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SUBGROUP PROPERTIES OF
FULLY RESIDUALLY FREE GROUPS

ILYA KAPOVICH

Abstract. We prove that fully residually free groups have the Howson prop-
erty, that is the intersection of any two finitely generated subgroups in such
a group is again finitely generated. We also establish some commensurability
properties for finitely generated fully residually free groups which are similar
to those of free groups. Finally we prove that for a finitely generated fully
residually free group the membership problem is solvable with respect to any
finitely generated subgroup.

1. Introduction

A group G is called residually free if for any element g ∈ G, g 6= 1 there exists
a homomorphism φ : G −→ F onto a free group F such that φ(g) 6= 1. Similarly,
a group G is called fully residually free (or sometimes ω-residually free) if for any
finite collection of nontrivial elements g1 ∈ G−{1}, . . . , gn ∈ G−{1} there exists a
homomorphism φ : G −→ F onto a free group F such that φ(g1) 6= 1, . . . , φ(gn) 6= 1.
Fully residually free groups have been the subject of extensive and deep research
for at least three decades. They are important for a number of reasons.

First, residually free groups are intimately connected to the study of the first-
order logic of free groups and equations over free groups. For example, it is known
that fully residually free groups are universally free [58], [21], that is they satisfy
all the first-order sentences, containing only universal quantifiers, which hold in all
free groups.

Recently remarkable progress has been achieved in understanding the first-order
theory of free groups, where understanding the structure of residually free groups
played a central part. E.Rips has suggested a new “algebro-geometric” approach
to the subject. This approach is being developed by Z.Sela [59]-[64] as well as
by O.Kharlampovich and A.Myasnikov [35]-[42]. In particular O.Kharlampovich
and A.Myasnikov have announced the positive solution to the celebrated Tarski
conjecture [36] (see also [42]). A solution to a part of the Tarski conjecture was
also recently put forward by Z.Sela [64].

Residually free groups are also closely connected to the theory of the so-called ex-
ponential groups, which originated in the early sixties with the work of R.Lyndon [47]
and G.Baumslag [5].

It also turns out that residually free groups are relevant to the study of groups
acting freely on Λ-trees.
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Many constructions and ideas developed to understand residually free groups
and equations over free groups have found applications in other areas, such as the
theory of word-hyperbolic groups.

Among the recent remarkable results on the subject is the theorem proved by
O.Kharlampovich and A.Myasnikov [38] and Z.Sela [59] which states that finitely
generated fully residually free groups are finitely presentable.

In fact O.Kharlampovich and A.Myasnikov [38] proved an even stronger state-
ment, which implies the above result. Before formulating their theorem, let F
denote a free group of rank two and let FZ[x] denote the free Z[x]-tensor comple-
tion of F .

Theorem 1.1. [38] Let G be a finitely generated group. Then the following hold:

1. The group G is fully residually free if and only if G embeds in FZ[x].
2. The group G is residually free if and only if G embeds into a finite direct

power of F Z[x]

G ≤ (FZ[x])n = FZ[x] × · · · × FZ[x]

for some integer n ≥ 1.

For this reason the study of the subgroup structure for the free exponential group
FZ[x] becomes particularly important.

In this paper we prove that the group FZ[x] shares several important properties
with free groups. Before stating our results recall that a group G is said to have
the Howson property or to be a Howson group if the intersection of any two finitely
generated subgroups of G is again finitely generated.

The main results of this paper are:

Theorem A (cf. Theorem 6.3). The group FZ[x] has the Howson property.

Theorem B. Let G be a non-abelian finitely generated subgroup of FZ[x]. Suppose
H is a finitely generated subgroup of G such that H contains a nontrivial subgroup
N which is normal in G. Then H has finite index in G.

Theorem C. Let H and K be finitely generated subgroups of F Z[x] such that H∩K
has finite index in both H and K. Then H ∩ K has finite index in the subgroup
generated by H ∪K.

All three of these results are well-known for free groups. Applying Theorem 1.1
we immediately obtain the following:

Corollary 1.2. Let G be a fully residually free group. Then the following hold:
1. The group G has the Howson property.
2. Let H and K be finitely generated subgroups of G such that H ∩K has finite

index in both H and K. Then H∩K has finite index in the subgroup generated
by H ∪K.

3. If G is finitely generated and nonabelian and if a finitely generated subgroup
H of G contains a nontrivial normal subgroup of G, then H has finite index
in G.

Note that the conclusions of Corollary 1.2 do not necessarily hold if G is just
residually free. For instance G = F (x, y)×Z is residually free but not fully residually
free. It is well-known that such G does not have the Howson property. Also the
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subgroup F (x, y) is finitely generated and normal in G but it has infinite index in
G.

Finally we study the membership problem for FZ[x] and show that it is solvable.

Theorem D. Let G be a finitely generated subgroup of FZ[x].
Then for any finitely generated subgroup H ≤ G the group G has solvable mem-

bership problem with respect to H.

Again, by Theorem 1.1 this immediately implies

Corollary 1.3. Let G be a finitely generated fully residually free group. Then for
any finitely generated subgroup H ≤ G the group G has solvable membership problem
with respect to H.

Note that the conclusion of Corollary 1.3 fails for finitely generated residually
free groups. For example it is well-known that the group F2 × F2 possesses a
finitely generated subgroup H such that the membership problem with respect to
H is unsolvable [50].

Although the group F Z[x] is the subject of most of our results, its definition
and properties are not relevant for this paper. For the background information on
exponential groups and their properties we refer the reader to [53] and [54]. In
Section 2 we will give an explicit group theoretic description of the group FZ[x]

and its subgroups. These structural results are then used to show that any finitely
generated subgroup G of FZ[x] can be constructed in two steps. First there is a
“core” subgroup A which is torsion-free word-hyperbolic and locally quasiconvex.
The group G is then obtained from A by taking a “tree” product of A with several
free abelian groups of finite rank. The conclusions of Theorems A, B, C and D
are known for locally quasiconvex torsion-free word-hyperbolic groups [43]. The
rest of the paper is devoted to proving that these properties are preserved by the
kind of “tree” product which leads from A to G. Here we follow closely the earlier
work of D.Cohen [14], [15]. However, perhaps the most ingenious part of the paper
is the proof of Proposition 3.10 which allows us to conclude that the subgroup A
is not just word-hyperbolic but locally quasiconvex. We are also able to show in
Theorem 3.12 that if G is a fundamental group of a finite graph of groups with cyclic
edge groups and torsion-free locally-quasiconvex word-hyperbolic vertex groups,
then G is itself locally quasiconvex provided it is word-hyperbolic. This is a new
result of considerable independent interest as it expands significantly the important
class of locally quasiconvex word-hyperbolic groups.

2. Structure of fully residually free groups

The notion of an exponential group was first introduced by R.Lyndon [47] (in
connection with the study of equations in free groups) and G.Baumslag [5], [4]
(when studying division groups). Roughly speaking, if R is a commutative ring
with unit (or just an abelian group with a marked infinite cyclic subgroup), then
anR-groupG is a group with some exponentiation-like “action” ofR, which satisfies
some natural axioms. It turns out that any group G maps to its R-completion GR,
which can be defined in categorical terms and looks much like the group having the
same group presentation as G, but in the category of R-groups rather than in the
category of all groups. Moreover, if G is a free group, then its R-completion GR

turns out to be free in the category of R-groups. Of some particular importance
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are the cases when R is the polynomial ring with one variable Z[x] or when R is
the additive group of rational numbers Q.

A detailed and careful discussion about exponential groups and their properties
can be found in [53], [54]. Some recent interesting results on the subject are obtained
in [20], [34], [32] and other sources.

Definition 2.1. A subgroup H of a group G is said to be malnormal in G if for
any g ∈ G−H

g−1Hg ∩H = 1.

Two subgroups K,L of G are said to be conjugacy separated in G if for any
g ∈ G

g−1Kg ∩ L = 1.

We recall an explicit description of the group FZ[x], obtained by A.Myasnikov
and V.Remeslennikov in [54].

Proposition 2.2. [54] Let G = F Z[x] where F is a free group of rank two. Then
there exists an infinite increasing chain of subgroups

G0 = F ≤ G1 ≤ G2 ≤ . . .
such that

1. G =
∞⋃
i=0

Gi.

2. For every i ≥ 0 we have Gi+1 = Gi ∗C A where C is a maximal abelian
subgroup of Gi, which is also malnormal in Gi and is a free abelian group of
finite rank, and where A = C ×B is a free abelian group of finite rank.

This result gives a certain description of finitely generated subgroups of FZ[x]

using Bass-Serre theory of graphs of groups. However, it will be necessary for us to
use a more precise statement describing finitely generated subgroups of FZ[x] than
the one provided by Proposition 2.2.

Namely, we need the result obtained by O.Kharlampovich and A.Myasnikov
in [51]. Before formulating their theorem we need a few definitions.

The following important notion was first introduced in [27].

Definition 2.3. We will say that an amalgamated free product G = A ∗C B is
separated if C is an abelian subgroup which is malnormal in at least one of A,B.

We will say that an HNN-extension G = 〈H, t | t−1C1t = C2〉 is separated if C1,
C2 are conjugacy separated abelian subgroups of H such that at least one of C1, C2

is malnormal in H .

Definition 2.4. Let K be a class of groups.
We will say that a finitely generated group G is constructible over K if G can

be obtained from several finitely generated free groups by taking finitely many
separated amalgamated free products and separated HNN-extensions. To be more
precise, G is constructible over K provided there exist finitely many sets S0, . . . , Sn
such that

1. For each i Si consists of a finite number of finitely generated subgroups of G.
2. S0 consists of finitely many groups from K.
3. Sn = {G}.
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4. For every H ∈ Si, i ≥ 0, H is obtained either as a separated amalgamated free
products of two groups from S0 ∪ · · · ∪Si−1 or as a separated HNN-extension
of a group from S0 ∪ · · · ∪ Si−1.

We will say that a finitely generated group G is constructible over free groups if G
is constructible over the class of finitely generated free groups.

The following is a re-formulation of a result from [51].

Proposition 2.5. Let G be a finitely generated subgroup of FZ[x] where F is a free
group of rank two. Then there exists a subgroup A of G such that the following
hold:

1. The group A is constructible over free groups.
2. There exist several maximal cyclic subgroups U1, . . . , Un of A which are mal-

normal in A and conjugacy separated in A such that

G = (. . . (A ∗U1 B1 ∗U2 B2) . . . ) ∗Un Bn
where n ≥ 1 and for each i Bi = Ui×Ci is a free abelian group of finite rank.

Note that in an earlier paper [19] a similar and more precise statement was
proved for three-generated fully residually free groups, which therefore applies to
all three generator subgroups of FZ[x].

3. Local quasiconvexity of constructible groups

The goal of this section is to prove that finitely generated groups constructible
over free groups are word-hyperbolic and locally quasiconvex.

We first recall some basic definitions regarding word-hyperbolic groups. The
background information on the subject can be found in [25], [26], [17], [1], [57] and
other sources.

Definition 3.1. Let (X, d) be a metric space. For any point x, y, z ∈ X we define

(y, z)x =
1
2

(d(y, x) + d(z, x)− d(y, z)).

Note that we always have d(x, y) = (y, z)x + (x, z)y, d(y, z) = (x, z)y + (x, y)z
and d(x, z) = (x, y)z + (y, z)x.

Definition 3.2. Let δ > 0 and let (X, d) be a metric space. A triangle with vertices
A,B,C and geodesic sides [A,B], [B,C], [C,A] in (X, d) is said to be δ-thin if the
following holds.

Let a ∈ [B,C], b ∈ [C,A], c ∈ [B,A] be the points such that d(B, a) = d(B, c) =
(C,A)B , d(A, b) = d(A, c) = (B,C)a and d(C, a) = d(C, b) = (A,B)C (see Fig-
ure 1).

Then for any points b′ ∈ [A,C], c′ ∈ [A,B] with d(A, b′) = d(A, c′) ≤ (B,C)A we
have

d(b′, c′) ≤ δ
and the symmetric condition holds for the vertices B,C of the triangle.

Definition 3.3. A finitely generated group G is said to be word-hyperbolic if for
any finite generating set X of G there exists a number δ ≥ 0 such that all geodesic
triangles in the Cayley graph Γ(G,X) are δ-thin.
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Figure 1. Thin triangle

Definition 3.4. Let G be a word-hyperbolic group. A subgroup H of G is said to
be quasiconvex in G if there is a finite generating set X of G and a number ε ≥ 0
such that the following holds.

For any geodesic [h1, h2] in Γ(G,X) with endpoints h1, h2 ∈ H and for any point
p ∈ [h1, h2] there exists h ∈ H such that

dX(p, h) ≤ ε

(that is [h1, h2] is contained in the ε-neighborhood Nε(H) of H in the Cayley graph
Γ(G,X)).

Definition 3.5. A word-hyperbolic group G is called locally quasiconvex if every
finitely generated subgroup of G is quasiconvex in G.

We refer the reader to [43], [55], [28], [24], [66], [67] for more information on
quasiconvex subgroups of hyperbolic groups. It is well known, for instance, that
a quasiconvex subgroup of a word-hyperbolic group is finitely generated, finitely
presentable and itself word-hyperbolic and that the intersection of two quasiconvex
subgroups is again quasiconvex, and so finitely generated. This implies the following
obvious but important statement.

Proposition 3.6. [66] Every locally quasiconvex word-hyperbolic group G has the
Howson property.

Free groups of finite rank are known to be locally quasiconvex [66]. Our goal in
this section is to show that groups constructible over free groups are also locally
quasiconvex.

It is already known that a separated amalgamated free product of two torsion-
free locally quasiconvex word-hyperbolic groups is again locally quasiconvex [24],
[32].
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Proposition 3.7. Let G = A ∗C B be a separated amalgamated free product where
A,B are torsion-free locally quasiconvex word-hyperbolic groups. Then G is also a
torsion-free locally quasiconvex word-hyperbolic group.

Proof. By assumption C is malnormal in at least one of A,B, say in A. Since
C is an abelian subgroup of a torsion-free word-hyperbolic group A, then C is
either trivial or infinite cyclic. Since cyclic subgroups are always quasiconvex in
word-hyperbolic groups, this means that C is quasiconvex in both A and B and
malnormal in A. Hence by the Combination Theorem [12], [23], [35] the group
G = A ∗C B is torsion-free word-hyperbolic. It follows from the main results of [24]
and [32] that G is in fact locally quasiconvex.

The case of separated HNN-extensions is more difficult and requires special treat-
ment. Before considering it, let us recall the following fact which is a restatement
of the main result in [24]

Proposition 3.8. [24] Let G = A∗CB where A,B are torsion-free word-hyperbolic
groups, C is quasiconvex in both A and B and C is malnormal in A. Let H be a
finitely generated subgroup of G such that g−1Hg ∩ A is quasiconvex in A and
g−1Hg ∩B is quasiconvex in B for any g ∈ G.

Then G is torsion-free word-hyperbolic and H is quasiconvex in G.

We will also need the following technical lemma.

Lemma 3.9. Let

G = 〈L s| s−1ps = q〉(1)

where 〈p〉, 〈q〉 are malnormal infinite cyclic subgroups in L which are conjugacy
separated in L. Suppose further that K = 〈p, q〉 ≤ L is a free group of rank two.

Then
1. 〈s, p〉 ∩ L = K.
2. The group 〈s, p〉 is a free group of rank two.
3. The group G can be written as an amalgamated free product

G = L ∗p=p,q=s−1ps 〈s, p〉 = L ∗K 〈s, p〉.

Proof. It is easy to show (see, for example, [45]) that 〈s, p〉 ∩ L = K.
We will prove that the group Q = 〈s, p〉 = 〈s, p, q〉 has the following presentation

Q = 〈s, p, q|s−1ps = q〉.(2)

This obviously implies that Q is a free group of rank two with basis s, p.
Claim. Suppose w is a word in s, p, q such that w = 1 in Q. We will show that

w = 1 follows from the relation s−1ps = q by induction on the length of w.
If |w| = 0 then w = 1 in F (s, p, q) and there is nothing to prove.
Suppose now that |w| = n > 0 in F (s, p, q), w =Q 1 and the Claim has been

verified for all shorter words. If w is not freely reduced in F (s, p, q), then the Claim
follows by induction. Thus we may assume that w is freely reduced.

Since w =G 1, Britton’s Lemma [48] for the HNN-extension (1) implies that w
has a subword u of one of the two forms:

1. u = t−1v(p, q)t where v(p, q) =G pn, n 6= 0,
2. u = tv(p, q)t−1 where v(p, q) =G qn, n 6= 0.
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We will assume that the former is true and it will be clear that the second case is
completely analogous.

Thus u = t−1v(p, q)t where v(p, q) =G pn, n 6= 0. Since by assumption of
Lemma 3.9 the subgroup 〈p, q〉 is free of rank two with basis p, q, this implies that
v(p, q) = pn in F (s, p, q). Thus u = t−1pnt. Using the relation t−1pt = q we can
replace u in w by a shorter word u′ = qn to get a shorter word w′(s, p, q), where
w′ =Q 1. Since |w′| < |w|, the inductive hypothesis applies to w′. This means that
w = 1 is a corollary of a single relation t−1pt = q.

This completes the proof of the Claim and of part 2 of Lemma 3.9.
Part 3 of Lemma 3.9 is also an elementary exercise on the use of normal forms

in amalgamated free products and HNN-extensions and we leave the details to the
reader.

Proposition 3.10. Let G = 〈L, t |t−1At = B〉 be a separated HNN-extension of a
locally quasiconvex torsion-free word-hyperbolic group L. Then G is also a locally
quasiconvex torsion-free word-hyperbolic group.

Proof. Recall that A, B are abelian (and therefore cyclic) subgroups of L which
are conjugacy separated in L and that at least one of A, B (say A) is malnormal
in L. If A = B = 1 then G = L ∗ 〈t〉 and Proposition 3.7 applies.

Thus we may assume that A andB are infinite cyclic. Recall that in a torsion-free
word-hyperbolic group, malnormal infinite cyclic subgroups are exactly maximal
infinite cyclic subgroups. Therefore G has the form

G = 〈L, t |t−1at = bn〉
where n ≥ 1 and 〈a〉, 〈b〉 are malnormal infinite cyclic subgroups of L. We may in
fact assume that n = 1. Indeed, if n > 1, then

G = 〈(L ∗a=cn 〈c〉) = L1, t | t−1ct = b〉
where 〈c〉 is an infinite cyclic group.

The group L1 is torsion-free locally quasiconvex word-hyperbolic by Proposi-
tion 3.7. The subgroups 〈c〉, 〈b〉 are easily seen to be malnormal and conjugacy
separated in L1.

Thus from now on we will assume that

G = 〈L, t | t−1at = b〉(3)

where L is a torsion-free locally quasiconvex word-hyperbolic group and where
A = 〈a〉 and B = 〈b〉 are malnormal conjugacy separated infinite cyclic subgroups
of L.

Consider the group G′ = G ∗ F (x, y). Then G′ also is an HNN-extension of the
group L′ = L ∗ F (x, y).

G′ = 〈(L ∗ F (x, y)) = L′, t | t−1at = b〉.(4)

Note that the group L′ = L ∗ F (x, y) is torsion-free locally quasiconvex word-
hyperbolic by Proposition 3.7. Moreover A = 〈a〉 and B = 〈b〉 are malnormal
conjugacy separated infinite cyclic subgroups of L′. Corollary 0.4 in [31] states that
any HNN-extension over infinite cyclic subgroups of a locally quasiconvex torsion-
free word-hyperbolic group has the Howson property, provided both the associated
infinite cyclic subgroups are malnormal in the base group. The HNN-extension (4)
is exactly of this sort and therefore G′ has the Howson property.
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It is proved in [46] that there exist an element f ∈ F (x, y) such that the subgroup
K = 〈a, f−1bf〉 is a free group of rank two which is malnormal and quasiconvex in
L′. If we put s = tf , then G′ also has an HNN-presentation

G′ = 〈L′, s | s−1as = f−1bf〉.(5)

It follows from Lemma 3.9 that 〈s, a〉 ∩L′ = K and that 〈s, a〉 is a free group of
rank two with basis s, a. We can then write G′ as an amalgamated free product

G′ = L′ ∗a=a,f−1bf=s−1as 〈s, a〉 = L′ ∗K 〈s, a〉(6)

where Q = 〈s, a〉 is a free group of rank two and so Q is torsion-free locally quasi-
convex word-hyperbolic. Recall that K is a free subgroup which is malnormal and
quasiconvex in L′, where L′ is a torsion-free locally quasiconvex word-hyperbolic
group. Thus Proposition 3.8 applies to the amalgamated free product G′ = L′∗KQ.

By the Combination Theorem [12] G′ = L′ ∗K Q is torsion-free word-hyperbolic.
We claim that in fact G′ is locally quasiconvex.

Indeed, suppose H is a finitely generated subgroup of G′ and let g ∈ G′. We have
already observed above that G′ has the Howson property. Therefore g−1Hg ∩ L′
and g−1Hg ∩ Q are finitely generated. Since L′ and Q are locally quasiconvex,
g−1Hg ∩ L′ is quasiconvex in L′ and g−1Hg ∩Q is quasiconvex in Q. As we have
seen the subgroup K is malnormal in L′. Therefore by Proposition 3.8 the group
G′ is torsion-free word-hyperbolic and locally quasiconvex. Since G is a finitely
generated subgroup of G′, this implies that G is also torsion-free word-hyperbolic
and locally quasiconvex.

Remark 3.11. The most technical part of the proof of Proposition 3.10 is the exis-
tence of a conjugating element f such that the subgroup 〈a, f−1bf〉 is malnormal,
quasiconvex and free of rank two in L′. The proof of this statement takes most of
the article [46], where it is used for other purposes.

The following statement follows immediately from Proposition 3.7 and Proposi-
tion 3.10.

Theorem 3.12.
1. A group constructible over the class of torsion-free word-hyperbolic locally

quasiconvex groups is itself torsion-free word-hyperbolic locally quasiconvex.
2. A group constructible over free groups is torsion-free word-hyperbolic locally

quasiconvex.
3. Let G be the fundamental group of a graph of groups A where all vertex groups

are torsion-free word-hyperbolic and locally quasiconvex and all the edge groups
are cyclic (either trivial or infinite cyclic). If G is word-hyperbolic, then G is
locally quasiconvex.

Proof. Part 1 follows directly from Proposition 3.7 and Proposition 3.10. Part 1
also implies part 2 since finitely generated free groups are locally quasiconvex.

If G is as in part 3, then G can be obtained from the vertex groups of A by finitely
many amalgamated free products and HNN-extensions, corresponding to the edges
of A. It is easy to see that each of these amalgams and HNN-extensions is separated
since otherwiseG would contain a Z×Z subgroup (see, for instance, [45] for details).
That however is impossible since G is assumed to be word-hyperbolic. Thus G is
constructible from torsion-free locally quasiconvex word-hyperbolic groups. By part
1 this means that G itself is torsion-free locally quasiconvex word-hyperbolic.
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4. An excursion in Bass-Serre theory

In this section we assume familiarity of the reader with the basics of Bass-Serre
theory of graphs of groups and groups acting on simplicial trees. For background
information the reader is referred to [65], [2] and [16].

Let G be a group acting without inversions on a non-oriented tree T . Fix any
vertex in T and declare it a base-point of T denoted O. Then every non-oriented
edge e of T has a naturally defined initial vertex, namely the endpoint of e which is
closer to O then the other endpoint of T . We will denote the initial vertex of e by
P (e). The other endpoint of e is called the terminal vertex of e and denoted Q(e).
Thus we orient every edge in the outward from the O direction.

Associated with this action of G on T is a presentation of G as a fundamental
group of a graph of groups A = T//G. The vertex groups of A are isomorphic to
stabilizers in G of some vertices of T and the edge groups of A are isomorphic to
stabilizers in G of some edges of T .

It turns out that the question of whether or not G is finitely generated can be
read off from the quotient graph of groups A. Namely, if all the vertex groups of A
are finitely generated and the underlying graph A of A is finite, then G is finitely
generated. In terms of the original action of G on T , this means that if there are
only finitely many G-orbits of edges in T and if every stabilizer of a vertex in G is
finitely generated, then G is finitely generated.

In [14] D.Cohen obtained a more precise characterization of finitely generated
groups acting on trees. To state it we need the following definition.

Definition 4.1. [14] Let G act on a tree T without inversions. Let O be the
base-point of T and let every edge of T be oriented away from O, as explained
above.

We say that an element g ∈ G is negative for an edge e of T if gP (e) = Q(ge).
For an edge f of T we say that an orbit Gf is reversing if for some (and therefore

for any) edge e ∈ Ge there exists an element g ∈ G negative for e.

Proposition 4.2. [14] Let G act on a tree T without inversions. Let O be the base
vertex of T .

1. If G is finitely generated, then there are only finitely many G-reversing orbits.
If in addition every edge of T has finitely generated stabilizer in G, then every
vertex of T also has a finitely generated stabilizer in G.

2. If G has only finitely many reversing orbits of edges in T and if every vertex
of T has finitely generated stabilizer in G, then G is finitely generated.

Definition 4.3 (Star of groups). We will call a finite graph of groups A a star of
groups if the underlying graph of A is a finite tree with a marked vertex O (called
the center vertex ) and such that every other vertex is connected by a single edge
to the base vertex (see Figure 2) . There are exactly n edges in ZA, where n ≥ 1.
Denote these edges by e1, . . . , en. Their edge groups are U1, . . . , Un respectively.
The non-center endpoints of e1, . . . , en are vertices O1, . . . , On which have vertex
groups B1, . . . , Bn.

The fundamental group of the graph of groups A is an amalgamated free product

G = (. . . (A ∗U1 B1 ∗U2 B2) ∗ . . . ) ∗Un Bn
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where n ≥ 1 and U1, . . . , Un are subgroups of A and where A is the vertex group
corresponding to the base vertex of A . In this situation we will also use notation

G = (A;U1, . . . , Un;B1, . . . , Bn).

5. Burns subgroups, amalgams and the Howson property

The Howson property for amalgamated free products and HNN-extensions was
extensively studied in [3], [44] [10], [11], [15], [31] and other sources.

It turns out that the crucial notion in this regard is that of a Burns subgroup,
first used by R.Burns [10], [11] (the term “Burns subgroup” was introduced by
D.Cohen in [15]).

Definition 5.1. [15] Let U be a subgroup of a group G. A subgroup U of a group
G is called a Burns subgroup, if U has a left transversal T in G such that 1 ∈ T
and the following conditions are satisfied:

1. there is a finite subset F of U such that

U(T − 1) ⊂ TF ;

2. for any finitely generated subgroup H of G and any a ∈ G there is a finite
subset F1 of U such that

aH ⊂ TF1(H ∩ U).

The following statement is proved by D.Cohen [15] using the basic Bass-Serre
theory of graph of groups.

Proposition 5.2. [15] Let G = A ∗U B where A,B have the Howson property and
where U is a Burns subgroup of A. Suppose further that for any finitely generated
subgroup H of G the intersection H ∩ U is finitely generated. Then G has the
Howson property.
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We shall need a generalization of this statement for the case of star of groups.
The following definition is a generalization of the notion of a Burns subgroup.

Definition 5.3. We say that the set U1, . . . , Un is a Burns collection of subgroups
of G if the following holds:

1. Each Ui is a Burns subgroup of G.
2. For each i 6= j we have Ui ∩ Uj = 1.
3. Let 1 ≤ i ≤ n and let T be the Burns transversal of Ui in G. Then there

exists a finite subset F2 of Ui such that for any j, 1 ≤ j ≤ n,

Uj(T − {1}) ⊆ TF1.

Note that if U is a Burns subgroup of G, then {U} is a Burns collection of
subgroups of G.

Our goal in this section is to prove the following statement.

Proposition 5.4. Let A be a group with the Howson property. Let U1, . . . , Un be
a Burns collection of subgroups of A.

Let G = (A;U1, . . . , Un;B1, . . . , Bn) where all the Bi are Howson groups. Sup-
pose further that H ∩ Ui is finitely generated for every finitely generated subgroup
H of G and for every 1 ≤ i ≤ n (this is the case, for instance, if U is Noetherian,
that is, all subgroups of U are finitely generated).

Then G has the Howson property.

The following statement, proved by I.Kapovich [31], allows one to apply the
above statements to word-hyperbolic groups.

Proposition 5.5. [31] Let A be a torsion-free word-hyperbolic locally quasiconvex
group. Let U be a malnormal infinite cyclic subgroup of A. Then U is a Burns
subgroup of A.

Moreover, any element t of the Burns transversal T of U is shortest (with respect
to some fixed word metric on A) in the coset class tU .

For the remainder of this section let G = (A;U1, . . . , Un;B1, . . . , Bn) be an amal-
gam corresponding to a star of groups A.

Let T be the universal covering Bass-Serre tree corresponding to this graph of
groups (see the explicit construction of T in [65], [2]). Then G acts on T without
inversion with the quotient graph of groups A.

The underlying graph of A is a distinguished subset of T . We will fix a base-
vertex O in T to be the center vertex O of A. The stabilizer of O in G is A. There
are n distinct edges e1, . . . , en in T (also coming from the underlying graph of A)
with initial vertex O and edge stabilizers U1, . . . , Un respectively. Stabilizers in G
of terminal vertices of e1, . . . , en are groups B1, . . . , Bn respectively. We denote the
terminal vertices of e1, . . . , en by O1, . . . , On, as it was done in A.

There are exactly n distinct G-orbits of edges in T , represented by edges e1, . . . ,
en. There are exactly n+ 1 distinct G-orbits of vertices in T represented by O,O1,
. . . , On. Accordingly we say that a vertex v of T is of O-type (respectively Oi-type)
if v ∈ GO (respectively v ∈ GOi). Similarly we say that an edge e of T is of i-type
if e ∈ Gei.

The following definition is a slight generalization of the notion introduced by
D.Cohen in [15].

Definition 5.6. We say that an edge e of T is special if P (e) is of O-type but
P (e) 6= O.
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The following lemma provides a reduction of Proposition 4.2 when one is trying
to prove that a subgroup of G is finitely generated.

The proof of the following lemma is an elementary exercise and is identical to
the proof of the amalgamated product case in Lemma 3 of [15]. We therefore leave
it to the reader.

Lemma 5.7. Let H be a subgroup of G. Then there are only finitely many H-
reversing orbits of edges in T which do not contain a special edge.

The following statement follows immediately from Lemma 2 of [15].

Lemma 5.8. Suppose that U1, . . . , Un is a Burns collection of subgroups of A. Let
U,U ′ ∈ {U1, . . . , Un}. Let H and K be finitely generated subgroups of A and let
a, a′ ∈ A. Then there is a finite subset F3 of U such that if u ∈ U satisfies

ahu = u′a′k

for some k ∈ K, h ∈ H, u′ ∈ U ′ with dk 6∈ U , then

u ∈ (H ∩ U)F3(K ∩ U).

We can now prove Proposition 5.4. Our argument closely follows the proof of
Theorem 2 of [15], with the difference that Case 2 did not have to be considered in
[15].

Proof of Proposition 5.4. Let K,H be finitely generated subgroups of G. Let L =
K ∩H . Since L and K are finitely generated, the assumptions of Proposition 5.4
imply that g−1Lg ∩ Ui and g−1Kg ∩ Ui are finitely generated for each 1 ≤ i ≤ n
and for every g ∈ G. Therefore by Proposition 4.2 K ∩Gv and L ∩Gv are finitely
generated for any vertex v of T . Since all the groups A,B1, . . . , Bn have the Howson
property, every vertex group Gv also has the Howson property. Hence L ∩ Gv =
(K ∩H) ∩Gv = (K ∩Gv) ∩ (L ∩Gv) has the Howson property for every vertex v
of T .

Thus to see that L is finitely generated it is enough, by Proposition 4.2 to show
that there are only finitely many L-reversing orbits of edges in T .

Lemma 5.7 further implies that it is enough to check that there are only finitely
many L-reversing orbits containing special edges.

Suppose this is not the case. We know by Proposition 4.2 that H and K have
only finitely many reversing orbits containing special edges. Therefore there are
infinitely many edges f1, f2, . . . representing distinct reversing L-orbits containing
a special edge and such that all f1, f2, . . . lie in the same H-orbit and in the same
K-orbit. Thus there is an edge f such that Hf ∩Kf contains infinitely many L-
reversing orbits containing special edges. Without loss of generality we may assume
that f is an 1-type edge.

By conjugating the pair (H,K) if necessary we may assume that f is an edge
starting at O and, moreover, that f = e1. Thus the following condition, which we
will refer to as Condition X, holds:

Condition X. The set He1∩Ke1 contains infinitely many L-reversing orbits con-
taining a special edge.

Recall that H has only finitely many H-reversing orbits. Hence for every i,
1 ≤ i ≤ n, there are finitely many i-type edges starting with O, say a1ei, . . . , asei,
where aj ∈ A, such that any i-type edge starting at O and lying in an H-reversing
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orbit, is H-equivalent to one of ajei. That is, if aei (where a ∈ A) belongs to an
H-reversing orbit, then there is h ∈ H such that hajei = aei for some j. This, in
particular, means that a−1haj = u ∈ Ui and h = aua−1

j ∈ A ∩H . Thus there are
only finitely many (H ∩ A)-orbits of i-type edges which start at O and belong to
a reversing H-orbit. The same argument applies to K. Thus, since there are only
finitely many types of edges, there is a finite subset C of A such that:

1. For any i, 1 ≤ i ≤ n, every edge in Aei, which lies in a reversing H-orbit,
belongs to (H ∩A)Cei;

2. For any i, 1 ≤ i ≤ n, every edge in Aei, which lies in a reversing K-orbit,
belongs to (K ∩A)Cei.

Let e = he1 = ke1 ∈ He1 ∩Ke1 be a special edge in an L-reversing orbit, where
h ∈ H, k ∈ K. Then also we have k = hu for some u ∈ U1.

Put P = P (e) and Q = Q(e). Let e′ be the edge preceding e, so that P (e′) = M
and Q(e′) = P (e) = P . Suppose e′ is an i-type edge.

If g ∈ G is negative for e then the terminal vertex of ge isQ(ge) = gP (e) = gQ(e′)
which is also the initial vertex of ge′. Thus g is also negative for e′ (see Figure 3).
Therefore, as the edge e, the edge e′ also belongs to a reversing L-orbit.

Consider the edges h−1e′ and k−1e′. Since e = he1 = ke1, P = hO = kO
and therefore O = k−1P = h−1P . Thus both h−1e′ and k−1e′ start at O and
h−1e′ ∈ Aei, k−1e′ ∈ Aei.

By the choice of the set C above, this means that

h−1e′ = ycei, k
−1e′ = zĉei, where c, ĉ ∈ C, y ∈ H ∩A, z ∈ K ∩A.

Since k = hu and k−1 = u−1h−1, this implies that uzĉei = ycei, that is uzĉ =
ycu′ for some u′ ∈ Ui.

There are now two cases to consider.
Case 1. Suppose that e′ has the same type as e, that is i = 1.
Since e′ 6= e, zĉe1 = k−1e′ 6= k−1e = e1 and therefore zĉ 6∈ U1.
We can then rewrite the equation uzĉ = ycu′ as

c−1y−1u = u′(ĉ)−1z−1.

Since c, ĉ are in a finite set C, y−1 ∈ H ∩ A, u ∈ U1, u′ ∈ U1, z−1 ∈ K ∩ A and
(ĉ)−1z−1 6∈ U1, Lemma 5.8 implies that there is a finite subset S1 of U1, independent
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of the choice of e ∈ He1 ∩K such that

u ∈ (H ∩ U1)S1(K ∩ U1).

Case 2. Suppose that e′ is of j-type for j 6= 1.
Subcase 2A. Suppose that zĉ 6∈ U1. Then exactly the same argument as in

Case 1 implies that there is a finite subset S2 of U1, independent of the choice of
e ∈ He1 ∩K such that

u ∈ (H ∩ U1)S2(K ∩ U1).

Subcase 2B. Suppose now that zĉ ∈ U1 but yc 6∈ U1. We can then rewrite the
equation uzĉ = ycu′ as

(ĉ)−1z−1u−1 = (u′)−1c−1y−1

where c−1y−1 6∈ U1.
Once again, as in Case 1, Lemma 5.8 implies that there is a finite subset S3 of

U1, independent of the choice of e ∈ He1 ∩K such that

u−1 ∈ (K ∩ U1)S3(H ∩ U1)

that is

u ∈ (H ∩ U1)(S3)−1(K ∩ U1).

Subcase 2C. Suppose now that zĉ = u′ ∈ U1 and yc = u′′ ∈ U1.
Recall that h−1e′ = ycei = u′′ei and k−1e′ = zĉei = u′ei. and therefore e′ =

hu′′ei = ku′ei. On the other hand k = hu, so that hu′′ei = huu′ei. Hence
u′′ei = uu′ei and (u′′)−1uu′ ∈ Ui.

However u, u′, u′′ ∈ U1 and U1 ∩ Ui = 1 since i 6= 1. Therefore (u′′)−1uu′ = 1
and

u = u′′(u′)−1 = yc(ĉ)−1z−1.

Since the subgroup K ∩ A is finitely generated, ĉ is in a fixed finite set C,
z−1 ∈ K ∩A and (ĉ)−1z−1 belongs to a Burns subgroup U1 of A, Definition 5.1 of
a Burns subgroup implies that there is a finite subset S′ of U , depending only on
C and K ∩A, such that

(ĉ)−1z−1 ∈ S′(K ∩A ∩ U1) = S′(K ∩ U1).

Similarly, the subgroup H ∩ A is finitely generated, c−1y−1 ∈ U1 where c ∈ C
and y−1 ∈ H ∩A. Therefore again Definition 5.1 of a Burns subgroup implies that
there is a finite subset S′′ of U1, depending only on C and K ∩A, such that

c−1y−1 ∈ S′′(K ∩A ∩ U1) = S′′(K ∩ U1),

that is,

yc ∈ (K ∩ U1)(S′′)−1.

Thus

u = yc(ĉ)−1z−1 ∈ (K ∩ U1)((S′′)−1S′)(H ∩ U1).

After the analysis of both Case 1 and Case 2 we see that there is a finite subset
S of U1, independent of the choice of e ∈ He1 ∩K such that

u ∈ (H ∩ U1)S(K ∩ U1).(7)

We are now in a position to prove that there are only finitely many reversing
L-orbits in He1 ∩Ke1, thus obtaining a contradiction with Condition X.
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Indeed, suppose that e = he1 = ke1 and f = h1e1 = k1e1 are edges in L-
reversing orbits such that k = hu, k1 = h1u1 and that u, u1 correspond to the same
s ∈ S in (7). That is u = σsω and u1 = σ1sω1 where s ∈ S, σ, σ1 ∈ H ∩ U1

and ω, ω1 ∈ K ∩ U1. Put h′ = hσ ∈ H , k′ = kω−1 ∈ K, h′1 = h1σ1 ∈ H ,
k′1 = k1(ω1)−1 ∈ K. Then we still have e = ke1 = k′e1 = he1 = h′e1 and
f = k1e1 = k′1e1 = h1e1 = h′1e1 since σ, σ1, ω, ω1 ∈ U1. Then k′ = h′s and k′1 = h′1s
and so

k′1(k′)−1 = h′1(h′)−1 = a ∈ K ∩H = L.

Thus f = k′1e1 = ak′e1 = ae with a ∈ L = K ∩ H , that is, e and f lie in the
same L-orbit

Hence there are at most |S| reversing L-orbits in He1 ∩Ke1 which contradicts
Condition X.

Remark 5.9. In the proof of Proposition 5.4 we did essentially use the fact that
Ui ∩ Uj = 1 when i 6= j. Namely, it was crucial for the analysis of Subcase 2.C.
Without this assumption (which is part of the definition of a Burns collection of
subgroups) Proposition 5.4 no longer holds. Indeed, suppose that A = U1 = U2 =
〈a〉 is an infinite cyclic group and B1 = A × 〈x〉, B2 = A × 〈y〉 are free abelian
groups of rank two. Let G = (A;U1, U2;B1, B2). Then it is easy to see that x, y
generate a free group in G and that G = 〈x, y〉 × A ∼= F2 × Z, where F2 is a free
group of rank two. All the assumptions of Proposition 5.4 are satisfied except the
condition U1 ∩U2 = 1. However the resulting group F2×Z is well known not to be
Howson.

6. Proof of the Howson property for F
Z[x]
2

Recall that two paths α, β with a common starting point in a metric space (X, d)
are said to be ε-uniformly close if
• the lengths of α and β differ by at most ε, and
• for any initial segments α′ of α and β′ of β with the length of α′ equal the

length of β′ we have d(a, b) ≤ ε where a and b are the endpoints of α′ and β′

accordingly.
The definition of a δ-thin triangle can be easily restated in terms of uniformly close
paths.

We need the following technical statement to complete the proof of our first main
result.

Lemma 6.1. Let C = 〈c0〉 and E = 〈e0〉 be conjugacy separated infinite cyclic
subgroups in a torsion-free word-hyperbolic group G. Let dG be the word metric on
G corresponding to a finite generating set G of G.

There exists a constant N0 ≥ 0 with the following properties.
Suppose w ∈ G is such that w is shortest with respect to the metric dG in the

coset class wC. Suppose also that e ∈ E is an arbitrary element of E.
Then for any y shortest in ewC there is n such that |n| ≤ N0 and y = ewcn0 .

Proof. Since G is word-hyperbolic, there is δ ≥ 0 such that all geodesic triangles in
the Cayley graph Γ(G,G) of G are δ-thin.

Both C and E are infinite cyclic subgroups of G, and therefore they are both
quasiconvex in G. Hence there is a constant K ′ > 0 with the following properties:
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1. If u is a G-geodesic path in Γ(G,G) with both endpoints in C, then for any
point p on u there is c′ ∈ C such that d(p, c′) ≤ K ′.

2. If u is a G-geodesic path in Γ(G,G) with both endpoints in E, then for any
point p on u there is e′ ∈ C such that d(p, e′) ≤ K ′.

Let w and e be as in Lemma 6.1. Suppose also that ew = ycn where y is a
shortest element in ewC.

Let W and V be G-geodesic representatives of w and e accordingly. Let Y and
U be G-geodesic representatives of y and cn0 accordingly.

Also let Z be a G-geodesic representative of the element ew = ycn0 .
Then we have two geodesic triangles in Γ(G,G) with sides Z, V,W and Z, Y, U

as shown in Figure 4.
Since the triangle with sides V,W,Z is δ-thin, there are points p, p′ on V and P

and a point q on Z such that

1. the diameter of the set {p, p′, q} is at most δ.
2. dG(1, q) = dG(1, p) and dG(p′, ew) = dG(q, ew).
3. The initial segment [1, q] of Z is δ-uniformly close to the segment [1, p] of V .
4. The terminal segment [p′, ew] of W is δ-uniformly close to the terminal seg-

ment [q, ew] of Z, when they are traveled backwards from ew.

Moreover, since y is shortest in yC, by Lemma 4.5 of [13] there exists a constant
K, depending only on C, such that the path Y U and Z, when traveled backwards
from ycn0 to 1, are K-uniformly close in Γ(G,G).

In particular this means that for t = min(dG(p′, ew), dG(cn0 , 1)) the terminal
segments ofW and U of length t are δ+K-uniformly close, when traveled backwards
from ew

Since w is shortest in wC, Lemma 4.5 of [13] again implies that there is a constant
K1, depending on K and C such that t ≤ K1.
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Let N be the number of distinct elements g ∈ G with dG(g, 1) ≤ 2K ′ +K + δ.
Put M = (2K1 + 1)(N + 1)(2K ′ + 1).
Suppose that

|U | > M.(8)

Since |U | = dG(cn0 , 1) > K1, this means that

d(p′, ew) = min(dG(p′, ew), dG(cn0 , 1)) ≤ K1.

Let q′ be the point on U with dG(q′, ew) = dG(p′, ew) and therefore dG(p′, q′) ≤
K + δ. Hence also dG(q′, q) ≤ K + 2δ.

Since we assumed that |U | ≥ (2K1 + 1)(N + 1)(2K ′ + 1), we have dG(y, q′) ≥
(2K1 + 1)(N + 1)(2K ′ + 1)−K1 ≥ (N + 1)(2K ′ + 1). Also for every point s on Z
between y and q′ there is a point r on V between 1 and p such that d(s, r) ≤ K+ δ.
This implies that there are N + 1 distinct points s1, s2, . . . , sN+1 on U between y
and q′ such that d(si, sj) = (2K ′ + 1)|i− j| for any 1 ≤ i, j ≤ N + 1.

Recall that since C is quasiconvex, for each i, 1 ≤ i ≤ N + 1, there is cni0 such
that dG(si, ycni0 ) ≤ K ′. Note that for i 6= j

dG(1, cni−nj0 ) = dG(ycni0 , yc
nj
0 ) ≥ dG(si, sj)− 2K ′ ≥ (2K ′ + 1)|i− j| − 2K ′ > 0.

Thus ni 6= nj when i 6= j.
Also, as was observed above, for each i there is a point ri on Z between 1 and

q such that dG(si, ri) ≤ K + δ. Since E is quasiconvex, for each i there is mi such
that dG(ri, emi0 ) ≤ K ′.

Thus for each i, 1 ≤ i ≤ N + 1,

dG(1, e−miycni0 ) = dG(emi0 , ycni0 ) ≤ 2K ′ +K + δ.

By the choice of N this means that for some i 6= j

e−mi0 ycni0 = e
−mj
0 yc

nj
0 = x

Therefore y = emi0 xc−ni0 and hence

x = e
−mj
0 yc

nj
0 = e

−mj
0 emi0 xc−ni0 c

nj
0

or

x−1e
mj−mi
0 x = c

nj−ni
0 .

Since i 6= j we have nj − ni 6= 0 and therefore x−1Ex ∩C 6= 1. This contradicts
our assumption that E and C are conjugacy separated.

Thus our assumption in (8) that |U | ≥M was false and in fact |U | = dG(cn0 , 1) <
M . Therefore there exists a constantN0 depending onM and c0 such that |n| ≤ N0.
This completes the proof of Lemma 6.1.

Corollary 6.2. Let A be a torsion-free word-hyperbolic group. Let U1, . . . , Un be
infinite cyclic subgroups of A which are malnormal in A. Suppose also that Ui and
Uj are conjugacy separated in A for i 6= j, 1 ≤ i, j ≤ n.

Then U1, . . . , Un is a Burns collection of subgroups of A.

Proof. Recall each Ui is a Burns subgroup of A by Proposition 5.5. Moreover, by
Proposition 5.5 the Burns transversal Ti of Ui is such that every t ∈ Ti is shortest
in the coset class tUi.
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Hence by Lemma 6.1 for each i 6= j there is a finite subset F of Ui such that

UjTi ⊆ TiF.
Also, since Ui itself is a Burns subgroup of A with Burns transversal Ti, by

Definition 5.1 there exists a finite subset F ′ of Ui such that

Ui(Ti − {1}) ⊆ TiF ′.
Since there are only finitely many groups U1, . . . , Un this implies that all the

conditions of Definition 5.3 are satisfied and U1, . . . , Un is a Burns collection of
subgroups of A.

We can now prove the first main result of this paper.

Theorem 6.3 (cf. Theorem A from the Introduction). The group F
Z[x]
2 has the

Howson property.

Proof. Obviously it suffices to prove that a finitely generated subgroup G of FZ[x]
2

is Howson.
Then by Proposition 2.5 G has a finitely generated subgroup K, constructible

over free groups, such that either G = K or K � G and

G = (K;C1, . . . , Cn;B1, . . . , Bn)

where
1. C1, . . . , Cn are infinite cyclic subgroups of K which are malnormal in K;
2. subgroups Ci and Cj are conjugacy separated in K whenever i 6= j;
3. for each i Bi = Ci × Zi where Zi is a nontrivial free abelian group of finite

rank.
Note that by Theorem 3.12 K is torsion-free, word-hyperbolic and locally qua-

siconvex. Therefore by Proposition 3.6 K has the Howson property.
Thus if G = K then G is Howson.
If G 6= K, then by Corollary 6.2 C1, . . . , Cn is a Burns collection of subgroups

of K. Therefore by Proposition 5.4 G has the Howson property.

7. Subgroups of finite index

In this section we obtain some results regarding subgroups of finite index in fully
residually free groups. Once again, our arguments will elaborate on those used by
D.Cohen in [14] and [15].

First we need to develop some more tools regarding groups acting on trees.

Lemma 7.1. Let G be a group acting on a tree T without inversions and let O be
the base-vertex of T . Let g ∈ G be a hyperbolic element, that is g fixes no vertex in
T . Suppose that g is negative for an edge e of T .

Then for any k > 0 the element gk is also negative for e.

Proof. Let L be the hyperbolic axis of g in T , so that g acts on L by translations
of magnitude τ > 0.

Let x be the closest vertex of L to O, so that [x,O] is the bridge between L and
O. Let y be the point on L with d(y, x) = τ and such that gy = x.

Then it is clear that g is negative for every edge contained in S = [y, x] ∪ [x,O].
Moreover, an easy inspection shows that g is not negative for all other edges of T .
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It is now obvious that for any k > 0 gk is negative for any edge contained in S
(see Figure 5). This completes the proof of Lemma 7.1.

The following statement is due to D.Cohen [14].

Lemma 7.2. [14] Let G be a group acting on a tree T without inversions and let
O be the base-vertex of T . Let e be an edge of T such that the set

{ge | g is negative for e}
is infinite.

Let h be a hyperbolic element of G, that is h does not stabilize a vertex in T .
Then the set

{ge | g is negative for e and g is conjugate to a power of h in G}
is infinite.

For the rest of this section, unless specified otherwise, let

G = (A;U1, . . . , Un;B1, . . . , Bn)

be the fundamental group of a star of groups A (see Figure 2).
Let T be the Bass-Serre covering tree of A with the standard action of G. As

usual, we think of the underlying graph of A as a distinguished part of T . Then,
as before in Section 5, let the base-vertex O of T be the vertex corresponding to
the center of the star A, so that the stabilizer of O in G is A. We will use the
same convention regarding edges e1, . . . , en, vertices O1, . . . , On, regarding O-type
vertices, Oi-type vertices and i-type edges as in Section 5.

The following proposition is similar to Theorem 8 in [14].

Proposition 7.3. Let H be a finitely generated subgroup of G which is not conju-
gate to a subgroup of a vertex group of A.

Suppose also that one of the following holds:
1. the group H contains a subgroup N which is normal in G and such that N is

not contained in a conjugate of a vertex group of A.
2. for any g ∈ G and h ∈ H there exists k > 0 such that g−1hkg ∈ H.
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Then for any i = 1, . . . , n the double coset index

{HgUi | g ∈ G}

is finite.

Proof. It is easy to see that for any edge e of T the set {ge |g is negative for e} is
infinite.

Then there is h ∈ N (or just h ∈ H , in case 2) such that h does not fix any
vertex of T . The same, of course, is true for any nonzero power of h.

Let e be an edge of T . By Lemma 7.2 the set

{ge | g is negative for e and g is conjugate to a power of h in G}

is infinite.
Since, in case 1, g−1hg ∈ N ≤ H for any g ∈ G, for this case we have

{ge | g is negative for e and g ∈ H}(9)

is infinite. In particular, this means that e belongs to an H-reversing orbit.
Suppose that (9) does not hold in case 2. Then there is g ∈ G and m 6= 0 such

that g−1hmg 6∈ H but g−1hmg is negative for e. By Lemma 7.1 this means that for
any k > 0 the element g−1hmkg is negative for e.

By assumption in case 2 there is m > 0 such that g−1hmkg ∈ H . Thus again e
belongs to an H-reversing orbit.

We have shown that in both case 1 and case 2 of Proposition 7.3 e belongs to
an H-reversing orbit. Since e was chosen arbitrarily, this means that every edge
of T is contained in an H-reversing orbit, that is to say every H-orbit of edges is
H-reversing.

However, H is finitely generated, and so by Proposition 4.2 there are only finitely
many H-reversing orbits. This means that there are only finitely many H-orbits of
edges in T .

For any i, 1 ≤ i ≤ n, the numbers of H-orbits of i-type edges is equal to the
number of double cosets {HgUi |g ∈ G}. This implies the statement of Proposi-
tion 7.3.

We recall the following statement proved by D.Cohen in [15].

Lemma 7.4. [15] Let C be a Burns subgroup of a group B and let H be a finitely
generated subgroup of B.

Then for any b ∈ B − C the intersection of an (H,C)-double coset and an
(H, b−1Cb)-double coset in B contains only finitely many right H-cosets Hb′ in B.

Lemma 7.5. Suppose that U1 6= A is a Burns subgroup of A. Suppose also that
K ∩A is finitely generated for any finitely generated subgroup K of G.

Then for any a ∈ A − U1 and for any finitely generating subgroup H of G the
intersection of an (H,U1)-double coset in G and an (H, a−1U1a)-double coset in G
contains only finitely many right H-cosets of G.

Proof. By conjugating H and U1 (and the star of groups presentation of A) we only
need to prove this for HU ∩Ha−1Ua.

Any right H-coset in HU ∩Ha−1Ua is of the form Hu where

hu = a−1u′a
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and where h ∈ H,u, u′ ∈ U1. Thus h ∈ H∩A. The group H∩A is finitely generated
by assumption. Therefore by Lemma 7.4 there are only finitely many possibilities
for H ∩A-right cosets of u and thus for right H-cosets of u.

Proposition 7.6. Let G = (A;U1, . . . , Un;B1, . . . , Bn) where U1 is a Burns sub-
group of A. Assume also that A 6= U1 and that A ∩K is finitely generated for any
finitely generated subgroup K of G.

Let H be a finitely generated subgroup of G, such that H is not contained in a
conjugate of A, B1, . . . or Bn.

Suppose also that H satisfies one of the following:
1. the group H contains a subgroup N which is normal in G and such that N is

not contained in a conjugate of a vertex group of A.
2. for any g ∈ G, and h ∈ H there exists k > 0 such that g−1hkg ∈ H.
Then H has finite index in G.

Proof. By Proposition 7.3 there are only finitely many double coset classes HgU1

in G.
Let G = Hg1U1 ∪ · · · ∪HgpU1.
Suppose that H has infinite index in G. Every HgiU1 is closed under H-

multiplication on the left and is therefore a union of right H-cosets gH . Since
H has infinite index in G, at least one of these sets, say Hg1U1, consists of infin-
itely many right H-cosets.

Let a ∈ A be such that a 6∈ U1. Then

Hg1U1a ⊂ Hg1U1 ∪ · · · ∪HgpU1.

Therefore there is some HgjH such that Hg1U1a ∩ HgjH contains infinitely
many right H-cosets.

Note that Hg1U1a = Hg1aa
−1U1a is an (H, a−1U1a)-double coset. Hence we

obtain a contradiction with the conclusion of Lemma 7.5.

We can now prove the remaining main results of this paper.

Theorem 7.7 (cf. Theorem B from the Introduction). Let G be a finitely gener-
ated subgroup of FZ[x]

2 .
Suppose H is a finitely generated non-abelian subgroup of G which contains a

nontrivial normal subgroup N of G.
Then H has finite index in G.

Proof. Since G is a finitely generated subgroup of FZ[x]
2 , by Proposition 2.5 G has

the form

G = (A;U1, . . . , Un;B1, . . . , Bn)

where A is constructible over free groups and therefore (by Theorem 3.12) torsion-
free word-hyperbolic and locally quasiconvex, where U1, . . . , Un are infinite mal-
normal cyclic subgroups of A pairwise conjugacy separated in A and where each
Bi = Ui × Ci is a free abelian group of finite rank.

If G = A then G is torsion-free word-hyperbolic and locally quasiconvex. There-
fore the conclusion of Theorem 7.7 holds by Theorem 3 of [43].

Suppose now that G 6= A. We may assume that Bi 6= Ui and Ci 6= 1 for each i.
Since N is non-abelian, G is non-abelian.
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If A is abelian, then A is infinite cyclic. Since U1, . . . , Un are infinite cyclic and
pairwise conjugacy separated in A, we conclude that n = 1. Since U1 is malnormal
in A, this means that A = U1, and G = U1 × C1 = B1 is abelian, contrary to our
assumptions.

Thus A is non-abelian, and so A is a non-elementary word-hyperbolic group
which contains a free subgroup of rank two [26].

Recall that N 6= 1 is normal in G. In this case it is easy to see that N is not
conjugate to a subgroup of A or Bi.

Indeed, suppose that N ≤ A or N ≤ Bi. Since A 6= Ui and Bi 6= Ai, the fact that
N is normal in G implies N ≤ Ui. Recall that 1 6= N and that Ui is a malnormal
infinite cyclic subgroup of A. Thus N is an infinite normal cyclic subgroup of a
torsion-free word-hyperbolic group A. This implies that A itself is infinite cyclic,
contrary to our earlier conclusion that A is non-elementary.

The subgroup U1 is a Burns subgroup of A and G has the Howson property.
Therefore by Proposition 7.6 H has finite index in G.

Theorem 7.8 (cf. Theorem C of the Introduction). Let H, K be finitely gener-
ated subgroups F

Z[x]
2 . Suppose that L = H ∩ K has finite index in both H and

K.
Then L has finite index in the subgroup G = 〈H,K〉.

Proof. The group G is a finitely generated subgroup of FZ[x]
2 .

If G is abelian the statement of Theorem 7.8 obviously holds. Assume now that
G is not abelian.

Since L = H ∩ K has finite index in both H and K and G = 〈H,K〉, for any
element g ∈ G

L ∩ g−1Lg has finite index in both L and g−1Lg.

In particular, this means for any g ∈ G and any f ∈ L there is k > 0 such that
g−1fkg ∈ L.

Since G is finitely generated and fully residually free, by Proposition 2.5 it has
the form

G = (A;U1, . . . , Un;B1, . . . , Bn)

where A is constructible over free groups and therefore torsion-free word-hyperbolic
and locally quasiconvex (see Theorem 3.12, where U1, . . . , Un are infinite malnormal
cyclic subgroups of A pairwise conjugacy separated in A and where each Bi =
Ui × Ci is a free abelian group of finite rank.

If G = A then the statement of Theorem 7.8 follows from Theorem 1 of [43] since
A is locally quasiconvex and torsion-free.

Suppose G 6= A. Since G is non-abelian, we may assume that A is non-abelian
as well. Thus A is a non-elementary word-hyperbolic group and it contains a free
subgroup of rank two [26]. Since G 6= A we may also assume that Ci 6= 1, Ui 6= Bi
for each i.

Recall that L is a finitely generated subgroup of G such that for any g ∈ G and
any f ∈ L there is k > 0 such that g−1fkg ∈ L.

It is not hard to see that in this case this means that L is not conjugate to a
subgroup of A or Bi.

Indeed, suppose that L is a subgroup of Bi. Recall that A 6= Ui and Bi 6= Ui.
If there is f ∈ L − Ui ⊆ Bi − Ui, then take an a ∈ A − Ui. Since Bi = Ui × Ui is
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a free abelian group of finite rank, fk 6∈ Ui for any k > 0. Therefore a−1fka 6∈ Bi
and so a−1fka 6∈ L, contrary to our assumptions. Thus L ≤ Bi implies L ≤ Ui.

Suppose that L ≤ A. If there is f ∈ L−Ui, then fk 6∈ Ui for any k > 0 since Ui
is malnormal in A. Then for any b ∈ Bi − Ui and any k > 0, b−1fkb 6∈ A and so
b−1fkb 6∈ L, contrary to our assumption. Thus L ≤ A implies L ≤ Ui for each i.

Assume now that L ≤ Ui for some i. Since L 6= 1, L is an infinite cyclic subgroup
of A such that for any f ∈ L and any a ∈ A−L there is k > 0 such that a−1fka ∈ L.
Since L is infinite cyclic, this means that a−1La∩L has finite index in both L and
a−1La, that is a belongs to the virtual normalizer V NA(L). Thus V NA(L) = A.
Infinite cyclic subgroups of word-hyperbolic groups are always quasiconvex [1], so
L is quasiconvex in A. Since L is quasiconvex in A and infinite, a theorem of [43]
implies that L has finite index in V NA(L). But G is torsion-free and L is infinite
cyclic. Hence V NA(L) is infinite cyclic itself. But V NA(L) = A which contradicts
our assumption that A is non-elementary and contains a non-abelian free subgroup.

Thus L is not conjugate to a subgroup of A or Bi. Therefore by Proposition 7.6
L has finite index in G, as required.

8. The membership problem

In this section if G = 〈X〉 is a group with a generating set X , and if w is a word
in X±1, we will denote by w the element g ∈ G represented by w.

Definition 8.1. Let G = 〈X〉 be a finitely generated group, where X is a finite
set.

Let H ≤ G be a subgroup of G. We say that G has solvable membership problem
with respect to H if there exists an algorithm which, given any word w in X±1,
determines whether or not w ∈ H .

More generally, we say that G has solvable membership problem if there exists an
algorithm which, given any finite set of words w,w1, . . . , wn in X±1 decides whether
or not w ∈ 〈w1, . . . , w1〉. (It is easy to see that these notions do not depend on the
choice of a finite generating set of G.)

The membership problem for amalgamated products was originally studied by
K.Mihailova [49] and by S.G.Ivanov [29]. The general case of a tree product and the
fundamental group of a graph of groups has been considered in a series of papers
by V.N.Bezverkhnii [6]-[9].

The following fact is a corollary of the main result of V.N.Bezverkhnii in [7] (see
also [8] for the same statement).

Proposition 8.2. Let G be the fundamental group of a finite graph of groups A
where all edge groups are Noetherian and all vertex groups are finitely generated.

Suppose also that the following conditions are satisfied:
1. Every vertex group Av of A has solvable membership problem.
2. There is an algorithm which, given a finite subset Y of a vertex group Av and

an edge e with initial vertex α(e) = v, finds a finite set of generators for the
subgroup 〈Y 〉 ∩ αe(Ae) of Av.

3. There is an algorithm which, given a finite subset Y of a vertex group Av, an
element a ∈ Av and an edge e with initial vertex α(e) = v, determines if the
intersection a〈Y 〉 ∩ αe(Ae) is nonempty.

Then for any finitely generated subgroup H ≤ G the group G has solvable member-
ship problem with respect to H.



SUBGROUP PROPERTIES OF FULLY RESIDUALLY FREE GROUPS 359

The conditions of Proposition 8.2, although they seem technical, are easily seen
to be satisfied for the star of groups that arises in Proposition 2.5 when one makes
use of Theorem 3.12.

Theorem 8.3 (cf. Theorem D from the Introduction). Let G ≤ FZ[x]
2 be a finitely

generated group. Then for any finitely generated subgroup H ≤ G the group G has
solvable membership problem with respect to H.

Proof. By Proposition 2.5 and Theorem 3.12 the group G is the fundamental group
of a star of groups G = (A;U1, . . . , Un;B1, . . . , Bn) where A is torsion-free word-
hyperbolic and locally quasiconvex, the groups Bi are free abelian groups of finite
rank, the groups U1, . . . , Un are malnormal infinite cyclic subgroups of A which
are pairwise conjugacy separated in A and each Ui is a direct factor in Bi, that is
Bi = Ui × Ci.

We will show now that all the conditions of Proposition 8.2 are satisfied for this
graph of groups. The crucial point will be the fact that A is locally quasiconvex.

Conditions (1), (2) and (3) obviously holds for the finitely generated free abelian
groups Bi. Recall that word-hyperbolic groups are biautomatic with the biauto-
matic structure given by the language of all geodesic words. Quasiconvex subgroups
in this situation are exactly those which are rational with respect to this biauto-
matic structure, that is those whose pre-image in the language of geodesic words
is again a regular language. For an overview of the theory of automatic groups the
reader is referred to [18], [13] and [22].

Let S be a finite generating set of A. Recall that all finitely generated subgroups
in A are quasiconvex. Hence, by the result of I.Kapovich [30], there exists an algo-
rithm which, given any finite set of words Y in S±1 finds a finite state automaton
MH over the alphabet S±1 such that the language accepted by MH is exactly the
set of S-geodesic words representing the elements of H = 〈Y 〉 (here H ≤ A).

It is also known from the theory of automatic groups that there is an algorithm
which, given a word w in S±1 finds a word v in the automatic structure on A, that
is an S-geodesic word v, such that v = w (see Theorem 2.3.10 of [18]). To see if
w ∈ H , it remains to check whether the word v is accepted by the automaton MH .
Thus condition (1) of Proposition 8.2 holds for all the vertex groups in the star of
groups G = (A;U1, . . . , Un;B1, . . . , Bn).

Let Ui = 〈u〉 be one of the amalgamated subgroups. Since Ui is quasiconvex
in A, there is a finite state automaton MUi which accept exactly those S-geodesic
words which represent elements of Ui.

We can then form a finite state automaton M ′ which accepts S-geodesic words
representing elements of H ∩ Ui. Using the automaton M ′ it is now easy to find
a finite generating set for H ∩ Ui (see the proof of Theorem 8.3.1 in [18]). Thus
condition (2) holds for A.

Let a be an arbitrary word in S±1. Using the comparison automata of the biauto-
matic structure on A and the automaton MH we can find a finite state automaton
Ma such that the language accepted by Ma consists exactly of those S-geodesic
words which represent elements of aL(MH) = aH (see the proof of Theorem 2.5.7
in [18]). We can now use Ma and MUi to form a finite state automaton M ′′ which
accepts exactly those S-geodesic words which represent elements of aH ∩ Ui. It is
now easy to check if aH ∩ Ui is empty or not by verifying whether the language
accepted by M ′′ is empty. Thus condition (3) of Proposition 8.2 holds for A.

This completes the proof of Theorem 8.3.
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