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MONOTONICITY OF STABLE SOLUTIONS
IN SHADOW SYSTEMS

WEI-MING NI, PETER POLÁČIK, AND EIJI YANAGIDA

Abstract. A shadow system appears as a limit of a reaction-diffusion system
in which some components have infinite diffusivity. We investigate the spa-
tial structure of its stable solutions. It is known that, unlike scalar reaction-
diffusion equations, some shadow systems may have stable nonconstant (mono-
tone) solutions. On the other hand, it is also known that in autonomous
shadow systems any nonconstant non-monotone stationary solution is neces-
sarily unstable. In this paper, it is shown in a general setting that any stable
bounded (not necessarily stationary) solution is asymptotically homogeneous
or eventually monotone in x.

1. Introduction and main results

In this paper, we consider the system of the form

ut = uxx + f(u, v, t), x ∈ (0, 1), t > 0,

ux(0, t) = 0 = ux(1, t), t > 0,

vt =
∫ 1

0

g(u, v, t)dx, t > 0,

(1.1)

where u = u(x, t) ∈ R and v = v(t) ∈ Rm. This system is closely related to the
(1 +m)-component reaction-diffusion system

ut = uxx + f(u, v, t),

vt = ε−2vxx + g(u, v, t),
(1.2)

with the homogeneous Neumann boundary conditions. In fact, the system (1.1)
appears as a limit of (1.2) as ε ↓ 0 and is called the shadow system of (1.2). See
[9, 14] for a more precise relation between (1.1) and (1.2) concerning equilibria and
the dynamics.

We assume that the nonlinearities f and g satisfy the following hypotheses:
(H1) For each M > 0, the functions f , g, fu, fv, gu and gv are continuous and

bounded in [−M,M ]m+1 × [0,∞].
(H2) There is an α ∈ (0, 1) such that for each M > 0 and τ ≥ 0, the functions
f , g, fu, fv, gu and gv are Hölder continuous with exponent α in the region
[−M,M ]m+1 × [τ, τ + 1] and their Hölder norms are bounded by a constant
independent of τ .
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Under these assumptions, the system (1.1) is well-posed on C[0, 1] × Rm. More
precisely, for any u0(·) ∈ C[0, 1] and v0 ∈ Rm there is a unique solution of (1.1)
subject to the initial condition

u(x, 0) = u0(x), v(0) = v0,

and the solution enjoys the usual continuous-dependence and regularity properties
of parabolic equations (see, e.g., [10]).

Our main objective is to describe the spatial structure of stable solutions of
(1.1). Our investigation was motivated by earlier results on the autonomous shadow
system

ut = uxx + f(u, v), x ∈ (0, 1), t > 0,

ux(0, t) = 0 = ux(1, t), t > 0,

vt =
∫ 1

0

g(u, v)dx, t > 0.

(1.3)

It was shown by Nishiura [14] and Ni, Takagi and Yanagida [13] that systems of the
form (1.3) may have stable stationary solutions that are spatially inhomogeneous
and monotone (see also [8] for a discussion of similar results for scalar nonlocal
equations). In [13], it was also shown that a time-periodic solution may appear in
an autonomous shadow system through a Hopf bifurcation. A numerical compu-
tation by Fukushima and Yanagida (see the survey paper [12]) indicates that the
time-periodic solution is stable under some conditions if the solution is spatially
monotone. These results are in contrast to scalar reaction-diffusion equations for
which any stable periodic (or almost periodic) solution must be spatially homoge-
neous (cf. [11, 15, 17]).

On the other hand, Nishiura proved in [14, Theorem 4.1] that except for constant
solutions and monotone solutions, there are no other stable stationary solutions of
(1.3). One of our results here extends this theorem to time-periodic solutions:
We show that such solutions are unstable, unless they are spatially constant or
monotone. This is a consequence of our main theorem in which we consider general
time-dependent solutions.

As we deal with bounded solutions that are not necessarily stationary or time-
periodic, some care is needed in the definition of stability. Let (u, v) be any bounded
solution of (1.1) and consider the linearized equation along that solution

Ut = Uxx + fu(u, v, t)U + fv(u, v, t)V, x ∈ (0, 1), t > 0,

Ux(0, t) = 0 = Ux(1, t), t > 0,

Vt =
∫ 1

0

{gu(u, v, t)U + gv(u, v, t)V }dx, t > 0,

(1.4)

where U = U(x, t) ∈ R and V = V (t) ∈ Rm. Let T (t, s) denote the evolution
operator of this problem on C[0, 1]×Rm. We say that the solution (u, v) is linearly
stable if there are positive constants C and λ such that

‖T (t, s)‖ ≤ Ce−λ(t−s) (t > s ≥ 0).

If this property holds with λ ≥ 0, we say that (u, v) is at least linearly neutrally
stable. We say a solution (u, v) of (1.1) is linearly exponentially unstable if there
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exists a solution (U, V ) of (1.4) such that

‖U‖L∞(0,1) + |V | ≥ exp(λt)

with some positive number λ > 0.
It is well-known that linearly stable solutions are uniformly asymptotically stable

(see, e.g., [10, Sect. 5.1 and Excercise 9 in Sect. 7.1]). It is also well-known that if
(u, v) is an equilibrium of an autonomous system or a periodic solution of a time-
periodic system, then, to be stable, it must be at least linearly neutrally stable.
For general nonautonomous equations, similar instability criteria are not so easily
formulated and additional conditions are involved in general (see [10, Exercise 4 in
Sect. 5.1] and [2, Sect.16.2]).

In what follows we consider solutions (u(x, t), v(t)) of (1.1) that satisfy the fol-
lowing conditions:

(A1) (u, v) = (u(x, t), v(t)) is uniformly bounded in (x, t) ∈ [0, 1]× [0,∞).
(A2) ‖ux(·, t)‖L∞(0,1) is bounded away from 0, that is,

‖ux(·, t)‖L∞(0,1) > d (t > 0)

for some constant d > 0.
Note that (A1) and parabolic regularity in particular imply that

{(u(·, t), v(t)) : t ≥ 1}

is relatively compact in C2[0, 1] ×Rm. The role of (A2) is to guarantee that the
solution stays away from the space of constant functions.

Now we state the main result of this paper.

Theorem 1.1. Assume that (H1) and (H2) hold. Let (u(x, t), v(t)), t ≥ 0, be a
solution of (1.1) satisfying (A1), (A2) that is at least linearly neutrally stable. Then
there is a t0 such that

ux(x, t) 6= 0 for all (x, t) ∈ (0, 1)× [t0,∞).

We have a more specific linear instability result for solutions that have a certain
symmetry property. We say that a function v(x) is k-symmetric in [0, 1], k ≥ 2,
if the restriction v(x), x ∈

[
i−1
k , i+1

k

]
, is even symmetric with respect to the point

x = i/k for all i = 1, 2, . . . , k − 1, that is,

v(x) = v(2i/k − x) for all x ∈
[
i− 1
k

,
i+ 1
k

]
.

We call a solution (u, v) of (1.1) k-symmetric if u(x, t) is k-symmetric for every t.

Theorem 1.2. Assume that (H1) and (H2) hold. Let (u(x, t), v(t)) be a solution of
(1.1) satisfying (A1), (A2) that is k-symmetric with some k ≥ 2. Then (u(x, t), v(t))
is linearly exponentially unstable.

Theorem 1.2, besides giving an additional instability property, is also the main
ingredient of the proof of Theorem 1.1. Theorem 1.2 will be used in conjunction
with the following result which links general solutions to k-symmetric solutions.
We say that (φ, ξ) ∈ C[0, 1]×Rm is a limit point of a solution (u(x, t), v(t)) if

(u(x, tn), v(tn))→ (φ(x), ξ) in C[0, 1]×Rm

for some sequence {tn} approaching ∞.
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Proposition 1.3. Assume that (H1) and (H2) hold. Let (u(x, t), v(t)) be a so-
lution of (1.1) satisfying (A1), (A2). Then there is a positive integer k such that
each limit point (φ, ξ) of (u(x, t), v(t)) satisfies φx(x) 6= 0 for x ∈ (0, 1/k) and
φ′(1/k) = 0. Moreover, if k ≥ 2, then φ is k-symmetric.

This proposition follows directly from [5, Theorem B] upon noting that u solves
a scalar reaction diffusion equation for which all hypotheses of [5, Theorem B] are
fulfilled. Also note that (A2) implies that no limit point can be constant in x.

Proposition 1.3 readily implies that every time-periodic solution which is neither
spatially homogeneous nor monotone must necessarily be k-symmetric for some
k ≥ 2. As an immediate consequence of Theorem 1.2, we therefore obtain the
following instability result for such periodic solutions.

Corollary 1.4. Suppose that f(u, v, t) and g(u, v, t) are periodic in t with a com-
mon period τ and that they are differentiable with respect to (u, v) and the deriva-
tives are locally Hölder continuous. Then any τ-periodic solution of (1.1) is linearly
exponentially unstable if it is spatially inhomogeneous and non-monotone.

The previous corollary in particular implies that non-monotone stationary solu-
tions of autonomous shadow systems are linearly exponentially unstable. In fact,
the latter result holds under weaker regularity assumptions. More precisely, it is
formulated as follows (cf. [14]).

Proposition 1.5. Suppose that f(u, v) and g(u, v) are of class C1. Then any
spatially inhomogeneous non-monotone steady state of (1.3) is linearly exponentially
unstable.

Finally, we remark that the above results hold also for scalar nonlocal equations
of the form

ut = uxx + f(u, v, t), x ∈ (0, 1), t > 0,

ux(0, t) = 0 = ux(1, t), t > 0,

with

v =
∫ 1

0

g(u, t)dx.

For this equation, the stability of solutions is defined in a similar manner as for the
shadow system (1.1), using the linearized equation

Ut = Uxx + fu(u, v, t)U + fv(u, v, t)V, x ∈ (0, 1), t > 0,

Ux(0, t) = 0 = Ux(1, t), t > 0,

with

V =
∫ 1

0

gu(u, t)Udx.

The proofs of our instability results work in this case with straightforward modifi-
cations.

The paper is organized as follows. In Section 2, in order to make our strategy
clear, we give a short proof of Proposition 1.5. In Section 3, we give a proof of
Theorem 1.2 by generalizing the arguments of Section 2 to the time-dependent
case. Then we prove Theorem 1.1.
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2. Instability of non-monotone steady states

In this section we consider the autonomous shadow system (1.3) and give a proof
of Proposition 1.5.

Let (u(x), α) be a stationary solution of (1.3), that is, (u(x), α) satisfies

u′′ + f(u, α) = 0, x ∈ (0, 1),

u′(0) = 0 = u′(1),∫ 1

0

g(u(x), α)dx = 0.

(2.1)

Clearly, if (u(x), α) is a nonconstant non-monotone solution of (2.1), then u(x) is
k-symmetric with some k ≥ 2 and monotone in [0, 1/k].

Let us consider the following eigenvalue problem associated with the linearized
operator around u(x):

`ϕ(x) = ϕ′′(x) + fu(u(x), α)ϕ(x), x ∈ (0, 1),

ϕ′(0) = 0 = ϕ′(1).
(2.2)

According to the Sturm-Liouville theory, the eigenvalues of (2.2) are real numbers
`0 > `1 > `2 > · · · → −∞, and the corresponding eigenfunctions ϕ0, ϕ1, ϕ2, . . . ,
are characterized by the property that ϕj has exactly j zeros in (0, 1). We assume
that these eigenfunctions are normalized in L2(0, 1).

Next, let us consider the eigenvalue problem˜̀ϕ̃(x) = ϕ̃′′(x) + fu(u(x), α)ϕ̃(x), x ∈ (0, 1/k),

ϕ̃′(0) = 0 = ϕ̃′(1/k).
(2.3)

We denote by ˜̀j and ϕ̃j the jth eigenvalue and corresponding eigenfunction of (2.3),
respectively. We assume that the eigenfunctions are normalized in L2(0, 1/k). Since
ϕ̃j has exactly j zeros in (0, 1/k), it follows from reflection and the number of zeros
that ˜̀

j = `jk, ϕ̃j(x) ≡
√
kϕjk(x) on [0, 1/k],

for all j = 0, 1, 2, . . . .

Lemma 2.1. Let w(x) be any k-symmetric function on [0, 1]. Then∫ 1

0

w(x)ϕj(x)dx = 0, j 6= 0, k, 2k, . . . .

Proof. Let 〈 ·, · 〉 L2(a,b) denote the L2-inner product on (a, b). By reflection, we
have for x ∈ (0, 1/k)

w =
∞∑
j=0

〈w, ϕ̃j 〉 L2(0,1/k)ϕ̃j

=
∞∑
j=0

k 〈w,ϕjk 〉 L2(0,1/k)ϕjk

=
∞∑
j=0

〈w,ϕjk 〉 L2(0,1)ϕjk.
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Hence, again by reflection, we obtain

w =
∞∑
j=0

〈w,ϕjk 〉 L2(0,1)ϕjk on [0, 1].

On the other hand, we can expand w as

w =
∞∑
j=0

〈w,ϕj 〉 L2(0,1)ϕj on [0, 1].

Comparing these two expansions termwise, we obtain the conclusion.

Lemma 2.2. If u(x) is k-symmetric, then the eigenvalues of (2.2) satisfy `0 >
`1 > · · · > `k−1 > 0.

Proof. Differentiating (2.1) by x, we obtain

{u′(x)}′′ + fu(u(x), α)u′(x) = 0, x ∈ (0, 1).

We also have u′(0) = u′(1) = 0. Clearly u′(x) has k − 1 zeros in (0, 1) and ϕj(x)
has exactly j zeros in (0, 1). Then it follows from the Sturm comparison theorem
(see, e.g. [7]) that `k−1 > 0.

We now give a proof of Proposition 1.5.

Proof of Proposition 1.5. Let (u(x), α) be any spatially inhomogeneous non-
monotone solution of (2.1), and consider the eigenvalue problem

λΦ(x) = Φ′′(x) + fu(u(x), α)Φ(x) + fv(u(x), α)η, x ∈ (0, 1),

λη =
∫ 1

0

{gu(u(x), α)Φ(x) + gv(u(x), α)η} dx,

Φ′(0) = 0 = Φ′(1).

(2.4)

Since gu(u(x), α) is k-symmetric with some k ≥ 2, it follows from Lemma 2.1 that∫ 1

0

gu(u(x), α)ϕj(x)dx = 0 for j 6= 0, k, 2k, . . . .

Hence (λ,Φ, η) = (`j , ϕj , 0) satisfies (2.4) if j 6= 0, k, 2k, . . . . This implies that
(U, V ) = (e`jtϕj(x), 0) satisfies (1.4) if j 6= 0, k, 2k, . . . . Since `j > 0 for j =
1, 2, . . . , k − 1 by Lemma 2.2, the steady state (u(x), α) is linearly exponentially
unstable.

3. Time-dependent case

In this section, we generalize the argument of the previous section to the time-
dependent case. Our main tool to do this is a theory of Chow, Lu and Mallet-Paret
[6] concerning the Floquet bundles for a linear parabolic equation (see also [16]).
We briefly summarize their results in the following. We also recall basic properties
of the zero number functional which plays an important role below.

For a function v ∈ C[0, 1], let z(v) denote the number (possibly infinite) of sign
changes of v in (0, 1). Specifically, z(v) is the supremum of numbers n such that
there are 0 < x0 < · · · < xn < 1 with v(xi)v(xi+1) < 0, i = 0, . . . , n− 1. Note that
v 7→ z(v) is upper semicontinuous. If v ∈ C1[0, 1] and all zeros of v in (0, 1) are
simple, then z(v) is equal to the number of these zeros.
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Let us consider the linear parabolic equation

ψt = ψxx + q(x, t)ψ, (x, t) ∈ (a, b)×R,

ψx(a, t) = 0 = ψx(b, t), t ∈ R,
(3.1)

where q ∈ L∞((a, b)×R). A proof of the following lemma can be found in [1, 4].

Lemma 3.1. Let ψ be a nontrivial solution of (3.1) on an interval (t0, T ). Then
the following properties hold:

(i) z(ψ(·, t)) is a finite nonincreasing function of t ∈ (t0, T ).
(ii) If for some t1 ∈ (t0, T ) the function x 7→ ψ(x, t1) has a multiple zero in [0, 1],

then z(ψ(·, t)) decreases strictly at t1:

z(ψ(·, t2)) > z(ψ(·, t3)) for any t2 < t1 < t3.

In particular, there are only a finite number of values t1 for which x 7→ ψ(x, t1)
has a multiple zero.

Moreover, the same statements hold if at some (possibly each) boundary point
x0 ∈ {a, b} the Neumann boundary condition is replaced by one of the following
conditions:

ψ(x0, t) ≡ 0 for t ∈ (t0, T ) or ψ(x0, t) 6= 0 for t ∈ (t0, T ).

We now recall results of [6] pertinent to our considerations. According to Corol-
lary 5.3 of [6], for each j there is a solution ψj of (3.1) with z(ψj(·, t)) ≡ j
(t ∈ R), and the solution ψj is unique up to a constant multiple. Necessarily,
by Lemma 3.1(ii), all zeros of ψj(·, t) in [a, b] are simple for any t. In particu-
lar ψj(0, t) 6= 0 6= ψj(1, t) for any t ∈ R. We normalize ψj by the condition
‖ψj(·, 0)‖L2(a,b) = 1.

As shown in Proposition 5.6 of [6], ψj depends on q(x, t) continuously in the
weak∗ topology. More precisely, if {qn} is a sequence such that qn → q in the
weak∗ topology of L∞((0, 1)×R), then for the corresponding functions ψnj we have

ψnj (·, t)→ ψj(·, t) in C1[0, 1].

This convergence takes place for any t; in fact, due to standard continuous depen-
dence properties, it is uniform on any compact time interval.

Next, let us consider the adjoint equation of (3.1)

−ψ∗t = ψ∗xx + q(x, t)ψ∗, (x, t) ∈ (a, b)×R,

ψ∗x(a, t) = 0 = ψ∗x(b, t), t ∈ R.
(3.2)

Note that the time reversal brings this equation to the form (3.1), with q(x, t)
replaced by q(x,−t), hence [6] applies to (3.2). Let ψ∗j be a solution of (3.2) with
z(ψ∗j (·, t)) ≡ j. We normalize ψ∗j by the condition ‖ψ∗j (·, 0)‖L2(a,b) = 1.

The functions ψj and ψ∗j , as introduced above, are called the normalized Floquet
solutions of (3.1) and (3.2), respectively.

It was proved in Proposition 6.3 of [6] that any function v ∈ L2(a, b) can be
expanded as a convergent (in L2(a, b)) Fourier series

w(x) =
∞∑
j=0

〈w,ψj(·, 0) 〉 L2(a,b)

〈ψj(·, 0), ψ∗j (·, 0) 〉 L2(a,b)
ψ∗j (x, 0),
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where 〈 ·, · 〉L2(a,b) denotes the L2-inner product on (a, b). A translation of time
shows that the same expansion is valid with ψj(x, 0), ψ∗j (x, 0) replaced by ψj(x, t),
ψ∗j (x, t), respectively.

To apply the above results to (1.4), consider a solution (u, v) of (1.1) satisfying
(A1). Define a continuous bounded function q by

q(x, t) :=

{
fu(u(x, 0), v(0), 0) for t < 0,

fu(u(x, t), v(t), t) for t ≥ 0.
(3.3)

Then the Floquet solution ψ = ψj(x, t) of (3.1) with (a, b) = (0, 1) satisfies

ψt = ψxx + fu(u(x, t), v(t), t)ψ, (x, t) ∈ (0, 1)×R,

ψx(0, t) = 0 = ψx(1, t), t ∈ R.
(3.4)

We use {ψj} to construct a solution of (1.4). For this end, we first extend Lemma 2.1
to the time-dependent case.

Lemma 3.2. Let (u, v) be a k-symmetric solution of (1.1) satisfying (A1), and
ψ = ψj(x, t) be the normalized Floquet solution of (3.4). Then for any k-symmetric
function w ∈ L2(0, 1), the equalities∫ 1

0

w(x)ψj(x, t)dx = 0, j 6= 0, k, 2k, . . . ,

hold for all t > 0.

Proof. In the whole proof, q is as in (3.3), and ψ = ψj(x, t), ψ∗ = ψ∗j (x, t) are
the normalized Floquet solutions of (3.4) and its adjoint equation, respectively.
We denote by ψ̃j , ψ̃∗j the normalized Floquet solutions of (3.4) and its adjoint
equation, respectively, defined on (a, b) = (0, 1/k). Since q(x, t) is k-symmetric, it
follows from reflection and the number of zeros that

ψ̃j ≡
√
kψjk, (x, t) ∈ [0, 1/k]×R,

and

ψ̃∗j ≡
√
kψ∗jk, (x, t) ∈ [0, 1/k]×R,

for all j = 0, 1, 2, . . . .
Using the Fourier series and reflection, we obtain the following identities on the

space interval (0, 1/k) (for any fixed t):

w =
∞∑
j=0

〈w, ψ̃j 〉 L2(0,1/k)

〈 ψ̃j , ψ̃∗j 〉 L2(0,1/k)

ψ̃∗j

=
∞∑
j=0

〈w,ψjk 〉 L2(0,1/k)

〈ψjk, ψ∗jk 〉 L2(0,1/k)
ψ∗jk

=
∞∑
j=0

〈w,ψjk 〉 L2(0,1)

〈ψjk, ψ∗jk 〉 L2(0,1)
ψ∗jk.

Hence, again by reflection, we obtain

w =
∞∑
j=0

〈w,ψjk 〉 L2(0,1)

〈ψjk, ψ∗jk 〉 L2(0,1)
ψ∗jk on [0, 1].
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On the other hand, we have

w =
∞∑
j=0

〈w,ψj 〉 L2(0,1)

〈ψj , ψ∗j 〉 L2(0,1)
ψ∗j on [0, 1].

Comparing these two expansions termwise, we obtain

〈w,ψj 〉 L2(0,1) =
∫ 1

0

w(x)ψj(x, t)dx = 0, t ∈ R,

for j 6= 0, k, 2k, . . . .

Next we extend Lemma 2.2 to the time-dependent case.

Lemma 3.3. Let (u, v) be a k-symmetric solution of (1.1) with some k ≥ 2 sat-
isfying (A1), (A2). Then for any j ∈ {0, 1, . . . , k − 1}, the Floquet solution ψj
satisfies

‖ψj(·, t)‖L∞(0,1) > Cj exp(λjt) for all t > 0

with some Cj , λj > 0.

Proof. Note that ux satisfies a linear parabolic equation and Dirichlet boundary
conditions. Using Lemma 3.1, there exists t0 such that ux(·, t) has only simple
zeros in [0, 1] for any t ≥ t0. In particular, z(ux(·, t)) is constant on [t0,∞), and
uxx(0, t) 6= 0 6= uxx(1, t) for t ≥ t0. Further, since ψj(0, t) 6= 0 for any t, replacing
ψj by −ψj if necessary, we may assume that

uxx(0, t)ψj(0, t) > 0 (t ≥ t0).(3.5)

Fix any j ∈ {0, 1, . . . , k − 1} and define

σ(t) := inf {c > 0 : z(cψj(·, t)− ux(·, t)) ≤ j}.
Since the zeros of ψj(x, t) are all simple, z(cψj(·, t) − ux(·, t)) = j for sufficiently
large c > 0. Hence σ(t) is well-defined and is finite. On the other hand, by
symmetry, ux(x, t) has at least k − 1 zeros in (0, 1) and these zeros are simple for
t ≥ t0. This and (3.5) imply that z(cψj(·, t)−ux(·, t)) ≥ k > j for sufficiently small
c. Therefore σ(t) > 0 for all t ≥ t0. Thus it is shown that σ(t) ∈ (0,∞) for all
t ≥ t0.

Note that the upper semicontinuity of v 7→ z(v) and the definition of σ(t) imply

z(σ(t)ψj(·, t)− ux(·, t)) ≤ j.(3.6)

Since ψj and ux satisfy the same linear equation and cψj(x, t) − ux(x, t) 6= 0
for x = 0, 1, t ≥ 0 and c > 0, we can apply Lemma 3.1 to cψj − ux. Then
z(cψj(·, t) − ux(·, t)) is nonincreasing in t so that σ(t) is a nonincreasing function.
We show that σ(t) is strictly decreasing as a matter of fact. Assume it is not. Then
there exist t′′ > t′ > t0 such that σ(t) ≡ σ0 on [t′, t′′] (σ0 is a positive constant).
In this interval we choose t1 such that σ0ψj(·, t1) − ux(·, t1) has only simple zeros
in [0, 1] (cf. Lemma 3.1). But then for any c ≈ σ0 we have

z(cψj(·, t1)− ux(·, t1)) = z(σ0ψj(·, t1)− ux(·, t1)).

This clearly contradicts the definition of σ(t1) = σ0, showing that σ(t) is strictly
decreasing, as claimed.

For the exponential growth of ψj , it is sufficient to prove that

lim sup
t→∞

σ(t+ 1)/σ(t) < 1.(3.7)
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Indeed, assume for a while this is the case. Then there exist cj > 0 and λj > 0
such that σ(t) < cj exp(−λjt) for all t > 0. We prove the relation

lim inf
t→∞

σ(t)‖ψj(·, t)‖L∞(0,1) > 0,(3.8)

which gives the desired exponential growth

‖ψj(·, t)‖L∞(0,1) > Cj exp(λjt)

with some Cj > 0. We prove (3.8) by contradiction. Suppose that it does not hold,
that is, for a sequence tn →∞ we have

lim
n→∞

σ(tn)‖ψj(·, tn)‖L∞(0,1) = 0.(3.9)

Passing to a subsequence, we may assume that

u(·, tn)→ φ in C2[0, 1]

for some φ. Clearly, φ is k-symmetric as u is, and φx 6≡ 0 by (A2). It follows from
Proposition 1.3 that φx changes sign near any of the symmetry points i/k, i =
1, . . . , k−1. Hence, by (3.9), σ(tn)ψj(·, tn)−ux(·, tn) changes sign near these points
if n is large enough. Furthermore, again by Proposition 1.3, φx 6= 0 on an interval
(0, ε). Therefore, by (3.5), σ(tn)ψj(·, tn)−ux(·, tn) also changes sign near 0 for large
n. Thus we conclude that for large n, we have z(σ(tn)ψj(·, tn)− ux(·, tn)) ≥ k > j,
in contradiction to (3.6). This shows that (3.7) implies the exponential growth of
ψj .

It remains to prove (3.7). We proceed by contradiction. Suppose that there is a
sequence {ti} such that ti →∞ and

lim
i→∞

σ(ti + 1)/σ(ti) = 1.

Since σ(t) is monotone decreasing, we obtain

σ(ti + s)/σ(ti)→ 1 uniformly in s ∈ [0, 1].(3.10)

Using hypotheses (A1), (A2) and Schauder estimates, one shows (cf. [5, Proof of
Lemma 3.7]) that passing to a subsequence, we have

u(x, ti + s)→ û(x, s) in C2[0, 1]

for some û(x, s) and

fu(u(x, ti + s), v(ti + s), ti + s)→ q̂(x, s) in C2[0, 1]

for some q̂(x, s). In both cases the convergence is uniform in any compact interval
of s ∈ R. Then w := ûx satisfies

ws = wxx + q̂(x, s)w, (x, s) ∈ (0, 1)×R,

w(0, s) = w(1, s) = 0, s ∈ R.

Using the continuous dependence of ψj on q, as formulated above, we further
obtain

ψj(x, ti + s)
‖ψj(·, ti)‖C1(0,1)

→ ψ̂(x, s) in C1[0, 1]
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uniformly in any compact interval of s ∈ R, where ψ̂ satisfies

ψ̂s = ψ̂xx + q̂(x, s)ψ̂, (x, s) ∈ (0, 1)×R,

ψ̂x(0, s) = ψ̂x(1, s) = 0, s ∈ R,

‖ψ̂(·, 0)‖C1 = 1.

By Lemma 3.1, it is not difficult to see that z(ψ̂(·, s)) ≡ j.
For simplicity, we set σi = σ(ti) and γi = ‖ψj(·, ti)‖C1[0,1]. We claim that

0 < K1 ≤ σiγi ≤ K2 for all i

with some positive constants K1 and K2. In fact, if there exists a subsequence with
σiγi →∞ as i→∞, then for any constant β > 0

z(βσiψj(·, ti)− ux(·, ti)) = z

(
βψj(·, ti)

γi
− ux(·, ti)

σiγi

)
= z(βψ̂(·, 0))
= j

for sufficiently large i, because ψ̂ has only simple zeros. If 0 < β < 1, this contradicts
the definition of σ(ti). Hence σiγi is bounded above.

Similarly, if σiγi → 0 along a subsequence, we rewrite

z(σiψj(·, ti)− ux(·, ti)) = z

(
σiγiψj(·, ti)

γi
− ux(·, ti)

)
.

Repeating the arguments used earlier in ruling out (3.9), we obtain

z

(
σiγiψj(·, ti)

γi
− ux(·, ti)

)
≥ k > j

for sufficiently large i. Thus we have a contradiction to (3.6), showing that σiγi is
bounded away from 0.

Now we can take a subsequence such that σiγi → b as i→∞ for some positive
constant b. Then it follows from (3.10) that

ψj(x, ti + s)
γi

− ux(x, ti + s)
γiσ(ti + s)

→ ζ(x, s) := ψ̂(x, s) − w(x, s)
b

in C1[0, 1]

uniformly in s ∈ (0, 1). Clearly, ζ(x, s) satisfies the linear equation

ζs = ζxx + q̂(x, t)ζ, (x, t) ∈ (0, 1)×R.

Furthermore, we have ψ̂(x, s) 6= 0 for x = 0, 1, by the simplicity of zeros, and
w(0, s) = w(1, s) = 0. Thus Lemma 3.1 applies to ζ and we can find an s ∈ [0, 1]
such that ζ(x, s) has only simple zeros. But then the same is true for the function

ψj(x, ti + s)
γi

− ux(x, ti + s)
γiσ(ti + s)

,

for i sufficiently large. However, this is not possible by the definition of σ(ti + s).
Thus (3.7) is proved.

Now we are in a position to prove Theorems 1.1 and 1.2.
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Proof of Theorem 1.2. Let ψj(x, t) be the solution of (3.4) given as above. Since
gu(u, v, t) is k-symmetric if u is k-symmetric, it follows from Lemma 3.2 that
(U, V ) = (ψj(x, t), 0) satisfies (1.4). Then it follows from Lemma 3.3 that (u, v)
is linearly exponentially unstable.

Proof of Theorem 1.1. As in the proof of Theorem 1.2, we use (H1), (H2) and
Schauder estimates to find a sequence ti →∞ such that

u(·, t+ ti)→ û(·, t), v(t+ ti)→ v̂(t),
f(u, v, t+ ti)→ f̂(u, v, t), g(u, v, t+ ti)→ ĝ(u, v, t),

for some û, v̂, f̂ , ĝ with

ût = ûxx + f̂(û, v̂, t), x ∈ (0, 1), t > 0,

ûx(0, t) = 0 = ûx(1, t), t > 0,

v̂t =
∫ 1

0

ĝ(û, v̂, t)dx, t > 0.

Also the hypotheses (H1), (H2), (A1), (A2) hold for the new functions (the Hölder
exponent in (H2) may have to be made smaller). Furthermore, if T (t, s) is the
evolution operator of (1.4), then T (t+ ti, s+ ti) converges in the operator norm of
C[0, 1]×Rm to the evolution operator T̂ (t, s) of

Ut = Uxx + f̂u(û, v̂, t)U + f̂v(û, v̂, t)V, x ∈ (0, 1), t > 0,

Vt =
∫ 1

0

{ĝu(û, v̂, t)U + ĝv(û, v̂, t)V }dx, t > 0,

Ux(0, t) = 0 = Ux(1, t), t > 0.

Since (u, v) is assumed to be at least linearly neutrally stable, (û, v̂) also is at least
linearly neutrally stable.

Now, by Proposition 1.3, there is an integer k ≥ 1 such that ûx(x, t) 6= 0 for any
x ∈ (0, 1/k) and t ∈ R, and if k ≥ 2 then û is k-symmetric. The case k ≥ 2 is
immediately ruled out, since (û, v̂) would then be linearly exponentially unstable
by Theorem 1.2. We thus have k = 1 and ûx(x, t) 6= 0 for every x ∈ (0, 1). Since ûx
satisfies a linear parabolic equation and Dirichlet boundary conditions, there is a
t′ such that ûxx(0, t′) 6= 0 6= ûxx(1, t′). Since the convergence u(·, t′ + ti)→ û(·, t′)
takes place in C2[0, 1], we have, for some ti, ux(x, t′ + ti) 6= 0 for every x ∈ (0, 1).
Consequently, ux(x, t) 6= 0 for every x ∈ (0, 1) and for every t ≥ t′ + ti.

This completes the proof of Theorem 1.1.
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Bratislava, Slovakia

Mathematical Institute, Tohoku University, Sendai 980-8578, Japan

E-mail address: yanagida@math.tohoku.ac.jp

http://www.ams.org/mathscinet-getitem?mr=51:6151
http://www.ams.org/mathscinet-getitem?mr=99h:35078
http://www.ams.org/mathscinet-getitem?mr=90e:35018
http://www.ams.org/mathscinet-getitem?mr=96e:35070
http://www.ams.org/mathscinet-getitem?mr=16:1022b
http://www.ams.org/mathscinet-getitem?mr=95h:35026
http://www.ams.org/mathscinet-getitem?mr=91a:35091
http://www.ams.org/mathscinet-getitem?mr=83j:35084
http://www.ams.org/mathscinet-getitem?mr=88g:35110
http://www.ams.org/mathscinet-getitem?mr=99a:35132
http://www.ams.org/mathscinet-getitem?mr=99d:34088
http://www.ams.org/mathscinet-getitem?mr=2000e:35097

	1. Introduction and main results
	2. Instability of non-monotone steady states
	3. Time-dependent case
	Acknowledgment
	References

