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BURGHELEA-FRIEDLANDER-KAPPELER’S GLUING FORMULA
FOR THE ZETA-DETERMINANT AND ITS APPLICATIONS
TO THE ADIABATIC DECOMPOSITIONS OF THE
ZETA-DETERMINANT AND THE ANALYTIC TORSION

YOONWEON LEE

ABSTRACT. The gluing formula of the zeta-determinant of a Laplacian given
by Burghelea, Friedlander and Kappeler contains an unknown constant. In this
paper we compute this constant to complete the formula under an assumption
that the product structure is given near the boundary. As applications of this
result, we prove the adiabatic decomposition theorems of the zeta-determinant
of a Laplacian with respect to the Dirichlet and Neumann boundary conditions
and of the analytic torsion with respect to the absolute and relative boundary
conditions.

1. INTRODUCTION

In [3], Burghelea, Friedlander and Kappeler established a gluing formula for the
zeta determinant of an elliptic operator on a compact manifold. This formula con-
tains an unknown constant which can be expressed in terms of the zero coefficients
of some asymptotic expansions. In this paper we compute this constant in the case
when the product structure is given near the boundary, and then we apply this
result to prove the adiabatic decomposition theorems for the zeta determinant and
the analytic torsion. Some results of this paper are known from the work of Klimek
and Wojciechowski in [6], but our method is completely different from theirs.

Let M be a compact oriented m-dimensional manifold with boundary Z (Z may
be empty), and Y a hypersurface of M such that M — Y has two components and
Y NZ = 0. We denote by My, Ms the closure of each component, i.e. M = M; Uy
M. Choose a collar neighborhood N of Y, which is diffeomorphic to [—1,1] x Y,
NNZ =, and choose a metric g on M that is a product metric on N. Suppose that
E — M is a complex vector bundle such that F|y has the product structure, which
means that E|y = p*Ely, where p : [-1,1] x Y — Y is the canonical projection.
Let Aps be a Laplacian acting on smooth sections of E, and let Ay, Aps, be the
restrictions of Ays to M7 and Ms. By a Laplacian we mean a positive semi-definite
2nd order differential operator whose principal symbol is o, (Ap)(z, &) = ||€]]2. We
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assume that Ay is =92 + Ay on N, where 9, is the unit normal vector field to YV’
on N, outward to M7, and Ay is a Laplacian on Y.

We denote by D, B the Dirichlet boundary conditions on Z, Y and by C the
Neumann boundary condition on Y, defined as follows:

D:C*(M;) = C*(ZnM;) by  D(¢) = 9|z,
B:C¥(M;) — C=(Y) by  B(¢) =9ly,

C:C0%(M;) = C=(Y) by  C(d)=(0ud)ly
Then the Laplacian Ay p (Awum,,B,p, Am,,c,p) with the Dirichlet condition on Z
(the Dirichlet condition on Y and Z, the Neumann condition on Y and the Dirichlet
condition on Z) is defined by the same operator Ay (Ajpy, ) with domains as follows:

Dom(Ay.p) ={¢ € CF(M) | D(¢) = 0},

Dom(Au;.p.p) = {¢ € C(M;) | B(¢) =0 D( ) =0},

Dom(Aw,.c.p) ={¢ € C=(M;) [ C(¢) = 0,D(¢) = 0}.

For computational reasons, we consider Ay , + ™, Ay 5 5 + 1™ and
At oo b, Tt (L E R™) rather than Ay p, Ay, 5.0 and Ang, o.p, where Dy,
B,, and C,, are the Dirichlet and the Neumann boundary conditions corresponding
to Ay, Ay (or Ay +t™, Ay +t™) defined as follows:

Dy, = (D,DAp, - DAY,
Bm = (BﬂBAMm to 7BA%:1)a
Cm = (C,CAp, - - ,CAﬂ:l).

Note that
’IIL 1
m Hk,7 (21 (Anp + e L) if m is odd,
Mmp+UT = m_1) i o
k:_[%](AM,D +em t) if mis even.
For —[—] <k< [ ] let oy = € "m if m is odd, and oy, = (Zkfnl)w if m is even.

Now we describe the so-called Dirichlet-to-Neumann operator R(agt) : C*(Y) —
C>=(Y) associated to Ay p + axt on Y. Let P;(axt) : C°(Y) — C*°(M;) be the
Poisson operator on Y associated to Apsp + oyt, which is characterized by the
following equations (for details see [3], [, []]):

BPZ‘ (Oékt) = Idy, DPi(akt) = 0, (AM + Oékt)Pi(akt) = 0.
Then R(at) is defined by the composition of the following maps:

P1 (akt) P2 akt

C¥(v) 2 (V) 0 0 (1) |

L ey @ o) 2 o),
where 6ia(9) = (9,9), C1(d1) = (Qud1)|y, Ca(¢2) = (Ou¢2)ly and 6if(g,h) =g —h.
It is known that R(axt) is a DO of order 1 (¢f. Theorem 2.1) and by choosing 7

as an Agmon angle, log DetR(ayt) is well defined. The following theorem is due to
Burghelea, Friedlander and Kappeler ([g], see also [3] and [4]).

C>™ (M) @ C*°(Ms)
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Theorem 1.1.
log Det(AY; p, +1™) —log Det(AY}, g

(=571 (=571

=— Z cr + Z log DetR(ayt),

k=—[%] k=—[%]

p. +t™) —log Det(A’]\}z’BmD + ")

mydm m

where ¢y, is the zero coefficient in the asymptotic expansion of log DetR(ayt) as
t — oo.

Remark. In [3] and [8], Theorem 1.1 was proved only in the case Z = ). However,
the proof can be extended without any modification to the case that Z is non-empty.

The purpose of this paper is to compute the zero coefficients in Theorem 1.1
under the assumption of the product structures on N and F|y, and then to apply
this result to prove the adiabatic decomposition theorems for the zeta-determinant
of a Laplacian and the analytic torsion. We first have the following theorem.

Theorem 1.2. We assume the product structures of M and E on N and Ay =
—02+ Ay on N. Then Y, ck =mlog?2- (Cay (0) + dimKerAy).

Setting t = 0, we get the following corollary.
Corollary 1.3. We further assume that Ay p is invertible. Then

log DetAps p —log DetAyy, B,p — log DetAp, B.p
—log2 - (Ca, (0) + dimKerAy) + log DetR.

Remarks. (1) If dimY is odd, it is well-known that (a, (0) + dimKerAy = 0. In
this case, the assertion in Corollary 1.3 can be written as follows:

log DetAps, p —log DetAyy, B, p — log DetAy, g,p = log DetR,

which was observed in [7].
(2) Theorem 1.1, Theorem 1.2 and Corollary 1.3 also hold when we impose the
absolute (or the relative) boundary condition on Z (see Theorem 5.2).

The main idea of proving Theorem 1.2 is to show that under the assumption
of the product structure, R(ayt) can be expressed as 2v/Ay + axt + a smoothing
operator (Theorem 2.1). We are going to show this fact in the next section by using
an observation, due to I.M. Gelfand (probably unpublished), that the Dirichlet-to-
Neumann operator satisfies a Ricatti type equation (cf. (2.2)).

Now we apply Corollary 1.3 to discuss the adiabatic decomposition of the zeta-
determinant of a Laplacian into the zeta-determinants of Laplacians with the Dirich-
let and Neumann boundary conditions. Recall that NV is a collar neighborhood of Y,
which is diffeomorphic to [—1,1] x Y. We denote by M,. the compact manifold with
boundary obtained by attaching N,11 = [-r—1,74+1] xY to M — (—%, %) xY by
identifying [—1, —%] xY with [-r—1, —r—%] xY and [%, 1]xY with [r—i—%, r+1]xY.
We also denote by M; ,, M3, the manifolds with boundary which are obtained by
attaching [—r,0] x Y, [0,7] X Y to My, My by identifying ¥V with {—r} x Y and Y
with {r} x Y, respectively. Then the bundle £ — M and the Laplacian Ay on M
can be extended naturally to the bundle E, — M, and the Laplacian Ay on M,.

To describe the next result, we need to define the operators @; : C*(Y) —
C>*(Y) (i = 1, 2) by slightly modifying the Dirichlet-to-Neumann operator. For
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f € C®(Y), choose ¢; € C°°(M;) satisfying Ap,¢i = 0, ¢i]z = 0 and ¢;]y = f.
We define

Q1(f) = (Oué)ly, Q2(f) = (—=0ug2)|y-
Then each Q; is an elliptic ¥DO of order 1 (¢f. Theorem 2.1), and the Dirichlet-
to-Neumann operator R is R = Q1 + Q2. The following is the second result of this
paper.

Theorem 1.4. We assume that both Q1 + /Ay and Q2 + /Ay are invertible
operators and k = dimKerAy. We further assume that Ay, p is invertible for r
large enough. Then

lim {log Det(Anr,,p) — log Det(Ans, . ,p) — log Det(An,, .p) + klogr}
T—00
1
=3 log DetAy .

Remarks. (1) If Ay has non-trivial kernel, we define DetAy from the zeta function
CAy (s) consisting of only non-zero eigenvalues.

(2) If Ay is a connection Laplacian for a connection compatible with the inner
product, each Q; is a non-negative operator (Lemma 4.3).

(3) Suppose that Ay; = A2 for a Dirac operator A which has the form G(8, + B)
near Y with G a bundle automorphism satisfying

(1.1) G* = -G, G? = —Id, B* = B, GB = —-BG.

Here G and B do not depend on the normal coordinate u. Then the invertiblity of
both Q1 + VB2 and Qs + v/ B2 is equivalent to the non-existence of the extended
L?-solutions of Ay, ., A, on My o and Ma o (Corollary 4.5).

(4) Suppose that Ay is a connection Laplacian or a Dirac Laplacian for a con-
nection compatible with the inner product, and Ay p is invertible. Then the
invertiblity of both Q1 + v/Ay and Q2 + /Ay implies the invertiblity of A M,.,D
for r large enough (Lemma 4.6).

Let Ml,r be the double of M; ,. Then it is a well-known fact that

log DetAy;  p p =log DetAyy, , c,p +1log DetAny, , B p-

Combining this fact with Corollary 1.3 and Theorem 1.4, we have the following
result.

Corollary 1.5. We assume the hypotheses in Theorem 1.4. Then:
1
(1) lim {log Det(Ap, . c,p) —log Det(Ap, . B,p) + klogr} = 5 log Det(Ay).
(2) lim {log Det(Ap,,p) —log Det(Any, , c,p) — log Det(Ans,, 8,p)} = 0.

Finally we discuss the adiabatic decomposition of the analytic torsion into the
analytic torsions with the absolute and relative boundary conditions.

Here we assume that M is a closed manifold with a hypersurface Y and M
has a product structure near Y. We define M,., M;, and M, as above so that
M, = My, Ugyxy Ma,. Suppose that prs, (pa,.,., PMe.,, py) is an orthogonal
representation of my (M) (w1 (M), m1(Ma,), m1(Y)) to SO(n), respectively. Then
we can define the analytic torsions 7(M,, par,.), Tavs(Mir, pasi,)s Tret(Mir, par,.,.)
(1 =1,2), 7(Y, py) in the standard way (for the definitions, see Section 5). Our
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goal is to recover the Klimek-Wojciechowski result about the analytic torsion in [6]
as follows.

First, let us consider M, (a manifold with boundary Y) only. For a given
representation par, , : mi(Mi,) — SO(n) and the natural homomorphism ty :
T (Y) — mi (M), define py : 71 (Y) — SO(n) by py = pu, . o ty. We denote by
AY (A(IJ\/IM) the Hodge Laplacian acting on ¢-forms on Y (on M ,) and valued in
EPY (EPJ\/ILT
(Epy, , is defined in the same way). We define Qf the same way as in Theorem 1.4
with the bundle £ = A/T*M;, ® E,,, , - If necessary, by tensoring C on E, we

regard E as a complex vector bundle. Then we have the following theorem.

), where E,, = Y x oy R with Y the universal covering space of ¥’

VAT o
Theorem 1.6. Suppose that for each q, Qf + < Oy st
operator on {—r} x Y and HY (M ,;pn, ), HI( My, Y5 par, ) are trivial groups.
Then

) is an invertible

Jim, {log Tabs (M1, pasy, ) — 108 Tret (Mi,rs pary ) } = log 7(Y'5 py ).

a. (VAT o .. :
Remark. If Q1+ < o m) is invertible, by Corollary 4.5 there are no extended

L?-solutions of d, + d} on M o, which implies that KerAq{l = KerA}, =0 (cf.
1, [, [B]).

Next, we consider the closed manifold M, and manifolds with boundary M; ,
(¢ = 1,2). For a given representation pys, : m1(M,) — SO(n ) and the natural
homomorphisms ¢z, . = 1 (M;) — 71 (M,), ty = 7 (Y) — w1 (M;,,), define pay, .
m(Mir) — SO(n), py : m(Y) — SO(n) by pu,, = pum, © LMW Py = pas,,. O Ly
We also define A, Q¥ and Q4 as in Theorem 1.6.

Theorem 1.7. Suppose that, for each q,
q VAY 0 q
QT+ ( . A‘lyl) and Q3 + ( o )

are invertible operators on {—r} xY, {r} xY, and H1(M,; pus, ), HY(My 5 pa, ),
HY(Ms,,Y; pu,.,.) are trivial groups. Then:

(1) Tlggo (1og DetA?wr — log DetA?\/[LT,abs —log DetA?\/[zﬂ,,rel) =0.

(2) lim (log7(My; par,) =108 Tabs (Mi,ri pasy ) — 108 Tret (Mar5 pass ) = 0.

Remark. Recently J. Park and K. Wojciechowski proved the following result in
[10]. Suppose that M is an odd-dimensional compact manifold with M = M; Uy
Ms and D is a Dirac operator acting on smooth sections of a Clifford module
bundle F with D = G(9, + B) near Y. Denote by P, P. the Atiyah-Patodi-
Singer boundary conditions projecting the positive and negative eigenspaces of B,
respectively. Assume that

KerB = {0}, Kerp2D1 oo = Kerp2Ds oo = {0},

where Kerp2D; o is the set of all extended L?-solutions of D; o, on M; . Then

lim {log DetD? — log DetD]QWM’P> — log DetDJQ\42,VV.’P< } = —log2-(p=(0).

7—00
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This result is the main motivation of this paper. In [9] we are going to recover this
result by using the techniques in this paper.

2. ASYMPTOTIC SYMBOL OF R(ayt)

In this section, we are going to describe the asymptotic symbol of R(ayt). The
following method was observed by I.M. Gelfand.

We start by defining Q;(axt) : C*(Y) — C>®(Y) (i = 1,2) as follows. For
f e C=(Y), choose ¢; € C*(M;) such that

(An, +ant)pi =0, dily =f, ¢ilz=0.
Then we define
Q1(axt)(f) = (Qugr)ly and  Qz2(axt)(f) = (—0ud)|y-
From this definition, we get
R(axt) = Q1(axt) + Qa(axt),

and it’s enough to consider Q1 (ayt) only. From now on we denote Q1(ayt) simply

by Q(axt).
For f € C*(Y), let ¢ be a solution of Ay, + ayt with ¢y = f and ¢|z = 0.
Then

d
Zoe(uy) = Qulart)p(u, y),
where Q. (axt) is defined similarly to Q(axt) = Qo(axt) at the level {u} x Y

2
) = (GoQulen) ) o) + Qulont o)

For 0 <u <1,

(A + aut)elunn) = ( Qulert)) o) + QulantPe(u,n)

Consequently, for 0 < u < 1,

%Qu(akt) = —Qu(akt)z —+ (Ay —+ akt).

Now let us consider the asymptotic symbol of Q. (ayt) as follows:
U(Qu(akt)) ~ ql(u7ya€) + qO(u7ya€) + -+ ql—j(uvyaf) + - )

where g1 _;(u, y, §) is the homogeneous part of o(Q. (at)) of order 1—j with respect
to €. Then

(2.2)

d d d d
(23) o (@Qu(akt)> ~ EQI(ua Y, 5) + %QO(uv Y, g) + EQIfj(uv Y, g) +eee
Note that

= 1

o (Qulert)?) ~ > D —dza-i(uw,y. &) Dyai(u,y.€)

(2.4) k=0 \W\:;erg):k
= Q%(%y,f) + (deqi Dyq1 + qoq1 + quqo) + -+ - .

Suppose that

o(Ay + agt) = (p2(y, ) + axtld) + p1(y, &) + po(y, ).
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Since d%Qu(ozkt) is a WDO of order 1, ¢3(u,y, &) = p2(y, &) + axtld. Applying the
argument of Lemma 3.3 in [§] to the double of a manifold with boundary, one can
show that

(2.5) q1(u,y, &) = V/p2(y, &) + autld.

Hence ¢; does not depend on u, and %ql(u,y,f) = 0. Again, from (2.2), (2.3) and
(2.4), since ¢; is a scalar matrix, (deq1 Dyq1 + 2q190) = p1(y, §) and

qo(u, y,€) = (201 (y,€)) " (01(y, €) — dear (4, €) - Dy (y,€)) -
Hence qo(u,y, &) does not depend on w, and %qo(u, y,€) = 0. In general,

— 1 W w
1 =Qa) 7 = D 2.6 Dyai-(u.€) + po(y.§)
|w|+iti=2
0<i,j<1
and for k > 3,
— (204) 1 ]‘dw Dv
1k = (2q1) - Z ol fa-i(y.8) - Dyqi—;(y,§)

|w|+i+j=k
0<i,j<k-1

Hence, each ¢;_j does not depend on u, and this implies that %Qu(akt) is a
smoothing operator. Setting u = 0 in (2.2), we see that
(2.6) Q(axt)? = (Ay + axt) + a smoothing operator,
and we get the following theorem.
Theorem 2.1. Under the assumption of the product structure near N, we have the
following:

(1) Qlakt) = VAy + art + a smoothing operator.

(2) R(agt) = 2+/Ay + axt + a smoothing operator.

Proof. Tt’s enough to show the first statement. From (2.5) we have

Q(Oékt) =/ AY + Oékt + A,

where A is an operator of order 0. Squaring both sides and using (2.6), we have

Qaxt)? = (Ay + axt) + VAy + aptA+ A/ Ay + apt + A?

= (Ay + axt) + a smoothing operator.

Hence /Ay + aptA + AV/Ay + oyt + A? is a smoothing operator, which implies
that A is a smoothing operator. O

3. COMPUTATION OF THE ZERO COEFFICIENT OF log DetR(ayt) AS t — 0o

It is shown in [3] that log Det R(ayt) has an asymptotic expansion as ¢ — oo and
each coefficient can be computed by the asymptotic symbol of R(axt). Hence, from
Theorem 2.1, log DetR(ayt) and log Det(2y/Ay + ait) have the same asymptotic
expansions as t — oo. In this section, we are going to compute the asymptotic
expansion of log Det(2v/Ay + ait) by using the method in [12].

Note that

1
(3.1) log Det(2+/ Ay + agt) = 1082 - ((Ay +ayt)(0) + 5 log Det(Ay + ait),
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and we are going to consider log Det(Ay + ayt). Since Re(qy) is possibly negative,
we avoid this difficulty as follows. Put oy = €% with 6, = 2’“7” for m odd and

CREDT for m even. Choose an angle ¢, with 0 < |¢| < Z so that Re(e?®x=#x)) >
0. (In fact, if 0 < |0x| < 5, we choose ¢, = 0.) Then
log Det(Ay + ayt) = log Det{e'®* (e "%k Ay + 'Ok =91))}
d .
(3.2) = _£|s=0 {6 Wksg(e—iékAere"("k—¢k>t)(S)}
= i¢k€(e—i¢kAY+ei(9k—¢k)t) (0) + log Det(e_kay + ei(ek_¢k)t).

Put ék = 91@ — ¢k Then
1 < —r(e %k Ay et )
Clemin Ay +ei@r—o0p) () = T(s) r* e v dr
0

1 > 1 + 6y, —idR A

= ) )/ ri e T Trem "¢ Ydr.
5) Jo

The following lemma is a well-known fact.

Lemma 3.1. As r — 0, we have the following asymptotic expansion:

m—2

Tre ™ FAY b T £ byr T At by + b7 A
with by, = Ay (0) + dimKerAy.

Now we are going to compute the asymptotic expansion of C(e*i‘i’kAy+ei§k 1t)(s)

as t — oo:
1 < s—1 —7"156”5’c —re Pk Ay
C(e*i¢kAy+ei§kt) (s) = TS) rooTe Tre dr
0
- r(l ) /w(%)51e“€"’§kTre%e_mkm%du
$)Jo
1 ° 0, w —ibp A
=R )/ wTleT e Trem i T Y du,
$) Jo
Ast — oo,
0o 1 00 ‘ .
- — & . s—1 el J=_m _ 10
C(e—kay_i_eiekt)(S)Nt 9z:mb]/o us (t) 7 e uek
Jj=1
> 1 o) ) i
S L [T ey
=i I'(s) Jo
Jj=1
oo ~ 1 - ) ;
:ijt_s—‘r%m(e_wk)s—k% ; (u,ewk)g""%_l —ue’ ’“( wk)du
=1

j=—m _

Consider the contour integral [, 25772 ~'e™*dz for Res > mT_j, where

C:{reié’“ le<r<R}U{ee” |0<0<0;}
U{r|e<r<R}U{Re"?|0<6<0)}
and oriented counterclockwise. Then one can check that

o = o s = %) o i m
(uelek)SJrJ 7 lg—uek (ele’“)du = PSRt e gy = I(s+ ‘7—).
0 0 2
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We therefore obtain the following asymptotic expansion for ¢ — oco:

> Y MF(S‘Fj_—m) gy m—i
C(efkay_i_eiékt)(s)Nij(e wk)s+ 3 Ts)Qt s+

j=1

o0 y —
5 i—m D(s + 57) mj 5
— b e—wk s+15 72t—s+ > b e—wkst—s.
2 bile™) T(s + 1) +om
Jj=1
j#m
This gives the asymptotic expansion of C(e*i%Aerei@k t)(s) as t — oo. In view of
Theorem 1.1 we are mainly interested in the zero coeflicients in the asymptotic
: !
expansions of C(e—kaereiékt) (0) and C(e_i(f’kAy+ei§kt)(0) as t — oo.

First, setting s = 0, the zero coefficient 7T0(C(e (0)) in the asymptotic

_i(pkAereiék t)

expansion of ¢, 0) is the following:

*i‘?"kAy—i-eiékt)(
(33) WO(C(e—a‘,(pk Aere"";kt) (0)) - bm - CAY (O) + dz’mKerAy.
Taking the derivative at s = 0, the zero coefficient of Cée*kay-reiékt)(O) can be ob-

tained only in the term by,e~"#*$¢t=%. Hence, by (3.2) and (3.3), the zero coefficient
mo(Ay + ait) in the asymptotic expansion of log Det(Ay + ayt) as t — oo is
(?ZT?lgAY + ait) = Z:QSI@(CAY (0) + d.z'mKerAy) +i(0k — 01)(Cay (0) + dimKerAy)
=i0,(Cay (0) + dimKerAy).
We summarize the above computations as follows.
Proposition 3.2. The zero coefficients in the asymptotic expansions of
C(e—kaereiékt) (0) and logDet(Ay + ayt)

as t — oo are the following:
(1) WO(C(e—msk Ay +eili) (0)) =C¢a, (0) + dimKerAy.
(2) mo(Ay + axt) = i0k(Cay (0) + dimKerAy), where ay = ',

Now we are ready to compute ¢ = ), ¢ in Theorem 1.1. Since {(ay 1a,4)(0) =
C(e—kaereiékt) (0), from (3.1) and Proposition 3.2 we get

1
¢ =1log2 - (Ca, (0) + dimKerAy) + Eiek(CAy (0) + dimKerAy),
and hence
Z e, =mlog2- (Ca, (0) + dimKerAy).
k
This completes the proof of Theorem 1.2.

4. THE ADIABATIC DECOMPOSITION
OF THE ZETA-DETERMINANT OF A LAPLACIAN

In this section we are going to prove Theorem 1.4. Recall that
My, =M Uy [-r,0] xY, My, =M;Uy [0,r] XY,
where we identify Y with {—r} x Y and Y with {r} x Y. Then
(4.1) My = My Ugoyxy Ma,y-

Throughout this section we denote {r} xY by Y., the Dirichlet (Neumann) condition
on Y, by B, (C,) and the Dirichlet condition on Z by D. We assume that Ay p
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is invertible. Then, under certain conditions, Ay, p is also invertible for r large
enough (Lemma 4.6).
From the decomposition (4.1) and Corollary 1.3, we have

(4.2) log DetAypy, p = log DetAyy, . By,p +log DetAny, , By, D
—log2-(¢a, (0) + dimKerAy) + log DetRyy, .
From the decomposition M, = (M; U M3) U N, with N, = [—r,7] X Y, we have

log DetAyy, . p = log DetA v, une,),B_,,B,,p0 +1og DetAn, B_, B,
—log2- (Cayyy (0) + dimKerAyyy) + log DetR_,.
= log DetA, g,p +log DetAn, B.p +log DetAn, 5_, B,
—2log2 - (Cay (0) + dimKerAy) + log DetR_, .,

(4.3)

where R_,, : C®°(Y_,) ® C®(,) — C>°(Y_,) & C*°(Y;) is the Dirichlet-to-
Neumann operator corresponding to the decomposition (M; U M) U N,..

Put N_, o = [-7,0] x Y and Ny, = [0,7] x Y. Since M;, = M7 UN_,( and
My, = M> U Ny, we have

(4.4) log DetAyy, , By,p = log DetAyy, p,p +log DetAn_, , B_, B,
—log2- (ay (0) + dimKerAy) +log DetRyy,

(4.5) log DetAngr,Bo,D = log DetAMQ,B,D + log DetANo,r,Bo,Br
—1log2- (Cay (0) + dimKerAy) 4 log DetRyy, , .

Here Ay_, ,.B_,.B, = —02+ Ay with the domain {¢ € C*(N_,.0) | ¢ly_, = 9|y, =

0} and Ryy, . is the Dirichlet-to-Neumann operator corresponding to the decompo-

sition My, = My U ([=7,0] xY). An,..B,,B, and Ry, are defined similarly.
Then from (4.2)—(4.5), we have

—log2- ({a, (0) + dimKerAy) + log DetRyy,
= 10g DetANT,B,T,B,,. - log DetAN,no,B,,,,Bo - log DetANo,,v,Bo,B
(4.6) +log DetR_,., —log DetRyy, . —log DetRyy, , .

r

From the decomposition of N, as
N, = ([-r,0] xY)U ([0,7] xY),
we have

(4.7) log DetANT,B_T,BT — log DetAN_T,o,B_T,Bo — log DetANo,r,Bo,Br
= —log2- ({a, (0) + dimKerAy) + log DetRy,,

where Ry, : C®(Yy) — C*(Yp) is defined as follows. For f € C*(Yp), choose
é(u,y) so that (=02 + Ay)é = 0 on N, — Yy, ély, = f, ¢ély_, = ¢|y, = 0. Then,
Ry, (f) = (0u(@|n_,0) — Ou(P|No.,)) |vo- Hence, we obtain from (4.6) and (4.7)

(4.8) log DetRyy, = log DetRy, +log DetR_,. . —log DetRyy, , —log DetRyy, .
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Now we are going to find the spectrum of Ry, : C*(Yy) — C*°(Yp). For
fx € C(Yy) with Ay fr = A fr, we have

VAT
Varu € VARt o=/ ARu
(6 Y4 e\/A_kT _ e—mT (6 i € H) fk(y)
P(u,y) = for (u,y) € N_, o,
—/ AT
(e - e (@ — e ()
for (u,y) € Ny,

Hence,

e )\kT’ — e )\kr

—VAgr
RN, (fx) = (2\/E+ M) fr,

et
where we interpret % as % when Ay = 0. The spectrum of Ry, is

4/ e~ AkT
{2\/ A+ m | A € Spec(Ay)} .

Let Prera, @ C°(Y) — C°°(Y) be the orthogonal projection onto KerAy.
Then

CRNT (S) - C(Q\/AYJF%PKETAy)(S)

-y (2\/ﬁ+ A Ake”

)\kT’ — p— )\kT
20 e e

)\kT’

) -Gy

The following lemma can be checked easily.

Lemma 4.1. Let A be an invertible elliptic operator of order > 0, and K, a one-
parameter family of trace class operators such that im, o, Tr(K,) =0. Then

lim log Det(A + K,) = log DetA.
Proof. Note that

1
log Det(A + K,) —log DetA = / % log Det(A + tK,.)dt
0

1
- / Tr ((A+tK,) 'K, dt.
0
If we denote by Ao the smallest eigenvalue of |A|, for r large enough we have

1
|log Det(A + K,) —log DetA| < KTT(KT)
0

and hence the result follows. O
Applying Lemma 4.1 with A = 2y/Ay and K, = g,(Ay) with
4y/ze VT

9r(x) = P

on the orthogonal complement of KerAy, we get the following equation:

2
lim {log DetRy, — log Det(2+/Ay + ;PKeTAy)} = 0.

T—00



4104 YOONWEON LEE

Since
(4.9)
2 1
log Det(2v/ Ay + ;PKWAY) =log2- (Ca, (0) + dimKerAy) + 5 log DetAy

— (dimKerAy)logr,
we get the following corollary.
Corollary 4.2.
lim (log DetRy, + (dimKerAy)logr)

T—00
1
=1log2- (Ca, (0) + dimKerAy) + = log DetAy .
Now we discuss the operators Ry, .., R, and R,M First, we can describe
Rar,, : C®(Y_,) = C=(Y_,) as follows. For f, € C*°(Y_,) with Ayfk = A Sk, we

choose the section ¢ € C°(M; ,.) satisfying Apr,,0=00on My, —Y_,, ¢ly_. = fi
and ¢|z = ¢ly, = 0. Then one can check that

R, (fr) = Q1(fx) — (Ou(dIn_,.0))ly_.
L€ AT
= Q1(fr) + (\/7‘# 2;/_—> fr-

ET — e )\kT’

In the same way,

R, , (fx) = Q2(fr) + (Ou(dln,.,)ly,
AT
= Qa(fr) + <\/7+ 2Ak\/_e—> Fi.

—e )\kT’
Similarly, R_, , : C*®(Y_,)®C>(Y,;) — C>®(Y_,)®C>(Y;) is described as follows:
R—r,r(flw 0)

2/ e 2V A 2V i
<Q1 (fr) + (\/ RN e )\kr>fka _62\/A_w_e—2\/k_wfk>’

R*T:T(Ov fk)
VAT
(ot - 25250)

)\kT — e 2 )\kT

We therefore have

Q1+ VAy 0 e 2rVAy -1
—r,r — T A P
o ( 0 Q2 +VAy he(Ay) -1 e 2rvAaY

where h,(x) = M#_%f and h,(Ay) acts on KerAy as multiplication by = 5

We are going to discuss the operators Q; and @Q; + +/Ay. The following lemma
can be checked by using integration by parts (cf. Proposition 4.3 in [2]).

Lemma 4.3. Suppose that V is a connection which is compatible to the inner
product on M. ie. for any sections s1, s € C°(E) and a tangent vector w,
w(s1,82) = (Vws1, $2)+ (51, Vwse). If Ay = V*V, then each Q; is a non-negative,
self-adjoint operator.
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Next, let us consider a Dirac Laplacian for a Dirac operator A which has the
form G(0,, + B) near the boundary Y, where G is a bundle automorphism satisfying
the conditions (1.1), and both G and B do not depend on the normal coordinate
u. We refer to [5] for the following lemma (¢f. Lemma 3.1 in [3]).

Lemma 4.4. Let ¢ and 1 be smooth sections on M; (j =1, 2). Then

(At &, ) vy — (&, An, V), = €5(Bly, G(¥ly )y,
where €; =1 for j =2 and ¢; = —1 for j = 1.

Suppose that for f € C>(Y), ¢, is the solution of A?wj with ¢;|y = f, ¢j|z =0.
Then by Lemma 4.4 ‘

(4.10) Q1+ 1B, flv = (Amy d1, A 1) i, +((|Bl = B) £, f)v,
(4.11) Q2+ |BNf, f)y = (An 2, Anty d2) s, + ((|Bl+ B) f, f)y-

As a consequence, f € Ker(Q1 + |B|) if and only if Ay, ¢1 = 0 and f € ImP>;
and hence on the cylinder part we can express ¢ as

k
o1 = Zajgj + Z bjei)\Juhj,
j=1

)\J‘ >0

where Bg; = 0, Bh;j = Ajh;. This implies that ¢; is the restriction of an extended
L2-solution of AMy 0o 00 My oo == M7 Uy Y x [0,00). We can make a similar
assertion for ¢o and have the following corollary (¢f. Theorem 2.2 in [5], see also

A, 21).

Corollary 4.5. The invertibility of Q1 + VB? and Qo + VB2 is equivalent to
the non-existence of the extended L*-solutions of Ay, .. and Ay, . on My o and
My . In particular, this condition implies that KerB = 0.

Lemma 4.6. Suppose that Ay is either a connection Laplacian or a Dirac Lapla-
cian for a connection compatible to the inner product as above, and Apr.p is in-
vertible. If both Q1 + /Ay and Q2 + /Ay are invertible, then R_,, and Ay,
are invertible for r large enough.

Proof. We are going to show first that R_, , is injective. Then this implies that
Ay, is injective. Since Ay, ,, is self-adjoint, Ay, ,, is invertible, and this implies
again that R_, , is also invertible ([3], [8]).

Putting A, = h.(Ay) with h.(x) = %, we get

(o) )

=((Q1+ VAY)f, f) + ((Q2+ VAy)g,9)
+ <Ar6_2r Ayf7 f> + <Ar6_2r Ayg7g> - (A,«g, f> - <Arf7 g>-
Note that each @; + VAy is a non-negative operator by Lemma 4.3 and (4.10),
(4.11). Let A\g be the minimum of the eigenvalues of Q1 + v/Ay and Qs + /Ay

Since lim, 0 || 4|2 = 0, one can choose rg so that ||A,||r2 < Ag for r > rg. Then
R_,  is injective for » > r and this completes the proof. O
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In case both Q1 + /Ay and Q2 + /Ay are invertible, we can apply Lemma 4.1
directly.

Corollary 4.7. Assume that both Q1 ++/Ay and Q2+ /Ay are invertible. Then:
(1) limy o log DetRyy, . = log Det(Q1 + /Ay ).
(2) lim, o log DetRyy, . = log Det(Q2 + /Ay ).
(3) limy o0 log DetR_,. . = log Det(Q1 + v/Ay) + log Det(Q2 + v/Ay).

Combining Corollary 4.2 with Corollary 4.7 and (4.2), (4.8), we complete the
proof of Theorem 1.4.

5. THE ADIABATIC DECOMPOSITION OF THE ANALYTIC TORSION

In this section, we are going to prove Theorem 1.6 and Theorem 1.7. Recall that
M is a closed manifold of dimension m with the product structure near a hypersur-
face Y. We define M,., M; , and M3, as in Section 4 and suppose that pas, (pMLT,
PMs,.,.» Py) is an orthogonal representation of 71 (M;) (71 (M ), m1(Ma,), m1(Y))
to SO(n), respectively. Then we can construct a flat bundle E,,, = M, x on, R,
where M, is the universal cover of M,. The flat bundles Eori s Eou,, and E,,
are defined in the same way.

For each ¢, denote by A}ZWT = (dg + d;)2 the Hodge Laplacian acting on ¢-forms
valued in E,,, . Then the analytic torsion 7(M,, pys, ) is defined by
m

Z(—l)q -q-log DetAf, .

q=0

log 7(M,, p,) =

N =

To define the analytic torsion on M; ,, we choose the absolute or the relative bound-
ary condition on Yj. Near Y, a differential ¢g-form w can be expressed by

(5.1) w = wi + du A wa,
where w; and ws do not contain du.

Definition 5.1. Suppose that a g-form w in M , is expressed as in (5.1).
(1) w satisfies the absolute boundary condition if (Oyw1)|y, = 0 and wa|y, = 0.
(2) w satisfies the relative boundary condition if wi]y, = 0 and (Oyw2)ly, = 0.

We denote by QI (M;,), Q. (M;,) the sets of all g-forms valued in Eyy,
satisfying the absolute and the relative boundary conditions, respectively. We also

denote by A%, A(JZ\L:,TW .1 the Laplacian acting on g-forms valued in Ejy, . with

i,r,abs?
Dom(A‘IJ\/I,:,T,abs) = ngs(Miﬂ“)’ Dom(A(IJ\/Iiyr,rel) = Qzel(Miﬂ“)'
Then the analytic torsions Taps(Mir, par, ) and Tpei(M; ., pi, ) are defined by
1 m
log Tabs (Miﬂ“a pMi,'r') = 9 Z(_l)q -q-log DetA(JZ\/I,;,T,absa
q=0

log Trel(Mi,ra pMi,,r) = (_1)(1 ~q - log DetA?wi),,.

,rel*

N =
NE

Q
I
o

It is a well-known fact (¢f. [I1]) that
KerAy, s = HU (M pu,, ), KerAS, = HY(M;,,Y;pn,,)-

i,rorel
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We consider M, (a manifold with boundary Y) first. Recall that M, =
MiUy  N_,owith N_,o=[-r0xY,and Y_, ={—r} xY, Yy = {0} xY. We
denote by B, D the Dirichlet boundary conditions on Y_,., Yy, respectively.

For a given representation pys, . @ 71 (Mi,) — SO(n), define py : m(Y) —
SO(n) by py = pu,., o ty, where vy : 71 (Y') — 71 (My,,) is the natural homomor-
phism. Then the restriction of the bundle E,, ~to Y is isomorphic to E,, , (cf.
[110).

The set QU(N_.0, Epy,,
posed as follows: ’

(5'2) Qq(N—hOvEleyrlN—r,o):COO([_raO] PMy . |N 7‘0)®Q (Y EPY)
@ du A C=([=1,0], Bpyy, IN_,0) ® QT HY, Epy ).

IN_, o) of g-forms valued in E,,, |nv_,, can be decom-

From this decomposition, the Laplacian A‘]’Vh _» when restricted to N_; o, can be
expressed as

AL 0
5.3 Al ——aﬁ+( Y _>,
( ) My 0 AQY 1

where A{ is the Laplacian acting on g-forms on Y, valued in E,, . Here and
throughout this section we use the convention that Ay =0 for ¢ < 0 or ¢ > m.

To describe the gluing formula of the type of Theorem 1.1 (or Corollary 1.3)
in this context, we need to define modified Dirichlet-to-Neumann operators Q%,
Qq wo,abs and QN - as follows. For simplicity, set E = (A"T*M,)® Epu,
For a given f € C°°(E|y ), choose smooth sections ¢ € C®(E|nr,), Yabs €
C>(E|nN_,,) and e € C°°(E|N71,10) such that

A(II\/11¢ = 07 A%_T)Owabs = A(]1\/'_“011)7’6[ = Oa ¢|Y7r,- = wabs|Y,,,. = wrel|Y,r = f

and Yaps (Yrer) satisfies the absolute (relative) boundary condition on Yj, respec-
tively. Then we define

QI(f) = (ud)lv_,,
Noroabs(F) = (Z0utabs)ly_,, QN ra(f) = (=0utbra)ly_,,
and
RE s = Q1 + Q?v,,,.,o,absa RE .o = Q1 + Q% _ro,relt

Then the following theorem can be proved in the same way as Theorem 1.1 (¢f. the
Remark after Corollary 1.3).

Theorem 5.2. We denote kg = dimKerAl,. Then:
(1) log DetA(}VILT,D — log DetA(}VIhB — log DetA?V_TYmB,D
= —log Q(QAQY_l(O) +Cae (0) + kg—1 + kq) + log Det R, 1.

(2) log DetA?V[LT,abs — log DetA(}Vh,B — log DetA?v,,,o,B,abs

= - 1Og2(CA§1,71 (O) + CA;I, (0) + kq—l + k‘]) + IOg DethB,abs'

(3) logDetAf, . —logDetAl, p—logDetAy 5 .
- IOg 2(<A‘1Y—1 (O) + CA%, (0) + kQ*l + kQ) + 1Og DethB,rel'
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We next describe the operators A?\L,,O,B,abs and A?\I,,,O,B,ral' From the decom-
position (5.2), we have

Al _ (_873 + A%)N,,,.,D,B,C 0

N_r0,B,abs 0 (_812;+Aqy_1)N_T,O,B,D )
Al _ (_873 + AqY)Nfr,o,B,D 01

N_r0,B,rel 0 (—83+A({,_ )N_T,O,B,C ;

where C' means the Neumann boundary condition on Yy and B (D) means the
Dirichlet boundary condition on Y_,. (Y;). Hence, we have

(54) IOg DetA?V,T’O,B,abs - IOg DetA?V—r,mBaD
=log Det(—92 + AL)N_,.o.5,c — log Det(—02 + AL)N_, 4.8,

(55) IOg DetA?V,nO,B,rel - 1Og DetA(]IV—r,O,BvD
=log Det(—0% + AY V)N, o.5.c —log Det(—0% + AY V)N, o.5.0-

VAT o
Now we assume that Q7 + ( ) v Jart
cian Af, is a Dirac Laplacian satisfying (1.1), by Corollary 4.5 we have k,_1 =
kq = 0 (¢f. the Remark below Theorem 1.6). By Corollary 1.5 and (5.4), (5.5) we
have

) is invertible. Since the Hodge Lapla-

1
(5.6) TILIIOIO {log DetA‘}V_TYmB,abS —log DetA(]]v,,,o,B,D} =3 log DetAY,,

1 _
(57)  lim {1og DetAYy | e —log DetA?v_T)O,BD} = Slog DetAy .
From Theorem 5.2 we have
log DetA‘}VIM

,Q

= <log DetA‘}V_TYO,B@bS — log DetA‘]]V_TYO,B,D)
(5.8) + log DethBﬂbs —log DethBp,

bs — log DetA‘}VIM,D

log DetA‘}VIM o — log DetA‘}VIM’D

,T

= (log DetA‘}V_TYmB’rel —log DetA}ZVH.’O’B’D)
(5.9) +log DetRy ., — log Det R p.

q
Lemma 5.3. Suppose that Q1 + ( v OAY > 1s invertible. Then

0
TlLII;O log DetRY, ;= TILH;O log DetRY, .., = Thj& log Det R,
VAT 0
= log Det <Q‘{ + ( ; Y = >) .
Y

Proof. The last equality is exactly the assertion (1) in Corollary 4.7. We are going
to show that

lim log DetRY, ,, = log Det (Q‘f + ( Var 0 )) .

r—00 0 Aqy_l
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The case of log DethB’rel can be proved in the same way.
By a direct computation one can check the following. For f € Q4(Y, E,, ) with

AL f =M,
v zﬁe—ﬁr )f

RqB,abs(f) = Qtll(f) + <\/X— m

For g € Q1 1(Y, E,, ) with AL g = ug,

2 //[/e_ ur
RY s(du A g) = Qf(du A g) + (\/ﬁ + h) duhg.

Then the result follows from Lemma 4.1.
From (5.6)—(5.9) and Lemma 5.3, we have the following corollary.

Corollary 5.4. Suppose that Q¥ + ( v OAY V%) is invertible for each q. Then
Y

the following equalities hold:

(1) TILIIOIO {1og DetA‘JZ\/hmabs —log DetA(JZ\/ILT,D}
_ 1log DetA} 0<g¢g<m-—1),
0 (g =m).
(2) 7nliﬁrgo {1og DetA‘]Zwlmrel —log DetA‘]ZwlmD}

0 (g=0).
Now we are ready to prove Theorem 1.6. We have

lim {log Taps (M1, pay,) — 108 Tret(Mar, pary ) }

_ {%bgDetAg,l (1<qg<m),

1 m
= lim 5 Z(—l)q -q - (log DetAnpy, , abs — log DetApy, . p)
q=0
RS
- Thj& 3 ZO(—l)q -q - (log DetAnpy, , et —log DetAyy, | D)
-
1 m—1 1 m
= 1 ()7 g log Det(AY) — 1 S (1) g log Det(AL )
q=0 q=1
1 m—1 1 m—1
=3 (=1)9-q-log Det(AL) + 1 (—1)?-log Det(AY,)
q=0 q=0
- T(Yv pY)
This completes the proof of Theorem 1.6. O

Next, we take care of the closed manifold M, = M , Uy, Ms,. From Theorem
1.4, we have

T—00

lim {log DetAf, —log DetA(}VILND — log DetA?\me}

1
=5 (log DetAY, +log DetA?l) .
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On the other hand,
lim {log DetA‘]’m —log DetA‘}VIL“D —log DetA(Jsz,,,.,D}

T—00

= lim { (1og DetA?wr —log D.eﬁA‘]]V[LmabS —log DetA?wszel)

T—00

+ (1Og DetA(JZ\/Il,T,abs — log DetA(JZWLmD)

+ (log DetA‘}VIZT,Tel —log DetA‘JZ\b)T,D)} )

From Corollary 5.4 we have

lim {1og DetAf, —log DetA‘JZ\/[“

T—00

bs — 1ogDetA}1w2mrel} =0,

,a
and therefore we obtain

lim {T(MMPMT) - Tabs(Ml,mleyr) - Trel(MQ,mngyr)} =0,

T—00

which completes the proof of Theorem 1.7.
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