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LOCAL SOLVABILITY AND HYPOELLIPTICITY
FOR SEMILINEAR ANISOTROPIC

PARTIAL DIFFERENTIAL EQUATIONS

GIUSEPPE DE DONNO AND ALESSANDRO OLIARO

Abstract. We propose a unified approach, based on methods from microlocal
analysis, for characterizing the local solvability and hypoellipticity in C∞ and
Gevrey Gσ classes of 2-variable semilinear anisotropic partial differential oper-
ators with multiple characteristics. The conditions imposed on the lower-order
terms of the linear part of the operator are optimal.

1. Introduction

We consider a class of semilinear anisotropic equations with multiple characteris-
tics in two variables (x, y) belonging to the set Ω := {

√
x2 + y2 < δ}, δ sufficiently

small, of the form

(1.1) P (x, y,Dx, Dy)u+ F (x, y, ∂lx∂
j
yu)∣∣lmd +j<m−t

= µf(x, y),

where the linear part is given by

(1.2) P (x, y,Dx, Dy) = Dm
y − b0(x, y)Dd

x +
∑

m−t≤lmd +j<m

alj(x, y)Dl
xD

j
y,

with m, d, j, l ∈ Z+, 0 < t < 1
2 , µ sufficiently small, Dx = −i ∂∂x , Dy = −i ∂∂y ; we

shall also say that lmd + j is the anisotropic order of Dl
xD

j
y, and so the nonlinearity

involves derivatives of anisotropic order less than m−t. Our main aim is to propose
a unified approach for a complete analysis of the influence of the lower-order terms
of (1.2) on the solvability and hypoellipticity of (1.1) in the C∞ category and in
the Gevrey spaces Gσ beyond the critical index m/(m− 1). The arguments in our
proofs are based mainly on microlocal tools: pseudo-differential operators, wave
front sets, allowing relevant simplifications in the study, and Smρ,δ techniques.

Some papers have been devoted to the study of this kind of problem; see, for
example, Hounie-Santiago [HS] and Gramchev-Popivanov [GP] on the local solv-
ability of semilinear partial differential equations in the case of simple characteris-
tics, Gramchev-Rodino [GR] about Gevrey solvability for equations with multiple
characteristics (see also Spagnolo [SP] and Kajitani-Spagnolo [KS]), and Garello [G]
regarding the inhomogeneous elliptic case; see also Šananin [S] on the C∞ local solv-
ability of equations of quasi-principal type and Lorenz [LO] regarding anisotropic
operators with characteristics of constant multiplicity.
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We consider an F that is C∞ and nonlinear, and we assume that the coefficients
in (1.2) are C∞. We always suppose that

(1.3) d < m, < b0(0, 0) 6= 0, F (x, y, 0) = 0.

We recall that the nonzero requirement on b0 is an invariant nondegeneracy condi-
tion, usually required in the study of the local solvability and hypoellipticity of the
linear operator (1.2) in C∞ and in the Gevrey classes Gσ, σ > m

m−1 ; see for example
Liess-Rodino [LR2], De Donno-Rodino [DR2], in which Gevrey hypoellipticity for
PDEs with high multiplicity is proved. Let us also observe that if =b0(x, y) 6= 0,
then the operator is quasi-elliptic; the results of hypoellipticity and local solvability
are well known in this case. Regarding Gσ data, see for example Marcolongo-Oliaro
[MO], in which the local solvability is proved in the n-dimensional case and under
hypotheses on the quasi-principal symbol; in the present paper we admit less reg-
ular data f(x, y) with respect to the case studied in [MO], but we add hypotheses
on the lower-order terms. In this frame it will be convenient to use the Sobolev
anisotropic space Hs

1
q

, q ≥ 1, defined by

‖f‖Hs1
q

:=
∫

(1 + |ξ|
2
q + |η|2)s |f̂(ξ, η)|2 dξ dη <∞,

f̂(ξ, η) being the Fourier transform of f(x, y). For s > 1+q
2 , Hs

1
q

is an algebra; cf.

the inhomogeneous Schauder estimates and Garello [G, Proposition 2.5]. Moreover,
we define the anisotropic characteristic manifold

(1.4) Σδ := {(x, y, ξ, η) ∈ Ω× R2 \ {0}, ηm −< b0 ξd = 0}.

We recall the definition of the Gevrey anisotropic space G(q1,q2)(Ω).

Definition 1.1. Let q1 > 1, q2 > 1. We denote by G(q1,q2)(Ω) the set of all
the functions f ∈ C∞(Ω) such that the following condition holds: for every com-
pact K ⊂ Ω there exists a positive constant CK such that supK |∂lx∂jyf(x, y)| ≤
Cl+j+1
K (l!)q1(j!)q2 for every l, j ∈ Z+.
As usual, G(q1,q2)

0 (Ω) is the set of all the functions in G(q1,q2)(Ω) with compact
support in Ω.

Let us state the main results.

Theorem 1.1. Let (l∗, j∗) ∈ Z2
+ be the unique couple in Z2

+ having anisotropic
order k∗

d = l∗md + j∗, with d(m − 1
2 ) < k∗ = ml∗ + dj∗ < dm. We assume that for

(x, y, ξ, η) ∈ Σδ:

(1.5)

i) = al∗j∗(x, y) 6= 0,
ii) for all (l, j) such that dj +ml > k∗,

= al∗j∗(x, y)= alj(x, y)ξl+l
∗
ηj+j

∗ ≥ 0,

iii) = al∗j∗(x, y)= b0(x, y)ξd+l∗ηj
∗ ≤ 0.
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Choose and fix t = m− k∗

d and s > 1
2
d+m
d + k∗

d . Then we can find δ0 > 0, depending
on P and s, such that for every f ∈ Hs

d
m

(Ω) with compact support in Ω the equation

(1.1) admits a solution u ∈ Hs+m−r∗
d
m

with r∗ = m − k∗

d , provided µ = 1 if F ≡ 0

and µ‖f‖Hsd
m

< µ0 for some 0 < µ0 � 1 depending on the nonlinear term F if

F 6≡ 0. Finally, the linear operator P in (1.2) is C∞(Ω) hypoelliptic, and if its
coefficients are analytic, P is Gσ(Ω) hypoelliptic, σ ≥ d

k∗−d(m−1) , i.e., if u is a
distribution in Ω such that Pu ∈ Gσ(Ω), then u ∈ Gσ(Ω).

Remark 1.1. The conditions (1.5) in Theorem 1.1 could be illustrated in a sim-
pler way, observing that actually one estimates the imaginary part of the symbol∑

k∗
d ≤l

m
d +j<m alj(x, y) ξlηj in the corresponding operator (1.2) on the quasi-conic

characteristic set ηm−< b0ξd = 0, e.g., substituting ξ = (< b0)−
1
d η

m
d , the condition

(1.5) reads

(1.6)

∣∣∣∣∣∣=
 ∑

k∗
d ≤l

m
d +j<m

alj(< b0)−
l
d η

lm
d ηj

∣∣∣∣∣∣ ≥ C|η| k∗d , η � 1,

with k∗ = ml∗+ dj∗. This clarifies, at least intuitively, the loss of derivatives k∗

d in
Theorem 1.1.

Remark 1.2. It is always possible to rephrase the previous assumptions in Theorem
1.1 directly on the coefficients of P . For example, if < b0 > 0 and m, d are odd, the
conditions i), ii), iii) are respectively equivalent to:
i′) = al∗j∗(x, y) > 0 (< 0);
ii′) for all (l, j) such that dj + ml > k∗ = dj∗ + ml∗, = alj(x, y) ≥ 0 (≤ 0) for

j + j∗ and l + l∗ both even or both odd, and = alj(x, y) ≡ 0 otherwise;
iii′) = b0(x, y) ≤ 0 (≥ 0) for j∗ and d+l∗ both even or both odd, and = b0(x, y) ≡

0 otherwise.

In the picture on the next page, which resembles the Newton polygon pictures,
we show the geometrical meaning of hypothesis ii) in Theorem 1.1 (or equivalently
assumption ii′) in Remark 1.2). We consider the operator of order m = 9 with
d = 7:

(1.7) D9
y − (1− iy2k)D7

x + yhD3
xD

5
y + iD6

xDy +
∑

9
7 l+j<

61
7

alj(x, y)Dl
xD

j
y,

is C∞ and Gevrey hypoelliptic and C∞ solvable by Theorem 1.1.
We want to study now the case in which hypothesis i) in Theorem 1.1 is not

satisfied: the basic idea is to refer to the Gevrey classes and transform the operator
P in (1.2) into another operator that satisfies it. To this aim, we introduce the
anisotropic Gevrey-Sobolev spaces Hs,ψτ,q,r(R × (−δ, δ)), defined as the set of all L2

functions for which

(1.8) ‖f‖Hs,ψτ,q,r := ‖eτψ(y,Dx)f‖Hs1
q

< +∞,

where q ≥ 1 is the Gevrey order, s > 0 the Sobolev index, and we take r ∈ (0, 1),
τ > 0; ψ = ψ(y, ξ) is a nonnegative function belonging to the Hörmander class
S
r
q

1,0((−δ, δ)× R).
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To every couple (Dx,Dy) = (l, j) with 9l + 7j < 7 · 9 ,

corresponds a mixed derivative Dl
xD

j
y in (1.7) having

analytic coefficient alj(x, y). In the hypoellipticity

region 7(9− 1
2
) < 9l + 7j < 7 · 9 there are three

candidates to give anisotropic order k∗

d
= k∗

7
.

We have (l∗, j∗) = (6, 1), = a61(x, y) > 0 and

9 · 6 + 7 : = k∗ = 61 . For (l, j) = (3, 5) ,

3 · 9 + 5 · 7 = 62 > k∗, = a35(x, y) ≡ 0.

The anisotropic order of the other

mixed derivatives Dl
xD

j
y is 9l+7j

d
,

less than k∗

d
, so we do not

require any assumptions.

< b0 > 0, = b0 ≤ 0.

Theorem 1.2. In the equation (1.1) let the datum f be in G
(mdr ,q2)
0 (Ω), r ∈ (1

2 , 1),
q2 > 1. Fix t > 1 − r and assume that the coefficients of P in (1.2) are analytic
and for (x, y, ξ, η) ∈ Σδ one of the following conditions holds:

[a] =alj(x, y)ξlηj+m−1 ≤ 0 (≥ 0) for dj + ml > (m − t)d, and, moreover,
=b0(x, y)ξdηm−1 ≥ 0 (≤ 0);

[b] =alj(x, y)(sign ξ) ξlηj+m−1 ≤ 0 (≥ 0) for dj+ml > (m− t)d, and =b0(x, y)
(sign ξ)ξdηm−1 ≥ 0 (≤ 0).

Assume moreover that the nonlinear term F is analytic with respect to (x, y), entire
with respect to ∂lx∂

j
yu, and (1.3) holds. Then, fixing ψ and taking s large, we can

find δ0 > 0, depending on P and s, such that for every f ∈ Hs,ψτ,md ,r(Ω) with compact

support in Ω the semilinear equation (1.1) admits a solution u ∈ Hs+m−(1−r),ψ
τ,md ,r

(Ω)
provided µ = 1 if F ≡ 0, and µ‖f‖Hs,ψ

τ,m
d
,r
< µ0 for some 0 < µ0 � 1 depending on

the nonlinear term F if F 6≡ 0.

The study of the weakly hyperbolic equation (1.1) resembles the study of degen-
erate parabolic equations, in that under suitable hypotheses equation (1.1) behaves
like them in regard to local solvability and hypoellipticity in the C∞ category and in
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some Gevrey spaces Gσ, σ > m
m−2 . See, for example, Gramchev-Popivanov-Yoshino

[GPY, Section 3].
In Theorem 1.2 we require that the nonlinearity is analytic with respect to

(x, y, ∂lx∂
j
yu). One encounters highly nontrivial difficulties in getting hard anal-

ysis type estimates on composition of nonanalytic Gevrey nonlinearities, and in
the paper Gramchev-Rodino [GR] different Gevrey norms involving power series of
finite Sobolev-type norms are used. A possible analogue of Theorem 1.2 could be
proved in the anisotropic case for nonanalytic Gevrey nonlinearities, and this will
be the subject of a future paper.

We point out that in hypotheses [a] and [b] of Theorem 1.2 the exponent m− 1
plays the role of j∗ in assumptions ii) and iii) of Theorem 1.1. In fact, for a suitable
fixed ψ(y, ξ) ∈ S

r
q

1,0((−δ, δ)× R), the operator

P̃ := eτψ(y,Dx)P (x, y,Dx, Dy)e−τψ(y,Dx)

contains all the terms of P and an additional pseudo-differential term

Nr(x, y)|Dx|
d
m rDm−1

y ,

where Nr(x, y) satisfies condition i) in Theorem 1.1.
Observe that for the existence of l, j ∈ Z+ such that m− t ≤ lmd + j < m, t < 1

2 ,
we have to require m ≥ 4. The theorem applies, of course, also in the case when
the assumption on the alj is empty; in this case we recapture the result of [MO].

Passing to the standard isotropic Gevrey classes Gσ(Ω), defined by the estimates

sup
K
|∂lx∂jyf(x, y)| ≤ Cl+j+1(l!j!)σ, K ⊂⊂ Ω,

we may conclude that equation (1.1) is locally solvable for f ∈ G
m
dr
0 (Ω).

We observe that under assumption i) in Theorem 1.1 we obtain solvability in
C∞, as well as C∞ hypoellipticity, while for the operator P̃ and Theorem 1.2 we
only get local solvability in G

m
dr .

Remark 1.3. The meaning of conditions [a] and [b] in terms of the imaginary part
of the coefficients of P depends on m, d, and the sign of <b0(0, 0). Let us analyze
some situations.

• If m and d are even and <b0(0, 0) > 0, we can treat equation (1.1) in one
of the following cases:
(a) =b0 ≡ 0, =alj ≤ 0 (≥ 0) for l even and j odd, =alj ≡ 0 otherwise;
(b) =b0 ≡ 0, =alj ≤ 0 (≥ 0) for l and j odd, =alj ≡ 0 otherwise.

• If m is even, d is odd and <b0(0, 0) > 0, since p(x, y, ξ, η) is quasi-elliptic for
ξ < 0, the hypotheses of Theorem 1.2 on the linear part become =b0 ≡ 0,
=alj ≤ 0 (≥ 0) for j odd, =alj ≡ 0 for j even.

We also observe that if m and d are even and <b0(0, 0) < 0, the operator is quasi-
elliptic and we may apply known results; cf. Mascarello-Rodino [MR] and Rodino
[RO].

Let us compare our result with the previously known ones. For the sake of
brevity we limit our attention to a model of the form (1.2) with d = m− 1, where
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we fix attention on the case x = 0, y = 0:

Dm
y −Dm−1

x + iαyhDm−1
x + i(β1 y

q + β2)DyD
m−2
x + iγD2

yD
m−3
x

+ i(µ1y
2k + µ2)D3

yD
m−4
x , α, β1, β2, γ, µ1, µ2 ∈ R (m ≥ 3) .

(1.9)

Let us analyze first the case β2 = γ = µ1 = µ2 = 0. For α = β1 = 0 the operator
(1.9) is not hypoelliptic; observe also that for α 6= 0, β1 = 0, h = 1, (1.9) is not
hypoelliptic and not locally solvable, cf. Corli [C]. For α 6= 0, β1 = 0, h even,
(1.9) is hypoelliptic and locally solvable, despite the fact that = b0(0, 0) = 0, cf.
Menikoff [M], Popivanov [P1], Roberts [R]; for both α, β1 6= 0 and h even, the
operator (1.9) is not hypoelliptic if h is sufficiently large with respect to q ≥ 1, cf.
Popivanov-Popov [PP], Popivanov [P2], while for h ≤ m−1

m−2q it is hypoelliptic and
locally solvable, cf. Gramchev-Popivanov [GP1].

Theorem 1.1 gives new conditions on the coefficients of the terms Dj
yD

m−j−1
x

for models of the type (1.2), to guarantee hypoellipticity; so now we discuss the
case when β2, γ, µ1, µ2 are not all zero.

Let us observe that, if j∗ is odd, then (ii), (iii) in Theorem 1.1 actually imply
= alj(x, y) ≡ 0 and = b0(x, y) ≡ 0 for even j < j∗ (d = m− 1 implies j+ l = j∗+
l∗ = m−1); as examples of hypoelliptic and locally solvable operators characterized
by Theorem 1.1, consider in this case (1.9) with α = β1 = 0, β2 6= 0 (j∗ = 1), and
(1.9) with α = β2 = γ = µ1 = 0, β1µ2 > 0, q even (j∗ = 3), having the same
b0 as the non-hypoelliptic operator Dm

y − Dm−1
x . If j∗ is even, then (ii) implies

= alj ≡ 0 for odd j < j∗; as a corresponding example of hypoelliptic and locally
solvable operator consider (1.9) with β1 = β2 = 0, αγ > 0, h even (j∗ = 2). The
order m has to be chosen sufficiently large to satisfy the assumption m−1

2 > j∗.
Now we discuss for the preceding examples the problem of local solvability in

terms of Gevrey classes, arguing in the isotropic spaces Gσ(Ω). Concerning (1.9)
with h even, to which we may add arbitrary perturbations of lower anisotropic
order, we have σ-local solvability for σ < m

m−2 . This follows from Theorem 1.2, and
is also a consequence of Marcolongo-Oliaro [MO]. The result is sharp, in the sense
that when α 6= 0 and h = 1 (1.9) is not σ-locally solvable for σ > m

m−2 , see Corli
[C]. For α, β1 6= 0, β2 = 0, it was proved by Popivanov-Popov [PP] and Popivanov
[P2] that (1.9) is not C∞ locally solvable, and recently for h even, Marcolongo
[MA] extended the result to σ-non-solvability for σ > m

m−2 +ε(h) with ε(h)→ 0 for
h→∞. As new applications of our results in terms of Gσ locally solvable operators
characterized by Theorem 1.2, consider (1.9) with β1 6= 0, α = β2 = 0, q even (m ≥
4), which is σ locally solvable for σ < m

m−3 , independently of lower anisotropic order
perturbations. Compare in particular with Dm

y − Dm−1
x + iyDyD

m−2
x , for which

the change of sign of the imaginary part of the coefficient gives σ-non-solvability
for σ > m

m−2 . We have no change of sign and σ-solvability also in the interval
m
m−3 > σ > m

m−2 . Moreover, let us consider (1.9) with β1µ1 > 0, α = β2 = µ2 = 0,
q even (m ≥ 10), which is σ locally solvable for σ < m

m−5 . The addition of lower-
order anisotropic terms might produce non-solvability phenomena in C∞ and Gσ

for large σ. Observe finally that if the imaginary parts of alj in (1.2) vanish of
high order at the origin, then the lower-order terms have no influence on the local
solvability. As an example we consider the operator

(1.10) D5
y − (1 − iyk)D4

x + iylDyD
3
x, k even,
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which is C∞ locally solvable and C∞ hypoelliptic for k ≤ 4
3 l; see the arguments in

the book by Gramchev and Popivanov [GP1, Theorem 3.1 and Chapter 4], and see
also Theorem 3.1 in Gramchev [GG]. We also observe that by applying Theorem
1.2 we obtain Gevrey Gσ local solvability, σ < 5

3 , for k > 4
3 l, too.

2. Gevrey-Sobolev spaces

As a preparation for the proof of Theorem 1.2, in this section we study a class of
Gevrey-Sobolev spaces defined on the strip R × (−δ, δ), δ > 0. These spaces have
been introduced in the n-dimensional case in [MO]; here we prove some results that
will be used in the next sections for the local solvability of (1.1).

Definition 2.1. We define the Gevrey-Sobolev space Hs,ψτ,q,r(R× (−δ, δ)) as the set
of all functions f ∈ L2(R× (−δ, δ)) such that (1.8) holds. Writing p = 1

q , we shall
say that ψ(y, ξ) is a weight function of order (r, p). The operator eτψ(y,Dx) acts on
the function f in the following way:

eτψ(y,Dx)f(x, y) =
1

2π

∫
eixξeτψ(y,ξ)f̃(y, ξ) dξ,

where f̃(y, ξ) =
∫
e−ixξf(x, y) dx, and Hs

p(R × (−δ, δ)), for s integer, is the space
of all g(x, y) ∈ L2(R× (−δ, δ)) such that

(2.1) ‖f(x, y)‖2Hsp :=
s∑

k=0

∫
(1 + |ξ|2p)s−k|Dk

y f̃(y, ξ)|2 dξ dy < +∞;

the definition of Hs
p(R× (−δ, δ)) extends to every s > 0 by interpolation.

Remark 2.1. The operator eτψ(y,Dx) and its inverse e−τψ(y,Dx) establish an isometry
between the Hilbert spaces Hs,ψτ,q,r(R× (−δ, δ)) and Hs

p(R× (−δ, δ)).

We need to introduce suitable equivalent norms on the spaces Hs,ψτ,q,r(R×(−δ, δ)).
First we recall that the following identities hold:

(2.2) Dj
ye
τψ(y,Dx) =

j∑
h=0

q
(j)
j−h(y,Dx)eτψ(y,Dx)Dh

y ,

(2.3) eτψ(y,Dx)Dj
y =

j∑
h′=0

r
(j)
j−h′(y,Dx)Dh′

y e
τψ(y,Dx),

(2.4) Dk
xe
τψ(y,Dx) = eτψ(y,Dx)Dk

x

for every k, j ∈ Z+, where the symbols of the pseudo-differential operators
q

(j)
j−l(y,Dx) and r

(j)
j−l(y,Dx) belong to the Hörmander class Spr(j−l)1,0 ((−δ, δ) × R).

In particular, we obtain that

q
(j)
0 (y,Dx) = 1, q

(j)
1 (y,Dx) = jτ(Dyψ)(y,Dx),

and
r

(j)
0 (y,Dx) = 1, r

(j)
1 (y,Dx) = −jτ(Dyψ)(y,Dx).

For details, see [MO, Lemma 1.1], in which (2.2)-(2.4) are proved in the n-dimen-
sional case.
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Definition 2.2. We say that a function f belongs to the space Hs
(p1,p2)(R

2), s ≥ 0,
0 < p1 ≤ 1, 0 < p2 ≤ 1, if and only if f ∈ L2(R2) and

(2.5) ‖f(x, y)‖2Hs(p1,p2)(R2) :=
∫

(1 + |ξ|2p1 + |η|2p2 )s|f̂(ξ, η)|2 dξ dη <∞.

Lemma 2.1. Let f ∈ Hs
(p1,p2)(R

2), s ≥ 0; let t and h be such that t
p1

+ h
p2
≤ s.

Then

‖〈Dx〉t〈Dy〉hf‖L2(R2) ≤ ‖〈Dx〉p1sf‖L2(R2) + ‖〈Dy〉p2sf‖L2(R2) + ‖f‖L2(R2),

where 〈Dx〉l and 〈Dy〉l
′

are the pseudo-differential operators with symbols |ξ|l and
|η|l′ , respectively; we write (ξ, η) for the dual variables of (x, y).

Proof. Let K = [−1, 1]× [−1, 1]; we obtain

‖〈Dx〉t〈Dy〉hf‖2L2(R2)

≤
∫
R2\K

(
|ξ|2p1s + |η|2p2s

)
|f̂(ξ, η)|2 dξ dη +

∫
K

|f̂(ξ, η)|2 dξ dη

≤ ‖〈Dx〉p1sf‖2L2(R2) + ‖〈Dy〉p2sf‖2L2(R2) + ‖f‖2L2(R2).

�

Remark 2.2. Let us suppose that p1, p2 ∈ Q, and let s be a positive integer such
that pjs is an integer, j = 1, 2. By Lemma 2.1 we have that an equivalent norm in
Hs

(p1,p2)(R
2) is given by the following expression:

(2.6) ‖Dp1s
x f‖L2(R2) + ‖Dp2s

y f‖L2(R2) + ‖f‖L2(R2).

Lemma 2.2. Consider u ∈ Hs
p(R× (−δ, δ)) with p a rational number and s a posi-

tive integer such that ps is an integer; we write Θ for R× (−δ, δ). Then there exists
a function ls,Θu ∈ Hs

(p,1)(R
2) that extends u. Moreover, we can find a constant C

such that:

(2.7)

‖ls,Θu‖L2(R2) ≤ C‖u‖L2(R×(−δ,δ)),

‖Dps
x ls,Θu‖L2(R2) ≤ C‖Dps

x u‖L2(R×(−δ,δ)),

‖Ds
yls,Θu‖L2(R2) ≤ C‖Ds

yu‖L2(R×(−δ,δ)).

This lemma can be proved using an argument similar to the one developed in the
isotropic case by Egorov and Schulze in [ES, Theorem 27]. The proof is omitted.

Remark 2.3. Observe that ‖u‖L2(R×(−δ,δ)) ≤ ‖ls,Θu‖L2(R2), ls,Θu being an extension
of u; so ‖u‖L2(R×(−δ,δ)) and ‖ls,Θu‖L2(R2) are equivalent. In the same way we obtain
that ‖Dps

x u‖L2(R×(−δ,δ)) and ‖Ds
yu‖L2(R×(−δ,δ)) are equivalent to ‖Dps

x ls,Θu‖L2(R2)

and ‖Ds
yls,Θu‖L2(R2) respectively. So if s is an integer such that ps is an integer

and f ∈ Hs
p(R × (−δ, δ)), using Lemma 2.2 and Remark 2.2 we can prove that an

equivalent norm in the space Hs
p(R× (−δ, δ)) is given by the following expression:

(2.8) ‖Dps
x f‖L2(R×(−δ,δ)) + ‖Ds

yf‖L2(R×(−δ,δ)) + ‖f‖L2(R×(−δ,δ)).

Theorem 2.1. Let us fix s > 0, τ > 0, r ∈ (0, 1], p ∈ (0, 1] and assume that s is a
positive integer such that ps is an integer. Then the following norms are equivalent:

(a) ‖f‖Hs,ψτ,q,r(R×(−δ,δ));
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(b)
∑

l
p+j≤s

‖Dl
xD

j
ye
τψ(y,Dx)f‖L2(R×(−δ,δ));

(c)
∑

l
p+j≤s

‖eτψ(y,Dx)Dl
xD

j
yf‖L2(R×(−δ,δ));

(d)
∑

l1+l2
p +j1+j2≤s

‖Dl1
x D

j1
y e

τψ(y,Dx)Dl2
x D

j2
y f‖L2(R×(−δ,δ)).

Proof. (a) ⇔ (b). Using Lemma 2.1 and Lemma 2.2 we obtain∑
l
p+j≤s

‖Dl
xD

j
ye
τψ(y,Dx)f‖L2(R×(−δ,δ))

≤
∑
l
p+j≤s

‖Dl
xD

j
yls,Θe

τψ(y,Dx)f‖L2(R2)

≤ C
(
‖Dps

x ls,Θe
τψ(y,Dx)f‖L2(R2) + ‖Ds

yls,Θe
τψ(y,Dx)f‖L2(R2)

+ ‖ls,Θeτψ(y,Dx)f‖L2(R2)

)
≤ C1

(
‖Dps

x e
τψ(y,Dx)f‖L2(R×(−δ,δ)) + ‖Ds

ye
τψ(y,Dx)f‖L2(R×(−δ,δ))

+ ‖eτψ(y,Dx)f‖L2(R×(−δ,δ))
)

≤ ‖f‖Hs,ψτ,q,r(R×(−δ,δ)).

On the other hand, since ‖f‖Hs,ψτ,q,r(R×(−δ,δ)) ≤ ‖ls,Θ(eτψ(y,Dx)f)‖Hs(p,1)(R2), by Re-
mark 2.2 and Lemma 2.2 we have

‖f‖Hs,ψτ,q,r(R×(−δ,δ)) ≤ C
∑
l
p+j≤s

‖Dl
xD

j
ye
τψ(y,Dx)f‖L2(R×(−δ,δ)).

(b) ⇔ (c). Using Lemma 2.1, Lemma 2.2, Remark 2.3 and the identities (2.2)-
(2.4), we obtain∑

l
p+j≤s

‖eτψ(y,Dx)Dl
xD

j
yf‖L2(R×(−δ,δ))

≤ C
∑
l
p+j≤s

j∑
h=0

‖r(j)
j−h(y,Dx)Dh

yD
l
xe
τψ(y,Dx)f‖L2(R×(−δ,δ))

≤ C1

∑
l
p+j≤s

j∑
h=0

j−h∑
k=0

‖〈Dx〉rpk+lDh
y ls,Θe

τψ(y,Dx)f‖L2(R2)

≤ C2

(
‖Dps

x ls,Θe
τψ(y,Dx)f‖L2(R2) + ‖Ds

yls,Θe
τψ(y,Dx)f‖L2(R2)

+ ‖ls,Θeτψ(y,Dx)f‖L2(R2)

)
≤ C2

∑
l
p+j≤s

‖Dl
xD

j
ye
τψ(y,Dx)f‖L2(R×(−δ,δ)).

In the opposite direction we may use similar arguments. By the same arguments
we have (c) ⇔ (d). �

Now we prove some important results that will be used in Section 3 for the
solvability of the semilinear equation.
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Theorem 2.2. Let 0 < p < 1 and 0 < r < 1. Let f ∈ G(q,q2)
0 with q = 1

rp and
q2 > 1. Then for all s > 0 and for every weight function ψ(y, ξ) of order (r, p)
there exists τ > 0 such that f ∈ Hs,ψτ,q,r, where q = 1

p .

Proof. First we observe that Hs,ψτ,q,r ⊂ Ht,ψτ,q,r for s > t; then, without loss of gen-
erality, we may assume that s is a positive integer such that ps is an integer. By
Theorem 2.1 we can write

(2.9) ‖f‖Hs,ψτ,q,r =
∑

α1
p +α2≤s

‖eτψ(y,ξ)D̃αf(y, ξ)‖L2 .

The functions Dα
(x,y)f(x, y) obviously belong to G(q,q2)

0 (R×(−δ, δ)) for every multi-
index α = (α1, α2) such that α1

p + α2 ≤ s, with the same constant CK as in
Definition 1.1, depending on s. For every integer k, applying the Fourier transform
with respect to x we can find b ∈ R, depending on supp f , such that

|ξ|k|D̃αf(y, ξ)| ≤
∫ b

−b
C
k+1

(k!)q dx ≤ C
(
Ck(k!)q

)
.

It follows immediately that (1 + |ξ|)k|D̃αf(y, ξ)| ≤ C
(
Ck1 (k!)q

)
for all integers k,

where we suppose C ≥ 1. So we have∑
k

1
k!

(1 + |ξ|
2C1

)pkr
|D̃αf(y, ξ)|rp ≤ Cpr

∑
k

( 1
2rp
)k

;

therefore we obtain
|D̃αf(y, ξ)| ≤ Ke−M(1+|ξ|)rp .

Since ψ(y, ξ) is a weight function of order (r, p), we can find a constant C such that

|eτψ(y,ξ)D̃αf(y, ξ)| ≤ Ke(τC−M)(1+|ξ|)rp.

Choosing τ < M
2C , we can conclude that eτψ(y,ξ)D̃αf(y, ξ) ∈ L2 for α1

p + α2 ≤ s;
using (2.9), we have that f ∈ Hs,ψτ,q,r. �

Remark 2.4. Let 0 < p < 1 and 0 < r < 1. Let f ∈ G
(q1,q2)
0 (R × (−δ, δ)) with

1 < q1 <
1
rp and q2 > 1. Then, for every s > 0, for every weight function ψ(y, ξ) of

order (r, p) and for every τ > 0, we have that f ∈ Hs,ψτ,q,r(R× (−δ, δ)), where q = 1
p .

Theorem 2.3. Let ψ(y, ξ) be essentially subadditive with respect to ξ, i.e.,

ψ(y, ξ1 + ξ2) ≤ ψ(y, ξ1) + ψ(y, ξ2) + C,

cf. [GR]. Let s0 ≥ p+1
2p satisfy the assumptions of Theorem 2.1. Then for every

s > s0 the space Hs,ψτ,q,r(R × (−δ, δ)) is an algebra, and there exists a constant Cs
such that

(2.10) ‖uv‖Hs,ψτ,q,r ≤ Cs‖u‖Hs,ψτ,q,r‖v‖Hs,ψτ,q,r .

Proof. We begin by proving Theorem 2.3 with s a positive integer such that ps is
an integer. Using Theorem 2.1, (c) and applying the Leibniz rule, we obtain

‖uv‖Hs,ψτ,q,r ≤ C
∑

β1+γ1
p +β2+γ2≤s

‖eτψ(y,Dx)(e−τψ(y,Dx)uβ e
−τψ(y,Dx)vγ)‖L2,



SOLVABILITY AND HYPOELLIPTICITY FOR SEMILINEAR PDES 3415

where uβ(x, y) = eτψ(y,Dx)Dβu, vγ(x, y) = eτψ(y,Dx)Dγv and the norms are in
R× (−δ, δ). Applying the Fourier transform with respect to x and writing ∗(ξ) for
the convolution in the ξ variable, we have

‖uv‖Hs,ψτ,q,r≤C1

∑
β1+γ1
p +β2+γ2≤s

‖eτψ(y,ξ)
(
(e−τψ(y,ξ)ũβ) ∗(ξ) (e−τψ(y,ξ)ṽγ)

)
(y, ξ)‖L2 ,

where ũβ and ṽγ stand for the partial Fourier transform with respect to x of uβ
and vγ respectively. The function ψ(y, ξ) being essentially subadditive with respect
to ξ, it follows immediately that eτψ(y,ξ)−τψ(y,ξ−µ)−τψ(y,µ) ≤ eC , and so

‖uv‖Hs,ψτ,q,r ≤ C2

∑
β1+γ1
p +β2+γ2≤s

‖uβ vγ‖L2 .

Since we have required s > p+1
2p , at least one of the inequalities β1

p + β2 < s− p+1
4p

and γ1
p + γ2 < s− p+1

4p must be satisfied. Let ρ > 0 be such that

{(α1, α2) ∈ Z2
+ :

α1

p
+ α2 < s− p+ 1

4p
}

= {(α1, α2) ∈ Z2
+ :

α1

p
+ α2 ≤ s−

p+ 1
4p
− ρ}.

Using Lemma 2.2 and Young’s estimates, we have

‖uv‖Hs,ψτ,q,r ≤ C3

∑
β1
p +β2≤s− p+1

4p −ρ
γ1
p +γ2≤s

‖(l p+1
4p +ρ,Θuβ)̂‖L1(R2) ‖(l0,Θvγ)̂‖L2(R2)

+ C3

∑
β1
p +β2≤s

γ1
p +γ2≤s− p+1

4p −ρ

‖(l0,Θuβ)̂‖L2(R2) ‖(l p+1
4p +ρ,Θvγ)̂‖L1(R2).

Since u, v ∈ Hs,ψτ,q,r(R×(−δ, δ)) and β1
p +β2 ≤ s, γ1

p +γ2 ≤ s, Theorem 2.1 and (2.7)
assure us that ‖(l0,Θuβ)̂‖L2(R2) ≤ ‖u‖Hs,ψτ,q,r and ‖(l0,Θvγ)̂‖L2(R2) ≤ ‖v‖Hs,ψτ,q,r .
Moreover, if β1

p + β2 ≤ s− p+1
4p − ρ, by the Hölder inequality and (2.7) we have

‖(l p+1
4p +ρ,Θuβ)̂(ξ, η)‖L1(R2)

≤ C4‖(1 + |ξ|p(
p+1
4p +ρ) + |η|

p+1
4p +ρ)(l p+1

4p +ρ,Θuβ)̂‖L2(R2) ≤ C5‖u‖Hs,ψτ,q,r .

The same arguments allow us to show that ‖(l p+1
4p +ρ,Θvγ)̂‖L1 ≤ C‖v‖Hs,ψτ,q,r . So

(2.10) holds. By interpolation, the result remains valid for every s > s0. �

3. Analysis of the linear equation

and proof of Theorems 1.1 and 1.2

Let us consider the operator (1.2), where we take the coefficients b0(x, y) and
alj(x, y) in the space G(q1,q2)(Ω) with 1 < q1 <

m
dr , q2 > 1. We choose t in (1.2) in

such a way that there exist two integers l and j for which l md + j = m− t.
Let us observe that the operator P (x, y,Dx, Dy) does not involve the terms

alj(x, y)Dl
xD

j
y with order l md +j < m−t; these terms have order l md +j ≤ m−t−εt,
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where εt is given by the following expression:

(3.1) εt =


min
h∈It

(
M
(
d
m (m− t− h)

)
m
d

)
, It 6= ∅,

1, It = ∅.

The symbol M(b) stands for the decimal part of b, and It = {h ∈ [0,m − t), h ∈
N : d

m (m − t − h) /∈ N}. We deal with the local solvability at the origin of the
equation

(3.2) P (x, y,Dx, Dy)v(x, y) = f(x, y),

P as in (1.2); so it is not restrictive to multiply the coefficients b0(x, y) and alj(x, y)
by a function χ(x, y) ∈ G(q1,q2)

0 (Ω) with support in a neighborhood of the origin.
Thus, we can suppose that b0(x, y) and alj(x, y) are compactly supported.

Now we fix a weight function ψ(y, ξ) of order
(
r, dm

)
, essentially subadditive with

respect to ξ; for every s ≥ s0 and τ we consider the anisotropic Gevrey-Sobolev
space Hs,ψτ,md ,r(R× (−δ, δ)).

For an arbitrary real number q ≥ 1 we set:

(i) Hs,ψτ,q,r,comp(Ω) := {f ∈ Hs,ψτ,q,r(R× (−δ, δ)) with compact support contained
in Ω};

(ii) Hs,ψτ,q,r,loc(Ω) := {f ∈ D′(Ω) : for every ϕ ∈ G(q1,q2)
0 (Ω), 1 < q1 <

q
r , q2 > 1,

we have ϕf ∈ Hs,ψτ,q,r,comp(Ω)};
(iii) Hs,ψτ,q,r(Ω) := {f such that f is a restriction to Ω of a function belonging to

Hs,ψτ,q,r(R× (−δ, δ))}.
It follows from Theorem 2.1, Theorem 2.3 and Remark 2.4 that, for s ≥ s0,

(3.3) P (x, y,Dx, Dy) : Hs,ψτ,md ,r(R× (−δ, δ)) −→ Hs−m,ψτ,md ,r
(R× (−δ, δ)).

Moreover, the operator P (x, y,Dx, Dy) can be regarded as a continuous map

P (x, y,Dx, Dy) : Hs,ψτ,md ,r,comp(Ω) −→ Hs−m,ψτ,md ,r,loc
(Ω),

or also as a continuous map

P (x, y,Dx, Dy) : Hs,ψτ,md ,r(Ω) −→ Hs−m,ψτ,md ,r
(Ω).

Now let us consider the following operator:

(3.4) P̃ (x, y,Dx, Dy) := eτψ(y,Dx)P (x, y,Dx, Dy)e−τψ(y,Dx).

By Remark 2.1 and the previous considerations we have

P (x, y,Dx, Dy) = e−τψ(y,Dx)P̃ (x, y,Dx, Dy)eτψ(y,Dx),

and, moreover,

(3.5) P̃ (x, y,Dx, Dy) : Hs
d
m

(R× (−δ, δ)) −→ Hs−m
d
m

(R× (−δ, δ)).

Now we want to analyze the conjugate operator P̃ (x, y,Dx, Dy); to this aim we
start from the following proposition.
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Proposition 3.1. Let 0 < p ≤ 1 and 0 < r < 1; as usual we set q = 1
p . Let us fix

a function a(x, y) ∈ G(q1,q2)
0 , 1 < q1 <

q
r , q2 > 1, and a weight function ψ(y, ξ) of

order (r, p), essentially subadditive with respect to ξ. Then

eτψ(y,Dx)a(x, y)e−τψ(y,Dx)

= a(x, y) +Q−(q−r)(x, y,Dx) +Q−2(q−r)(x, y,Dx),
(3.6)

where the symbols q−j(q−r)(x, y, ξ) of the operators Q−j(q−r)(x, y,Dx), j = 1, 2,
satisfy the following conditions:

q−(q−r)(x, y, ξ) = τ∂ξψ(y, ξ)(Dxa)(x, y) ∈ S−(q−r)p
1,0 (Ω× R);

q−2(q−r)(x, y, ξ) ∈ S−2(q−r)p
1,0 (Ω× R).

Proof. Setting Qa(x, y,Dx) = eτψ(y,Dx)a(x, y)e−τψ(y,Dx) and using the standard
properties of the oscillatory integrals, we easily obtain that the symbol qa(x, y, ξ)
of the operator Qa(x, y,Dx) is given by

(3.7) qa(x, y, ξ) =
∫
eixηeτψ(y,ξ+η)−τψ(y,ξ)ã(η, y) d−η,

where we write d−η = (2π)−1 dη and we denote as usual by ã(η, y) the Fourier
transform of a(x, y) with respect to the x variable. Applying the Taylor formula to
eτψ(y,ξ+η), we obtain

eτψ(y,ξ+η)−τψ(y,ξ)

= 1 + τ∂ξψ(y, ξ)η +
N−1∑
n=2

1
n!

(e−τψ(y,ξ)∂nξ e
τψ(y,ξ))ηn + rN (y, ξ, η),

(3.8)

where
rN (y, ξ, η)

=
ηN

(N − 1)!

∫ 1

0

e−τψ(y,ξ+tη)∂Nξ
(
eτψ(y,ξ+tη)

)
eτψ(y,ξ+tη)−τψ(y,ξ)(1− t)N−1 dt.

From (3.8) and the standard properties of the Fourier transform it follows immedi-
ately that

qa(x, y, ξ) = a(x, y) + τ∂ξψ(y, ξ)(Dxa)(x, y)

+
N−1∑
n=2

1
n!

∫
eixηe−τψ(y,ξ)∂nξ e

τψ(y,ξ)D̃n
xa(y, η) d−η

+
∫
eixηrN (y, ξ, η)ã(y, η) d−η

= a(x, y) + q−(q−r)(x, y, ξ) +
(
q

(1)
−2(q−r)(x, y, ξ) + q

(2)
−2(q−r)(x, y, ξ)

)
.

Using the Leibniz rule, Definition 1.1 and the fact that ψ ∈ Srp1,0((−δ, δ) × R), cf.

Definition 2.1, we easily obtain that q−(q−r) ∈ S−(q−r)p
1,0 (Ω×R); so we have only to

prove that q(j)
−2(q−r)(x, y, ξ) ∈ S

−2(q−r)p
1,0 (Ω× R), j = 1, 2.

First we obtain by induction on n that for every j, k ∈ Z+ there exists a constant
Cjk such that

(3.9) |Dj
yD

k
ξ (e−τψ(y,ξ)∂nξ e

τψ(y,ξ))| ≤ Cjk(1 + |ξ|)prn−n−k.
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Using the Leibniz rule and the estimate (3.9), it is easy to deduce that for every
fixed N , q(1)

−2(q−r)(x, y, ξ) ∈ S
−2(q−r)p
1,0 (Ω× R).

Now we consider q(2)
−2(q−r)(x, y, ξ). Let us observe that, ψ(y, ξ) being essentially

subadditive with respect to ξ, we get eτψ(y,ξ+tη)−τψ(y,ξ) ≤ eC(1+|η|)pr ; moreover,
due to |Dj

yD
k
ξψ(y, ξ)| ≤ Cjk(1+|ξ|)pr−k (ψ ∈ Srp1,0), and to the inequality 1

1+|ξ+tη| ≤
1+|η|
1+|ξ| , we have that |Dj

yD
k
ξ

(
ψ(y, ξ + tη)− ψ(y, ξ)

)
| ≤ C̃jk(1 + |ξ|)pr−k(1 + |η|)pr+k.

Indeed,

|Dj
yD

k
ξ

(
ψ(y, ξ + tη)− ψ(y, ξ)

)
| ≤ |Dj

yD
k
ξ

(
ψ(y, ξ + tη)

)
|+ |Dj

yD
k
ξψ(y, ξ)|

≤ Cjk(1 + |ξ + tη|)pr−k + Cjk(1 + |ξ|)pr−k

≤ 2prCjk(1 + |ξ|)pr(1 + |η|)pr
(1 + |η|

1 + |ξ|
)k

+ Cjk(1 + |ξ|)pr−k

≤ C̃jk(1 + |ξ|)pr−k(1 + |η|)pr+k.
So we obtain, using Faà di Bruno’s estimate, that

|Dj
yD

k
ξ

(
eτψ(y,ξ+tη)−τψ(y,ξ)

)
| ≤ Cjk

∑
0<h≤j+k

|eτψ(y,ξ+tη)−τψ(y,ξ)|

×
∑

j1+...+jh=j
k1+...+kh=k

|Dj1
y D

k1
ξ

(
ψ(y, ξ+ tη)−ψ(y, ξ)

)
|· · ·|Djh

y D
kh
ξ

(
ψ(y, ξ+ tη)−ψ(y, ξ)

)
|

≤ C̃jkeC(1+|η|)pr(1 + |η|)pr(j+k)+k(1 + |ξ|)pr(j+k)−k .

Using (3.9) with ξ + tη instead of ξ, the previous estimate and the fact that
1

1+|ξ+tη| ≤
1+|η|
1+|ξ| , we have

|Dj
yD

k
ξ rN (y, ξ, η)|

≤ C′jk(1 + |η|)pr(j+k)+prN+N+k eC(1+|η|)pr(1 + |ξ|)pr(j+k)+prN−N−k.
(3.10)

Reasoning as in the proof of Theorem 2.2, we find that, if a(x, y) ∈ G(q1,q2)
0 , there

exists a constant M such that |Dj
yã(y, η)| ≤ Cje

−M(1+|η|)p1 , p1 = 1
q1

. Using this
fact, the estimate (3.10) and the Leibniz rule, we have

|Dl
xD

j
yD

k
ξ q

(2)
−2(q−r)(x, y, ξ)| ≤ C

′
ljk(1 + |ξ|)pr(j+k)+prN−N−k

×
∫

(1 + |η|)pr(j+k)+prN+N+k|η|leC(1+|η|)pre−M(1+|η|)p1
dη

≤ Cljk(1 + |ξ|)pr(j+k)+prN−N−k;

since pr < 1, taking N sufficiently large, depending on j and k, we obtain that
the symbol q−2(q−r)(x, y, ξ) = q

(1)
−2(q−r)(x, y, ξ) + q

(2)
−2(q−r)(x, y, ξ) is in the class

S
−2(q−r)p
1,0 (Ω× R). �

Definition 3.1. Let us consider a function a(x, y, ξ, η) ∈ C∞(Ω× R2) and define

(3.11) λp(ξ, η) = (1 + |ξ|2p + |η|2)
1
2 ∼ 1 + |ξ|p + |η|.

We say that a(x, y, ξ, η) ∈ Sm,µ
(p,1) (Ω × R2), p ≤ 1, if for every l, j, k, h ∈ Z+ there

exists a constant Cljkh such that

(3.12) |Dl
xD

j
yD

k
ξD

h
ηa(x, y, ξ, η)| ≤ Cljkhλp(ξ, η)m(1 + |ξ|)pµ−k−ph.
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Proposition 3.2. Let p, r, the function a(x, y) and the weight function ψ(y, ξ) be
fixed as in Proposition 3.1. Then

eτψ(y,Dx)a(x, y)Dl
xD

j
ye
−τψ(y,Dx)

= a(x, y)Dl
xD

j
y − jτa(x, y)(Dyψ)(y,Dx)Dl

xD
j−1
y

+A l
p+j ,max{−2(1−r),−(q−r)}(x, y,Dx, Dy),

(3.13)

where the symbol a l
p+j ,max{−2(1−r),−(q−r)}(x, y, ξ, η) of the pseudo-differential op-

erator A l
p+j ,max{−2(1−r),−(q−r)}(x, y,Dx, Dy) belongs to the class

S
l
p+j ,max{−2(1−r),−(q−r)}
(p,1) (Ω× R2).

Remark 3.1. The operator −jτa(x, y)(Dyψ)(y,Dx)Dl
xD

j−1
y in (3.13) has the sym-

bol −jτa(x, y)(Dyψ)(y, ξ)ξlηj−1 in the class S
l
p+j ,−(1−r)
(p,1) (Ω × R2), as is easy to

prove since ψ ∈ Srp1,0.

Proof. Using the identities (2.2)-(2.4) and Proposition 3.1, we get

eτψ(y,Dx)a(x, y)Dl
xD

j
ye
−τψ(y,Dx)

= eτψ(y,Dx)a(x, y)e−τψ(y,Dx)eτψ(y,Dx)Dl
xD

j
ye
−τψ(y,Dx)

=
(
a(x, y) +Q−(q−r)(x, y,Dx) +Q−2(q−r)(x, y,Dx)

)
×
(
Dl
xD

j
y − jτ(Dyψ)(y,Dx)Dl

xD
j−1
y +

j−2∑
h=0

q
(j)
j−h(y,Dx)Dl

xD
h
y

)
= a(x, y)Dl

xD
j
y − jτa(x, y)(Dyψ)(y,Dx)Dl

xD
j−1
y

+A l
p+j ,max{−2(1−r),−(q−r)}(x, y,Dx, Dy).

In the expression of the symbol of the last operator, let us analyze, for example,
the term a(x, y)q(j)

j−h(y, ξ)ξlηh, for h = 0, . . . , j − 2. We get, for l′, j′, k′ ∈ Z+ and
h′ ≤ h,

|Dl′

xD
j′

y D
k′

ξ D
h′

η

(
a(x, y)q(j)

j−h(y, ξ)ξlηh
)
|

≤ C′l′j′k′h′
∑

j′1+j′2=j′

∑
k′1+k′2=k′

k′2≤l

|Dl′

xD
j′1
y a(x, y)| |Dj′2

y D
k′1
ξ q

(j)
j−h(y, ξ)| |ξ|l−k

′
2 |η|h−h

′

≤ Cl′j′k′h′ (1 + |ξ|)pr(j−h)−k′1 (1 + |ξ|)l−k
′
2λp(ξ, η)h−h

′

≤ Cl′j′k′h′ λp(ξ, η)
l
p+j−2(1−r)−h′(1 + |ξ|)−k′

≤ Cl′j′k′h′ λp(ξ, η)
l
p+j(1 + |ξ|)−2p(1−r)−k′−ph′ .

In general, using the Leibniz rule, the estimates on ψ ∈ Srp1,0 and qj−h ∈ Spr(j−h)
1,0 ,

and the fact that the symbols of the operators q−k(q−r)(x, y,Dx) are in the class
S
−k(q−r)p
1,0 (Ω× R) for k = 1, 2, we obtain:

•
(
a(x, y)+q−(q−r)(x, y, ξ)+q−2(q−r)(x, y, ξ)

) j−2∑
h=0

q
(j)
j−h(y, ξ)ξlηh is in the class

S
l
p+j ,−2(1−r)
(p,1) (Ω× R2);
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•
(
q−(q−r)(x, y, ξ) + q−2(q−r)(x, y, ξ)

)(
ξlηj − jτ(Dyψ)(y, ξ)ξlηj−1

)
is in the

class S
l
p+j ,−(q−r)
(p,1) (Ω× R2).

Let us observe that S
l
p+j ,−2(1−r)
(p,1) (Ω × R2) and S

l
p+j ,−(q−r)
(p,1) (Ω × R2) are both

contained in S
l
p+j ,max{−2(1−r),−(q−r)}
(p,1) (Ω × R2); so it follows immediately that

a l
p+j ,max{−2(1−r),−(q−r)}(x, y, ξ, η) ∈ S

l
p+j ,max{−2(1−r),−(q−r)}
(p,1) (Ω× R2). �

Now we want to analyze the behavior of the conjugate operator, defined by (3.4).
We choose the weight function in the following way:

(3.14) ψ(y, ξ) =
(

1 +
y

2δ

)
ϕ(ξ)|ξ| dm r

(
ψ(y, ξ) =

(
1− y

2δ

)
ϕ(ξ)|ξ| dm r

)
,

where 0 < r < 1, δ > 0 and ϕ(ξ) is a C∞ function such that 0 ≤ ϕ(ξ) ≤ 1, ϕ(ξ) = 0
for |ξ| ≤ 1

2 and ϕ(ξ) = 1 for |ξ| ≥ 1. Observe that ψ(y, ξ) is a weight function of
order

(
r, dm

)
, essentially subadditive with respect to ξ.

Proposition 3.3. Let us fix the operator P (x, y,Dx, Dy) as in (1.2) with d < m,
and let us fix 0 < r < 1; we choose the weight function as in (3.14). Then the
symbol of the conjugate operator is given by

p̃(x, y, ξ, η) = p(x, y, ξ, η)− imτ
2δ

ϕ(ξ)|ξ| dm rηm−1 + pm,−(1−r)−ν(x, y, ξ, η)(
p̃(x, y, ξ, η) = p(x, y, ξ, η) + i

mτ

2δ
ϕ(ξ)|ξ| dm rηm−1 + pm,−(1−r)−ν(x, y, ξ, η)

)
,

where p(x, y, ξ, η) is the symbol of P and

pm,−(1−r)−ν(x, y, ξ, η) ∈ Sm,−(1−r)−ν
( dm ,1)

(Ω× R2), ν > 0.

Observe that
(i
mτ

2δ
ϕ(ξ)|ξ| dm rηm−1) ∈ Sm,−(1−r)

( dm ,1)
(Ω× R2).

Proof. First we observe that we can write the operator P (x, y,Dx, Dy) in the fol-
lowing way:

(3.15) P (x, y,Dx, Dy) = Dm
y − b0(x, y)Dd

x +
∑

m−t≤l md +j≤m−ε0

alj(x, y)Dl
xD

j
y,

where ε0 is given by (3.1) with t = 0.
Now, applying Proposition 3.1 and Proposition 3.2 with p = d

m and ψ as in
(3.14), and using (2.4), we get

P̃ (x, y,Dx, Dy) = eτψ(y,Dx)Dm
y e
−τψ(y,Dx) − eτψ(y,Dx)b0(x, y)e−τψ(y,Dx)Dd

x

+
∑

m−t≤lmd +j≤m−ε0

eτψ(y,Dx)alj(x, y)Dl
xD

j
ye
−τψ(y,Dx)

= Dm
y −mτ(Dyψ)(y,Dx)Dm−1

y +Am,max{−2(1−r),−(md −r)}(x, y,Dx, Dy)

− b0(x, y)Dd
x −Q−(md −r)(x, y,Dx)Dd

x

+
∑

m−t≤lmd +j≤m−ε0

alj(x, y)Dl
xD

j
y + A′m,−(1−r)−ε0(x, y,Dx, Dy)

= P (x, y,Dx, Dy)−mτ(Dyψ)(y,Dx)Dm−1
y + Pm,−(1−r)−ν(x, y,Dx, Dy),
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where

am,max{−2(1−r),−(md −r)}(x, y, ξ, η) ∈ Sm,max{−2(1−r),−(md −r)}
( dm ,1)

(Ω× R2),

q−(md −r)(x, y, ξ) ∈ S
−(md −r)

d
m

1,0 (Ω× R),

a′m,−(1−r)−ε0(x, y, ξ, η) ∈ Sm,−(1−r)−ε0
( dm ,1)

(Ω× R2).

By Definition 3.1, we can deduce that the symbol pm,−(1−r)−ν(x, y, ξ, η) =
am,max{−2(1−r),−(md −r)}(x, y, ξ, η) − q−(md −r)(x, y, ξ)ξ

d + a′m,−(1−r)−ε0(x, y, ξ, η) is

in the class Sm,−(1−r)−ν
( dm ,1)

(Ω × R2), where ν = min{1− r , md − 1 , ε0}. We observe
that, since r < 1 and d < m, we have ν > 0. �

The following theorem allows us to find a parametrix of the operator (1.2) when
m − t = k∗

d , for a positive integer k∗ such that d(m − 1
2 ) < k∗ < dm and the set

Ik∗ := {(l, j) ∈ Z2
+ : dj + ml = k∗} consists of just one couple (l∗, j∗). We take

b0(x, y) and alj(x, y) in C∞(Ω).

Theorem 3.1 (Sobolev parametrix). Assume that (1.5) in Theorem 1.1 and (1.3)
hold. Then there exists a linear map

E∞ : Hs
d
m

(R× (−δ, δ)) −→ H
s+ k∗

d
d
m

(R× (−δ, δ))

such that
P (x, y,Dx, Dy)E∞u = ϑ(x, y)u+R∞u,

where ϑ(x, y) ∈ C∞, ϑ(x, y) = 1 in a neighborhood of the origin and R∞ is a
regularizing map in the Sobolev anisotropic spaces.

Removing hypothesis i) in Theorem 1.1, we shall prove that there exists a
Gevrey-Sobolev parametrix of the operator (1.2) for t < 1

2 , where now we take
analytic coefficients, or more generally coefficients in the anisotropic Gevrey space
G

(q1,q2)
0 (Ω), 1 < q1 <

m
dr , q2 > 1 (cf. Proposition 3.1), with r > max{ 1

2 , 1− t− εt}.

Theorem 3.2 (Gevrey-Sobolev parametrix). Let one of the conditions [a] or [b]
in Theorem 1.2 and (1.3) hold. Then there exists a linear map

E : Hs,ψτ,md ,r(R× (−δ, δ)) −→ Hs+m−(1−r),ψ
τ,md ,r

(R× (−δ, δ))

such that
P (x, y,Dx, Dy)Eu = χ(x, y)u +Ru,

where χ(x, y) ∈ G(q1,q2)
0 (Ω), χ(x, y) = 1 in a neighborhood of the origin, and R is a

regularizing map in the anisotropic Gevrey-Sobolev spaces.

The proof of Theorems 3.1 and 3.2 will be deduced from Theorem 3.3, below,
about the hypoellipticity of the following class of differential polynomials with C∞

coefficients h(·,·) : Ω→ C:

(3.16) p(x, y, ξ, η) = ηm − hd0(x, y) ξd +
∑

(l,j)∈I
hlj(x, y) ξlηj + σ(z, ζ),

for ζ = (ξ, η) the dual variable of z = (x, y). We define the following sets for
k ∈ R+, 0 < k < dm:

Ik = { (l, j) ∈ R+ × Z+ : dj + ml = k},
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and fix k = k∗ such that d(m − 1
2 ) < k∗ < dm. We use the notation k− for all

k < k∗ and k+ for all k > k∗. We define I = I− ∪ Ik∗ ∪ I+, with I− =
⋃
Ik− ,

I+ =
⋃
Ik+ . The symbol σ(x, y, ξ, η) in C∞(R2 × R2) is such that

(3.17) |Dα
xD

β
yD

γ
ξD

θ
ησ(z, ζ)| ≤ Cαβγθ(1 + λ(ζ))m−(γmd +θ), m <

k∗

d
,

where λ(ζ) = |ξ|
d
m +|η| is the anisotropic norm; cf. the expression of the anisotropic

Sobolev spaces in Definition 2.2: Hs
( dm ,1)

(R2), s ≥ 0. We recall that Σ := {(z, ζ) ∈
Ω × R2 \ {0} : ηm − <bd0ξ

d = 0} is the anisotropic characteristic manifold of
p(x, y, ξ, η) in (3.16); letting Λ be a neighborhood of Σ, we denote by Γ the set
Ω× Λ, and we state the following:

Theorem 3.3. Assume that Ik∗ consists of just one couple (l∗, j∗), k∗ = dj∗+ml∗,
such that:

(3.18)

i) =hl∗j∗(x, y) 6= 0 for all (x, y) ∈ Ω ,

ii) for all (l, j) such that dj +ml > k∗ = dj∗ +ml∗,

=hl∗j∗(x, y)=hlj(x, y)ηj+j
∗
ξl+l

∗ ≥ 0, (z, ζ) ∈ Γ,

iii) =hl∗j∗(x, y)=hd0(x, y)ηj
∗
ξd+l∗ ≤ 0, (z, ζ) ∈ Γ,

iv) <hd0(x, y) 6= 0 , for all (x, y) ∈ Ω .

Then

(3.19) |p(x, y, ξ, η)| ≥ bλ(ζ)
k∗
d in Ω× R2,

for a suitable constant b. Also, for all (α, β) ∈ Z2
+, (γ, θ) ∈ Z2

+ and for all K ⊂⊂ Ω
we have, with suitable constants Lα,β,γ,θ and B, that
(3.20)
|Dα

xD
β
yD

γ
ξD

θ
η p(x, y, ξ, η)|λ(ζ)ρ(γ

m
d +θ)− δ(αmd +β)

|p(x, y, ξ, η)| ≤ Lα,β,γ,θ , |ξ|+ |η| > B,

with ρ = k∗ − d (m−1)
d , δ = dm− k∗

d . Observe that δ < ρ, since we have assumed
k∗ > d(m− 1

2 ).

Remark 3.2. By formula (3.20) and by Mascarello and Rodino ([MR], Theorem
3.3.6), we have that the operator P (z,D), associated to the symbol p(z, ζ) in (3.16),
is C∞-microlocally hypoelliptic in Γ; i.e., Γ ∩ WF Pu = Γ ∩ WF u, for all u ∈
D′(Ω), where WF u is the Hörmander wave front set. A microhypoelliptic operator
is hypoelliptic too. If the coefficients are analytic and (3.17) holds for Cαβγθ =
Lα+β+γ+θ+1α!β!γ!θ!, we obtain Gσ-hypoellipticity, σ ≥ d

k∗−d(m−1) .

Before starting the proof of Theorems 3.1 and 3.2, we also need the following
class of symbols:

Definition 3.2. Let a(x, y, ξ, η) ∈ C∞(Ω × R2). We say that a(x, y, ξ, η) ∈
S
m;(p,1)
1,0 (Ω× R2) if for every l, j, k, h ∈ Z+ there exists a constant Cljkh such that

(3.21) |Dl
xD

j
yD

k
ξD

h
ηa(x, y, ξ, η)| ≤ Cljkhλp(ξ, η)m−

k
p−h,

where λp(ξ, η) is given by (3.11).
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Further on we shall also refer to the microlocal classes of symbols Sm,µ(p,1)(Γ),

S
m;(p,1)
1,0 (Γ), where now Γ is a quasi-homogeneous cone. We leave to the reader the

obvious definitions in this frame.
In the following we suppose that the quasi-homogeneous cone Γ is included in a

region in which |ξ|p ≥ c0|η| (in particular we are interested in the case p = d
m ); for

these sets we have that (1 + |ξ|)p ∼ λp(ξ, η), and so Sm,µ(p,1)(Γ) can be identified with

S
m+µ;(p,1)
1,0 (Γ).

Definition 3.3. Let q(x, y, ξ, η) ∈ Sm;(p,1)
1,0 (Γ). Let us suppose that m′ ≤ m and

0 ≤ δ < ρ ≤ 1. We say that q(x, y, ξ, η) is of type (m,m′, p, ρ, δ) if there exist
positive constants c, C, Cljkh such that in Γ the following estimates hold:

|q(x, y, ξ, η)| ≥ c λp(ξ, η)m
′
,(3.22)

|Dl
xD

j
yD

k
ξD

h
ηq(x, y, ξ, η)| ≤ Cljkh|q(x, y, ξ, η)|λp(ξ, η)−ρ(

k
p+h)+δ( lp+j)(3.23)

for λp(ξ, η) ≥ C.

Proposition 3.4. Let q(x, y, ξ, η) be of the type (m,m′, p, ρ, δ). Then there exists
a symbol q′(x, y, ξ, η) ∈ S−m

′;(p,1)
ρ,δ (Γ), i.e.,

|Dl
xD

j
yD

k
ξD

h
ηq
′(x, y, ξ, η)| ≤ Cljkhλp(ξ, η)m−ρ(

k
p+h)+δ( lp+j),

q′ being the parametrix of q(x, y, ξ, η), i.e., q#q′ ∼ q′#q ∼ 1, where # indicates the
standard asymptotic product.

For the proof of this proposition, see Hunt and Piriou [HP].

Proof of Theorem 3.1 (Sobolev parametrix). Without loss of generality, we may as-
sume ρ0 = (ξ0, η0) with ξ0 > 0. The quasi-homogeneous conic neighborhood Γ
of ρ0 is then included in a region {ξ > 0, η2 < Cξ2}. Since P satisfies all the
hypotheses of Theorem 3.3, we have that the symbol p(x, y, ξ, η) is of the type(
m, k

∗

d ,
d
m ,

k∗−d(m−1)
d , dm−k

∗

d

)
. So using Proposition 3.4 we can find a linear map

E : Hs
d
m

−→ H
s+ k∗

d
d
m

such that PE = ϑ(x, y)%(Dx, Dy)+R, where ϑ(x, y) ∈ C∞0 (Ω),

%(ξ, η) ∈ C∞(R2) with support in a quasi-homogeneous conic neighborhood of
(ξ0, η0), R : Hs

d
m

(R× (−δ, δ)) −→ Ht
d
m

(R× (−δ, δ)) for every t ≥ 0. So we can con-
struct two operators E1 and R1 such that PE1 = ϑ(x, y)%(Dx, Dy) +R1, where we
can choose the function %(ξ, η) ∈ C∞ quasi-homogeneous in (ξ, η) of order

(
d
m , 1

)
and of degree 0 for large (|ξ| dm + |η|), %(ξ, η) = 0 in a quasi-homogeneous conic
neighborhood of ξ = 0 and R1 : Hs

d
m

(R × (−δ, δ)) −→ Ht
d
m

(R × (−δ, δ)) for every
t ≥ 0. We can suppose that supp(1− %(ξ, η)) ⊂ Γ0, where Γ0 is a sufficiently small
neighborhood of ξ = 0 such that ηm−b0(x, y)ξd is quasi-elliptic in Γ0. In the follow-
ing we denote by pm(x, y, ξ, η) the anisotropic principal symbol of P (x, y,Dx, Dy),
i.e., pm(x, y, ξ, η) = ηm − b0(x, y)ξd. By the results of Hunt and Piriou [HP] we
have, in Γ0,

p(x, y,ξ, η)#p−1
m (x, y, ξ, η)

= (pm(x, y, ξ, η) + qm−εm(x, y, ξ, η))#p−1
m (x, y, ξ, η)

= 1 + q−εm(x, y, ξ, η),
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where q−εm ∈ S
−εm;( dm ,1)
0,0 and εm is given by (3.1). In a standard way we can

construct s−εm ∈ S
−εm;( dm ,1)
0,0 such that

(1 + q−εm(x, y, ξ, η))#(1 + s−εm(x, y, ξ, η)) ∼ 1.

Let us consider now the symbol

e0 = p−1
m (x, y, ξ, η)#(1 + s−εm(x, y, ξ, η))#ϑ(x, y)(1 − %(ξ, η))

and let E0 be the pseudo-differential operator of symbol e0. By construction we
obtain PE0 = ϑ(x, y)(1− %(Dx, Dy)) +R0, with R0 regularizing on the anisotropic
Sobolev spaces Hs

d
m

(R× (−δ, δ)). Taking E∞ = E1 + E0, we have that

PE∞ = PE1 + PE0 = ϑ(x, y) +R∞,

where R∞ = R1 + R0 is regularizing on Hs
d
m

(R× (−δ, δ)). �

Proof of Theorem 3.2 (Gevrey-Sobolev parametrix). Let us suppose that one of the
global conditions [a] or [b] holds. When [a] is satisfied we fix the weight function as
in (3.14); if [b] holds we choose ψ(y, ξ) =

(
1 + y

2δ sign ξ
)
ϕ(ξ)|ξ| dm r (ψ(y, ξ) =

(
1−

y
2δ sign ξ

)
ϕ(ξ)|ξ| dm r). By Proposition 3.3, the symbol p̃(x, y, ξ, η) of the conjugate

operator P̃ (x, y,Dx, Dy) defined by (3.4) satisfies all the hypotheses of Theorem
3.3 with j∗ = m− 1, l∗ = d

mr. So p̃(x, y, ξ, η) is of type (m,m− (1− r), p, r, 1− r).
As in the first part of the proof of Theorem 3.1, by Proposition 3.4 we can find a
linear map

Ẽ : Hs
d
m

(R× (−δ, δ)) −→ H
s+m−(1−r)
d
m

(R× (−δ, δ))
such that

P̃ Ẽ = χ(x, y)κ(Dx, Dy) + R̃,

where χ(x, y) is arbitrarily fixed in C∞0 (Ω), κ(ξ, η) is arbitrarily fixed in C∞(R2)
with support in a quasi-homogeneous conic neighborhood of (ξ0, η0), and R̃ is a
regularizing operator in the anisotropic Sobolev spaces Hs

d
m

. So we can find Ẽ1 and

R̃1 such that P̃ Ẽ1 = χ(x, y)κ(Dx, Dy) + R̃1, where we can choose the C∞ function
κ(ξ, η) with the properties of the function %(x, y) in the previous proof (κ(ξ, η)
quasi-homogeneous of degree 0 out of the origin, κ(ξ, η) = 0 in a neighborhood
of ξ = 0 and supp(1 − κ(ξ, η)) ⊂ Γ0, where pm(x, y, ξ, η) is quasi-elliptic in Γ0);
moreover, R̃1 : Hs

d
m

(R× (−δ, δ)) −→ Ht
d
m

(R× (−δ, δ)) for every t ≥ 0.
Reasoning as in the preceding proof and using Proposition 3.3 and the results of

Hunt and Piriou [HP], we have, in Γ0,

p̃(x, y,ξ, η)#p−1
m (x, y, ξ, η)

= (pm(x, y, ξ, η) + qm−min{εm,1−r}(x, y, ξ, η))#p−1
m (x, y, ξ, η)

= 1 + q−min{εm,1−r}(x, y, ξ, η),

where the symbol q−min{εm,1−r} is in the class S−min{εm,1−r};( dm ,1)
0,0 . In a standard

way we can construct s−min{εm,1−r} ∈ S
−min{εm,1−r};( dm ,1)
0,0 such that

(1 + q−min{εm,1−r}(x, y, ξ, η))#(1 + s−min{εm,1−r}(x, y, ξ, η)) ∼ 1.

Now let us consider the pseudo-differential operator Ẽ2 of the symbol

ẽ2 = p−1
m (x, y, ξ, η)#(1 + s−min{εm,1−r}(x, y, ξ, η))#χ(x, y)(1 − κ(ξ, η)).
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By construction we obtain P̃ Ẽ2 = χ(x, y)(1−κ(Dx, Dy))+ R̃2 with R̃2 regularizing
on the anisotropic Sobolev spaces Hs

d
m

(R × (−δ, δ)). Let Ẽ = Ẽ1 + Ẽ2. Then

P̃ Ẽ = P̃ Ẽ1 + P̃ Ẽ2 = χ(x, y) + R̃, R̃ regularizing.
After conjugation we obtain PE = e−τψ(y,Dx)χ(x, y)eτψ(y,Dx) + R. Taking a

function χ0(x, y) ∈ G
(q1,q2)
0 (Ω) such that χ0(x, y) = 1 for (x, y) ∈ supp(χ) and

replacing E by Eχ, where Eχu := E(χ(x, y)u), we have

P (x, y,Dx, Dy)Eχu = e−τψ(y,Dx)χ0(x, y)eτψ(y,Dx)χ(x, y)u +Ru

= χ(x, y)u− e−τψ(y,Dx)R̃3e
τψ(y,Dx)u+Ru.

The operator R̃3 = (1−χ0(x, y))eτψ(y,Dx)χ(x, y)e−τψ(y,Dx) is again regularizing on
the anisotropic Sobolev spaces Hs

d
m

(R× (−δ, δ)) in view of Proposition 3.1. �

Remark 3.3. Theorem 3.3, Remark 3.2, and Theorem 3.1, combined with fixed
point arguments as in Gramchev and Rodino [GR, Section 4], lead to the proofs of
Theorem 1.1 and Theorem 1.2.

Proof of Theorem 3.3. We limit ourselves for simplicity to proving the estimate
(3.20) for α + β + γ + θ = 1. The case α + β + γ + θ > 1 does not involve actual
complications; cf. Wakabayashi ([W], Theorem 2.6) or Kajitani and Wakabayashi
([KW], Theorem 1.9) for the analytic frame. First we estimate the numerator of
(3.20), and then we give some lemmas to estimate the denominator.

If α = 1, we get

|Dxp(z, ζ)|λ(ζ)−δ

≤

∣∣∣∣∣∣
∑

(l,j)∈ I
Dxhlj(x, y) ηjξl −Dxhd0(x, y) ξd

∣∣∣∣∣∣λ(ζ)−δ + |Dxσ(z, ζ)|λ(ζ)−δ

≤ L1

 ∑
(l,j)∈ I

|η|jξl + ξd

λ(ζ)−δ + λ(ζ)m−δ
 ;

and for β = 1,

|Dy p(z, ζ)|λ(ζ)−δ
m
d ≤ L2

((∑
(l,j)∈ I |η|

j
ξl + ξd

)
λ(ζ)−δ

m
d + λ(ζ)m−δ

m
d

)
,

for suitable constants L1, L2. If γ = 1,

|Dξ p(z, ζ)|λ(ζ)ρ
m
d ≤ L3((

∑
(l,j)∈ I

|η|jξl−1 + ξd−1)λ(ζ)ρ
m
d + λ(ζ)m−

m
d (1−ρ));

and for θ = 1,

|Dη p(z, ζ)|λ(ζ)ρ ≤ L4((
∑

(l,j)∈ I
|η|j−1ξl + |η|m−1)λ(ζ)ρ + λ(ζ)m−(1−ρ)),

with suitable constants L3, L4.
Therefore, we observe that m − (1 − ρ) ≥ m − m

d (1 − ρ) since d < m, and
m − (1 − ρ) = m − δ > m − m

d δ since ρ + δ = 1. To prove (3.20), it will then be
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sufficient to show the boundedness, for |ζ| > B, of the functions

Q1(ζ) =

(∑
(l,j)∈ I |η|

j
ξl + ξd

)
λ(ζ)−δ

|p(z, ζ)| ,

Q2(ζ) =

(
|η|m−1 +

∑
(l,j)∈ I |η|

j−1
ξl
)
λ(ζ)ρ

|p(z, ζ)| ,

Q3(ζ) =

(
|ξ|d−1 +

∑
(l,j)∈ I |η|

j
ξl−1

)
λ(ζ)ρ

m
d

|p(z, ζ)| ,

Q4(ζ) =
λ(ζ)m−(1−ρ)

|p(z, ζ)| .

First we introduce three regions:

R1 : c |ξ|d ≤ |η|m ≤ C |ξ|d,
R2 : |η|m ≥ C |ξ|d,
R3 : |η|m ≤ c |ξ|d,

(3.24)

for suitable constants c, C satisfying c < 1
2 min(x,y)∈Ω |<hd0(x, y)|, and C >

2 max(x,y)∈Ω |<hd0(x, y)|. We understand the neighborhood Λ to be the region
R1.

The following inequalities then hold:

(3.25) λ(ζ)−δ ≤


C
δ
d |η|−δ, ζ ∈ R1, (I)
|η|−δ, ζ ∈ R2, (II)
|ξ|−δ dm , ζ ∈ R3, (III)

and

λ(ζ)ρ ≤


C1 |η|ρ, ζ ∈ R1,
C2 |η|ρ, ζ ∈ R2,

C3 |ξ|ρ
d
m , ζ ∈ R3;

note that (II) and (III) in (3.25) hold for all ζ ∈ R2, but for our aim we may limit
ourselves to consider them respectively in R2 and in R3. By abuse of notation, in
the following we shall also denote by R1, R2, R3 the sets Ω × R1,Ω × R2,Ω × R3;
recall that Γ = Ω× Λ.

Lemma 3.1. Let p(z, ζ) be the function (3.16), such that (i),(ii),(iii) in (3.18)
hold. Then there are positive constants K1 < 1 and B, such that

(3.26) |p(z, ζ)| ≥ K1 |=hl∗j∗(x, y)| |η|j
∗
|ξ|l∗ , (z, ζ) ∈ R1, |ζ| > B.

Proof. We have

(3.27)

|p(z, ζ)|2 =
(
ηm − <hd0(x, y) ξd +

∑
(l,j)∈I <hlj(x, y) ηjξl

+ <σ(z, ζ))2 +
(
=hl∗j∗(x, y)ηj

∗
ξl
∗

+
∑

(l,j)∈I− =hlj(x, y) ηjξl +
∑

(l,j)∈I+ =hlj(x, y) ηjξl

−=hd0(x, y) ξd + =σ(z, ζ)
)2
.
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By removing the terms arising from the real part of p(z, ζ), we can write

|p(z, ζ)|2 ≥ =hl∗j∗(x, y)2
η2j∗ξ2l∗ +

5∑
i=1

Ji(z, ζ),

where
(3.28)

J1 =

 ∑
(l,j)∈I−

=hlj(z)ηjξl +
∑

(l,j)∈I+

=hlj(z)ηjξl −=hd0(z)ξd + =σ(z, ζ)

2

,

(3.29) J2(z, ζ) = 2=hl∗j∗(x, y)
∑

(l,j)∈I−

=hlj(x, y) ηj
∗+jξl

∗+l ,

(3.30) J3(z, ζ) = 2=hl∗j∗(x, y)
∑

(l,j)∈I+

=hlj(x, y) ηj
∗+jξl

∗+l ,

(3.31) J4(z, ζ) = −2=hl∗j∗(x, y)=hd0(x, y) ηj
∗
ξl
∗+d ,

(3.32) J5(z, ζ) = 2=σ(z, ζ)=hl∗j∗(x, y).

The function (3.28) is nonnegative; (3.30) and (3.31) are also nonnegative by hy-
potheses (ii), (iii). Let us fix attention on J2(z, ζ), defined by (3.29). We have, for
all ε > 0,

(=hl∗j∗(x, y))2
η2j∗ξ2l∗ + J2(z, ζ) ≥ (1− ε)(=hl∗j∗(x, y))2

η2j∗ξ2l∗ ,

in R1, |ζ| > B. In fact, by (3.24) in R1 and hypothesis (i) in (3.18), for all ε > 0
we get, for B sufficiently large,

|J2(z, ζ)|
(=hl∗j∗(x, y))2

η2j∗ξ2l∗
≤ const

∑
(l,j)∈I−

|η|j∗+j |ξ|l∗+l
η2j∗ξ2l∗

≤ const
∑

(l,j)∈I−

|η|j∗+j+(l∗+l)md

η2j∗+2l∗md
< ε , |ζ| > B.

We remark that k∗ = dj∗ +ml∗ > k− = dj +ml.
Concerning (3.32), since m < k∗

d , we have

(=hl∗j∗(x, y))2
η2j∗ξ2l∗ + J5(z, ζ) ≥ (1− ε)(=hl∗j∗(x, y))2

η2j∗ξ2l∗ .

Then
|p(z, ζ)| ≥ K1 |=hl∗j∗(x, y)| |η|j

∗
|ξ|l∗ , (z, ζ) ∈ R1, |ζ| > B,

for a suitable positive constant K1. �

Lemma 3.2. Let p(z, ζ) be the function (3.16). Then there are positive constants
K2 < 1 and B, such that

(3.33) |p(z, ζ)| ≥ K2 |η|m , (z, ζ) ∈ R2, |ζ| > B.
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Proof. We write |p(z, ζ)|2 as in (3.27); by removing the terms arising from the
imaginary part of p(z, ζ), we get

(3.34) |p(z, ζ)|2 ≥
(
ηm − <hd0(x, y)ξd

)2
+W1(z, ζ) +W2(z, ζ) +W3(z, ζ),

where

(3.35) W1(z, ζ) =

 ∑
(l,j)∈I

<hlj(x, y) ηjξl + <σ(z, ζ)

2

,

W2(z, ζ) = 2
∑

(l,j)∈I
<hlj(x, y)ηj+mξl

− 2<hd0(x, y)
∑

(l,j)∈I
<hlj(x, y)ηjξl+d.

(3.36)

(3.37) W3(z, ζ) = 2ηm<σ(z, ζ)− 2<hd0(x, y)ξdσ(z, ζ).

Observe first that, for λ > 0 sufficiently small,(
ηm − <hd0(x, y)ξd

)2
> λη2m.

In fact, (
ηm − <hd0(x, y)ξd

)2 ≥ η2m − 2<hd0(x, y) ηmξd ,

and using (3.24) in R2, we have

η2m − 2<hd0(x, y) ηmξd ≥
(

1− 2
C
<hd0(x, y)

)
η2m > λη2m,

since C > 2 max(x,y)∈Ω |<hd0(x, y)|.
Equation (3.35) is nonnegative. We denote (3.36) by Υ1(z, ζ) − Υ2(z, ζ) and

(3.37) by Υ3(z, ζ)−Υ4(z, ζ). Then

|p(z, ζ)|2 ≥ λη2m + Υ1(z, ζ) − Υ2(z, ζ) + Υ3(z, ζ) − Υ4(z, ζ).

Arguing on Υ1 − Υ2,Υ3 − Υ4 in the same way as we did in Lemma 3.1, we can
show that for all ε > 0,

λη2m + Υ1(z, ζ) − Υ2(z, ζ) ≥ (λ− ε)η2m, (z, ζ) ∈ R2, |ζ| > B ,

and

λη2m + Υ3(z, ζ) − Υ4(z, ζ) ≥ (λ− ε)η2m, (z, ζ) ∈ R2, |ζ| > B .

Thus
|p(z, ζ)| ≥ K2 |η|m , (z, ζ) ∈ R2, |ζ| > B ,

where K2 = (λ− ε)
1
2 . �

Lemma 3.3. Let p(z, ζ) be the function (3.16), such that (iv) in (3.18) holds. Then
there are positive constants K3 < 1 and B such that

(3.38) |p(z, ζ)| ≥ K3 |ξ|d , (z, ζ) ∈ R3, |ζ| > B.
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Proof. Again we apply (3.34), (3.35), (3.36), (3.37) to |p(z, ζ)|2. Observe that in
R3, arguing as above, since c < 1

2 min(x,y)∈Ω |<hd0(x, y)|, we obtain, for a suitable
constant µ > 0, (

ηm − <hd0(x, y)ξd
)2

> µξ2d .

About the terms in (3.35), (3.36) and (3.37), the remarks we made in Lemma 3.2
hold on replacing λ η2m with µ ξ2d. Then we have

|p(z, ζ)| ≥ K3 |ξ|d , (z, ζ) ∈ R3, |ζ| > B ,

where K3 = (µ− ε)
1
2 . �

We first consider Q1(ζ) separately in the regions R1, R2, R3, to prove bound-
edness. In R1 by (3.25), (3.26) we get easily, writing as before k = dj +ml,

Q1(ζ) ≤ const

(∑
k

1

|η|m−
k
d

+ 1

)
, |ζ| > B ,

where m − k
d > 0 by definition of I and Ik. In the region R2 we have |p(z, ζ)| ≥

|η|m > |η| k
∗
d . In R3, by using (3.25) and (3.38) for a constant ε > 0 which we may

take as small as we want by fixing B sufficiently large, we have

Q1(ζ) ≤ const

(∑
k

1

|ξ|2d−
k
m−

k∗
m

+
1

|ξ|δ
d
m

)
< ε , |ζ| > B .

We have therefore proved that Q1(ζ) is bounded. Arguing in the same way on
Q2(ζ), Q3(ζ) and Q4(ζ), we prove their boundedness in R2.

Remark 3.4. By formulas (3.26), (3.33), (3.38), we obtain that |p(z, ζ)| ≥ a |ζ| k
∗
m ,

a > 0, |ζ| > B, since we are considering the case when dj + ml < dm. If we refer
to the anisotropic weight function λ(ζ) = |ξ| dm + |η| ∼ (|ξ|d + |η|m)

1
m , we find that

(3.39) |p(z, ζ)| ≥ bλ(ζ)
k∗
d , |ζ| > B,

for a suitable positive constant b.

Now Lemma 3.1, Lemma 3.2, Lemma 3.3 and the estimate (3.39) complete the
proof. �

Remark 3.5. It is possible to propose a geometric invariant generalization of Theo-
rems 1.1 and 1.2, to pseudo-differential operators with involutive characteristics of
multiplicity m ≥ 4, in more than two space variables, by arguing microlocally, using
classical Fourier integral operators and Smρ,δ arguments. This will be the subject of
another paper.
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