− + l+)
2

,

then problem (20) has at least one weak solution for each h ∈ H.
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Moreover, if condition (i) holds together with inequalities

l− < β0 ≤ β1 < l+,

then problem (20) has, for each h ∈ H, a unique weak solution which can be ob-
tained, from any u0 ∈ D(L), by the iterative process defined by

Luk+1 −
l− + l+

2
uk+1 = h+N(uk)− l− + l+

2
uk, (k ∈ N).

For n = 1 or 3 and some irrational α, one can determine explicitly the optimal
values of l− and l+. For example, let us consider the special case of (20) when
n = 3 and α = 1/

√
2. Clearly, α is a quadratic irrational and hence has bounded

partial quotients. It follows from (9) and property (B3) of Bessel functions that the
eigenvalues of L are given by

λ
(3)
j,k =

(π
a

) (
j2 − 2k2

)
, (j ≥ 1, k ≥ 0).

This immediately implies that 0 is not an eigenvalue, and, using classical results on
the Pell equations

j2 − 2k2 = ±1,

one sees that the largest negative eigenvalue is −
(
π
a

)2 and the smallest positive
eigenvalue is

(
π
a

)2
, both having infinite multiplicity (see e.g. [11, 18]). Thus

l± = ±
(π
a

)2

,

and Theorem 4 takes the following form, which can be seen as an extension to n = 3
of results for n = 1 contained in Theorem 3 and the end of Section 3 of [14], and
in Theorem 1 of [17].

Corollary 3. Assume that n = 3, α = 1/
√

2, and that there exist a positive con-
stant

γ <
(π
a

)2

(24)

and some h1 ∈ H such that the following assumptions are satisfied.

(i) |g(t, r, u)− g(t, r, v)| ≤
(
π
a

)2 |u− v|,
(ii) |g(t, r, u)| ≤ γ|u|+ h1(t, r),

for a.e. (t, r) ∈ [0, T ]× [0, a] and all u, v ∈ R. Then problem (20) has at least one
weak solution for each h ∈ H.

Moreover, if conditions (i) and (ii) are replaced by
(iii) |g(t, r, u)− g(t, r, v)| ≤ γ|u− v|

for a.e. (t, r) ∈ [0, T ]× [0, a], all u, v ∈ R, and some positive γ satisfying inequality
(24), then problem (20) has, for each h ∈ H, a unique weak solution which can be
obtained, from any u0 ∈ D(L), by the iterative process defined by

Luk+1 = h+N(uk), (k ∈ N).

We close this paper with a result whose statement and proof, based on Corollary
1 in [15], is very similar to that of Theorem 5 of [4].

Theorem 5. Assume again that α = a/T is irrational, has a bounded sequence of
partial quotients and satisfies condition (22). Assume moreover that g = g(u) and
there exist real numbers a and b such that the following conditions hold.
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(i) l− < a ≤ b < l+.

(ii) a ≤ g(u)−g(v)
u−v ≤ b for all u, v ∈ R, u 6= v.

(iii)
[
lim inf |u|→∞

g(u)
u , lim sup|u|→∞

g(u)
u

]
∩ σ(L) = ∅.

Then problem (20) has at least one weak solution for each h ∈ H.
Remark 3. It follows from inequality (15) that, in Theorems 2, 3, 5, condition (22)
can be replaced by the weaker but more concrete inequality

α >
4|(n− 1)(n− 3)|

π
M({α}).
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[8] E. Borel, Les probabilités dénombrables et leurs applications arithmétiques, Rend. Circ. Mat.
Palermo 27 (1909), 247-271.

[9] E. Borel, Sur un problème de probabilités relatifs aux fractions continues, Math. Ann. 72
(1912), 578-584.

[10] F.E. Browder, Nonlinear operators and nonlinear equations of evolution in Banach spaces,
Proc. Symp. Pure Math. No. 18-2, Amer. Math. Soc., Providence, 1976. MR 53:8982

[11] G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford
Univ. Press, 1979. MR 81i:10002
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