
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 355, Number 10, Pages 4093–4110
S 0002-9947(03)03249-5
Article electronically published on June 24, 2003

BURGHELEA-FRIEDLANDER-KAPPELER’S GLUING FORMULA
FOR THE ZETA-DETERMINANT AND ITS APPLICATIONS

TO THE ADIABATIC DECOMPOSITIONS OF THE
ZETA-DETERMINANT AND THE ANALYTIC TORSION

YOONWEON LEE

Abstract. The gluing formula of the zeta-determinant of a Laplacian given
by Burghelea, Friedlander and Kappeler contains an unknown constant. In this
paper we compute this constant to complete the formula under an assumption
that the product structure is given near the boundary. As applications of this
result, we prove the adiabatic decomposition theorems of the zeta-determinant
of a Laplacian with respect to the Dirichlet and Neumann boundary conditions
and of the analytic torsion with respect to the absolute and relative boundary
conditions.

1. Introduction

In [3], Burghelea, Friedlander and Kappeler established a gluing formula for the
zeta determinant of an elliptic operator on a compact manifold. This formula con-
tains an unknown constant which can be expressed in terms of the zero coefficients
of some asymptotic expansions. In this paper we compute this constant in the case
when the product structure is given near the boundary, and then we apply this
result to prove the adiabatic decomposition theorems for the zeta determinant and
the analytic torsion. Some results of this paper are known from the work of Klimek
and Wojciechowski in [6], but our method is completely different from theirs.

Let M be a compact oriented m-dimensional manifold with boundary Z (Z may
be empty), and Y a hypersurface of M such that M − Y has two components and
Y ∩Z = ∅. We denote by M1, M2 the closure of each component, i.e. M = M1 ∪Y
M2. Choose a collar neighborhood N of Y , which is diffeomorphic to [−1, 1]× Y ,
N∩Z = ∅, and choose a metric g on M that is a product metric on N . Suppose that
E →M is a complex vector bundle such that E|N has the product structure, which
means that E|N = p∗E|Y , where p : [−1, 1]× Y → Y is the canonical projection.
Let ∆M be a Laplacian acting on smooth sections of E, and let ∆M1 , ∆M2 be the
restrictions of ∆M to M1 and M2. By a Laplacian we mean a positive semi-definite
2nd order differential operator whose principal symbol is σL(∆M )(x, ξ) = ||ξ||2. We
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assume that ∆M is −∂2
u + ∆Y on N , where ∂u is the unit normal vector field to Y

on N , outward to M1, and ∆Y is a Laplacian on Y .
We denote by D, B the Dirichlet boundary conditions on Z, Y and by C the

Neumann boundary condition on Y , defined as follows:

D : C∞(Mi)→ C∞(Z ∩Mi) by D(φ) = φ|Z ,
B : C∞(Mi)→ C∞(Y ) by B(φ) = φ|Y ,
C : C∞(Mi)→ C∞(Y ) by C(φ) = (∂uφ)|Y .

Then the Laplacian ∆M,D (∆Mi,B,D, ∆Mi,C,D) with the Dirichlet condition on Z
(the Dirichlet condition on Y and Z, the Neumann condition on Y and the Dirichlet
condition on Z) is defined by the same operator ∆M (∆Mi) with domains as follows:

Dom(∆M,D) = {φ ∈ C∞(M) | D(φ) = 0},
Dom(∆Mi,B,D) = {φ ∈ C∞(Mi) | B(φ) = 0, D(φ) = 0},
Dom(∆Mi,C,D) = {φ ∈ C∞(Mi) | C(φ) = 0, D(φ) = 0}.

For computational reasons, we consider ∆m
M,Dm

+ tm, ∆m
Mi,Bm,Dm

+ tm and
∆m
Mi,Cm,Dm

+ tm (t ∈ R+) rather than ∆M,D, ∆Mi,B,D and ∆Mi,C,D, where Dm,
Bm and Cm are the Dirichlet and the Neumann boundary conditions corresponding
to ∆m

M , ∆m
Mi

(or ∆m
M + tm, ∆m

Mi
+ tm) defined as follows:

Dm = (D,D∆M , · · · , D∆m−1
M ),

Bm = (B,B∆Mi , · · · , B∆m−1
Mi

),

Cm = (C,C∆Mi , · · · , C∆m−1
Mi

).

Note that

∆m
M,D + tm =


∏[m−1

2 ]

k=−[m2 ](∆M,D + ei
2kπ
m t) if m is odd,∏[m−1

2 ]

k=−[m2 ](∆M,D + ei
(2k+1)π

m t) if m is even.

For −[m2 ] ≤ k ≤ [m−1
2 ], let αk = ei

2kπ
m if m is odd, and αk = ei

(2k+1)π
m if m is even.

Now we describe the so-called Dirichlet-to-Neumann operatorR(αkt) : C∞(Y )→
C∞(Y ) associated to ∆M,D + αkt on Y . Let Pi(αkt) : C∞(Y ) → C∞(Mi) be the
Poisson operator on Y associated to ∆M,D + αkt, which is characterized by the
following equations (for details see [3], [4], [8]):

BPi(αkt) = IdY , DPi(αkt) = 0, (∆M + αkt)Pi(αkt) = 0.

Then R(αkt) is defined by the composition of the following maps:

C∞(Y ) δia−→ C∞(Y )⊕ C∞(Y )
(P1(αkt),P2(αkt))−→ C∞(M1)⊕ C∞(M2)

(C1,C2)−→ C∞(Y )⊕ C∞(Y )
δif−→ C∞(Y ),

where δia(g) = (g, g), C1(φ1) = (∂uφ1)|Y , C2(φ2) = (∂uφ2)|Y and δif (g, h) = g−h.
It is known that R(αkt) is a ΨDO of order 1 (cf. Theorem 2.1) and by choosing π
as an Agmon angle, logDetR(αkt) is well defined. The following theorem is due to
Burghelea, Friedlander and Kappeler ([8], see also [3] and [4]).
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Theorem 1.1.

logDet(∆m
M,Dm + tm)− logDet(∆m

M1,Bm,Dm + tm)− logDet(∆m
M2,Bm,Dm + tm)

= −
[m−1

2 ]∑
k=−[m2 ]

ck +
[m−1

2 ]∑
k=−[m2 ]

logDetR(αkt),

where ck is the zero coefficient in the asymptotic expansion of logDetR(αkt) as
t→∞.

Remark. In [3] and [8], Theorem 1.1 was proved only in the case Z = ∅. However,
the proof can be extended without any modification to the case that Z is non-empty.

The purpose of this paper is to compute the zero coefficients in Theorem 1.1
under the assumption of the product structures on N and E|N , and then to apply
this result to prove the adiabatic decomposition theorems for the zeta-determinant
of a Laplacian and the analytic torsion. We first have the following theorem.

Theorem 1.2. We assume the product structures of M and E on N and ∆M =
−∂2

u + ∆Y on N . Then
∑

k ck = m log 2 · (ζ∆Y (0) + dimKer∆Y ).

Setting t = 0, we get the following corollary.

Corollary 1.3. We further assume that ∆M,D is invertible. Then

logDet∆M,D − logDet∆M1,B,D − logDet∆M2,B,D

− log 2 · (ζ∆Y (0) + dimKer∆Y ) + logDetR.

Remarks. (1) If dimY is odd, it is well-known that ζ∆Y (0) + dimKer∆Y = 0. In
this case, the assertion in Corollary 1.3 can be written as follows:

logDet∆M,D − logDet∆M1,B,D − logDet∆M2,B,D = logDetR,

which was observed in [7].
(2) Theorem 1.1, Theorem 1.2 and Corollary 1.3 also hold when we impose the

absolute (or the relative) boundary condition on Z (see Theorem 5.2).

The main idea of proving Theorem 1.2 is to show that under the assumption
of the product structure, R(αkt) can be expressed as 2

√
∆Y + αkt + a smoothing

operator (Theorem 2.1). We are going to show this fact in the next section by using
an observation, due to I.M. Gelfand (probably unpublished), that the Dirichlet-to-
Neumann operator satisfies a Ricatti type equation (cf. (2.2)).

Now we apply Corollary 1.3 to discuss the adiabatic decomposition of the zeta-
determinant of a Laplacian into the zeta-determinants of Laplacians with the Dirich-
let and Neumann boundary conditions. Recall that N is a collar neighborhood of Y ,
which is diffeomorphic to [−1, 1]×Y . We denote by Mr the compact manifold with
boundary obtained by attaching Nr+1 = [−r− 1, r+ 1]×Y to M − (− 1

2 ,
1
2 )×Y by

identifying [−1,− 1
2 ]×Y with [−r−1,−r− 1

2 ]×Y and [1
2 , 1]×Y with [r+ 1

2 , r+1]×Y .
We also denote by M1,r, M2,r the manifolds with boundary which are obtained by
attaching [−r, 0]× Y , [0, r]× Y to M1, M2 by identifying Y with {−r} × Y and Y
with {r}× Y , respectively. Then the bundle E →M and the Laplacian ∆M on M
can be extended naturally to the bundle Er →Mr and the Laplacian ∆Mr on Mr.

To describe the next result, we need to define the operators Qi : C∞(Y ) →
C∞(Y ) (i = 1, 2) by slightly modifying the Dirichlet-to-Neumann operator. For
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f ∈ C∞(Y ), choose φi ∈ C∞(Mi) satisfying ∆Miφi = 0, φi|Z = 0 and φi|Y = f .
We define

Q1(f) = (∂uφ1)|Y , Q2(f) = (−∂uφ2)|Y .
Then each Qi is an elliptic ΨDO of order 1 (cf. Theorem 2.1), and the Dirichlet-
to-Neumann operator R is R = Q1 +Q2. The following is the second result of this
paper.

Theorem 1.4. We assume that both Q1 +
√

∆Y and Q2 +
√

∆Y are invertible
operators and k = dimKer∆Y . We further assume that ∆Mr ,D is invertible for r
large enough. Then

lim
r→∞

{
logDet(∆Mr ,D)− logDet(∆M1,r ,B,D)− logDet(∆M2,r ,B,D) + k log r

}
=

1
2

logDet∆Y .

Remarks. (1) If ∆Y has non-trivial kernel, we define Det∆Y from the zeta function
ζ∆Y (s) consisting of only non-zero eigenvalues.

(2) If ∆M is a connection Laplacian for a connection compatible with the inner
product, each Qi is a non-negative operator (Lemma 4.3).

(3) Suppose that ∆M = A2 for a Dirac operator A which has the form G(∂u+B)
near Y with G a bundle automorphism satisfying

(1.1) G∗ = −G, G2 = −Id, B∗ = B, GB = −BG.

Here G and B do not depend on the normal coordinate u. Then the invertiblity of
both Q1 +

√
B2 and Q2 +

√
B2 is equivalent to the non-existence of the extended

L2-solutions of AM1,∞ , AM2,∞ on M1,∞ and M2,∞ (Corollary 4.5).
(4) Suppose that ∆M is a connection Laplacian or a Dirac Laplacian for a con-

nection compatible with the inner product, and ∆M,D is invertible. Then the
invertiblity of both Q1 +

√
∆Y and Q2 +

√
∆Y implies the invertiblity of ∆Mr,D

for r large enough (Lemma 4.6).
Let M̃1,r be the double of M1,r. Then it is a well-known fact that

logDet∆M̃1,r ,D,D
= logDet∆M1,r ,C,D + logDet∆M1,r ,B,D.

Combining this fact with Corollary 1.3 and Theorem 1.4, we have the following
result.

Corollary 1.5. We assume the hypotheses in Theorem 1.4. Then:

(1) lim
r→∞

{
logDet(∆M1,r ,C,D)− logDet(∆M1,r ,B,D) + k log r

}
=

1
2

logDet(∆Y ).

(2) lim
r→∞

{
logDet(∆Mr ,D)− logDet(∆M1,r ,C,D)− logDet(∆M2,r ,B,D)

}
= 0.

Finally we discuss the adiabatic decomposition of the analytic torsion into the
analytic torsions with the absolute and relative boundary conditions.

Here we assume that M is a closed manifold with a hypersurface Y and M
has a product structure near Y . We define Mr, M1,r and M2,r as above so that
Mr = M1,r ∪{0}×Y M2,r. Suppose that ρMr (ρM1,r , ρM2,r , ρY ) is an orthogonal
representation of π1(Mr) (π1(M1,r), π1(M2,r), π1(Y )) to SO(n), respectively. Then
we can define the analytic torsions τ(Mr , ρMr), τabs(Mi,r, ρMi,r ), τrel(Mi,r, ρMi,r )
(i = 1, 2), τ(Y, ρY ) in the standard way (for the definitions, see Section 5). Our
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goal is to recover the Klimek-Wojciechowski result about the analytic torsion in [6]
as follows.

First, let us consider M1,r (a manifold with boundary Y ) only. For a given
representation ρM1,r : π1(M1,r) → SO(n) and the natural homomorphism ιY :
π1(Y )→ π1(M1,r), define ρY : π1(Y )→ SO(n) by ρY = ρM1,r ◦ ιY . We denote by
∆q
Y (∆q

M1,r
) the Hodge Laplacian acting on q-forms on Y (on M1,r) and valued in

EρY (EρM1,r
), where EρY = Ỹ ×ρY Rn with Ỹ the universal covering space of Y

(EρM1,r
is defined in the same way). We define Qq1 the same way as in Theorem 1.4

with the bundle E =
∧q

T ∗M1,r ⊗ EρM1,r
. If necessary, by tensoring C on E, we

regard E as a complex vector bundle. Then we have the following theorem.

Theorem 1.6. Suppose that for each q, Qq1 +
(√

∆q
Y 0

0
√

∆q−1
Y

)
is an invertible

operator on {−r} × Y and Hq(M1,r; ρM1,r ), Hq(M1,r, Y ; ρM1,r ) are trivial groups.
Then

lim
r→∞

{
log τabs(M1,r, ρM1,r )− log τrel(M1,r, ρM1,r )

}
= log τ(Y ; ρY ).

Remark. IfQq1+
(√

∆q
Y 0

0
√

∆q−1
Y

)
is invertible, by Corollary 4.5 there are no extended

L2-solutions of dq + d∗q on M1,∞, which implies that Ker∆q−1
Y = Ker∆q

Y = 0 (cf.
[1], [2], [5]).

Next, we consider the closed manifold Mr and manifolds with boundary Mi,r

(i = 1, 2). For a given representation ρMr : π1(Mr) → SO(n) and the natural
homomorphisms ιMi,r : π1(Mi,r) → π1(Mr), ιY : π1(Y ) → π1(Mi,r), define ρMi,r :
π1(Mi,r) → SO(n), ρY : π1(Y ) → SO(n) by ρMi,r = ρMr ◦ ιMi,r , ρY = ρMi,r ◦ ιY .
We also define ∆q

Y , Qq1 and Qq2 as in Theorem 1.6.

Theorem 1.7. Suppose that, for each q,

Qq1 +
(√

∆q
Y 0

0
√

∆q−1
Y

)
and Qq2 +

(√
∆q
Y 0

0
√

∆q−1
Y

)
are invertible operators on {−r}×Y , {r}×Y , and Hq(Mr; ρMr ), Hq(M1,r; ρM1,r ),
Hq(M2,r, Y ; ρM2,r ) are trivial groups. Then:

(1) lim
r→∞

(
logDet∆q

Mr
− logDet∆q

M1,r ,abs
− logDet∆q

M2,r,rel

)
= 0.

(2) lim
r→∞

(
log τ(Mr ; ρMr)− log τabs(M1,r; ρM1,r )− log τrel(M2,r; ρM2,r )

)
= 0.

Remark. Recently J. Park and K. Wojciechowski proved the following result in
[10]. Suppose that M is an odd-dimensional compact manifold with M = M1 ∪Y
M2 and D is a Dirac operator acting on smooth sections of a Clifford module
bundle E with D = G(∂u + B) near Y . Denote by P>, P< the Atiyah-Patodi-
Singer boundary conditions projecting the positive and negative eigenspaces of B,
respectively. Assume that

KerB = {0}, KerL2D1,∞ = KerL2D2,∞ = {0},
where KerL2Di,∞ is the set of all extended L2-solutions of Di,∞ on Mi,∞. Then

lim
r→∞

{
logDetD2

r − logDetD2
M1,r,P> − logDetD2

M2,r ,P<

}
= − log 2 · ζB2(0).
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This result is the main motivation of this paper. In [9] we are going to recover this
result by using the techniques in this paper.

2. Asymptotic symbol of R(αkt)

In this section, we are going to describe the asymptotic symbol of R(αkt). The
following method was observed by I.M. Gelfand.

We start by defining Qi(αkt) : C∞(Y ) → C∞(Y ) (i = 1, 2) as follows. For
f ∈ C∞(Y ), choose φi ∈ C∞(Mi) such that

(∆Mi + αkt)φi = 0, φi|Y = f, φi|Z = 0.

Then we define

Q1(αkt)(f) = (∂uφ1)|Y and Q2(αkt)(f) = (−∂uφ1)|Y .
From this definition, we get

R(αkt) = Q1(αkt) +Q2(αkt),

and it’s enough to consider Q1(αkt) only. From now on we denote Q1(αkt) simply
by Q(αkt).

For f ∈ C∞(Y ), let ϕ be a solution of ∆M1 + αkt with ϕ|Y = f and φ|Z = 0.
Then

d

du
ϕ(u, y) = Qu(αkt)ϕ(u, y),

where Qu(αkt) is defined similarly to Q(αkt) = Q0(αkt) at the level {u} × Y :

d2

du2
ϕ(u, y) =

(
d

du
Qu(αkt)

)
ϕ(u, y) +Qu(αkt)2ϕ(u, y).

For 0 ≤ u < 1,

(∆Y + αkt)ϕ(u, y) =
(
d

du
Qu(αkt)

)
ϕ(u, y) +Qu(αkt)2ϕ(u, y).

Consequently, for 0 ≤ u < 1,

(2.2)
d

du
Qu(αkt) = −Qu(αkt)2 + (∆Y + αkt).

Now let us consider the asymptotic symbol of Qu(αkt) as follows:

σ(Qu(αkt)) ∼ q1(u, y, ξ) + q0(u, y, ξ) + · · ·+ q1−j(u, y, ξ) + · · · ,
where q1−j(u, y, ξ) is the homogeneous part of σ(Qu(αkt)) of order 1−j with respect
to ξ. Then

(2.3) σ
(
d

du
Qu(αkt)

)
∼ d

du
q1(u, y, ξ)+

d

du
q0(u, y, ξ)+ · · ·+ d

du
q1−j(u, y, ξ)+ · · · .

Note that

σ
(
Qu(αkt)2

)
∼
∞∑
k=0

∑
|ω|+i+j=k
i,j≥0

1
ω!
dωξ q1−i(u, y, ξ) ·Dω

y q1−j(u, y, ξ)

= q2
1(u, y, ξ) + (dξq1Dyq1 + q0q1 + q1q0) + · · · .

(2.4)

Suppose that

σ(∆Y + αkt) = (p2(y, ξ) + αktId) + p1(y, ξ) + p0(y, ξ).
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Since d
duQu(αkt) is a ΨDO of order 1, q2

1(u, y, ξ) = p2(y, ξ) + αktId. Applying the
argument of Lemma 3.3 in [8] to the double of a manifold with boundary, one can
show that

(2.5) q1(u, y, ξ) =
√
p2(y, ξ) + αktId.

Hence q1 does not depend on u, and d
duq1(u, y, ξ) = 0. Again, from (2.2), (2.3) and

(2.4), since q1 is a scalar matrix, (dξq1Dyq1 + 2q1q0) = p1(y, ξ) and

q0(u, y, ξ) = (2q1(y, ξ))−1 (p1(y, ξ)− dξq1(y, ξ) ·Dyq1(y, ξ)) .

Hence q0(u, y, ξ) does not depend on u, and d
duq0(u, y, ξ) = 0. In general,

q−1 = (2q1)−1

−
∑

|ω|+i+j=2
0≤i,j≤1

1
ω!
dωξ q1−i(y, ξ) ·Dω

y q1−j(y, ξ) + p0(y, ξ)


and for k ≥ 3,

q1−k = (2q1)−1

−
∑

|ω|+i+j=k
0≤i,j≤k−1

1
ω!
dωξ q1−i(y, ξ) ·Dω

y q1−j(y, ξ)

 .

Hence, each q1−k does not depend on u, and this implies that d
duQu(αkt) is a

smoothing operator. Setting u = 0 in (2.2), we see that

(2.6) Q(αkt)2 = (∆Y + αkt) + a smoothing operator,

and we get the following theorem.

Theorem 2.1. Under the assumption of the product structure near N , we have the
following:

(1) Q(αkt) =
√

∆Y + αkt+ a smoothing operator.
(2) R(αkt) = 2

√
∆Y + αkt+ a smoothing operator.

Proof. It’s enough to show the first statement. From (2.5) we have

Q(αkt) =
√

∆Y + αkt+A,

where A is an operator of order 0. Squaring both sides and using (2.6), we have

Q(αkt)2 = (∆Y + αkt) +
√

∆Y + αktA+A
√

∆Y + αkt+A2

= (∆Y + αkt) + a smoothing operator.

Hence
√

∆Y + αktA + A
√

∆Y + αkt + A2 is a smoothing operator, which implies
that A is a smoothing operator. �

3. Computation of the zero coefficient of logDetR(αkt) as t→∞

It is shown in [3] that logDetR(αkt) has an asymptotic expansion as t→∞ and
each coefficient can be computed by the asymptotic symbol of R(αkt). Hence, from
Theorem 2.1, logDetR(αkt) and logDet(2

√
∆Y + αkt) have the same asymptotic

expansions as t → ∞. In this section, we are going to compute the asymptotic
expansion of logDet(2

√
∆Y + αkt) by using the method in [12].

Note that

(3.1) logDet(2
√

∆Y + αkt) = log 2 · ζ(∆Y +αkt)(0) +
1
2

logDet(∆Y + αkt),
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and we are going to consider logDet(∆Y +αkt). Since Re(αk) is possibly negative,
we avoid this difficulty as follows. Put αk = eiθk with θk = 2kπ

m for m odd and
(2k+1)π

m for m even. Choose an angle φk with 0 ≤ |φk| < π
2 so that Re(ei(θk−φk)) >

0. (In fact, if 0 ≤ |θk| < π
2 , we choose φk = 0.) Then

logDet(∆Y + αkt) = logDet{eiφk(e−iφk∆Y + ei(θk−φk)t)}

= − d

ds
|s=0

{
e−iφksζ(e−iφk∆Y +ei(θk−φk)t)(s)

}
= iφkζ(e−iφk∆Y +ei(θk−φk)t)(0) + logDet(e−iφk∆Y + ei(θk−φk)t).

(3.2)

Put θ̃k = θk − φk. Then

ζ(e−iφk∆Y +ei(θk−φk)t)(s) =
1

Γ(s)

∫ ∞
0

rs−1Tre−r(e
−iφk∆Y +eiθ̃k t)dr

=
1

Γ(s)

∫ ∞
0

rs−1e−rte
iθ̃k
Tre−re

−iφk∆Y dr.

The following lemma is a well-known fact.

Lemma 3.1. As r→ 0, we have the following asymptotic expansion:

Tre−re
−iφk∆Y ∼ b1r−

m−1
2 + b2r

−m−2
2 + · · ·+ bm + bm−1r

1
2 + · · ·

with bm = ζ∆Y (0) + dimKer∆Y .

Now we are going to compute the asymptotic expansion of ζ
(e−iφk∆Y +eiθ̃k t)

(s)
as t→∞:

ζ
(e−iφk∆Y +eiθ̃k t)

(s) =
1

Γ(s)

∫ ∞
0

rs−1e−rte
iθ̃k
Tre−re

−iφk∆Y dr

=
1

Γ(s)

∫ ∞
0

(
u

t
)s−1e−ue

iθ̃k
Tre−

u
t e
−iφk∆Y

1
t
du

= t−s
1

Γ(s)

∫ ∞
0

us−1e−ue
iθ̃k
Tre−

u
t e
−iφk∆Y du.

As t→∞,

ζ
(e−iφk∆Y +eiθ̃k t)

(s) ∼ t−s
∞∑
j=1

1
Γ(s)

bj

∫ ∞
0

us−1(
u

t
)
j−m

2 e−ue
iθ̃k
du

=
∞∑
j=1

bjt
−s+m−j

2
1

Γ(s)

∫ ∞
0

us+
j−m

2 −1e−ue
iθ̃k
du

=
∞∑
j=1

bjt
−s+m−j

2
1

Γ(s)
(e−iθ̃k)s+

j−m
2

∫ ∞
0

(ueiθ̃k)s+
j−m

2 −1e−ue
iθ̃k (eiθ̃k)du.

Consider the contour integral
∫
C
zs+

j−m
2 −1e−zdz for Res > m−j

2 , where

C = {reiθ̃k | ε ≤ r ≤ R} ∪ {εeiθ | 0 ≤ θ ≤ θ̃k}
∪ {r | ε ≤ r ≤ R} ∪ {Reiθ | 0 ≤ θ ≤ θ̃k}

and oriented counterclockwise. Then one can check that∫ ∞
0

(ueiθ̃k)s+
j−m

2 −1e−ue
iθ̃k (eiθ̃k)du =

∫ ∞
0

rs+
j−m

2 −1e−rdr = Γ(s+
j −m

2
).
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We therefore obtain the following asymptotic expansion for t→∞:

ζ
(e−iφk∆Y +eiθ̃k t)

(s) ∼
∞∑
j=1

bj(e−iθ̃k)s+
j−m

2
Γ(s+ j−m

2 )
Γ(s)

t−s+
m−j

2

= s
∞∑
j=1
j 6=m

bj(e−iθ̃k)s+
j−m

2
Γ(s+ j−m

2 )
Γ(s+ 1)

t−s+
m−j

2 + bme
−iθ̃kst−s.

This gives the asymptotic expansion of ζ
(e−iφk∆Y +eiθ̃k t)

(s) as t → ∞. In view of
Theorem 1.1 we are mainly interested in the zero coefficients in the asymptotic
expansions of ζ

(e−iφk∆Y +eiθ̃k t)
(0) and ζ′

(e−iφk∆Y +eiθ̃k t)
(0) as t→∞.

First, setting s = 0, the zero coefficient π0(ζ
(e−iφk∆Y +eiθ̃k t)

(0)) in the asymptotic
expansion of ζ

(e−iφk∆Y +eiθ̃k t)
(0) is the following:

(3.3) π0(ζ
(e−iφk∆Y +eiθ̃k t)

(0)) = bm = ζ∆Y (0) + dimKer∆Y .

Taking the derivative at s = 0, the zero coefficient of ζ′
(e−iφk∆Y +eiθ̃k t)

(0) can be ob-

tained only in the term bme
−iθ̃kst−s. Hence, by (3.2) and (3.3), the zero coefficient

π0(∆Y + αkt) in the asymptotic expansion of logDet(∆Y + αkt) as t→∞ is
π0(∆Y + αkt) = iφk(ζ∆Y (0) + dimKer∆Y ) + i(θk − φk)(ζ∆Y (0) + dimKer∆Y )

= iθk(ζ∆Y (0) + dimKer∆Y ).
(3.4)

We summarize the above computations as follows.

Proposition 3.2. The zero coefficients in the asymptotic expansions of

ζ
(e−iφk∆Y +eiθ̃k t)

(0) and logDet(∆Y + αkt)

as t→∞ are the following:
(1) π0(ζ

(e−iφk∆Y +eiθ̃k t)
(0)) = ζ∆Y (0) + dimKer∆Y .

(2) π0(∆Y + αkt) = iθk(ζ∆Y (0) + dimKer∆Y ), where αk = eiθk .

Now we are ready to compute c =
∑

k ck in Theorem 1.1. Since ζ(∆Y +αkt)(0) =
ζ
(e−iφk∆Y +eiθ̃k t)

(0), from (3.1) and Proposition 3.2 we get

ck = log 2 · (ζ∆Y (0) + dimKer∆Y ) +
1
2
iθk(ζ∆Y (0) + dimKer∆Y ),

and hence ∑
k

ck = m log 2 · (ζ∆Y (0) + dimKer∆Y ).

This completes the proof of Theorem 1.2.

4. The adiabatic decomposition

of the zeta-determinant of a Laplacian

In this section we are going to prove Theorem 1.4. Recall that

M1,r = M1 ∪Y [−r, 0]× Y, M2,r = M2 ∪Y [0, r]× Y,
where we identify Y with {−r} × Y and Y with {r} × Y . Then

(4.1) Mr = M1,r ∪{0}×Y M2,r.

Throughout this section we denote {r}×Y by Yr, the Dirichlet (Neumann) condition
on Yr by Br (Cr) and the Dirichlet condition on Z by D. We assume that ∆M,D
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is invertible. Then, under certain conditions, ∆Mr ,D is also invertible for r large
enough (Lemma 4.6).

From the decomposition (4.1) and Corollary 1.3, we have

(4.2) logDet∆Mr ,D = logDet∆M1,r,B0,D + logDet∆M2,r ,B0,D

− log 2 · (ζ∆Y (0) + dimKer∆Y ) + logDetRMr .

From the decomposition Mr = (M1 ∪M2) ∪Nr with Nr = [−r, r]× Y , we have

logDet∆Mr,D = logDet∆(M1∪M2),B−r,Br ,D + logDet∆Nr,B−r,Br

− log 2 · (ζ∆Y ∪Y (0) + dimKer∆Y ∪Y ) + logDetR−r,r
= logDet∆M1,B,D + logDet∆M2,B,D + logDet∆Nr,B−r,Br

− 2 log 2 · (ζ∆Y (0) + dimKer∆Y ) + logDetR−r,r,

(4.3)

where R−r,r : C∞(Y−r) ⊕ C∞(Yr) → C∞(Y−r) ⊕ C∞(Yr) is the Dirichlet-to-
Neumann operator corresponding to the decomposition (M1 ∪M2) ∪Nr.

Put N−r,0 = [−r, 0] × Y and N0,r = [0, r] × Y . Since M1,r = M1 ∪ N−r,0 and
M2,r = M2 ∪N0,r, we have

(4.4) logDet∆M1,r ,B0,D = logDet∆M1,B,D + logDet∆N−r,0,B−r,B0

− log 2 · (ζ∆Y (0) + dimKer∆Y ) + logDetRM1,r ,

(4.5) logDet∆M2,r ,B0,D = logDet∆M2,B,D + logDet∆N0,r,B0,Br

− log 2 · (ζ∆Y (0) + dimKer∆Y ) + logDetRM2,r .

Here ∆N−r,0,B−r,B0 = −∂2
u+∆Y with the domain {φ ∈ C∞(N−r,0) | φ|Y−r = φ|Y0 =

0} and RM1,r is the Dirichlet-to-Neumann operator corresponding to the decompo-
sition M1,r = M1 ∪ ([−r, 0]× Y ). ∆N0,r,B0,Br and RM2,r are defined similarly.

Then from (4.2)–(4.5), we have

− log 2 · (ζ∆Y (0) + dimKer∆Y ) + logDetRMr

= logDet∆Nr,B−r,Br − logDet∆N−r,0,B−r ,B0 − logDet∆N0,r,B0,Br

+ logDetR−r,r − logDetRM1,r − logDetRM2,r .(4.6)

From the decomposition of Nr as

Nr = ([−r, 0]× Y ) ∪ ([0, r]× Y ),

we have

(4.7) logDet∆Nr,B−r,Br − logDet∆N−r,0,B−r,B0 − logDet∆N0,r,B0,Br

= − log 2 · (ζ∆Y (0) + dimKer∆Y ) + logDetRNr ,

where RNr : C∞(Y0) → C∞(Y0) is defined as follows. For f ∈ C∞(Y0), choose
φ(u, y) so that (−∂2

u + ∆Y )φ = 0 on Nr − Y0, φ|Y0 = f , φ|Y−r = φ|Yr = 0. Then,
RNr(f) =

(
∂u(φ|N−r,0)− ∂u(φ|N0,r )

)
|Y0 . Hence, we obtain from (4.6) and (4.7)

(4.8) logDetRMr = logDetRNr + logDetR−r,r − logDetRM1,r − logDetRM2,r .
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Now we are going to find the spectrum of RNr : C∞(Y0) → C∞(Y0). For
fk ∈ C∞(Y0) with ∆Y fk = λkfk, we have

φ(u, y) =



(
e
√
λku +

e−
√
λkr

e
√
λkr − e−

√
λkr

(e
√
λku − e−

√
λku)

)
fk(y)

for (u, y) ∈ N−r,0,(
e−
√
λku − e−

√
λkr

e
√
λkr−e−

√
λkr

(e
√
λku − e−

√
λku)

)
fk(y)

for (u, y) ∈ N0,r.

Hence,

RNr(fk) =

(
2
√
λk +

4
√
λke
−
√
λkr

e
√
λkr − e−

√
λkr

)
fk,

where we interpret 4
√
λke
−
√
λkr

e
√
λkr−e−

√
λkr

as 2
r when λk = 0. The spectrum of RNr is{

2
√
λk +

4
√
λke
−
√
λkr

e
√
λkr − e−

√
λkr
| λk ∈ Spec(∆Y )

}
.

Let PKer∆Y : C∞(Y ) → C∞(Y ) be the orthogonal projection onto Ker∆Y .
Then

ζRNr (s)− ζ(2√∆Y + 2
rPKer∆Y )(s)

=
∑
λk 6=0


(

2
√
λk +

4
√
λke
−
√
λkr

e
√
λkr − e−

√
λkr

)−s
−
(

2
√
λk

)−s .

The following lemma can be checked easily.

Lemma 4.1. Let A be an invertible elliptic operator of order > 0, and Kr a one-
parameter family of trace class operators such that limr→∞ Tr(Kr) = 0. Then

lim
r→∞

logDet(A+Kr) = logDetA.

Proof. Note that

logDet(A+Kr)− logDetA =
∫ 1

0

d

dt
logDet(A+ tKr)dt

=
∫ 1

0

Tr
(
(A+ tKr)−1Kr

)
dt.

If we denote by λ0 the smallest eigenvalue of |A|, for r large enough we have

| logDet(A+Kr)− logDetA| ≤ 1
2λ0

Tr(Kr)

and hence the result follows. �
Applying Lemma 4.1 with A = 2

√
∆Y and Kr = gr(∆Y ) with

gr(x) =
4
√
xe−

√
xr

e
√
xr − e−

√
xr

on the orthogonal complement of Ker∆Y , we get the following equation:

lim
r→∞

{
logDetRNr − logDet(2

√
∆Y +

2
r
PKer∆Y )

}
= 0.
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Since

(4.9)

logDet(2
√

∆Y +
2
r
PKer∆Y ) = log 2 · (ζ∆Y (0) + dimKer∆Y ) +

1
2

logDet∆Y

− (dimKer∆Y ) log r,

we get the following corollary.

Corollary 4.2.

lim
r→∞

(logDetRNr + (dimKer∆Y ) log r)

= log 2 · (ζ∆Y (0) + dimKer∆Y ) +
1
2

logDet∆Y .

Now we discuss the operators RM1,r , RM2,r and R−r,r. First, we can describe
RM1,r : C∞(Y−r)→ C∞(Y−r) as follows. For fk ∈ C∞(Y−r) with ∆Y fk = λkfk, we
choose the section φ ∈ C0(M1,r) satisfying ∆M1,rφ = 0 on M1,r − Y−r, φ|Y−r = fk
and φ|Z = φ|Y0 = 0. Then one can check that

RM1,r (fk) = Q1(fk)− (∂u(φ|N−r,0))|Y−r

= Q1(fk) +

(√
λk +

2
√
λke
−
√
λkr

e
√
λkr − e−

√
λkr

)
fk.

In the same way,
RM2,r (fk) = Q2(fk) + (∂u(φ|N0,r ))|Yr

= Q2(fk) +

(√
λk +

2
√
λke
−
√
λkr

e
√
λkr − e−

√
λkr

)
fk.

Similarly, R−r,r : C∞(Y−r)⊕C∞(Yr)→ C∞(Y−r)⊕C∞(Yr) is described as follows:

R−r,r(fk, 0)

=

(
Q1(fk) +

(√
λk +

2
√
λke
−2
√
λkr

e2
√
λkr − e−2

√
λkr

)
fk, −

2
√
λk

e2
√
λkr − e−2

√
λkr

fk

)
,

R−r,r(0, fk)

=

(
− 2

√
λk

e2
√
λkr − e−2

√
λkr

fk, Q2(fk) +

(√
λk +

2
√
λke
−2
√
λkr

e2
√
λkr − e−2

√
λkr

)
fk

)
.

We therefore have

R−r,r =
(
Q1 +

√
∆Y 0

0 Q2 +
√

∆Y

)
+ hr(∆Y )

(
e−2r

√
∆Y −1

−1 e−2r
√

∆Y

)
,

where hr(x) = 2
√
x

e2r
√
x−e−2r

√
x and hr(∆Y ) acts on Ker∆Y as multiplication by 1

2r .
We are going to discuss the operators Qi and Qi +

√
∆Y . The following lemma

can be checked by using integration by parts (cf. Proposition 4.3 in [2]).

Lemma 4.3. Suppose that ∇ is a connection which is compatible to the inner
product on M . i.e. for any sections s1, s2 ∈ C∞(E) and a tangent vector w,
w(s1, s2) = (∇ws1, s2)+(s1,∇ws2). If ∆M = ∇∗∇, then each Qi is a non-negative,
self-adjoint operator.
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Next, let us consider a Dirac Laplacian for a Dirac operator A which has the
form G(∂u+B) near the boundary Y , where G is a bundle automorphism satisfying
the conditions (1.1), and both G and B do not depend on the normal coordinate
u. We refer to [5] for the following lemma (cf. Lemma 3.1 in [5]).

Lemma 4.4. Let φ and ψ be smooth sections on Mj (j = 1, 2). Then

〈AMjφ, ψ〉Mj − 〈φ,AMjψ〉Mj = εj〈φ|Y , G(ψ|Y )〉Y ,
where εj = 1 for j = 2 and εj = −1 for j = 1.

Suppose that for f ∈ C∞(Y ), φj is the solution of A2
Mj

with φj |Y = f , φj |Z = 0.
Then by Lemma 4.4

〈(Q1 + |B|)f, f〉Y = 〈AM1φ1, AM1φ1〉M1 + 〈(|B| −B)f, f〉Y ,(4.10)

〈(Q2 + |B|)f, f〉Y = 〈AM2φ2, AM2φ2〉M2 + 〈(|B|+B)f, f〉Y .(4.11)

As a consequence, f ∈ Ker(Q1 + |B|) if and only if AM1φ1 = 0 and f ∈ ImP≥;
and hence on the cylinder part we can express φ1 as

φ1 =
k∑
j=1

ajgj +
∑
λj>0

bje
−λjuhj ,

where Bgj = 0, Bhj = λjhj . This implies that φ1 is the restriction of an extended
L2-solution of AM1,∞ on M1,∞ := M1 ∪Y Y × [0,∞). We can make a similar
assertion for φ2 and have the following corollary (cf. Theorem 2.2 in [5], see also
[1], [2]).

Corollary 4.5. The invertibility of Q1 +
√
B2 and Q2 +

√
B2 is equivalent to

the non-existence of the extended L2-solutions of AM1,∞ and AM2,∞ on M1,∞ and
M2,∞. In particular, this condition implies that KerB = 0.

Lemma 4.6. Suppose that ∆M is either a connection Laplacian or a Dirac Lapla-
cian for a connection compatible to the inner product as above, and ∆M,D is in-
vertible. If both Q1 +

√
∆Y and Q2 +

√
∆Y are invertible, then R−r,r and ∆Mr,D

are invertible for r large enough.

Proof. We are going to show first that R−r,r is injective. Then this implies that
∆Mr,D is injective. Since ∆Mr,D is self-adjoint, ∆Mr,D is invertible, and this implies
again that R−r,r is also invertible ([3], [8]).

Putting Ar = hr(∆Y ) with hr(x) = 2
√
x

e2r
√
x−e−2r

√
x , we get〈

R−r,r

(
f

g

)
,

(
f

g

)〉
L2(Y )

= 〈(Q1 +
√

∆Y )f, f〉+ 〈(Q2 +
√

∆Y )g, g〉

+ 〈Are−2r
√

∆Y f, f〉+ 〈Are−2r
√

∆Y g, g〉 − 〈Arg, f〉 − 〈Arf, g〉.

Note that each Qi +
√

∆Y is a non-negative operator by Lemma 4.3 and (4.10),
(4.11). Let λ0 be the minimum of the eigenvalues of Q1 +

√
∆Y and Q2 +

√
∆Y .

Since limr→∞ ||Ar ||L2 = 0, one can choose r0 so that ||Ar||L2 < λ0 for r ≥ r0. Then
R−r,r is injective for r ≥ r0 and this completes the proof. �
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In case both Q1 +
√

∆Y and Q2 +
√

∆Y are invertible, we can apply Lemma 4.1
directly.

Corollary 4.7. Assume that both Q1 +
√

∆Y and Q2 +
√

∆Y are invertible. Then:
(1) limr→∞ logDetRM1,r = logDet(Q1 +

√
∆Y ).

(2) limr→∞ logDetRM2,r = logDet(Q2 +
√

∆Y ).
(3) limr→∞ logDetR−r,r = logDet(Q1 +

√
∆Y ) + logDet(Q2 +

√
∆Y ).

Combining Corollary 4.2 with Corollary 4.7 and (4.2), (4.8), we complete the
proof of Theorem 1.4.

5. The adiabatic decomposition of the analytic torsion

In this section, we are going to prove Theorem 1.6 and Theorem 1.7. Recall that
M is a closed manifold of dimension m with the product structure near a hypersur-
face Y . We define Mr, M1,r and M2,r as in Section 4 and suppose that ρMr (ρM1,r ,
ρM2,r , ρY ) is an orthogonal representation of π1(Mr) (π1(M1,r), π1(M2,r), π1(Y ))
to SO(n), respectively. Then we can construct a flat bundle EρMr = M̃r ×ρMr Rn,
where M̃r is the universal cover of Mr. The flat bundles EρM1,r

, EρM2,r
and EρY

are defined in the same way.
For each q, denote by ∆q

Mr
:= (dq + d∗q)

2 the Hodge Laplacian acting on q-forms
valued in EρMr . Then the analytic torsion τ(Mr, ρMr ) is defined by

log τ(Mr, ρMr ) =
1
2

m∑
q=0

(−1)q · q · logDet∆q
Mr
.

To define the analytic torsion on Mi,r, we choose the absolute or the relative bound-
ary condition on Y0. Near Y0, a differential q-form ω can be expressed by

(5.1) ω = ω1 + du ∧ ω2,

where ω1 and ω2 do not contain du.

Definition 5.1. Suppose that a q-form ω in M1,r is expressed as in (5.1).
(1) ω satisfies the absolute boundary condition if (∂uω1)|Y0 = 0 and ω2|Y0 = 0.
(2) ω satisfies the relative boundary condition if ω1|Y0 = 0 and (∂uω2)|Y0 = 0.

We denote by Ωqabs(Mi,r), Ωqrel(Mi,r) the sets of all q-forms valued in EMi,r

satisfying the absolute and the relative boundary conditions, respectively. We also
denote by ∆q

Mi,r ,abs
, ∆q

Mi,r ,rel
the Laplacian acting on q-forms valued in EMi,r with

Dom(∆q
Mi,r ,abs

) = Ωqabs(Mi,r), Dom(∆q
Mi,r ,rel

) = Ωqrel(Mi,r).

Then the analytic torsions τabs(Mi,r, ρMi,r ) and τrel(Mi,r, ρMi,r ) are defined by

log τabs(Mi,r, ρMi,r ) =
1
2

m∑
q=0

(−1)q · q · logDet∆q
Mi,r,abs

,

log τrel(Mi,r, ρMi,r ) =
1
2

m∑
q=0

(−1)q · q · logDet∆q
Mi,r,rel

.

It is a well-known fact (cf. [11]) that

Ker∆q
Mi,r ,abs

∼= Hq(Mi,r; ρMi,r), Ker∆q
Mi,r ,rel

∼= Hq(Mi,r, Y ; ρMi,r ).
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We consider M1,r (a manifold with boundary Y ) first. Recall that M1,r =
M1 ∪Y−r N−r,0 with N−r,0 = [−r, 0]× Y , and Y−r = {−r} × Y , Y0 = {0} × Y . We
denote by B, D the Dirichlet boundary conditions on Y−r, Y0, respectively.

For a given representation ρM1,r : π1(M1,r) → SO(n), define ρY : π1(Y ) →
SO(n) by ρY = ρM1,r ◦ ιY , where ιY : π1(Y )→ π1(M1,r) is the natural homomor-
phism. Then the restriction of the bundle EρM1,r

to Y is isomorphic to EρY , (cf.
[11]).

The set Ωq(N−r,0, EρM1,r
|N−r,0) of q-forms valued in EρM1,r

|N−r,0 can be decom-
posed as follows:

(5.2) Ωq(N−r,0, EρM1,r
|N−r,0) = C∞([−r, 0], EρM1,r

|N−r,0)⊗ Ωq(Y,EρY )

⊕ du ∧ C∞([−r, 0], EρM1,r
|N−r,0)⊗ Ωq−1(Y,EρY ).

From this decomposition, the Laplacian ∆q
M1,r

, when restricted to N−r,0, can be
expressed as

(5.3) ∆q
M1,r

= −∂2
u +

(
∆q
Y 0

0 ∆q−1
Y

)
,

where ∆q
Y is the Laplacian acting on q-forms on Y , valued in EρY . Here and

throughout this section we use the convention that ∆q
Y = 0 for q < 0 or q ≥ m.

To describe the gluing formula of the type of Theorem 1.1 (or Corollary 1.3)
in this context, we need to define modified Dirichlet-to-Neumann operators Qq1,
QqN−r,0,abs and QqN−r,0,rel as follows. For simplicity, set E = (

∧q T ∗M1,r)⊗EρM1,r
.

For a given f ∈ C∞(E|Y−r ), choose smooth sections φ ∈ C∞(E|M1), ψabs ∈
C∞(E|N−r,0) and ψrel ∈ C∞(E|N−r,0) such that

∆q
M1
φ = 0, ∆q

N−r,0
ψabs = ∆q

N−r,0
ψrel = 0, φ|Y−r = ψabs|Y−r = ψrel|Y−r = f,

and ψabs (ψrel) satisfies the absolute (relative) boundary condition on Y0, respec-
tively. Then we define

Qq1(f) = (∂uφ)|Y−r ,
QqN−r,0,abs(f) = (−∂uψabs)|Y−r , QqN−r,0,rel(f) = (−∂uψrel)|Y−r ,

and
RqB,abs = Qq1 +QqN−r,0,abs, RqB,rel = Qq1 +QqN−r,0,rel.

Then the following theorem can be proved in the same way as Theorem 1.1 (cf. the
Remark after Corollary 1.3).

Theorem 5.2. We denote kq = dimKer∆q
Y . Then:

(1) logDet∆q
M1,r ,D

− logDet∆q
M1,B

− logDet∆q
N−r,0,B,D

= − log 2(ζ∆q−1
Y

(0) + ζ∆q
Y

(0) + kq−1 + kq) + logDetRqB,D.

(2) logDet∆q
M1,r ,abs

− logDet∆q
M1,B

− logDet∆q
N−r,0,B,abs

= − log 2(ζ∆q−1
Y

(0) + ζ∆q
Y

(0) + kq−1 + kq) + logDetRqB,abs.

(3) logDet∆q
M1,r ,rel

− logDet∆q
M1,B

− logDet∆q
N−r,0,B,rel

= − log 2(ζ∆q−1
Y

(0) + ζ∆q
Y

(0) + kq−1 + kq) + logDetRqB,rel.
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We next describe the operators ∆q
N−r,0,B,abs

and ∆q
N−r,0,B,rel

. From the decom-
position (5.2), we have

∆q
N−r,0,B,abs

=
(

(−∂2
u + ∆q

Y )N−r,0,B,C 0
0 (−∂2

u + ∆q−1
Y )N−r,0,B,D

)
,

∆q
N−r,0,B,rel

=
(

(−∂2
u + ∆q

Y )N−r,0,B,D 0
0 (−∂2

u + ∆q−1
Y )N−r,0,B,C

)
,

where C means the Neumann boundary condition on Y0 and B (D) means the
Dirichlet boundary condition on Y−r (Y0). Hence, we have

(5.4) logDet∆q
N−r,0,B,abs

− logDet∆q
N−r,0,B,D

= logDet(−∂2
u + ∆q

Y )N−r,0,B,C − logDet(−∂2
u + ∆q

Y )N−r,0,B,D,

(5.5) logDet∆q
N−r,0,B,rel

− logDet∆q
N−r,0,B,D

= logDet(−∂2
u + ∆q−1

Y )N−r,0,B,C − logDet(−∂2
u + ∆q−1

Y )N−r,0,B,D.

Now we assume that Qq1 +
(√

∆q
Y 0

0
√

∆q−1
Y

)
is invertible. Since the Hodge Lapla-

cian ∆q
Mr

is a Dirac Laplacian satisfying (1.1), by Corollary 4.5 we have kq−1 =
kq = 0 (cf. the Remark below Theorem 1.6). By Corollary 1.5 and (5.4), (5.5) we
have

lim
r→∞

{
logDet∆q

N−r,0,B,abs
− logDet∆q

N−r,0,B,D

}
=

1
2

logDet∆q
Y ,(5.6)

lim
r→∞

{
logDet∆q

N−r,0,B,rel
− logDet∆q

N−r,0,B,D

}
=

1
2

logDet∆q−1
Y .(5.7)

From Theorem 5.2 we have

logDet∆q
M1,r ,abs

− logDet∆q
M1,r ,D

=
(

logDet∆q
N−r,0,B,abs

− logDet∆q
N−r,0,B,D

)
+ logDetRqB,abs − logDetRqB,D,(5.8)

and

logDet∆q
M1,r,rel

− logDet∆q
M1,r ,D

=
(

logDet∆q
N−r,0,B,rel

− logDet∆q
N−r,0,B,D

)
+ logDetRqB,rel − logDetRqB,D.(5.9)

Lemma 5.3. Suppose that Qq1 +
(√

∆q
Y 0

0
√

∆q−1
Y

)
is invertible. Then

lim
r→∞

logDetRqB,abs = lim
r→∞

logDetRqB,rel = lim
r→∞

logDetRqB,D

= logDet
(
Qq1 +

(√
∆q
Y 0

0
√

∆q−1
Y

))
.

Proof. The last equality is exactly the assertion (1) in Corollary 4.7. We are going
to show that

lim
r→∞

logDetRqB,abs = logDet
(
Qq1 +

(√
∆q
Y 0

0
√

∆q−1
Y

))
.
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The case of logDetRqB,rel can be proved in the same way.
By a direct computation one can check the following. For f ∈ Ωq(Y,EρY ) with

∆q
Y f = λf ,

RqB,abs(f) = Qq1(f) +

(
√
λ− 2

√
λe−

√
λr

e
√
λr + e−

√
λr

)
f.

For g ∈ Ωq−1(Y,EρY ) with ∆q−1
Y g = µg,

RqB,abs(du ∧ g) = Qq1(du ∧ g) +

(
√
µ+

2
√
µe−

√
µr

e
√
µr − e−

√
µr

)
du ∧ g.

Then the result follows from Lemma 4.1.
From (5.6)–(5.9) and Lemma 5.3, we have the following corollary.

Corollary 5.4. Suppose that Qq1 +
(√

∆q
Y 0

0
√

∆q−1
Y

)
is invertible for each q. Then

the following equalities hold:

lim
r→∞

{
logDet∆q

M1,r ,abs
− logDet∆q

M1,r ,D

}
(1)

=

{
1
2 logDet∆q

Y (0 ≤ q ≤ m− 1),
0 (q = m).

lim
r→∞

{
logDet∆q

M1,r ,rel
− logDet∆q

M1,r ,D

}
(2)

=

{
1
2 logDet∆q−1

Y (1 ≤ q ≤ m),
0 (q = 0).

Now we are ready to prove Theorem 1.6. We have

lim
r→∞

{
log τabs(M1,r, ρM1,r )− log τrel(M1,r, ρM1,r )

}
= lim

r→∞

1
2

m∑
q=0

(−1)q · q ·
(
logDet∆M1,r,abs − logDet∆M1,r ,D

)
− lim
r→∞

1
2

m∑
q=0

(−1)q · q ·
(
logDet∆M1,r ,rel − logDet∆M1,r ,D

)
=

1
4

m−1∑
q=0

(−1)q · q · logDet(∆q
Y )− 1

4

m∑
q=1

(−1)q · q · logDet(∆q−1
Y )

=
1
2

m−1∑
q=0

(−1)q · q · logDet(∆q
Y ) +

1
4

m−1∑
q=0

(−1)q · logDet(∆q
Y )

= τ(Y, ρY ).

This completes the proof of Theorem 1.6. �
Next, we take care of the closed manifold Mr = M1,r ∪Y0 M2,r. From Theorem

1.4, we have

lim
r→∞

{
logDet∆q

Mr
− logDet∆q

M1,r ,D
− logDet∆q

M2,r ,D

}
=

1
2

(
logDet∆q

Y + logDet∆q−1
Y

)
.
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On the other hand,

lim
r→∞

{
logDet∆q

Mr
− logDet∆q

M1,r ,D
− logDet∆q

M2,r ,D

}
= lim
r→∞

{(
logDet∆q

Mr
− logDet∆q

M1,r,abs
− logDet∆q

M2,r ,rel

)
+
(

logDet∆q
M1,r ,abs

− logDet∆q
M1,r ,D

)
+
(

logDet∆q
M2,r ,rel

− logDet∆q
M2,r,D

)}
.

From Corollary 5.4 we have

lim
r→∞

{
logDet∆q

Mr
− logDet∆q

M1,r ,abs
− logDet∆q

M2,r ,rel

}
= 0,

and therefore we obtain

lim
r→∞

{
τ(Mr, ρMr )− τabs(M1,r, ρM1,r )− τrel(M2,r, ρM2,r )

}
= 0,

which completes the proof of Theorem 1.7.
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