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COMPACTNESS OF THE SOLUTION OPERATOR
FOR A LINEAR EVOLUTION EQUATION

WITH DISTRIBUTED MEASURES

IOAN I. VRABIE

Abstract. The main goal of the present paper is to define the solution op-
erator (ξ, g) 7→ u associated to the evolution equation du = (Au)dt + dg,
u(0) = ξ, where A generates a C0-semigroup in a Banach space X, ξ ∈ X,
g ∈ BV ([ a, b ];X), and to study its main properties, such as regularity, com-
pactness, and continuity. Some necessary and/or sufficient conditions for the
compactness of the solution operator extending some earlier results due to
the author and to Baras, Hassan, Veron, as well as some applications to
the existence of certain generalized solutions to a semilinear equation involv-
ing distributed, or even spatial, measures, are also included. Two concrete
examples of elliptic and parabolic partial differential equations subjected to
impulsive dynamic conditions on the boundary illustrate the effectiveness of
the abstract results.

1. Introduction

Let X be a Banach space, A : D(A) ⊆ X → X the infinitesimal generator of a
C0-semigroup of contractions, ξ ∈ D(A), and let us consider the nonhomogeneous
Cauchy problem {

u′ = Au + f,
u(a) = ξ.

(1.1)

This problem has a unique: (i) classical, or C1 solution, if f ∈ C1[ a, b ];X) (see
Corollary 2.5, p. 107 in Pazy [20]) ; (ii) strong solution, if f is a.e. differentiable on
[ a, b ] and f ′ ∈ L1(a, b ;X) (see Corollary 2.6, p. 108 in Pazy [20]) ; (iii) mild, or C0-
solution, if f ∈ L1(a, b ;X).1 There are however situations in which the “function”
f in the right-hand side does not satisfy even the minimal assumption to be in
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1We recall that a mild, or C0-solution of (1.1) is a continuous function u : [ a, b ]→ X satisfying

u(t) = S(t− a)ξ +

∫ t

a
S(t − s)f(s) ds

for each t ∈ [ a, b ], where {S(t) ; t ≥ 0} is the C0-semigroup generated by A. So, in this case,
both the existence and uniqueness are implicitly ensured by definition.

c©2002 American Mathematical Society

3181



3182 IOAN I. VRABIE

L1(a, b ;X). These situations arise, for instance, in optimal control problems with
state constraints, when the so-called dual arc satisfies an equation of the type{

dp∗ = (−A∗p∗ + q)dt+ dw,
p∗(T ) = p∗T ,

where A∗ is the adjoint of A, q ∈ L1(0, T ;X∗), and w : [ 0, T ] → X∗ is a function
of bounded variation. See Barbu, Precupanu [4], Definition 1.1, p. 258. From
this reason at least, it is of interest to study the more general case (than (1.1)) of
Cauchy problems of the type {

du = (Au)dt+ dg,
u(a) = ξ,

(1.2)

where ξ ∈ X , and g : [ a, b ] → X is a function of bounded variation. Roughly
speaking, a solution of (1.2) is a piecewise continuous function u defined by a
Duhamel-like formula involving a Riemann-Stieltjes integral, i.e.,

u(t) = S(t− a)ξ +
∫ t

a

S(t− s) dg(s).

See Definition 2.1 and Theorem 3.1 below. For earlier results concerning evolution
equations whose solutions are defined via a quite similar variation of constants-like
formula, for the specific case dg(s) = f(s) dν(s), where f ∈ L1(a, b;X) and ν is a
bounded signed measure, see Ahmed [1].

The main goal of the present paper is to study the fundamental properties of the
solution operator (ξ, g) 7→ u associated to the Cauchy problem (1.2), such as reg-
ularity (Theorem 3.1), compactness (Theorem 5.2), and continuity (Theorem 7.1),
and to extend to this general (but only linear) frame an earlier result due to the
author referring to the mild solution operator associated to the classical Cauchy
problem (1.1) with A possibly nonlinear. See Theorem 6.1 and Vrabie [28]. These
kind of compactness properties are useful in establishing existence results for both
Cauchy and periodic problems, as well as for optimal control problems, by means of
topological arguments. See for instance Gutman [13], Hirano [15], [16], Hirano,

Misoguchi [17], Pazy [19], Shioji [22], [23], Vrabie [24], [25], [26], [27], [28], and
the references therein.

Our main result, Theorem 5.2, and its consequences, Theorem 6.2, which in its
turn extends a known compactness result due to Baras, Hassan, Veron [2], and
Theorem 7.1, are the starting point in order to get information on the existence
for certain abstract semilinear evolution equations involving highly irregular data,
information which cannot be obtained via the classical compactness results as those
used in the papers cited above. See Theorem 8.1, which may be considered as an
extension of Pazy’s main local existence result in [19] to the case of semilinear
evolution equations governed by nonlinear distributed measure-valued perturba-
tions of infinitesimal generators of C0-semigroups, and its remarkable consequence,
Theorem 8.2. In order to illustrate the power of the former theorem, we analyze
two illuminating examples : one concerning a semilinear diffusion equation with
impulses, and another concerning a semilinear elliptic problem, both subjected to
impulsive dynamic conditions on the boundary.

The interesting feature of our main result consists in showing that a quite natu-
ral compactness condition on the images suffices to ensure the Lp-equi-integrability
of a family of solutions for (1.2) corresponding to bounded data, and therefore its
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relative compactness in Lp(a, b ;X). Surprisingly, the Lp-equi-integrability condi-
tion is not automatically satisfied by any family of solutions, also corresponding to
bounded data, as suggested by finite-dimensional examples, but only by those just
mentioned, i.e., enjoying some additional compactness conditions. See Example 5.1.

The paper is divided into nine sections, the first four being concerned with such
basic properties of the solutions as continuity outside of the support of the singular
part of Var (g, [ a, · ]), right (left) continuity at those points at which g is continuous
from the right (left), relationships with other types of solutions, etc. Section 5
contains the statement and proof of our main result, while section 6 is concerned
with some of its consequences. Section 7 includes some facts referring to abstract
evolution equations with “spatial” distributed measures as data, answering a ques-
tion rised by Barbu [3], and is somehow related to some specific existence results
in Brézis, Friedman [8]. Section 8 presents an abstract existence theorem re-
ferring to a class of abstract semilinear evolution equations involving distributed
measures, while the last Section 9 contains two significant examples of partial dif-
ferential equations showing how the abstract theory applies.

Acknowledgements. The author takes this opportunity to express his warmest
thanks to Professor Ştefan Frunză for fruitful discussions and criticism, as well as
to Dr. Corneliu Ursescu, Senior Researcher at the Mathematics Institute of the
Romanian Academy, for a very careful reading of the manuscript.

2. Preliminaries

We begin by giving a precise sense in which we have to understand the relations
(1.2). Let D[ a, b ] be the set of all partitions of the interval [ a, b ]. We recall that,
if g : [ a, b ] → X , then, for each ∆ ∈ D[ a, b ], ∆ : a = t0 < t1 < · · · < tk = b, the
number

Var∆(g, [ a, b ]) =
k−1∑
i=0

‖g(ti+1)− g(ti)‖

is called the variation of the function g relative to the partition ∆. If

sup
∆∈D[ a,b ]

Var∆(g, [ a, b ]) <∞,

then g is said to be of bounded variation2, and the number

Var (g, [ a, b ]) = sup
∆∈D[a,b ]

Var∆(g, [ a, b ])

is called the variation of the function g on the interval [ a, b ]. Similarly, we define
Var (g, (a, b ]), Var (g, (a, b)), and Var (g, [ a, b)). We notice that, in each of the above
three cases, we have to consider only those partitions ∆ satisfying, either a < t0,
or tk < b, or both, as required by the type of the interval considered. As usual, we
denote by BV ([ a, b ];X) the vector space of all functions of bounded variation from
[ a, b ] to X . The mapping g 7→ Var (g, [ a, b ]) is a seminorm on BV ([ a, b ];X), while
g 7→ ‖g(a)‖+ Var (g, [ a, b ]) is a norm, denoted by ‖ · ‖BV ([ a,b ];X), and in respect to
which BV ([ a, b ];X) is a Banach space.

2Some authors, as for instance Hille, Phillips [14], p. 59, call such functions functions of
strong bounded variation.
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For details on infinite-dimensional vector-valued functions of bounded variation,
whose systematic study was initiated by Bochner, Taylor [6], see Barbu, Pre-

cupanu [4], Brézis [7], and Hönig [18]. We assume familiarity with the basic
concepts and results concerning C0-semigroups and linear evolution equations in
general Banach spaces. For details, we refer the reader to Engel, Nagel [11], and
Pazy [20].

Let {S(t) ; t ≥ 0} be a C0-semigroup of contractions on X , let {S(t)∗ ; t ≥ 0}
be the dual semigroup defined on X∗, and {S(t)� ; t ≥ 0} the sun dual semigroup.
We recall that S(t)� : X� → X� is defined by

X� = {x∗ ∈ X∗ ; lim
h↓0
‖S(h)∗x∗ − x∗‖ = 0},

and

S(t)�x� = S(t)∗x�

for each x� ∈ X�. It is know that X� is a closed subspace of X∗. See Hille,

Phillips [14], Theorem 14.2.1, p. 422. Also from Theorem 14.2.1 (loc.cit.) it
follows that X� is weakly star dense in X∗, or equivalently, for each x ∈ X , we
have

‖x‖ = sup{|(x, x�)| ; x� ∈ X�, ‖x�‖ ≤ 1}.
Let t ∈ (a, b ], ∆ ∈ D[ a, t ], ∆ : a = t0 < t1 < · · · < tk = t, let τi ∈ [ ti, ti+1 ],
i = 0, 1, . . . , k − 1, and consider the Riemann-Stieltjes sum of τ 7→ S(t − τ) over
[ a, t ] with respect to g, i.e.

σ[ a,t ](∆, S, g, τi) =
k−1∑
i=0

S(t− τi)(g(ti+1)− g(ti)).

If ∆ is a partition of [ a, t ], we denote λ(∆) = max{ti+1 − ti ; i = 0, 1, . . . , k − 1}.
Using the very same arguments as in the scalar case, we easily deduce that, for
each sequence (∆n)n with limn→∞ λ(∆n) = 0, each intermediate points τ (n)

i in
[ t(n)
i , t

(n)
i+1 ], i = 0, 1, . . . , kn − 1, and each x� ∈ X�, ((σ[ a,t ](∆n, S, g, τ

(n)
i ), x�))n

is a Cauchy sequence. Let Xc be the sequential completion of X in the σ(X,X�)
topology3, i.e. the space of all elements xc ∈ X∗∗ for which there exists a weakly-�
Cauchy sequence (xk)k in X such that, for each x� ∈ X�, we have (x�, xc) =
limk(xk, x�). Endowed with the usual sup-norm, i.e.,

‖xc‖ = sup{|(x�, xc)| ;x� ∈ X�, ‖x�‖ ≤ 1},
Xc is a norm closed subspace of X∗∗. The arguments above show that there exists
a unique element

∫ t
a
S(t− s) dg(s) ∈ Xc such that∫ t

a

S(t− s) dg(s) = lim
λ(∆)↓0

k−1∑
i=0

S(t− τi)(g(ti+1)− g(ti))(2.1)

weakly-�. This is called the Riemann-Stieltjes integral on [ a, t ] of the operator-
valued function τ 7→ S(t − τ) with respect to the vector-valued function g. If
α : [ a, b ]→ R is a given function, by a similar procedure, we can define∫ t

a

α(s)S(t− s) dg(s) = lim
λ(∆)↓0

k−1∑
i=0

α(τi)S(t− τi)(g(ti+1)− g(ti)),

3From here on, we shall call this the weak-� topology on X.
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of course, whenever the limit on the right-hand side exists in the weak-� topology
on X . It it easy to see that this happens, for instance, if α is the characteristic
function of a proper subinterval of [ a, t ].

Remark 2.1. A simple computational argument shows that, for each [ c, d ] ⊆ [ a, b ]
and each t ∈ [ d, b ], we have∫ d

c

S(t− s) dg(s) =
∫ d

c

χ(c,d ](s)S(t− s) dg(s) + S(t− c)(g(c+ 0)− g(c)),(2.2)

where χ(c,d ] denotes the characteristic function of the interval (c, d ]. Similarly, for
each [ c, d ] ⊆ [ a, b ] and each t ∈ [ d, b ], we have∫ d

c

S(t− s) dg(s) =
∫ d

c

χ[ c,d)(s)S(t− s) dg(s) + S(t− d)(g(d) − g(d− 0)).(2.3)

Remark 2.2. If X is reflexive, the weak-� topology on X is nothing else than the
weak topology on X , and therefore Xc = X . In general this is not the case, as the
following simple example shows.

Example 2.1. Let X = L1(R), and let {S(t) ; t ≥ 0} be the C0-group of transla-
tions, i.e.

(S(t)f)(x) = f(x+ t)

for each f ∈ X , each t ∈ R, and a.e. for x ∈ R. It is well known that, in this case,
X� = Cub(R), i.e., the space of all bounded, uniformly continuous functions on R,
endowed with the usual sup-norm. See Engel, Nagel [11], Examples, (i), p. 63.
At this point let us observe that the weak topology on X does not coincide with
the weak-� topology. More than this, X is not weakly-� sequentially complete,
and its sequential completion is a space of measures strictly larger that X . One
may easily verify that all Dirac measures belong to Xc.

Remark 2.3. If g is defined by a density, i.e. there exists f ∈ L1(a, b ;X) such that
dg(s) = f(s) ds, one may prove that, for each t ∈ [ a, b ], the limit in (2.1) exists in
the norm topology of X , and∫ t

a

S(t− s) dg(s) =
∫ t

a

S(t− s)f(s) ds ∈ X.

This happens, for example, whenever X has the Radon-Nicodým property (see
Diestel, Uhl [9], Definition 3, p. 61), and g is absolutely continuous on [ a, b ], in
which case f = g′ a.e. on [ a, b ]. Some specific but important such instances are
those in which X is either reflexive, or a separable dual. See also Diestel, Uhl [9],
Theorem 1, p. 79, and Corollary 4, p. 82.

Remarks 2.2 and 2.3 show that, in order that the Riemann-Stieltjes integral
defined as above belong to X , we must impose some extra conditions on X , on
g, or on A. Since in the applications we have in mind X is a space enjoying
quite bad geometric properties, as L1(Ω) for instance, and thus nonreflexive, and
g is not a priori known because it comes by a passing to the limit process in a
sequence of L1-functions with respect to some weak topology which excludes the
situation in Remark 2.3, in that follows, we will mainly focus our attention only
on the properties of A which may ensure the existence of a “good integral”. The
next theorem gives a useful sufficient condition in this respect. For the sake of
completeness we first recall the following slight extension of Lemma 16 on p. 140
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in Dunford, Schwartz [10]. Since its proof follows exactly the same lines as the
proof of the just mentioned Lemma 16, we do not enter into details.

Lemma 2.1. For each g ∈ BV ([ a, b ] ;X) and t ∈ [ a, b), respectively s ∈ (a, b ], we
have

lim
h↓0

Var (g, (t, t+ h ]) = 0

and respectively

lim
h↓0

Var (g, [ s− h, s)) = 0.

The simple remark below will prove useful in what follows.

Remark 2.4. If g ∈ BV ([ a, b ];X), then g([ a, b ]) is strongly relatively compact in
X . This is an easy consequence of the fact that g is piecewise continuous on [ a, b ],
i.e. it has one-sided limits at each point in [ a, b ].

Theorem 2.1. If the semigroup generated by A is continuous from (0,+∞) to
L(X) in the uniform operator topology, then, for each g ∈ BV ([ a, b ];X) and each
t ∈ (a, b), the limit in (2.1) exists in the norm topology of X, and consequently we
have ∫ t

a

S(t− s) dg(s) ∈ X.(2.4)

Proof. It suffices to show that, for some fixed ` > 0, for each t ∈ (a, b ], and each
ε > 0, there exists η(ε) > 0 such that

‖σ[ a,t ](∆, S, g, τi)− σ[ a,t ](∆′, S, g, τ ′j)‖ ≤ `ε,
provided λ(∆) ≤ η(ε) and ∆′ is finer than ∆, i.e., contains all the points of ∆.
To fix the notation, let ∆ ∈ D[ a, t ], ∆ : a = t0 < t1 < · · · < tk = t, be a
partition of [ a, t ], and let τi be arbitrary in [ ti, ti+1 ], i = 0, 1, . . . , k − 1. If ∆′ is
another partition of [ a, t ] which is finer that ∆, relabelling if necessary, we have
∆′ : ti = ti,0 ≤ τi,0 ≤ ti,1 ≤ τi,1 ≤ · · · ≤ τi,mi−1 ≤ ti,mi = ti+1, i = 0, 1, . . . , k − 1.
Let ε > 0, and fix δ > 0 with t− 2δ ∈ [ a, b ] and such that

‖(S(s)− I)(g(τ)− g(τ ′))‖ ≤ ε(2.5)

for each s ∈ [ 0, δ ] and each τ, τ ′ ∈ [ a, t), and

Var (g, [ t− 2δ, t)) ≤ ε.(2.6)

This is always possible, because the semigroup is strongly continuous, g([ a, t)) is
strongly relatively compact in X (see Remark 2.4), while, by virtue of Lemma 2.1,
limδ↓0 Var (g, [ t − δ, t)) = 0. Since τ 7→ S(τ) is continuous at τ = δ > 0 in the
uniform operator topology, there exists η ∈ (0, δ ] such that

‖S(s)S(δ)− S(δ)‖ ≤ ε(2.7)

for each s ∈ [ 0, η ].
Let us assume now that λ(∆) ≤ η, and let us fix p = p(δ) ∈ {1, 2, . . . , k − 1}

such that tp < t− δ and tp+1 ≥ t− δ. Let us denote

Shn =
h−1∑
i=n

mi−1∑
j=0

(S(t− τi)− S(t− τi,j))(g(ti,j+1)− g(ti,j)),
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and let us observe that

σ[ a,t ](∆, S, g, τi)− σ[ a,t ](∆′, S, g, τi,j) = Sk0 .

Set Sk0 = T1 +T2 +T3, where T1 = Sp0 , T2 = Skp −T3, and T3 is the last term in Sk0 .
By (2.7) and the fact that δ < t− tp, we deduce that

‖T1‖ ≤
p−1∑
i=0

mi−1∑
j=0

‖[S(tp − τi)− S(tp − τi,j)]S(t− tp)(g(ti,j+1)− g(ti,j))‖

≤
p−1∑
i=0

mi−1∑
j=0

‖S(|τi − τi,j |)S(δ)− S(δ)‖‖g(ti,j+1)− g(ti,j)‖ ≤ Var(g, [ a, b ])ε.

Since tp+1 − tp ≤ η, tk−1,mk−1−1 − tp+1 ≤ t − tp+1 ≤ δ, and η ∈ (0, δ ], in view of
(2.6), we get

‖T2‖ ≤ 2Var(g, [ t− η − δ, t)) ≤ 2Var(g, [ t− 2δ, t)) ≤ 2ε.

Finally, by virtue of (2.5), we have

‖T3‖ ≤ ‖(S(|τk − τk−1,mk−1−1|)− I)(g(t)− g(tk−1,mk−1−1))‖ ≤ ε.
Consequently∥∥σ[ a,t ](∆, S, g, τi)− σ[ a,t ](∆′, S, g, τi,j)

∥∥ ≤ (Var(g, [ a, b ]) + 3)ε,

and this completes the proof.

Definition 2.1. Let ξ ∈ X and g ∈ BV ([ a, b ];X). A function u : [ a, b ] → Xc,
defined by

u(t) = S(t− a)ξ +
∫ t

a

S(t− s) dg(s)(2.8)

for each t ∈ [ a, b ], and satisfying (2.4), is called the L∞-solution of the problem
(1.2) on the interval [ a, b ] with the initial condition u(a) = ξ.

Remark 2.5. If x ∈ X and limn xn = x weakly-� in X , then

‖x‖ ≤ lim inf
n
‖xn‖.

Consequently, whenever
∫ t
a S(t− s) dg(s) ∈ X , we have∥∥∥∥∫ t

a

S(t− s) dg(s)
∥∥∥∥ ≤ ∫ t

a

dVar(g, [ a, s )] = Var(g, [ a, t ]).(2.9)

Remark 2.6. Clearly, whenever dg is defined by means of a density f , i.e. dg = fdt
with f ∈ L1(a, b ;X), the L∞-solution of (1.2) corresponding to (ξ, g) is nothing
else than the mild, or C0-solution of (1.1) corresponding to (ξ, f). See Remark 2.3.

The proofs of the next two propositions follow from an elementary computational
argument, and therefore we do not give details.

Proposition 2.1 (Concatenation Principle). Let v : [ a, c ] → X be the L∞-solu-
tion of the problem (1.2) on the interval [ a, c ] with the initial condition v(a) = ξ,
and w : [ c, b ] → X the L∞-solution of the very same problem on [ c, b ] with the
initial condition w(c) = v(c). Then, the function u : [ a, b ]→ X, defined by

u(t) =
{
v(t) if t ∈ [ a, c ],
w(t) if t ∈ (c, b ],
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is the L∞-solution of the problem (1.2) on the interval [ a, b ], with the initial datum
u(a) = ξ.

The concatenation principle is equivalent to the fact that the family of mappings
{U(t, s) ; a ≤ s ≤ b} ∈ L(X), defined by U(t, s)ξ = S(t− s)ξ+

∫ t
s
S(t− τ)dg(τ) for

each ξ ∈ X , satisfies the following properties of an evolution system : U(s, s) = I
and U(t, s) = U(t, τ)U(τ, s) for each a ≤ s ≤ τ ≤ t ≤ b, and this follows from the
simple proposition below.

Proposition 2.2 (Evolution Property). If u : [ a, b ] → X is the L∞-solution of
the problem (1.2), then, for each c ∈ (a, b), we have

u(t) = S(t− c)u(c) +
∫ t

c

S(t− s) dg(s).

3. Regularity of L∞-solutions

We begin with the following fundamental regularity result.

Theorem 3.1. Let ξ ∈ X, g ∈ BV ([ a, b ];X), and let u be the L∞-solution of
(1.2) corresponding to ξ and g. Then, for each t ∈ [ a, b) and each s ∈ (a, b ], we
have

u(t+ 0)− u(t) = g(t+ 0)− g(t),(3.1)

u(s)− u∗(s− 0) = g(s)− g(s− 0),(3.2)

where

u∗(s− 0) = lim
h↓0

S(h)u(s− h).

If, in addition, either the semigroup generated by A is continuous from (0,+∞) to
L(X) in the uniform operator topology, or it can be embedded into a group, then
u∗(s− 0) = u(s− 0), and accordingly

u(s)− u(s− 0) = g(s)− g(s− 0).(3.3)

So, in this case, u is continuous from the right (left) at t ∈ [ a, b ] if and only if g is
continuous from the right (left) at t. In particular, u is continuous at any point at
which g is continuous, and thus u is piecewise continuous on [ a, b ].

Proof. Since u satisfies the evolution property (see Proposition 2.2) and, for each
t ∈ [ a, b ] and h > 0 with t+ h ≤ b, we have

u(t+ h)− u(t) = S(h)u(t) +
∫ t+h

t

S(t+ h− s) dg(s)− u(t)

= S(h)u(t)− u(t) +
∫ t+h

t

χ(t,t+h ](s)S(t+ h− s) dg(s) + S(h)(g(t+ 0)− g(t)),

by virtue of Remark 2.5, we get

‖u(t+h)− u(t)− g(t+ 0) + g(t)‖
≤ ‖S(h)(u(t) + g(t+ 0)− g(t))− u(t)− g(t+ 0) + g(t)‖

+ Var (g, (t, t+ h ]).
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From the strong continuity of the semigroup and Lemma 2.1, we deduce (3.1). To
check (3.2), let s ∈ (a, b ], and h > 0 with s − h ≥ a, and let us observe that, by
using similar arguments, we obtain

u(s) = S(h)u(s− h) +
∫ s

s−h
S(s− τ) dg(τ)

= S(h)u(s− h) +
∫ s

s−h
χ[ s−h,s)(τ)S(s− τ) dg(τ) + g(s)− g(s− 0),

and therefore

‖u(s)− S(h)u(s− h)− g(s) + g(s− 0)‖ ≤ Var (g, [s− h, s)).
An appeal to Lemma 2.1 completes the proof of (3.2). Let us assume next that
the semigroup {S(t) ; t ≥ 0} is continuous in the uniform operator topology from
(0,+∞) to L(X). Let s ∈ (a, b ], δ > 0 with s − δ ∈ [ a, b ], h ∈ (0, δ ], and denote
ψ(s, h, τ) = S(s− τ)− S(s− h− τ). We have

‖u(s− h)− S(h)u(s− h)‖ ≤ ‖S(h)ξ − ξ‖+

∥∥∥∥∥
∫ s−h

a

ψ(s, h, τ) dg(τ)

∥∥∥∥∥ .
Since the semigroup is strongly continuous at 0, to complete the proof, it suffices
to show that the second term on the right-hand side tends to 0 when h tends to 0.
Let ε > 0. By virtue of Lemma 5.1, there exists δ > 0 such that

Var (g, [ s− δ, s)) ≤ ε.
So, in view of (2.3) and (2.9), for each h ∈ (0, δ), we get

∥∥∥∥∥
∫ s−h

a

ψ(s, h, τ) dg(τ)

∥∥∥∥∥ ≤
∥∥∥∥∥
∫ s−δ

a

ψ(s, h, τ) dg(τ)

∥∥∥∥∥ +

∥∥∥∥∥
∫ s−h

s−δ
ψ(s, h, τ) dg(τ)

∥∥∥∥∥
≤ ‖S(δ)− S(δ − h)‖Var (g, [ a, b ]) + 2Var (g, [ s− δ, s− h))

+‖(S(h)− I)(g(s− h)− g(s− h− 0))‖ ≤ ‖S(δ)− S(δ − h)‖Var (g, [ a, b ])

+2Var (g, [ s− δ, s)) + ‖(S(h)− I)(g(s− h)− g(s− h− 0))‖.
Since the semigroup is continuous in the uniform operator topology from (0,+∞)
to L(X) and, by Remark 2.4, g([ a, b ]) is relatively compact in X , for the very same
ε > 0, there exists η ∈ (0, δ) such that we have both

sup
θ∈(0,η)

‖S(δ)− S(δ − θ)‖ ≤ ε

and

‖(S(h)− I)(g(s− h)− g(s− h− 0))‖ ≤ ε
for each h ∈ (0, η). Summing up, we get∥∥∥∥∥

∫ s−h

a

ψ(s, h, τ) dg(τ)

∥∥∥∥∥ ≤ (Var (g, [ a, b ]) + 2)ε,

which shows that limh↓0 ‖u(s − h) − S(h)u(s − h)‖ = 0. Recalling that, as we
already have shown, there exists limh↓0 S(h)u(s− h) = u∗(s− 0), we conclude that
u(s− 0) exists and u(s− 0) = u∗(s− 0). This proves (3.3) in the case in which the
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semigroup is continuous in the uniform operator topology on (0,+∞). Finally, if
{S(t) ; t ≥ 0} can be embedded into a group, for each t ≥ 0, S(t) is invertible, and
so

u(t− h) = S(h)−1S(h)u(t− h).

Thus, by virtue of (3.2) and the strong continuity of both S(h) and S(h)−1, we get
(3.3). The proof is complete.

Remark 3.1. It is a simple exercise to show that, even for general C0-semigroups,
the limit limh↓0 u(s− h) exists in the weak-� topology on X and equals u∗(s− 0).
So, we have

u(s)− u(s− 0) = g(s)− g(s− 0)(3.4)

for each s ∈ (a, b ], where u(s− 0) is considered in the weak-� topology on X .

Corollary 3.1. Let g ∈ BV ([ a, b ];X). If g is right continuous on [ a, b ], then, for
each ξ ∈ X, the L∞-solution of (1.2) corresponding to ξ and g is right continuous
on [ a, b ]. If either the semigroup generated by A is continuous from (0,+∞) to
L(X) in the uniform operator topology, or it can be embedded into a group and
g ∈ BV ([ a, b ];X) is continuous, then, for each ξ ∈ X, the L∞-solution of (1.2)
corresponding to ξ and g is continuous on [ a, b ].

Remark 3.2. A quite natural question we may raise is whether or not any L∞-
solution is of bounded variation. The answer to this question is in the negative, as
we can see from the next simple example. Let X be a reflexive Banach space, and
let us assume that the semigroup generated by A is not differentiable, i.e. there
exists x ∈ X such that S(t)x /∈ D(A) for each t ≥ 0. 4 Now, let g : [ 0, 2 ]→ X be
defined by

g(t) =
{

0 for t ∈ [ 0, 1),
x for t ∈ [ 1, 2 ].

Clearly g is of bounded variation on [ 1, 2 ]. Moreover one may easily see that the
unique L∞-solution u of the problem (1.2) corresponding to ξ = 0 and to g is
defined by

u(t) =
{

0 for t ∈ [ 0, 1),
S(t− 1)x for t ∈ [ 1, 2 ].

At this point let us recall that, whenever X is reflexive and u : [ a, b ] → X is of
bounded variation, then u is a.e. differentiable on [ a, b ]. See Bochner, Tay-

lor [6], Theorem 5.2. From this remark it is clear that u cannot be of bounded
variation on [ 0, 2 ], since it is nowhere differentiable on [ 1, 2 ]. We conclude this
remark by mentioning that it should be of great interest to know under what cir-
cumstances on X , ξ, A, and g the corresponding L∞-solution of (1.2) is of bounded
variation. One may prove that this is the case whenever A ∈ L(X), i.e. when the
generated semigroup is uniformly continuous, but we don’t know any other relevant
situations.

4A typical instance of this sort is X = L2(R+ ;R) and A : D(A) ⊆ X →X defined by Af =
f ′, for each f ∈ D(A) = {f ∈ L2(R+ ;R) ; f ′ ∈ L2(R+ ;R)}, which generates the well-known
translation semigroup.
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4. A characterization of L∞-solutions

In this section we prove a characterization of L∞-solutions in terms of the du-
ality between X and Xc. More precisely, let A� : D(A�) ⊆ X� → X� be the
infinitesimal generator of the sun dual semigroup {S�(t) ; t ≥ 0}. We introduce :

Definition 4.1. A function u : [ a, b ]→ X is called a variational, or V-solution of
the problem (1.2) if u satisfies (3.1) and (3.4) and, for each f� ∈ C([ a, b ];D(A�)),
we have ∫ b

a

(u(t), f�(t)) dt+
∫ b

a

(dg(t), ϕ�(t)) + (ξ, ϕ�(a)) = 0,(4.1)

where ϕ� ∈ C([ a, b ];D(A�)) ∩ C1([ a, b ];X�) is the unique strong solution of the
�-adjoint problem {

ϕ�
′ = −A�ϕ� + f�,

ϕ�(b) = 0,
(4.2)

and the middle term on the left-hand side of (4.1) is the Riemann-Stieltjes integral
of the function ϕ� with respect to g, i.e.∫ b

a

(dg(t), ϕ�(t)) = lim
λ(∆)↓0

k−1∑
i=0

(g(ti+1)− g(ti), ϕ�(τi)).

Clearly each V-solution of (1.2) is weakly-� piecewise continuous on [ a, b ]. More-
over, since D(A�) is dense in X�, it follows that C([ a, b ];D(A�)) is dense in
C([ a, b ];X�) too, and accordingly we have

Theorem 4.1. For each ξ ∈ X and each g ∈ BV ([ a, b ];X), the problem (1.2) has
at most one V-solution defined on [ a, b ].

Proof. The conclusion follows from the simple remark that, whenever u and v are
two V-solutions of (1.2), u−v is weakly-� continuous on [ a, b ] (see (3.1) and (3.4)),
and ∫ b

a

(u(t)− v(t), f�(t)) dt = 0

for each f ∈ C([ a, b ] ;X�).

As for the V-solution, we have the following characterization theorem.

Theorem 4.2. Let ξ ∈ X and g ∈ BV ([ a, b ];X). Then u ∈ L∞(a, b ;X) is the
V-solution of the problem (1.2) on [ a, b ] if and only if u is the L∞-solution of the
same problem on the same interval.

Proof. Let u be an L∞-solution of (1.2). Clearly u satisfies (3.1) and (3.4). So, by
virtue of the Uniqueness Theorem 4.1, it suffices to verify (4.1). We have∫ b

a

(u(t), f�(t)) dt+
∫ b

a

(dg(t), ϕ�(t)) + (ξ, ϕ�(a))

=
∫ b

a

(S(t− a)ξ, f�(t)) dt+
∫ b

a

(∫ t

a

S(t− s) dg(s), f�(t)
)
dt

+
∫ b

a

(dg(t), ϕ�(t)) + (ξ, ϕ�(a)).

(4.3)
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Let us observe that, for each t, s ∈ [ a, b ], we have χ[ a,t ](s) = χ[ s,b ](t), where χE is
the characteristic function of the subset E ⊆ [ a, b ], and therefore

∫ b

a

(∫ t

a

S(t− s) dg(s), f�(t)
)
dt =

∫ b

a

(∫ b

a

χ[ a,t ](s)S(t− s) dg(s), f�(t)

)
dt

=
∫ b

a

(∫ b

a

χ[ s,b ](t)S(t− s)dg(s), f�(t)

)
dt

=
∫ b

a

(
dg(s),

∫ b

a

χ[ s,b ](t)S�(t− s)f�(t)dt

)

=
∫ b

a

(
dg(s),

∫ b

s

S�(t− s)f�(t) dt

)
.

We also have ∫ b

a

(S(t− a)ξ, f�(t)) dt =
∫ b

a

(ξ, S�(t− a)f�(t)) dt,

ϕ�(s) = −
∫ b

s

S�(t− s)f�(t) dt and ϕ�(a) = −
∫ b

a

S�(t− a)f�(t) dt.(4.4)

From these relations and (4.3), we deduce (4.1).
Conversely, if u is a V-solution of (1.2) on [ a, b ] and f� ∈ C([ a, b ] ;X�), then

ϕ� satisfies (4.4), and a simple backward calculation shows that (4.1) implies∫ b

a

(
u(t)− S(t− a)ξ −

∫ t

a

S(t− s) dg(s), f�(t)
)
dt = 0.

The conclusion follows from the arbitrariness of f� ∈ C([ a, b ] ;X�) combined with
the fact that, by virtue of (3.1) and (3.4), the first factor under the integral above
is weakly-� continuous on [ a, b ]. The proof is complete.

5. Compactness of the solution operator

From now on we shall assume that X and A are fixed and such that, for each
(ξ, g) ∈ X × BV ([ a, b ];X), the Cauchy problem (1.2) has a unique L∞-solution.
See Remark 2.2 and Theorem 2.1. Our goal here is to prove the main result of this
paper, i.e. a necessary and sufficient condition in order that the family of all L∞-
solutions of the nonhomogeneous linear Cauchy problem (1.2), when ξ ranges in a
given subset in X and g ranges in a bounded subset in BV ([ a, b ];X), be relatively
compact in Lp(a, b ;X) for each p ∈ [ 1,+∞). This condition is in fact an extension
(in the linear case only—see Theorem 6.1 below) of Theorem 1.1 in Vrabie [28]
from mild, or C0-solutions to L∞-solutions, allowing of course the right-hand side
in (1.2) to be a measure generated by a function of bounded variation. Let ξ ∈ X
and g ∈ BV ([ a, b ];X), and denote by u = Q(ξ, g) the unique L∞-solution of the
Cauchy problem (1.2) corresponding to ξ and g.

Remark 5.1. Since {S(t) ; t ≥ 0} is a semigroup of contractions, we have

‖u(t)‖ ≤ ‖ξ‖+ Var (g, [ a, b ]).



COMPACTNESS OF THE SOLUTION OPERATOR 3193

The next simple lemma will prove useful in what follows.

Lemma 5.1. For each g ∈ BV ([ a, b ];X) and h ∈ (0, b− a) we have∫ b−h

a

∥∥∥∥∥
∫ t+h

t

S(t+ h− s) dg(s)

∥∥∥∥∥ dt ≤ hVar (g, [ a, b ])

and ∫ b

a+h

∥∥∥∥∫ t

t−h
S(t− s) dg(s)

∥∥∥∥ dt ≤ hVar (g, [ a, b ]).

Proof. We shall prove only the first inequality, the second one being obtained via
very similar arguments. Since t < s ≤ t + h if and only if s − h ≤ t < s, we have
χ(t,t+h ](s) = χ[ s−h,s)(t) for each t ∈ [ a, b−h] and each s ∈ [ a+h, b ]. Let us denote
Vg(s) = Var (g, [ a, s ]). Since

∫ t+h

t

S(t+ h− s) dg(s) =
∫ b

a

χ(t,t+h](s)S(t+ h− s) dg(s) + S(h)[g(t+ 0)− g(t)],

and ‖g(t+ 0)− g(t)‖ = 0 a.e. for t ∈ [ a, b ], we have∫ b−h

a

∥∥∥∥∥
∫ t+h

t

S(t+ h− s) dg(s)

∥∥∥∥∥ dt

=
∫ b−h

a

∥∥∥∥∥
∫ b

a

χ(t,t+h ](s)S(t+ h− s) dg(s)

∥∥∥∥∥ dt ≤
∫ b

a

∫ b

a+h

χ[ s−h,s)(t) dVg(s) dt

=
∫ b

a+h

(∫ b

a

χ[ s−h,s)(t) dt

)
dVg(s) ≤ hVar (g, [ a, b ]).

The proof is complete.

We recall that a subset G in BV ([ a, b ];X) is of equibounded variation if there
exists mG > 0 such that

Var (g, [ a, b ]) ≤ mG

for each g ∈ G. For the sake of completeness and simplicity we recall the following
specific form of a theorem due to Gutman [13], which is the main ingredient in the
proof of our main result. Variants of this result may be found in Simon [21] and
Vrabie [27].

Theorem 5.1 (Gutman). A subset U in Lp([ a, b ];X), 1 ≤ p < ∞, is strongly
relatively sequentially compact if and only if U is p-equi-integrable and, in addition,
for each ε > 0 there exists a compact subset Cε in X such that for each u ∈ U there
exists a measurable subset Eε,u in [ a, b ] whose Lebesgue measure is less than ε and
such that u(t) ∈ Cε for each u ∈ U and t ∈ [ a, b ] \ Eε,u.

We may now proceed to the statement of our main result.
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Theorem 5.2. Let A : D(A) ⊆ X → X be the infinitesimal generator of a C0-
semigroup of contractions {S(t) ; t ≥ 0}, let D be a bounded subset in X, and
G a subset in BV ([ a, b ];X) of equibounded variation. Then Q(D,G) is relatively
compact in Lp(a, b ;X) for each p ∈ [ 1,+∞) if and only if for each ε > 0 there
exists a relatively compact subset Cε in X such that, for each (ξ, g) ∈ D× G, there
exists a subset Eε,ξ,g in [ a, b ] whose Lebesgue measure is less that ε, and such that
Q(ξ, g)(t) ∈ Cε for each (ξ, g) ∈ D× G and each t ∈ [ a, b ] \ Eε,ξ,g.

Proof. By virtue of Theorem 5.1, the necessity is obvious. To prove the sufficiency,
we also make use of the same Theorem 5.1. Let us observe first that, by virtue of
the Lebesgue Dominated Convergence Theorem, it suffices to show that Q(D,G) is
relatively compact in L1(a, b ;X), and bounded in L∞(a, b ;X). To this aim, let us
recall that there exist mD > 0 and mG > 0 such that

‖ξ‖ ≤ mD and Var (g, [ a, b ]) ≤ mG,(5.1)

for each (ξ, g) ∈ D× G. Then, by Remark 5.1, we have

‖Q(ξ, g)(t)‖ ≤ mD +mG(5.2)

for each (ξ, g) ∈ D × G and t ∈ [ a, b ]. In order to prove that Q(D,G) is 1-equi-
integrable, let ε > 0, (ξ, g) ∈ D×G, and let Cε and Eε,ξ,g be the two subsets having
the properties mentioned by hypotheses. A simple computational argument, along
with Lemma 5.1, shows that

∫ b−h

a

‖Q(ξ, g)(t+ h)−Q(ξ, g)(t)‖ dt ≤
∫ b−h

a

‖Q(ξ, g)(t+ h)− S(h)Q(ξ, g)(t)‖ dt

+
∫ b−h

a

‖S(h)Q(ξ, g)(t)−Q(ξ, g)(t)‖ dt ≤
∫ b−h

a

∥∥∥∥∥
∫ t+h

t

S(t+ h− s) dg(s)

∥∥∥∥∥ dt
+
∫

[ a,b ]\Eε,ξ,g
‖S(h)Q(ξ, g)(t)−Q(ξ, g)(t)‖ dt

+
∫
Eε,ξ,g

‖S(h)Q(ξ, g)(t)−Q(ξ, g)(t)‖ dt

≤ hVar (g, [ a, b ]) +
∫

[ a,b ]\Eε,ξ,g
‖S(h)Q(ξ, g)(t)−Q(ξ, g)(t)‖ dt+ 2MGε,

for each (ξ, g) ∈ D×G and h ∈ (0, b−a ], where MG = mD +mG. As Q(ξ, g)(t) ∈ Cε
for each (ξ, g) ∈ D × G and each t ∈ [ a, b ] \ Eε,ξ,g, while Cε is relatively compact
in X , there exists δ(ε) ∈ (0, b− a ] such that, for each h ∈ (0, δ(ε) ],

‖S(h)Q(ξ, g)(t)−Q(ξ, g)(t)‖ ≤ ε,

uniformly for (ξ, g) ∈ D× G and t ∈ [ a, b ] \ Eε,ξ,g. Then, taking account of (5.1),
(5.2) and the preceding inequalities, we obtain∫ b−h

a

‖Q(ξ, g)(t+ h)−Q(ξ, g)(t)‖ dt ≤ (b − a+mG + 2MG)ε
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for each (ξ, g) ∈ D×G and h ∈ (0, δ(ε) ]∩ (0, ε ]. Obviously, this relation shows that
Q(D,G) is 1-equi-integrable. By Theorem 5.1 it is relatively compact in L1(a, b ;X),
and this completes the proof.

Remark 5.2. If X is finite dimensional, then, for each bounded subset D in X and
each subset G in BV ([ a, b ] ;X) of equibounded variation, Q(D,G) is relatively com-
pact in Lp(a, b ;X) and thus p-equi-integrable. This follows from the observation
that, by virtue of Remark 5.1, the set {Q(ξ, g)(t) ; (ξ, g) ∈ D × G, t ∈ [ a, b ]} is
bounded and (inasmuch as X is finite dimensional) also relatively compact. So we
are in the hypotheses of Theorem 5.2, and the conclusion follows.

To see that in infinite dimensional Banach spaces the p-equi-integrability condi-
tion is not an intrinsic property of the set Q(D,G) with D and G bounded, or of
equibounded variation, let us analyze the following example, which is an adaptation
from Vrabie [26].

Example 5.1. Let X = L2
2π(R) be the space of all equivalence classes, with respect

to the almost everywhere equality on R, of measurable and 2π-periodic functions
from R to R. Endowed with the L2(0, 2π ;R)-norm, this is a real Hilbert space.
Let A : D(A) ⊆ H → H be defined by D(A) = {u ∈ H ; u′ ∈ H} and Au = u′

for each u ∈ D(A). Obviously, A generates a C0-group of isometries on H , i.e. the
translation group. Let D = {0} and G = {t 7→ − 1

n cos{n(t + ·)} ; n ∈ N∗}. It is
easy to see that G is of equibounded variation on [ 0, 1 ]. On the other hand, in this
case, Q(D,G) = {t 7→ sin{n(t + ·)} ; n ∈ N∗}, which is not Lp-equicontinuous on
[ 0, 1 ] because the family is not relatively compact in Lp(0, 1 ;L2(0, 2π ;R)).

6. Some consequences

In this section we include some useful consequences of Theorem 5.2. We begin
with a specific linear version of a compactness result due to the author. See Vra-

bie [28]. Here and hereafter, M denotes the solution operator which assigns to
each (ξ, f) in X ×L1(a, b ;X) the unique mild, or C0-solution of the problem (1.1)
corresponding to (ξ, f).

Theorem 6.1 (Vrabie). Let A : D(A) ⊆ X → X be the infinitesimal generator of
a C0-semigroup of contractions, let D be a bounded subset in X, and F a bounded
subset in L1([ a, b ];X) × D(A). Then, M(D,F) := {M(ξ, f), (ξ, f) ∈ D × F} is
relatively compact in Lp(a, b ;X), for each p ∈ [1,+∞), if and only if for each ε > 0
there exists a relatively compact subset Cε in X such that, for each (ξ, f) ∈ D× F,
there exists a subset Eε,ξ,f in [ a, b ] whose Lebesgue measure is less than ε, and such
that M(ξ, f)(t) ∈ Cε for each (ξ, f) ∈ D× F and t ∈ [ a, b ] \ Eε,ξ,f .

Proof. The conclusion follows from Remark 2.6 and Theorem 5.2.

Corollary 6.1. Let A : D(A) ⊆ X → X be the infinitesimal generator of a C0-
semigroup of contractions {S(t) ; t ≥ 0}, let D be a bounded subset in X, and G a
subset in BV ([ a, b ];X) of equibounded variation. If

{Q(ξ, g)(t); (ξ, g) ∈ D× G, t ∈ [ a, b ]}

is relatively compact in X, then Q(D,G) is relatively compact in Lp(a, b ;X), for
each p ∈ [ 1,+∞).
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The next lemma, closely related to the well-known Egoroff’s Theorem (see Dun-

ford, Schwartz [10], Theorem 12, p. 149), will play a central role in the proof
of the next theorem.

Lemma 6.1. Let U be a nonempty and bounded subset in L1(a, b ;X), and let
{Qh ; h ∈ (0, b − a ]} be a family of (possible nonlinear) operators from U to
L1(a, b ;X) such that limh↓0

∫ b
a ‖Qhu(t)‖ dt = 0, uniformly for u ∈ U . Then, for

each ε > 0, there exists a sequence (hn)n, decreasing to 0, with the property that,
for each u ∈ U , there exists a subset Eε,u in [ a, b ] whose Lebesgue measure λ(Eε,u)
is less than ε and limnQhnu(t) = 0, uniformly for u ∈ U and t ∈ [ a, b ] \ Eε,u.

Proof. Let ε > 0, and let us choose two sequences (hn)n and (an)n, both decreasing
to 0, such that

∞∑
n=0

an ≤ ε and
∫ b

a

‖Qhnu(t)‖ dt < a2
n(6.1)

for each n ∈ N and u ∈ U . For u ∈ U and n ∈ N, let us define

Enu = {t ∈ [ a, b ]; ‖Qhnu(t)‖ ≥ an} and Eε,u =
⋃
n∈N

Enu .

In view of (6.1), one may easily verify that λ(Enu ) < an for each n ∈ N, and thus
λ(Eε,u) < ε. From the definition of Eε,u, we deduce that ‖Qhnu(t)‖ < an for each
n ∈ N, u ∈ U , and t ∈ [ a, b ] \ Eε,u, and this completes the proof.

Theorem 6.2. If A : D(A) ⊆ X → X is the infinitesimal generator of a compact
C0-semigroup of contractions, D is a bounded subset in X, and G is a subset in
BV ([ a, b ] ;X) of equibounded variation, then, for each p ∈ [ 1,+∞), the set

Q(D,G) := {Q(ξ, g) ; (ξ, g) ∈ D× G}

is relatively compact in Lp(a, b ;X).

Proof. We shall prove that Q(D,G) satisfies the hypotheses of Theorem 5.2. To
this aim, let us observe that, by virtue of Lemma 5.1, for u = Q(ξ, g) we have∫ b

a+h

‖u(t)− S(h)u(t− h)‖ dt ≤
∫ b

a+h

∥∥∥∥∫ t

t−h
S(t− s) dg(s)

∥∥∥∥ dt ≤ hVar (g, [ a, b ]),

for each (ξ, g) ∈ D×G and h ∈ (0, b−a ]. Inasmuch as G is of equibounded variation,
we get

lim
h↓0

∫ b

a+h

‖u(t)− S(h)u(t− h)‖ dt = 0,(6.2)

uniformly for (ξ, g) ∈ D× G.
Let us define U = Q(D,G) and Qh : U → L1(a, b ;X) by

(Qhu)(t) =
{

0 if t ∈ [ a, a+ h ],
u(t)− S(h)u(t− h) if t ∈ (a+ h, b ].

From (6.2) it follows that Lemma 6.1 applies, and therefore, for each ε > 0, there
exists Eε,u ⊆ [ a, b ] with λ(Eε,u) < ε, and (hn)n which decreases to 0, such that

lim
n
‖u(t)− S(hn)u(t− hn)‖ = 0,



COMPACTNESS OF THE SOLUTION OPERATOR 3197

uniformly for u ∈ Q(D,G) and t ∈ [ a, b ]\Eε,u. Since for each n ∈ N the contraction
S(hn) is compact, and {u(s);u ∈ Q(D,G), s ∈ [ a, b ]} is bounded in X , it follows
that the set

Cε = {u(t); u ∈ Q(D,G), t ∈ [ a, b ] \ Eε,u}

is relatively compact in X . Consequently, we are in the hypotheses of Theorem 5.2.
Hence Q(D,G) is relatively compact in Lp(a, b ;X) for each p ∈ [1,+∞), and this
completes the proof.

Theorem 6.3 (Baras, Hassan, Veron). If A : D(A) ⊆ X → X is the infinitesimal
generator of a compact C0-semigroup of contractions, D is a bounded subset in X,
and F is a bounded subset in L1(a, b ;X), then, for each p ∈ [ 1,+∞), the set

M(D,F) := {M(ξ, f) ; (ξ, f) ∈ D× F}

is relatively compact in Lp(a, b ;X).

Proof. The conclusion follows from Remark 2.6 and Theorem 6.2.

7. Evolution equations with “spatial” measures as data

Let X be a real Banach space, and let us consider the Cauchy problem (1.2),
where A : D(A) ⊆ X → X generates a compact C0-semigroup of contractions,
ξ ∈ Xc, and g ∈ BV ([ a, b ];Xc), where Xc is the sequential completion of X
in σ(X,X�), i.e. in the so-called weak-� topology. See Section 2. By the Hahn-
Banach Theorem (see Hille, Phillips [14], Theorem 2.1.2, p. 29) it readily follows
that Xc is a closed subspace of X∗∗. We notice that whenever X is reflexive,
and thus X� = X∗, we have Xc = X , and therefore the problem (1.2) can be
easily treated by the previously developed theory. This is no longer true in the
nonreflexive case when Xc 6= X , and this explains why, throughout this section,
we constantly assume that X is nonreflexive, although all the abstract results hold
(trivially) true in general. Another reason, much more subtle, for doing this, is that
the analysis of partial differential equations involving measures with respect to the
spatial argument relies heavily on nonreflexive settings and techniques, such as L1

spaces and vague topologies. See Example 7.1 below. We begin with the following
auxiliary result.

Lemma 7.1. Let A : D(A) ⊆ X → X be the infinitesimal generator of a C0-
semigroup of contractions, and let (gk)k be a sequence in BV ([ a, b ];X) with equi-
bounded variation, and such that

lim
k
gk(t) = 0

for each t ∈ [ a, b ] in σ(X,X�). Then, for each t ∈ [ a, b ], we have

lim
k

∫ t

a

S(t− s)dgk(s) = 0

in σ(X,X�).

Proof. Let x� ∈ X�. Then, for each k ∈ N, the function fk : [ a, b ]→ R, defined by
fk(t) = (gk(t), x�), belongs to BV ([ a, b ];R), and limk fk(t) = 0 for each t ∈ [ a, b ].
In addition, the sequence (fk)k is of equibounded variation. So, by the classical
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Helly-Bray Theorem (see Graves [12], Theorem 2.3, p. 283), it follows that, for
each ϕi ∈ C([ a, t ];R) and x�i ∈ X�, i = 1, 2, . . . , n, we have

lim
k

∫ t

a

(
dgk(s)

n∑
i=1

ϕi(s)x�i

)
= 0.

Finally, let us observe that the set of all functions of the form s 7→
∑n

i=1 ϕi(s)x
�
i

is dense in C([ a, t ];X�) with respect to the sup-norm, and this completes the
proof.

In order to give a precise meaning to (1.2) in this more general setting, we need
the following convergence result.

Theorem 7.1. Let A : D(A) ⊆ X → X be the infinitesimal generator of a compact
C0-semigroup of contractions, let ξ ∈ Xc, g ∈ BV ([ a, b ];Xc), and let (ξk)k and
(gk)k be two sequences, in X and in BV ([ a, b ];X) respectively, such that (gk)k has
equibounded variation, and{

lim
k→∞

ξk = ξ in σ(X,X�),

lim
k→∞

gk(t) = g(t) for each t ∈ [ a, b ] in σ(X,X�).

Then, there exists u ∈ L∞(a, b ;Xc) with u(t) ∈ X a.e. for t ∈ [ a, b ], and such
that, for each p ∈ [ 1,∞),

lim
k→∞

Q(ξk, gk) = u(7.1)

strongly in Lp(a, b ;X), and pointwise in σ(X,X�). In addition, for each x� ∈ X�,
we have

(u(t), x�) = (ξ, S(t− a)�x�) +
∫ t

a

(dg(s), S(t− s)�x�),(7.2)

u(t+ 0)− u(t) = g(t+ 0)− g(t) and u(s)− u(s− 0) = g(s)− g(s− 0),(7.3)

where the one-sided limits on the left-hand sides of (7.3) are considered in the weak-
� topology on X.

Proof. Observe that, for each k, p ∈ N, each t ∈ [ a, b ], and each x� ∈ X�, we have

(Q(ξk, gk)(t)−Q(ξ, gp)(t), x�)

= (ξk − ξp, S(t− a)�x�) +
(∫ t

a

S(t− s) d(gk − gp)(s), x�
)
.

where {S�(t) ; t ≥ 0} is the sun dual semigroup. See Section 2. By virtue of
Lemma 7.1, we deduce that limk,p

(∫ t
a S(t− s)(d(gk − gp)(s), x�

)
= 0 for each

t ∈ [ a, b ] and x� ∈ X�. Furthermore, we have limk,p(ξk − ξp, S(t − a)�x�) =
0 for each t ∈ [ a, b ] and x� ∈ X�. Summing up, we conclude that, for each
t ∈ [ a, b ], (Q(ξk, gk)(t))k is a Cauchy sequence in the weak-� topology. Therefore
there exists u : [ a, b ] → Xc such that limk Q(ξk, gk)(t) = u(t) weakly-� in Xc.
Fix p ∈ [ 1,+∞), and observe that, by virtue of Theorem 5.2, on a subsequence at
least, limkQ(ξk, gk) = v strongly in Lp(a, b ;X). So v must coincide with u a.e. on
[ a, b ]. As {Q(ξk, gk) ; k ∈ N} is relatively compact in Lp(a, b ;X), it follows that
(Q(ξk, gk))k itself converges in Lp(a, b ;X) to u, and this proves (7.1). Finally, let
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us observe that (7.2) is a direct consequence of Lemma 7.1, while (7.3) follows by
using the very same arguments as in Theorem 3.1, and this achieves the proof.

Remark 7.1. By Lemma 7.1, one may easily verify that the limit in (7.1) does not
depend on the choice of the sequences (ξk)k and (gk)k which approximate ξ and
g. Therefore, Theorem 7.1 allows us to extend the concept of the L∞-solution
to the case in which ξ ∈ Xc and g ∈ BV ([ a, b ];Xc), whenever the latter can be
approximated in the pointwise convergence weak-� topology by a sequence of X-
valued functions (gk)k with equibounded variation and, of course, the semigroup
generated by A is compact. More precisely, we have

Definition 7.1. Let ξ ∈ Xc and g ∈ BV ([ a, b ];Xc). A function u ∈ L∞(a, b ;Xc)
with u(t) ∈ X a.e. for t ∈ [ a, b ], and satisfying (7.2), is called an L∞-generalized
solution of the problem (1.2) on [ a, b ].

We also notice that under these circumstances, the operator A has a smoothing
effect on the data in the sense that, for each ξ ∈ Xc and g ∈ BV ([ a, b ];Xc) as in
Theorem 7.1, the L∞-generalized solution u is an X-valued function and not an
Xc-valued one, as we might expect at first glance.

Since Xc obviously depends on A, in all that follows, we call it the space of
admissible measures for A. A prototype of the situation described in Theorem 7.1
is illustrated by the following suggestive example.

Example 7.1. Let Ω be a bounded domain in Rn with sufficiently smooth bound-
ary Γ, and let us consider the sequence of linear parabolic problems

∂uk
∂t

= ∆uk + fk on (0, T )× Ω,

uk = 0 in (0, T )× Γ,
uk(0) = ξk,

(7.4)

where (ξk)k and (fk)k are two bounded sequences, in L1(Ω) and L1((0, T ) × Ω))
respectively. Let C0(Ω) be the space of continuous functions from Ω to R vanishing
on Γ, let (L1(Ω))c be the sequential completion of L1(Ω) in σ(L1(Ω), C0(Ω)), and
assume that there exist ξ ∈ (L1(Ω))c and g ∈ BV ([ 0, T ]; (L1(Ω))c) such that

lim
k

∫
Ω

∫ t

0

fk(s, x)ϕ(x) ds dx = g(t) and lim
k

∫
Ω

ξk(x)ϕ(x) dx = ξ

for each ϕ ∈ C0(Ω). The problem is to give meaning to the limiting equation. A
natural way to approach (7.4) can be described as follows. Take X = L1(Ω), and
let A : D(A) ⊆ X → X be defined by

D(A) = {u ∈W 1,1
0 (Ω); ∆u ∈ L1(Ω)} and Au = ∆u

for each u ∈ D(A). It is well-known that A generates a compact C0-semigroup
of contractions {S(t) ; t ≥ 0} on X . See Baras, Hassan, Veron [2]. Let
{S(t)� ; t ≥ 0} be the sun dual semigroup on X�. In our case, one may eas-
ily verify that X� = C0(Ω). At this point, let us observe that Theorem 7.1 applies,
and thus limk uk = u exists strongly in Lp(0, T L1(Ω)) for each p ∈ [ 1,∞), and
pointwise in σ(L1(Ω), (L1(Ω))c). So, u can be interpreted as a generalized solution
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of the limiting problem
du = (∆u)dt+ dg in (0, T )× Ω,
u = 0 on (0, T )× Σ,
u(0) = ξ.

We notice that the space (L1(Ω))c contains all the Dirac measures concentrated in
Ω. Thus, in the problem above, we are allowed to consider forcing terms of the form
dg =

∑m
i,j=1 aijδ(t − ti) ⊗ δ(x − xj) and ξ =

∑m
j=1 bjδ(x − yj), with ai,j , bj ∈ R,

ti ∈ [ 0, T ] and xj , yj ∈ Ω, for i, j = 1, 2, . . . ,m.

8. The semilinear evolution equation du = {Au+ f(t, u)}dt+ dg

Let X be a real Banach space. Let I be a nonempty and open interval in R
and U a nonempty and open subset in X . We denote by BV (I;X) the space
of all functions from I to X whose restrictions to any interval [ a, b ] ⊂ I are in
BV ([ a, b ];X). Let A : D(A) ⊆ X → X be the infinitesimal generator of a C0-
semigroup of contractions {S(t) ; t ≥ 0}, f : I × U → X a continuous function,
g ∈ BV (I ;X), a ∈ I, and ξ ∈ X . Consider the Cauchy problem{

du = {Au+ f(t, u)}dt+ dg,
u(a) = ξ.

(8.1)

An L∞-solution of the problem (8.1) on [ a, c ] is a function u : [ a, c ] → U which
satisfies u ∈ L∞(a, c ;X) and

u(t) = S(t− a)ξ +
∫ t

a

S(t− s)f(s, u(s)) ds+
∫ t

a

S(t− s) dg(s)(8.2)

for each t ∈ [ a, c ].
The next abstract local existence theorem, extending a well-known result due

to Pazy [19], proves useful in the study of semilinear parabolic problems with
distributed measures, as we shall see in the next section. Pazy’s main result in [19]
refers to the special case g ≡ 0.

Theorem 8.1. If A : D(A) ⊆ X → X is the infinitesimal generator of a compact
C0-semigroup of contractions {S(t) ; t ≥ 0}, and f : I × U → X is continuous,
then, for each a ∈ I and each ξ ∈ U with g(a + 0) − g(a) + ξ ∈ U , there exists
b > a with [ a, b ] ⊆ I, and such that the problem (8.1) has at least one L∞-solution
defined on [ a, b ].

First, we shall prove

Lemma 8.1. If A : D(A) ⊆ X → X is the infinitesimal generator of a compact
C0-semigroup of contractions {S(t) ; t ≥ 0}, and f : I×X → X is continuous and
bounded, then for each [ a, c ] ⊂ I, and each ξ ∈ X, the problem (8.1) has at least
one L∞-solution defined on [ a, c ].

Proof. Let [ a, c ] ⊂ I, ξ ∈ X , λ > 0, and consider the delay equation{
duλ = {Auλ + f(t, uλ(· − λ))}dt+ dg,
uλ(s) = ξ, s ∈ [ a− λ, a ].(8.3)

Since the semigroup is continuous in the uniform operator topology from (0,+∞)
to L(X), being compact, see Pazy [20], Theorem 3.3, p. 48, and f is continuous
too, by virtue of Theorem 2.1, it easy to see that (8.3) has a unique L∞-solution
defined successively on [ a, a+λ ], [ a+λ, a+ 2λ ] and so on. For each n ∈ N∗ let us
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denote by un the unique solution of the problem (8.3) corresponding to λ = 1/n.
As f is bounded, it follows that the family

G =
{
t 7→

∫ t

a

f(s, un(s− 1/n)) ds+ g(t) ; n ∈ N∗
}

is of equibounded variation. From Theorem 6.2 we deduce that, for each p ∈ [ 1,∞),
the set {un ; n ∈ N∗} is relatively compact in Lp(a, c ;X). So, we may assume with
no loss of generality that limn un = u exists in L1(a, c ;X). On the other hand, we
also have limn un(s − 1/n) = u(s) a.e. for s ∈ [ a, c ]. Since f is continuous and
bounded, by the Lebesgue Dominated Convergence Theorem, we deduce that

lim
n

∫ t

a

f(s, un(s− 1/n)) ds =
∫ t

a

f(s, u(s)) ds

for each t ∈ [ a, c ]. Accordingly, passing to the limit for n tending to ∞ in the
equality

un(t) = S(t− a)ξ +
∫ t

a

S(t− s)f(s, un(s− 1/n)) ds+
∫ t

a

S(t− s) dg(s),

we conclude that u satisfies (8.2), and thus it is an L∞-solution of the problem
(8.1) on [ a, c ]. The proof is complete.

We now prove Theorem 8.1.

Proof. Let a ∈ I and ξ ∈ X , and denote η = g(a+ 0)− g(a) + ξ. Inasmuch as I and
U are open, and f is continuous, there exist c > a, r > 0, and M > 0 such that
[ a, c ] ⊂ I, B(η, r) ⊆ U , and

‖f(t, u)‖ ≤M(8.4)

for each (t, u) ∈ [ a, c ]×B(η, r). Let let us define ρ : X → X by

ρ(y) =

{
y for y ∈ B(η, r),

r

‖y − η‖ (y − η) + η for y ∈ X \B(η, r).

Clearly, ρ maps X to B(η, r), and is continuous. Let us define fr : I×X → X by

fr(t, u) =

 f(a, ρ(u)) if t ∈ I ∩ (−∞, a ] and u ∈ X,
f(t, ρ(u)) if t ∈ [ a, c ] and u ∈ X,
f(c, ρ(u)) if t ∈ I ∩ [ c,+∞) and u ∈ X.

From (8.4), we conclude that fr is bounded. Moreover, since both f and ρ are
continuous, it follows that fr is continuous. From Lemma 8.1, we know that the
Cauchy problem {

du = {Au+ fr(t, u)}dt+ dg,
x(a) = ξ,

has at least one L∞-solution, u : [ a, c ] → X. Since, u(a) = ξ, by (3.1) in Theo-
rem 3.1, there exists b ∈ (a, c ] such that, for each t ∈ (a, b ], we have u(t) ∈ B(η, r).
But in this case ρ(u(t)) = u(t) for each t ∈ [ a, b ], and consequently fr(s, u(s)) must
coincide with f(s, u(s)) for each s ∈ [ a, b ]. Hence u : [ a, b ]→ X is an L∞-solution
of the problem (8.1), and this completes the proof.

We conclude this section with a remarkable consequence of Theorem 8.1.
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Theorem 8.2. Let A : D(A) ⊆ X → X be the infinitesimal generator of a compact
C0-semigroup of contractions {S(t) ; t ≥ 0}, and f : I × X → X a continuous
function for which there exist α, β ∈ L1

loc(I) satisfying

‖f(t, u)‖ ≤ α(t)‖u‖+ β(t)(8.5)

a.e. for t ∈ I, and for each u ∈ X. Then, for each a, b ∈ I with a < b, each
ξ ∈ Xc, and each g ∈ BV ([ a, b ];Xc) which can be pointwise approximated in
the σ(Xc, X�) topology by a sequence of functions (gk)k in BV ([ a, b ];X) with
equibounded variation, there exists at least one L∞-generalized solution of (8.1)
defined on [ a, b ].

Proof. Let (ξk)k be a sequence in X which converges in the weak-� topology to
ξ, and (uk)k the sequence of noncontinuable solutions of (8.1) corresponding to
(ξk)k and (gk)k. First, let us observe that uk is defined at least on [ a, b ]. Indeed,
let us assume by contradiction that, for some k ∈ N, uk is defined on [ a, c) with
c ∈ (a, b). By (8.5), and Lemma 5 in Ahmed [1], which generalizes the well-
known Gronwall’s Inequality, it readily follows that uk is bounded on [ a, c). Using
arguments similar to those in the proof of (3.3), we conclude that there exists
u(c− 0) ∈ X . Therefore, by Theorem 7.1, the problem (8.1) with the initial data
u(c) = u(c− 0) + g(c)− g(c− 0) has at least one L∞-solution defined on [ c, c+ δ ]
with δ > 0. In view of Proposition 2.1, uk can be continued to the whole interval
[ a, c + δ ], thereby contradicting the fact that uk is noncontinuable. So, for each
b ∈ I, b > a and k ∈ N, uk is defined at least on [ a, b ]. By the Uniform Boundedness
Principle it follows that (ξk)k is bounded in X , while, by hypotheses, (gk)k is of
equibounded variation on [ a, b ]. Again by (8.5) and Lemma 5 in Ahmed [1],
we conclude that (uk)k is uniformly bounded on [ a, b ], and therefore the family
of functions

{
t 7→

∫ t
a f(s, uk(s)) ds+ gk(t) ; k ∈ N

}
is of equibounded variation on

[ a, b ]. By Theorem 6.2, we conclude that, on a subsequence at least, (uk)k converges
in Lp(a, b ;X), for each p ∈ [ 1,∞), to a certain function u : [ a, b ]→ X . Since f is
continuous and we may assume without loss of generality that (uk)k converges a.e.
on [ a, b ] to u, a simple computational argument shows that u is an L∞-generalized
solution of (8.1). This completes the proof.

9. Some examples

Let Ω be a bounded domain in Rn whose boundary Γ is of class C∞ and such
that Ω is locally on one side of Γ. In this section we consider the semi-dynamic
elliptic problem 

−∆u = 0 in QT ,
du+ {uν + β(t, u)}dt = dϕ on ΣT ,
u(0) = u0 on Γ,

(9.1)

as well as the parabolic problem with dynamic boundary conditions
du + {−∆u+ α(t, u)}dt = dη in QT ,
du + {uν + β(t, u)}dt = dψ on ΣT ,
u(0) = uΩ

0 in Ω,
u(0) = uΓ

0 on Γ,

(9.2)

where QT = (0, T ) × Ω, ΣT = (0, T ) × Γ, α, β : [ 0, T ] × R → R are continuous
(but not necessarily monotone with respect to u ∈ R), u0, u

Γ
0 ∈ L2(Γ), uΩ

0 ∈
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L2(Ω), uν is the conormal derivative of u at points of Γ, ϕ, ψ ∈ BV ([ 0, T ] ;L2(Γ)),
and η ∈ BV ([ 0, T ] ;L2(Ω)). Such problems arise, for instance, from the study of
heat transfer in a body Ω surrounded by a moving fluid. For more details on the
significance of (9.1) and (9.2) see Bejenaru, Díaz, Vrabie [5], and the references
therein. We will show next how (9.1) and (9.2) can be analyzed by means of
Theorem 8.1. We start with (9.1). Namely, we have

Theorem 9.1. Assume that β : [ 0, T ]×R→ R is continuous, has sublinear growth,
and ϕ ∈ BV ([ 0, T ] ;L2(Γ)). Then, for each u0 ∈ L2(Γ), there exists T0 ∈ (0, T )
such that the problem (9.1) has at least one solution u : [ 0, T0]→ L2(Ω) satisfying :

(i) for each t ∈ [ 0, T0) and each s ∈ (0, T0 ], we have{
u|Γ(t+ 0)− u|Γ(t) = ϕ(t+ 0)− ϕ(t),
u|Γ(s)− u|Γ(s− 0) = ϕ(s)− ϕ(s− 0);

(ii) for each interval I of absolute continuity of ϕ for which ϕ′ ∈ L2(I ;L2(Γ)), we
have u|Γ ∈ C(I ;H1/2(Γ)) ∩W 1,2(I;L2(Γ)), u ∈ C(I;H1(Ω)), and u satisfies
(9.1) a.e. on I.

Proof. Take H = L2(Γ), and let us define the operator A : D(A) ⊆ H → H by

D(A) = {y ∈ H1/2(Γ) ; uν ∈ L2(Γ)},

where u ∈ H1(Ω) is the unique solution of the elliptic problem{
−∆u = 0 in Ω,
u = y on Γ,

and Ay = −uν for each u ∈ D(A). It is known that A is a densely defined,
self-adjoint operator which generates a compact analytic semigroup of contractions
on H . See Bejenaru, Díaz, Vrabie [5]. Let f : [ 0, T ] × L2(Γ) → L2(Γ) and
g : [ 0, T ]→ L2(Γ) be defined by f(t, u)(σ) = −β(t, u(σ)) for (t, u) ∈ [ 0, T ]×L2(Γ)
and a.e. for σ ∈ Γ, and respectively by g(t) = ϕ(t) for each t ∈ [ 0, T ]. Then, (9.1)
can be rewritten as an abstract Cauchy problem of the form (8.1) in the Hilbert
space H , with ξ = u0, and Theorem 8.1 applies. An appeal to Theorem 3.1 shows
that (i) holds. Since (ii) follows from well-known regularity results concerning
elliptic equations along with the Green’s Formula, the proof is complete.

Theorem 9.2. Assume that g, β : [ 0, T ] × R → R are continuous, have sublinear
growth, η ∈ BV ([ 0, T ] ;L2(Ω)), and ψ ∈ BV ([ 0, T ] ;L2(Γ)). Then, for each uΩ

0 in
L2(Ω) and uΓ

0 in L2(Γ), there exists T0 ∈ (0, T ) such that the problem (9.2) has at
least one solution u : [ 0, T0]→ L2(Ω) satisfying :

(i) for each t ∈ [ 0, T0) and each s ∈ (0, T0 ], we have{
u(t+ 0)− u(t) = η(t+ 0)− η(t), u|Γ(t+ 0)− u|Γ(t) = ψ(t+ 0)− ψ(t),
u(s)− u(s− 0) = η(s)− η(s− 0), u|Γ(s)− u|Γ(s− 0) = ψ(s)− ψ(s− 0) ;

(ii) for each interval I of absolute continuity of both functions η and ψ for which
η′ ∈ L2(I ;L2(Ω)) and ψ′ ∈ L2(I ;L2(Γ)), we have :
u ∈ C(I;H1(Ω))∩W 1,2(I ;L2(Ω)), u|Γ ∈ C(I ;H1/2(Γ))∩W 1,2(I;L2(Γ)), and
u, u|Γ satisfy (9.2) a.e. on I.

Proof. Take H = L2(Ω)× L2(Γ) endowed with the usual inner product

〈(u, v), (ũ, ṽ)〉H = 〈u, ũ〉L2(Ω) + 〈v, ṽ〉L2(Γ),
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for each (u, v), (ũ, ṽ) ∈ H , and let us define the operator A : D(A) ⊆ H → H by

D(A) = {(u, v) ∈ L2(Ω)× L2(Γ) ; ∆u ∈ L2(Ω), uν ∈ L2(Γ) and uν = v on Γ},

and A(u, v) = (∆u,−uν) for each (u, v) ∈ D(A). By Lemma 3.1 in Bejenaru,

Díaz, Vrabie [5], it follows that A is a densely defined, self-adjoint operator
which generates a compact analytic semigroup of contractions on H . Let us define
f : [ 0, T ] × L2(Ω) × L2(Γ) → L2(Ω) × L2(Γ) and g : [ 0, T ] → L2(Ω) × L2(Γ) by
f(t, u, v)(x) = −(α(t, u(x), β(t, v(σ)) for each (t, u, v) ∈ [ 0, T ] × L2(Ω) × L2(Γ),
a.e. for x ∈ Ω and a.e. for σ ∈ Γ, and respectively by g(t) = (η(t), ψ(t)) for each
t ∈ [ 0, T ]. Then, (9.2) can be rewritten as an abstract Cauchy problem of the form
(8.1) in the Hilbert space H , with ξ = (uΩ

0 , u
Γ
0 ), and we are in the hypotheses of

Theorem 8.1. The conclusion follows from Theorem 3.1 combined with well-known
regularity results concerning parabolic equations.
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8. H. Brézis, A. Friedman, Nonlinear Parabolic Equations Involving Measures as Initial Con-
ditions, J. Math. Pures et Appl. (9) 62(1983), 73-97. MR 84g:35093

9. J. Diestel, J. J. Uhl, Jr., Vector Measures, American Mathematical Society, Mathematical
Surveys, Number 15, 1977. MR 56:12216

10. N. Dunford, J. T. Schwartz, Linear Operators Part I: General Theory, Interscience Pub-
lishers, New York, London, 1958. MR 22:8302

11. K.-J. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Grad-
uate Texts in Mathematics 194, Springer, 2000. MR 2001i:47075

12. L. M. Graves, The Theory of Functions of Real Variables, McGraw-Hill Book Company, Inc.
New York and London, 1946. MR 8:319d

13. S. Gutman, Compact perturbations of m-accretive operators in general Banach spaces, SIAM
J. Math. Anal. 13(1982), 789-800. MR 84d:34066

14. E. Hille, R. S. Phillips, Functional Analysis and Semi-Groups, Amer. Math. Soc. Collo-
quium Publications, Volume 31, Fourth Printing of Revised Edition, 1981. MR 19:664d (1st
printing)

15. N. Hirano, Local existence theorems for nonlinear differential equations, SIAM J. Math.
Anal., 14(1983), 117-125. MR 85b:34071

16. N. Hirano, Existence of periodic solutions for nonlinear evolution equations in Hilbert spaces,
Proc. Amer. Math. Soc., 120 (1994), 185-192. MR 94b:34087

17. N. Hirano, N. Mizoguchi, Existence of periodic solutions for semilinear parabolic equations,

Topology in Nonlinear Analysis, Banach Center Publications, 35 Institute of Mathematics
Polish Academy of Sciences, 1996, 39-49. MR 98a:35005

18. C. S. Hönig, Volterra Stieltjes-Integral Equations, Mathematics Studies Volume 16, North-
Holland/American Elsevier, 1975. MR 58:17705

http://www.ams.org/mathscinet-getitem?mr=55:3869
http://www.ams.org/mathscinet-getitem?mr=87k:49045
http://www.ams.org/mathscinet-getitem?mr=50:1060
http://www.ams.org/mathscinet-getitem?mr=84g:35093
http://www.ams.org/mathscinet-getitem?mr=56:12216
http://www.ams.org/mathscinet-getitem?mr=22:8302
http://www.ams.org/mathscinet-getitem?mr=2001i:47075
http://www.ams.org/mathscinet-getitem?mr=8:319d
http://www.ams.org/mathscinet-getitem?mr=84d:34066
http://www.ams.org/mathscinet-getitem?mr=19:664d
http://www.ams.org/mathscinet-getitem?mr=85b:34071
http://www.ams.org/mathscinet-getitem?mr=94b:34087
http://www.ams.org/mathscinet-getitem?mr=98a:35005
http://www.ams.org/mathscinet-getitem?mr=58:17705


COMPACTNESS OF THE SOLUTION OPERATOR 3205

19. A. Pazy, A class of semi-linear equations of evolution, Israel. J. Math., 20(1975), 23-36. MR
51:11192

20. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,
Springer-Verlag, Berlin, 1983. MR 85g:47061

21. J. Simon, Compact sets in the space Lp(0, T ;X), Ann. Mat. Pura. Appl. (4) 146(1987), 65-96.
MR 89c:46055

22. N. Shioji, Local existence theorems for nonlinear differential equations and compactness of
integral solutions in Lp(0, T ;X), Nonlinear Anal., 26(1996), 799-811. MR 96k:34137

23. N. Shioji, Periodic Solutions for Nonlinear Evolution Equations in Banach Spaces, Funkcialaj
Ekvacioj, 42(1999), 157-164. MR 2000k:34099

24. I. I. Vrabie, The nonlinear version of Pazy’s local existence theorem, Israel J. Math., 32,
(1979), 225-235. MR 82a:47064

25. I. I. Vrabie, Periodic solutions for nonlinear evolution equations in a Banach space, Proc.
Amer. Math. Soc., 109(3)(1990), 653-661. MR 90k:34080

26. I. I. Vrabie, A compactness criterion in C(0, T ;X) for subsets of solutions of nonlinear
evolution equations governed by accretive operators, Rend. Sem. Mat. Univers. Politecn.
Torino, 45(1985), 149-157. MR 88g:34107

27. I. I. Vrabie, Compactness Methods for Nonlinear Evolutions, Second Edition, Pitman Mono-
graphs and Surveys in Pure and Applied Mathematics 75, John Wiley and Sons and Longman
1995. MR 96k:47116

28. I. I. Vrabie, Compactness in Lp of the set of solutions to a nonlinear evolution equation,
Qualitative problems for differential equations and control theory, C. Corduneanu Editor,
World Scientific, 1995, 91-101. MR 96m:34125

Faculty of Mathematics, “Al. I. Cuza” University of Iaşi, Iaşi 6600, Romania
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