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EMBEDDED MINIMAL DISKS: PROPER VERSUS
NONPROPER—GLOBAL VERSUS LOCAL

TOBIAS H. COLDING AND WILLIAM P. MINICOZZI II

ABSTRACT. We construct a sequence of compact embedded minimal disks in
a ball in R? with boundaries in the boundary of the ball and where the cur-
vatures blow up only at the center. The sequence converges to a limit which
is not smooth and not proper. If instead the sequence of embedded disks had
boundaries in a sequence of balls with radii tending to infinity, then we have
shown previously that any limit must be smooth and proper.

0. INTRODUCTION

Consider a sequence of compact embedded minimal disks ¥; C Bg, = Bg,(0) C
R? with 0%; C 9Bg, and either

(a) R; equal to a finite constant, or

We will refer to (a) as the local case and to (b) as the global case. Recall
that a surface ¥ C R3 is said to be properly embedded if it is embedded and
the intersection of ¥ with any compact subset of R? is compact. We say that a
lamination or foliation is proper if each leaf is proper.

We will be interested in the possible limits of sequences of minimal disks ¥; as
above where the curvatures blow up, e.g., supg, s, |A|? — 00 as i — oo. In the
global case, Theorem 0.1 in [CM2] gives a subsequence converging off a Lipschitz
curve to a foliation by parallel planes; cf. Figure [[l In particular, the limit is a
(smooth) foliation which is proper. We show here in Theorem [l that smoothness
and properness of the limit can fail in the local case; cf. Figure[2l.

We will need the notion of a multi-valued graph; see Figure Bl Let D, C C
be the disk in the plane centered at the origin and of radius r, and let P be the
universal cover of the punctured plane C \ {0} with global polar coordinates (p, )
so p>0and 0 € R. An N-valued graph on the annulus D, \ D, is a single valued
graph of a function u over {(p,0)|r <p <s, |8 < N~}

In Theorem[T] we construct a sequence of disks 3; C By = B1(0) C R? as above
where the curvatures blow up only at 0 (see (1) and (2)) and %; \ {x3-axis} consists
of two multi-valued graphs for each i; see (3). Furthermore (see (4)), ¥; \ {z3 = 0}
converges to two embedded minimal disks ¥~ C {z3 < 0} and X" C {z3 > 0},
each of which spirals into {z3 = 0} and thus is not proper; see Figure 2
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FIGURE 1. The limit in a ball of a se- FIGURE 2. A schematic picture of the

quence of degenerating helicoids is a limit in Theorem [ which is not smooth

foliation by parallel planes. This is and not proper (the dotted xs-axis is

smooth and proper. part of the limit). The limit contains
four multi-valued graphs joined at the
T3-axis; Zf, Z;’ above the plane 3 =0
and ¥, ¥, below the plane. Each of
the four spirals into the plane.

T3-axis

FIGURE 3. A multi-valued graph of a
function u.

Theorem 1. There is a sequence of compact embedded minimal disks 0 € 3; C
By C R? with 0%; C B and containing the vertical segment {(0,0,t)|[t| < 1} C
¥, and such that the following conditions are satisfied:

(1) lim;_ o |Ax,|?(0) = .

(2) sup; supy,\ g, |4s; 2 < oo for all § > 0.

(3) i\ {zs-azis} = £y, U Xq,; for multi-valued graphs X1 ; and 3g ;.

(4) 2\ {z3 = 0} converges to two embedded minimal disks ¥+ C {£x3 > 0}
with % \ ©* = By N {23 = 0}. Moreover, % \ {z3-azis} = ¥ UXT for
multi-valued graphs X1 and YF each of which spirals into {x3 = 0}; see
Figure
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It follows from (4) that X; \ {0} converges to a lamination of By \ {0} (with
leaves X7, 1, and By N {z3 = 0} \ {0}) which does not extend to a lamination of
B;. Namely, 0 is not a removable singularity.

The multi-valued graphs that we will consider will never close up; in fact they
will all be embedded. The most important example of an embedded minimal multi-
valued graph comes from the helicoid. The helicoid is the minimal surface ¥ in R?
parametrized by (scost, ssint,t), where s, t € R. Thus ¥ \ {z3-axis} = 31 U 2o,
where X1, Xy are oo-valued graphs on C\ {0}. X; is the graph of the function
u1(p,0) = 6 and X5 is the graph of the function us(p, ) = 6 + =.

We will use standard (x1,2,23) coordinates on R® and z = x + iy on C.
Given f : C — C", 0, f and 0, f denote g—i and g—g, respectively; similarly, 9, f =
(0 f —i0yf)/2. For p € R?® and s > 0, the ball in R? is B,(p). Ky is the sectional
curvature of a smooth surface ¥. When ¥ is immersed in R3, then Ay will be its
second fundamental form (so when ¥ is minimal, then |[Ax|?> = —2Ky). When %
is oriented, ny, is the unit normal.

1. PRELIMINARIES ON THE WEIERSTRASS REPRESENTATION

Let @ C C be a domain. The classical Weierstrass representation (see [Os])
starts from a meromorphic function ¢ on € and a holomorphic one-form ¢ on €,
and associates to them a (branched) conformal minimal immersion F : Q — R3 by

Wy re=re [ (567000

3070+ 901 6(0).
Here zp € Q is a fixed base point and the integration is along a path 7, ., from zg
to z. The choice of zg changes F by adding a constant. We will assume that F(z)
does not depend on the choice of path +,, .; this is the case, for example, when g
has no zeros or poles and (2 is simply connected.

The unit normal n and Gauss curvature K of the resulting surface are then (see
sections 8, 9 in [Os])

(1.2) n=(2Re g,2Im g,|g]* — 1) /(|g]* + 1),
[ 4l
(13) K= [|¢|(1+|g|2>2}

Since the pullback F*(dzs) is Re ¢ by (II), ¢ is usually called the height differ-
ential. By (ILZ), g is the composition of the Gauss map followed by stereographic
projection.

To ensure that F' is an immersion (i.e., dF' # 0), we will assume that ¢ does not
vanish and g has no zeros or poles. The two standard examples are

(1.4) g(z) =z, #(z) = dz/z, 2 = C\ {0}, giving a catenoid,
(1.5) g(z) = %, ¢(2) = dz, Q = C, giving a helicoid .
The next lemma records the differential of F'.
Lemma 1. If F is given by (L) with g(z) = ¢! =+ 0G) and ¢ = dz, then
(1.6) 0, F = (sinhv cosu,sinhv sinu, 1),
(1.7) Oy F = (coshv sinu, — coshv cosu,0) .
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2. THE PROOF OF THEOREM [II

To show Theorem [I we first construct a one-parameter family (with parameter
a € (0,1/2)) of minimal immersions F, by making a specific choice of Weierstrass
data g = e'te (where h, = u, +iv,), ¢ = dz, and domain €2, to use in (LI)). We
show in Lemmal[2] that this one-parameter family of immersions is compact. Lemma
Blshows that the immersions F, : Q, — R3 are embeddings.

y-axis y :/|x|3/2/2
T-axis M/m xr-axis
QF
x=1/2

FIGURE 5. Qg =), 2% \ {0} and its
two components QS‘ and € .

FIGURE 4. The domain €2,.

For each 0 < a < 1/2, set (see Figure H)
1 .
(1) h(z) = ~ arctan (2) on Qo = {(z,9) ||z < 1/2, [y < (22 + a2)¥/4/2} .

Note that h, is well-defined, since €2, is simply connected and +ia ¢ Q,. For
future reference,

1 2?2 +a? —y? —2ixy
2.2 8zha = = 9
(2.2) (2) 21 a2 (@24 a2 — )2 duy?
(2.3) Ka(z) = oeal =
. u(2) = —

cosh®v,  cosh® (Im arctan(z/a)/a)
Here [23) used (L3). Note that, by the Cauchy-Riemann equations,
(2.4) 0:hq = (0p —10y)(Ua +104)/2 = Opttq — 1 Oytlq = OyUq + 1 0g¥q .

In the rest of this paper we let F, : Q, — R? be from (Il) with g = e/, ¢ = dz,
and zp = 0. Set Qo =, Qa \ {0}, 50 Qo = {(x,9) |0 < |2| < 1/2, |y| < |2[>/2/2};
see Figure[l The family of functions h, is not compact, since lim,_,g |hq|(2) = 00
for z € Qy. However, the next lemma shows that the family of immersions F, is
compact.

Lemma 2. If a; — 0, then there is a subsequence a; for which F,, converges
uniformly in C? on compact subsets of Qq.

Proof. Since h, and —1/z are holomorphic and
(2.5) |0.ha(2) — 0.(=1/2)| = a® 2|72 |2% + a®| 71,

we get easily that Vh, converges as a — 0 to V(—1/z) uniformly on compact
subsets of . Since each v,(z,0) = 0, the fundamental theorem of calculus gives
that the v,’s converge uniformly in C' on compact subsets of Q. (Unfortunately,
the u,’s do not converge.)

Let QF = {#z > 0} N Q be the two components of Q; see Figure Bl Set

b;r = uq,;(1/2) and b; = u,4,;(—1/2) and choose a subsequence a; so both b;” and bt
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converge modulo 27 (this is possible since T? = R?/(27Z?) is compact). Arguing
as above, we find that h,, — bf: converges uniformly in C' on compact subsets of
Q(jf. Therefore, by Lemma[l] the minimal immersions corresponding to Weierstrass
data g = ei(h“i*bf), ¢ = dz converge uniformly in C? on compact subsets of Q(j)[ as
i — 00. (]

vertical line .
b E, Fy(t,-)
/\ /@s(
Qq Plane x5 = t. B, (F,(t,0))

FIGURE 6. A horizontal slice in Lemma Bl

The main difficulty in proving Theorem [ is showing that the immersions Fj, :
Q, — R? are embeddings. This will follow easily from (A) and (B) below. Namely,
we show in Lemma [3, see Figures 6l and [, that for |¢| < 1/2:

(A) The horizontal slice {x3 =t} N F,(9,) is the image of the vertical segment
{xz =t} in the plane, i.e., z3(F,(z,y)) = x; see ().

(B) The image F, ({z =t} NQ,) is a graph over a line segment in the plane
{x5 =t} (the line segment will depend on t); see (Z1).

(C) The boundary of the graph in (B) is outside the ball B, (F,(t,0)) for some
ro > 0 and all a; see (2.8).

Cylinder 27 + 23 = 2.

FIGURE 7. Horizontal slices of F,(€2,) in Lemma[3]

Lemma 3.
(2:6) z3(Fa(w,y) = =
The curve Fy(z,-) : [—(x? + a®)%/*/2, (2% + a?)3/ /2]
— {x3 = x} is a graph.

(2.8) |Fy(z, (2% + a?)3/%/2) — Fy(2,0)| > ro for some rg > 0 and all a.

(2.7)
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Proof. Since zg = 0 and ¢ = dz, we get (Z6) from (LI)). Using y? < (22 + a?)/4
on Qg, (Z2) and (Z4) give

2 |zy| 4 zy|
2.9 8 a\T, = < ’
(2.9) 10ytta(, )] (2 4+ a? —y?)? +422y? ~ (22 +a?)?
2, 2,2
¢ +a‘—y 3
2.10 0 = .
(2.10) yva (T, Y) (22 + a2 — y2)2 + da2y? > 8(2% + a?)

Set Yr.a = (¥ + a?)3/*/2. Integrating ([Z9) gives

! o
2.11 al\d, — Ug L,y S -
@11 e ua(:9) = ta(,0) /0 (2% + a?)? 2 (2 + a?)'/?
Set Vz,a(y) = Falx,y). Since vg(x,0) = 0 and cos(1) > 1/2, combining (L7) and
E17) gives
(2.12) (72.4(%):72,4(0)) = coshva(z, y) cos(ua(x,y) — ta(z,0)) > coshva(z,y)/2.

Here v, ,(y) = OyFu(x,y). By ([@2I2), the angle between v; ,(y) and v; ,(0) is
always less than 7/2; this gives (27). Since vy (z,0) = 0, integrating (210) gives

(2.13) min |va(z,y)] 2/ ’ 3di 3
o 8

Y0 /2<]Y| <Yz .a 22 +a?)  32(x2 4 a?)V/4’

Integrating 212) and using [213) gives
2, 2\3/4 -
(214) <7z,a(ya:,a) - Vx,a(o)a ’)/9157(1(0» > % e(:c2+a2) vim .

Since limy_o s3e® /11 = o0, (ZI4) and its analog for vz o(—¥s,q) give (ZI). O

Corollary 1. See Figure[] Let ro be given by (ZF)).
(i) F, is an embedding.
(i) F,(t,0) = (0,0,t) for |t| < 1/2.
(i) {0 < 23423 < r2}NFL(Q) = 21.0U%s o for multi-valued graphs $1 4, $2.4
over D, \ {0}.

Proof. Equations (2:6) and (Z.7) immediately give (i).

Since zp = 0, F(0,0) = (0,0,0). Integrating (I.6) and using v, (z,0) = 0 then
gives (ii).

By ([2), F, is “vertical,” ie., (n,(0,0,1)) = 0, when |g,] = 1. However,
lga(z,y)] = 1 exactly when y = 0, so that, by (ii), the image is graphical away
from the z3-axis. Combining this with (Z8) gives (iii). O

<1.

Yx,a

Corollary [ constructs the embeddings F, that will be used in Theorem [ and
shows property (3). To prove Theorem[I], we need therefore only show (1), (2), and
(4).

Proof of Theorem [l By scaling, it suffices to find a sequence ¥; C Bpg for some
R > 0. Corollary Mlgives minimal embeddings F, : , — R? with F,(¢,0) = (0,0,t)
for |t| < 1/2, and so (3) holds for any R < ry. Set R = min{r¢/2,1/4} and
¥, = BrN F,,(Qa,), where the sequence a; is to be determined.

To get (1), simply note that, by Z3), |K,|(0) =a™* — oo as a — 0.

We next show (2). First, by (23), sup, supyjy|>s3na, Ka|l < oo for all § > 0.
Combined with (3) and Heinz’s curvature estimate for minimal graphs (i.e., 11.7 in
[Os]), this gives (2).
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To get (4), use Lemma [2 to choose a; — 0 so the mappings F,, converge
uniformly in C2? on compact subsets to Fy : Q9 — R?>. Hence, by Lemma []
¥ \ {z3 = 0} converges to two embedded minimal disks ©* C Fy(QF) with
¥\ {z3-axis} = Eli U Ezi for multi-valued graphs E;t. To complete the proof,
we show that each graph Zf is co-valued (and, hence, spirals into {x3 = 0}). Note
that, by (3) and (7)), the level sets {z3 =z} N Zf are graphs over the line in the
direction

(2.15) lim (sin ugq (2, 0), — cos ug(z,0),0) .

a—

Therefore, since an easy calculation gives, for 0 < t < 1/4,
(2.16) lm [ (. 0) — wa(26,0)] = 1/(28).

we see that {t < |z3| < 2t} N E;t contains an embedded N;-valued graph, where
Ny = 1/(4nt) — oo as t — 0 . It follows that E;t must spiral into {z3 = 0},
completing (4). O
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