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GROMOV TRANSLATION ALGEBRAS OVER DISCRETE TREES
ARE EXCHANGE RINGS

P. ARA, K. C. O'MEARA, AND F. PERERA

ABSTRACT. It is shown that the Gromov translation ring of a discrete tree over
a von Neumann regular ring is an exchange ring. This provides a new source
of exchange rings, including, for example, the algebras G(0) of w X w matrices
(over a field) of constant bandwidth. An extension of these ideas shows that
for all real numbers r in the unit interval [0, 1], the growth algebras G(r) (in-
troduced by Hannah and O’Meara in 1993) are exchange rings. Consequently,
over a countable field, countable-dimensional exchange algebras can take any
prescribed bandwidth dimension r in [0, 1].

INTRODUCTION

This paper introduces a new and large source of exchange rings, in the form of
certain Gromov translation rings, which potentially could aid the development of
the theory of exchange rings as well as pointing to future directions of interest to
workers in “coarse” geometry. Gromov introduced translation algebras (over the
real or complex fields) in the early 1990’s as certain algebras of infinite matrices,
whose entries are indexed by a given “discrete” metric space X, and which en-
code “coarse” geometric information about X. (See §1 for the precise definitions.)
To date, translation algebras do not appear to have been studied much by ring
theorists. However, in a recent paper [5], the authors used translation algebras
over a general field to tackle an old problem of Kaplansky’s on group algebras in
characteristic p.

Exchange rings were introduced in the early 1970’s by Warfield because of the
nice “exchange property” for their finitely generated projective modules. Following
a later Goodearl and Nicholson elementwise characterization (via idempotents) of
these rings, it became clear that exchange rings also provide a natural generalization
of (von Neumann) regular rings. And indeed, in the late 1990’s exchange rings have
provided a common setting for a number of new and important results for both
regular rings and various operator algebras (C*-algebras of real rank zero). Central
to this is a common bond shared by exchange rings and regular rings; namely, direct
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sums of their finitely generated projective modules have the common refinement
property. See [2] [3] [4] [15] [T6] for some details and further references.

Although examples and constructions of exchange rings abound, there is a press-
ing need for new constructions to aid the development of the theory. For example,
the Fundamental Separativity Problem for exchange rings (“Is every exchange ring
separative?”) is still open, despite a strong consensus that non-separative exchange
rings should exist. See [3| 4l [7] for more background on this problem.

Our principal result (Theorem 27) concerns the translation ring T'(X, R) of
a “discrete” metric space X over a general ring R. We show that T(X, R) is
an exchange ring for any discrete tree X (endowed with the path metric) and
any regular ring R. One immediate corollary (taking X = N with the Euclidean
metric) is that the ring of all w x w matrices (over a regular ring R) that have
constant bandwidth is an exchange ring. This appears to be new even in the
case where R is a field. In that setting, the papers [10, 0T} 03] referred to the
corresponding algebra of constant bandwidth matrices as the growth algebra G(0),
because it was the first of a whole spectrum of growth algebras G(r), for r in the
unit interval [0, 1], that were used to define the bandwidth dimension of an arbitrary
countable-dimensional algebra. For 0 < r < 1, the G(r) are still translation algebras
relative to a suitable pseudo-metric, and an easy extension (Theorem [31]) of our
main result shows that all the G(r) are exchange algebras. (In fact, this holds also
when the matrix entries are from any regular ring.) An interesting consequence of
this is that, over a countable field, there exists a countable-dimensional exchange
algebra of any prescribed bandwidth dimension r € [0, 1].

We would like to thank John Roe for bringing translation algebras to the atten-
tion of the second author following the publication of [10} [IT], [13].

1. PRELIMINARIES

Let R be a (unital) ring and let (X, d) be a “locally finite” metric space, in the
sense that all balls of finite radius are finite. We also implicitly assume X is infinite,
whence countably infinite. (In [A] we simply referred to these spaces as “discrete”
metric spaces, but that term has a number of other interpretations.) Following
Gromov [9, p. 262], we define the translation ring T(X, R) of X over R to be the
ring of all square matrices (a(z, y)), indexed by X x X and with entries from R, such
that a(z,y) = 0 whenever d(z,y) > ¢ for some constant ¢ depending on the matrix.
The least such ¢ is called the bandwidth of the matrix. The translation ring also
makes sense when d is just a (locally finite) pseudo-metric, meaning that d(z,y) = 0
does not necessitate x = y. We will need this broader setting in Section Bl The
simplest example of a translation ring occurs when X = N has the Euclidean metric
and R = F is a field. Then T'(N, F) is just the algebra of all w X w matrices over F
with constant bandwidth in the classical sense, i.e. of the form:

* ok ok

k ok ok Xk O

* ok ok K
l

0
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An important class of translation rings arises from discrete connected graphs I,
in particular discrete trees (here “discrete” means having only finitely many edges at
each vertex, although we implicitly assume that there are infinitely many vertices):
let X be the vertex set of I' and take d(z,y) as the minimum of the lengths of the
paths joining x and y. One interesting subclass of these translation rings comes
from taking I' as the Cayley graph of a finitely generated group G with respect to
a finite generating set S. The metric d in this case is just the word metric in S on
X = @G. See [9] for a recent application of translation rings in this setting.

The growth algebras G(r), introduced by Hannah and O’Meara [10] [11] [13] in
the early 1990’s, were originally defined over a field, but the same definitions still
apply when the matrix entries are from any ring R. The ring of all w x w matrices
over R which are simultaneously row-finite and column-finite is denoted by B(R).
For a matrix € B(R), a growth curve for x is any function g: N — R™ such that
for each n € N, z(n,i) = 0 = z(i,n) for all i > n+ g(n). (So g(n) gives a bound on
the “bandwidth” of x at the (n,n) position.) The matrix x has O(g(n)) growth if
there is a constant ¢ > 0 such that the function cg(n) is a growth curve for z. Now
for any r € [0, 1], the ring Gg(r) can be defined as

Ggr(r) ={x € B(R) :  has O(n") growth}.

It will be shown in Section Bl that these rings are translation rings over R relative
to a suitable pseudo-metric on N. In the case where R = F is a field and A is a
countable-dimensional algebra over F', the bandwidth dimension of A is defined as

inf{r € R" : A embeds in Gp(r)}.

It was shown in [I3] that the bandwidth dimensions of even finitely generated
algebras exactly fill the unit interval [0, 1].

Following Warfield [I8], we call a ring R an exchange ring if Rp satisfies the
finite exchange property. In fact, this is equivalent to saying that for any finitely
generated projective module Mg and internal R-module decompositions A = M’ @
N = @, A; with M’ = M, there exist submodules A} of A; such that A =
M' & (B}, AL). The class of exchange rings is quite large, including all semiregular
rings (rings which are regular modulo their Jacobson radical and have idempotent-
lifting), all m-regular rings, all C*-algebras with real rank zero, and more. See
[, 3, [17, [1§]. The following element-wise criterion for exchange rings was obtained
independently by Goodearl [8, p. 167] and Nicholson [12, Theorem 2.1], and is
particularly useful.

Proposition 1.1 (Goodearl and Nicholson). A ring R is an exchange ring if and
only if for every element a € R there exists an idempotent f € R such that f € aR
and 1 — f e (1—a)R.

We recall that a ring R is (von Neumann) regular if for each a € R there exists
b € R with a = aba. Equivalently, every one-sided principal ideal of R can be
generated by a single idempotent. Reference [6] remains the authoritative source
for both the theory and examples of regular rings. It is an old and easy fact
that regular rings are exchange rings (see [I8, Theorem 3]; this also follows from
Proposition below by taking M = R, A = aR and B = (1 — a)R for a € R).
However, the exchange rings arising as a translation ring T'(X, R) of an (infinite)
discrete tree X over a regular ring R are not themselves regular rings.
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We complete our preliminaries by recalling the following well-known technique
for producing a direct sum decomposition over a regular ring.

Proposition 1.2. Let M be a projective module over a regular ring R. Suppose A
and B are submodules of M such that AN B is finitely generated. (Note that this
certainly holds if both A and B are finitely generated.) Then there exists a direct
summand C' of A such that

A+B=Co®B.

Proof. Since AN B is finitely generated, it is a direct summand of the projective
module M by [6] Theorem 1.11]. Write A = (ANB)®C. Then A+ B=C®B. O

2. THE MAIN RESULT

Throughout this section R denotes a (von Neumann) regular ring, (X, d) a locally
finite metric space, and T' = T'(X, R) the translation ring of X over R. Although
T is defined in terms of certain infinite matrices, a transformation viewpoint suits
our proofs better. Accordingly, we fix a free right R-module V' and a basis {e; }zex
for V', and we identify T" with the ring of all R-endomorphisms of Vi whose matrix
relative to the basis {ey }zex has constant bandwidth ¢ for some ¢ > 0 (so for a € T'

we have a(e;) = > eya(y,z), where a(y,z) = 0 whenever d(z,y) > ¢). We also
yeX
fix the following notation.

Notation. For any subset Y of X, let V(Y') be the R-submodule of V' generated
by the e, with y € Y. For z € X and r € Z*, let

B(z,r) ={y € X : d(z,y) <r} (the open ball),
V(z,r) =V (B(z,1)).

In preparation for the proof of our main result in Theorem 277, we assemble six
lemmas. The first formulates bandwidth in transformation terms and will be used
frequently.

Lemma 2.1. Suppose a € T has bandwidth £. Then:

(1) For any basis element e, the support of a(e;) does not contain basis ele-
ments e, with d(y,z) > ¢.

(2) If k > 0 and c € V(z, k), then a(c) € V(x,k +£). (The closed ball version
of this is also true.)

Proof. (1) a(ez) = Y eya(y, z), where the matrix (a(y, x)) has bandwidth ¢. Hence

y
a(y,z) = 0 when d(y,z) > .

(2) Tt is enough to establish this for ¢ = e, with d(z,y) < k. But it follows
from (1) that d(y,z) < ¢ for any e, in the support of a(ey), and so d(z,z) <
d(z,y) +d(y,z) <k+ L. O

The next lemma gives a criterion for containment of principal right ideals of a
translation ring.

Lemma 2.2. Let {B(z;,k)}2, be a covering of X by balls of radius k > 0. For
a,b €T, the containment aT C bT holds if and only if there exists m € N such that
aV(xi, k) C bV (x;,m) for alli.
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Proof. (=) Assume a = bc with ¢ € T of bandwidth ¢. By Lemma [ZT[2),
aV(xi, k) =b(cV (xs, k) COV (x5, k +£).

(<) Write X = (J;2, B; as a disjoint union with B; C B(z;, k). Then V =
@2, Vi, where V; = V(B;). Since aV; C bV (z;, m), there exists an R-submodule W;
of V(z;,m) such that aV; = bW,. Set a; = a|y;, and b; = b|w,. By projectivity of
Vi, there is an R-module map c¢;: V; — W, such that the diagram

Vi

aV;

Wi

commutes for all i. Set ¢ = €, ¢;. Obviously a = be, but we need to verify that
ce€T. Fix zx € X, say x € B;. By construction c¢(e;) € W; C V(x;,m), so

clez) = >, eye(y,z). But d(x,z;) < k, whence for the e, in the support of
d(y,x;)<m

c(ez), we have d(y,z) < d(y,z;) + d(x;,x) < m+ k. Thus ¢ € T with bandwidth

less than m + k. (I

For the remainder of this section, we specialize our locally finite metric space to
the case where X is a discrete tree and the metric d is the path metric:

d(x,y) = length of the (unique) path joining = and y.
We also fix the following notation.
Notation.

a = fixed element of T = T(X, R).
¢ = bandwidth of a.
xo = fixed element of X.
~v(z) = (set of vertices along) the geodesic from z¢ to x (for any = € X).
Us(k) =V({yeX : z€vy(y) and d(y,zo) >d(z,z0)+k}) for any € X and ke Z™.
W.(k) =V({yeX :z€v(y) and kL <d(y,z0) < (k+1)¢}) for any € X and keZ™.
Sy = aU,(0) + (1 — a)U,(¢) for any = € X.

Lemma 2.3. For any k € Z,

Vizo,(k+2)0)0 | > 8,

d(zo,y)=k{
S Y [a(Wy(k+ 1)+ Wy(k+2) + (1 — a)(Wy(k + 1) + Wy (k +2))].
d(zo,y)=k¢
Proof. Suppose v = > ezay € Y. S,. Observe that
d(z,x0)<(k+2)¢ d(zo,y)=kt

Sy =aWy(k+1)+ (1 —a)W,(k+1)+ > _[aW,(k+j) + (1 — a)Wy(k + j)]
7>2
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for each y with d(zg,y) = k€. Notice that the square bracketed terms make no
contribution to V(zg, (k + 1)¢) by Lemma 21l Hence,

v=aw+ (1 —a)w +,

where
w,w' € Z W, (k+1)
d(zo,y)=ke
and
v'e > R C Y Wy(k+1)+ Wy (k+2)].
(k+1)<d(z,z0)<(k+3)¢ d(xzo,y)=Fkt

Since Wy (m) C aWy(m) + (1 — a)W,(m) for any m, it follows that

ve Y [a(Wy(k+ 1)+ Wy(k+2)) + (1 — a)(Wy(k + 1) + Wy (k +2))]
d(zo,y)=kt
as desired. O

The four properties of the submodules S, recorded in the next lemma make
critical use of the fact that X is a tree.

Lemma 2.4. Letk € Z™.

(1) Let x € X. For any e, in the support of S, we have x € y(z).

(2) The sum > Sy is a direct sum.
d(z,x0)=k
(3) Let x € X. Then

b Sy C Uy (k).

z€Y(Y),
d(y,zo)=d(z,z0)+k

(4) Letye X, t > d(y,x0). Then
Sy=aW+1-aW+( P 5.,

y€(2),
d(z,z0)=t
where
W=V{we X |yevy(w),dy,xo) +£<dw,zo) <t+L}).

Proof. (1) S; is generated by elements of the form a(e,) or (1—a)(ey), wherey € X
is of distance at least £ further from zo than z, and z lies on the geodesic from xg
to y. By Lemmal[ZT] if e, is in the support of a(e,) or (1 —a)(ey), then d(z,y) < ¢.
Since X is a tree, this places & on 7(z) too, as follows.

Assume, by way of contradiction, that = ¢ v(z). Let 7/ be the geodesic joining
z and y. Then «(y) is the reduced path obtained from the composition of v(z) and
~'. Since d(y, z) < ¢, every vertex in +/ is different from z. Therefore z ¢ ~(y),
which is impossible.

Therefore, for any two different = with the same d(zg,x), their S, must have
disjoint supports. Thus (2) holds. (3) is similar, and (4) is straightforward. O

So far in this section we have made no special use of the fact that the ring R is
regular. However, regularity is used a little in the following lemma, and will be put
to full use in Lemma 6.
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Lemma 2.5. Let x € X and r € Z" with r > d(z,x¢). Let

N= & S,
z€y(y)
d(y,zo)=r
Suppose B is a submodule of Vi such that B O N and B/N is finitely generated.
Then for any finitely generated submodule A of Vg, AN B is also finitely generated.

Proof. We can write B = G + N for some finitely generated submodule G of V.
Let s = d(z,x¢). Choose k > r + £ — s such that A,G C V(xg, k). We claim that
B CV(xo,k+s)DUg(k).

In order to see this it is enough to check that S, C V(xg, k+ )& U, (k) whenever
x € v(y) and d(y, z¢) = r. By condition (1) in Lemma 24, if e, is in the support of
Sy, then y € v(z), hence also x € y(z). If d(xo, 2) < k + s, then e, € V(zo,k + 3),
and e, € Uz (k) otherwise.

We also have that U, (k) C N C B (because = € v(u) and d(u, xo) > d(z,z0) + &
imply d(u, zo) > r+¢, and therefore e,, € Uy (¢) for some y with z € v(y), d(y, zo) =
7,80 €y, € Sy C N). Let Z = BNV (x0,k+s). By the modular law, B = Z @ U,(k)
and so Z = B/U,(k).

Now let

L= EB S,.

z€Y(z)
d(z,x0)=k+s

By Lemma [24Y(3), we have U, (k) DO L. By Lemma Z4(4) with ¢t = k + s, we have
N =aW + (1 —a)W + L, where

W=V{{weX:zevyw)and r+ ¢ < d(w,x0) < k+ s+ £}).
Therefore we get
B=G+N=G+aW+(1—a)W +L.

It follows that B/L is finitely generated and, since L C U,(k), so is B/U,(k) = Z.
Now AN B = AN Z is the intersection of two finitely generated submodules of the
projective module V', and so A N B is finitely generated because R is regular [6]
Lemma 2.2]. O

Lemma 2.6. For cach x € X with d(x,x9) = 4nl for some n € Z™, there exist
R-submodules Cy, D, of V such that:
(1) Sy =C,®D, d( ) Sy).
z€y(y)
d(y,x0)=4(n+1)¢
Ca[Wy(dn+ 1) + Wy (4n + 2) + Wy (4n + 3) + W, (4n + 4)],
C(l—a)Wz(dn+ 1)+ Wy(4n + 2) + Wy(4dn + 3) + Wy (4n + 4)].

(An+ 1)+ Wo(4n+2) + Wo(4n + 3) + W, (4n + 4)
Cr @D, @ ( S5 Cy @ Dy).

z€7(y)
d(y,z0)=4(n+1)¢

(2)

C,
D,
(3) We
c

Proof. Let z € X with d(x,z¢) = 4nl for some n € Z*. Since

a(Wy(dn+ 1)+ W,o(4n+2)) and (1 —a)(Wy(dn+ 1)+ W,(4n +2))
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are finitely generated submodules of Vg, by Proposition we can write
aWo(4n+1)+Wo(4n+2)) + (1 —a)(Wo(4n+ 1) + W, (4n + 2)) = C., & D!,

for some finitely generated submodules C,, C a(W;(4n + 1) + Wy (4n + 2)) and
D, C(1—-a)(Wy(4n+ 1)+ W,(4n +2)). Let

N = b Sy,

z€v(y)
d(y,xo)=(4n+4)¢

A= a(Wy(4n + 3) + W, (4n + 4)),

B=a(W,(4n +1) + W,(4n +2)) + (1 — a)(W,(4n + 1) + W, (4n + 2)) + N.

Notice that B = C, @ D!, & N, because by Lemma 21 C’, D! C V(zo, (4n+ 4)¢)
and V(zo, (4n +4)¢) N N = 0 (by Lemma 21[1)). Also because A and B/N are
finitely generated, A N B is finitely generated by Lemma whence by Proposi-
tion there exists a finitely generated submodule CY of A such that A+ B =
C! @ B. Let

A= (1—-a)(Wy(4n + 3) + W, (4n + 4)),
B'=A+B=C!®B.

Again by LemmalZH we have that A’NB’ is finitely generated because A’ and B’ /N
are finitely generated. Therefore, by Proposition[2we can write A'+ B’ = D!/& B’
for some summand D!/ of A'.

By Lemma 2-(4) with ¢ = (4n + 4)¢, we have

An+4 An+4
S, =a< > Wx(k)> +(1—-a) ( > Wx(k;)> + N.

k=4n+1 k=4n+1

By using the above calculations we get

4n+4 4n+4
S, —a< > Wx(k‘)> +(1—a) ( > Wz(k)> +N

k=4n+1 k=dn+1
=a(Wy(dn + 1)+ Wy(4n+2)) + (1 —a)(Wy(dn + 1) + Wy (4n + 2))
+N+ A+ A
=B+A+ A
={(CL,oD,®N)+A)+ A
=(C.eD, o NaCl)+ A
=C.eD,eoNaCaD)
= (CLaC))a (D, & DY)& N.
Thus, setting C,, = C.. @ CY and D, = D! @ D! achieves not only goals (1) and (2)

(for all  whose distance from z is a multiple of 4¢) but a bit more —the following
holds:

(%) a(Wo(dn +1) + Wo(4n + 2))+(1 — a) (W, (4n + 1)+ W, (4n + 2)) C C, @ D,.
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We now show that (3) follows. Again fix € X with d(x,x0) = 4nf. Let
Q={ye X :d(y,z0) =4(n+ 1)l and z € ¥(y)},
and let
m: 8, =Co, ®D, &N — N

be the projection onto N = €@ S,. Observe that W, (4n+1)+---+W,(4dn+4) is a
yeq
submodule of U, (¢) (hence of S;) and V (xq, (4n+5)¢). Also, by (2) and Lemma 2.1,

C, and D, are submodules of V(zg, (4n + 6)¢). Therefore by Lemma 23]
m(Wa(dn 4+ 1) + -+ Wa(4n +4)) C V(zo, (4n+6)0) N Y _ S,

yeR
C ) [a(Wy(4n + 5) + W, (4n + 6)) + (1 — a) (W (4n + 5) + W, (4n + 6))]
yeq
C @ 'y @ Dy) by property ().
yeR
Property (3) is now evidently true. O

We are now ready to state and prove our main result.

Theorem 2.7. Let X be a discrete tree and R any regular ring. Then the transla-
tion ring T(X, R) is an exchange ring.

Proof. Let T = T(X,R). To show T is an exchange ring, it suffices by Proposi-
tion [LT to demonstrate that for each a € T, there is an idempotent f € T with
feaT and 1 — f € (1 —a)T. So fix a € T with bandwidth ¢, and perform the
construction in Lemma, to produce Cy, D, for each x € X with d(z,zo) = 4nt,
nezr.

Let Wy = V(x0,¢) and N = S,. By observing that V = aWy + (1 — a)Wy +
N, and utilizing Lemma (as in the proof of Lemma 6], we can find finitely
generated R-submodules Cy C aWp and Dy C (1—a)Wy such that V = Co@Do® N.
Setting P = {z € X : d(z,x¢) = 4n/ for some n € Z*}, we claim that

Pc. e D,)

zEP

Indeed, the sum is direct by (1) of Lemma (and [Z4)2)). To see that equality
holds, note first that Lemma [26(3) implies U,,(4¢) C E := @ (Cr ® D). Now

V=Ci®Dy&

zEP
we have
V=Co®Dy®dN =Co®Dy® Sy,
=Co® Dy P Cy, ® Dy, @ @ Sy (by Lemma [Z6{(1))
d(y,xo)=4L

C (Co@ Dy & Cyy & Dyy) + Uz, (40) (by Lemma [2:4)(3))

CCodDydE,
which establishes our claim. Let C =Cy & (@ Cz), D = Do & (P D), and let

zEP rEP

fiVv=Ce@D—-C
be the projection.
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Claim. There exists m € N such that for all z € X,
flez) €aV(z,m) and (1— f)(e:) € (1 —a)V(z,m).

To verify this, fix z € X. If e, € Wy, there is no problem arranging a bound m,
because surely f(e,) € aV and (1 — f)(e,) € (1 —a)V, so there exists M € N with
fler) € aV(zg, M) and (1 — f)(e,) € (1 —a)V(xo, M) for all (the finitely many)
e, € Wy. Hence m = M + £ will do. (The argument at the end of Lemma 2.0

produces a better bound, m = 6¢.) So we can assume e, € W,(4n + j) for some
x € X with d(z,z0) = 4nl, n € Z", and some j = 1,2,3,4. Let

Q={yeX:zev(y) and d(y,zo) = 4(n + 1)¢}.
By (3) of Lemma [2.6]

Wx(4n+j) CC,®D, @ {@(Cy D Dy)}
yeERQ
whence

fWe(n+j)cCa [P,

yeQ

- a[(Wx(4n+ D+ +Wo(4n+4))

+ > (Wy(dn+5) + -+ W, (4n + 8))|.
yeQ

It is at this point that we make yet another key use of the fact that X is a tree,
not just a connected graph. Namely, when € ~v(y), then d(z,y) = d(y,x0) —
d(x,z0). Therefore, for all e, in the support of the last square bracketed term,
d(z,z") < 9¢. On the other hand, d(z, z) < 5¢, whence d(z,2") < 14¢. This shows
that f(e,) € aV(z,14¢). Analogously, (1 — f)(e.) € (1 — a)V(z,14¢), so taking
m = max{M + ¢, 14¢} satisfies the claim.

The claim yields two things. Firstly, f € T because f(e,) € aV(z,m) implies
fler) € V(z,£+m) for all z € X by Lemma[21] and so f has constant bandwidth
at most £ + m. Secondly, f € aT and 1 — f € (1 — a)T by Lemma (taking
k=1).

This completes our proof that T is an exchange ring. O

Remark 2.8. As regards weakening the regularity hypothesis on R in Theorem 2.7]
one certainly needs R to be at least an exchange ring in order for T'(X, R) to be
such, because R is a corner ring (eT'e for some idempotent e € T') of the latter.
On the other hand, R being an exchange ring is not enough on its own. For
example, one can show that if the ring Gg(0) (of w X w matrices over R of constant
bandwidth) is an exchange ring, then the Jacobson radical of R must be right and
left T-nilpotent. O

Our theorem naturally prompts the following question:

Question. Does Theorem [2.7 hold if X is a connected graph? What about a
locally finite metric space? A good test case might be when X is the Cayley graph
of a free abelian group, even Z @ Z. (Note that [Z7 does apply to the Cayley graph
of a free non-abelian group.) O
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3. THE GROWTH ALGEBRAS G(r)

In this section we apply our results of Section 2] to show that the rings Gg(r)
are exchange rings for all regular rings R and for all r € [0,1]. Theorem 277 as it
stands, only applies directly to Gg(0). However, with very little extra work, it can
be extended in the following way, which will then apply directly to all the Gg(r).

Theorem 3.1. Let X be a set and let ~ be an equivalence relation on X such that
all the equivalence classes are finite and the quotient set X/ ~ has a discrete tree
structure. Let d be the induced pseudo-metric on X, that is,

d(x,y) = length of the path from [x] to [y]

(where [ ] denotes the ~ equivalence class). Then the translation ring T(X, R) is
an exchange ring for all reqular rings R.

Proof. Notice that Lemmas [2.1] and 2.2] work for any locally finite pseudo-metric
space. In the remainder of Section 2] the submodules U, (k), Wy (k), Sz, Cy and D,,
are now to be indexed by the equivalence classes [z], but their definitions (which
are independent of the representative of [z]) target the elements of X, not X/ ~.
Thus,

Up)(k) = V({y € X : [z] € v([y]) and d(y, z0) = d(z, x0) + k}),
Wiei(k) = V({y € X : [z] € 7([y]) and kl < d(y, o) < (k +1)€}),
S[x] = aU[x] (5) + (1 — a)U[x] (5)

One then easily checks that, with some very minor changes, the statements and
proofs of 23] 2.4] 2.5, and 2.7] carry over intact. O

Given any sequence S = {n;}$° of (strictly) positive integers, we can define a
pseudo-metric dg on N by taking ds(x,y) = |i — j|, where ny + -+ n;—1 < x <
ni+---+n;andni+---+nj_1 <y <ni+---+n; (set ng = 0). Modulo the obvious
equivalence on N (that induced by the intervals of integers (0,n1], (n1,n1 + n2],
(n1+n2,n14+n2+ng),...), ds is just the Euclidean metric. (The distance between x
and y is the number of “blocks” (nq+---+mn;_1,n1+---+n;] they are apart.) Hence
Theorem Bl applies, and so the corresponding translation ring Ts(R) = T'(N, R) is
an exchange ring for any regular ring R. There is a simple description of the matrices
in Ts(R). Consider the natural copy of [[;=; M,, (R) inside B(R), that is, all block-
diagonal matrices with block sizes n1,n2, n3, ... (going down the diagonal). (In [I1]
this was called the “spine” determined by the sequence {n;}.) Then Ts(R) consists
of all w X w matrices over R which have constant “block-bandwidth”, that is, when
bandwidth is measured in terms of the number of off-diagonal blocks, rather than
the number of off-diagonal entries. See [11}, p. 116]. For example, if ny = 1, ny = 2,
n3 =2, ng = 3,... the matrix below has block-bandwidth 1:

*
*
*

*
*

X |k * *
k [k ok 3k
*
*
*

* *[% x| %
* *[% x| %

* K ok
* % K
* kK ok

*
*
*
*
*
*
*
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Each of the rings Gr(r) (over any coefficient ring R) is of the form Ts(R) for
some suitable sequence S = {n;}$°: for r = 1, we can take n; = 2% for 0 <r < 1,
let t = /(1 —7) and take n; = [i'], the greatest integer less than or equal to i*. See
[T, Proposition 1.6]. Therefore, Theorem [B.1]yields the following corollary.

Corollary 3.2. The rings Ggr(r) are exchange rings for all regular rings R and for
all r €10,1].

It is not difficult to see that the ring B(R), of all w x w row-and-column-finite
matrices over a ring R, can never be a translation ring relative to any locally finite
pseudo-metric d on N. However, each matrix in B(R) is block tridiagonal relative
to suitably sized blocks (depending on the matrix), and therefore

B(R) = JTs(R),
S

where the union is over all sequences S = {n;} of positive integers. Thus Theo-
rem [3] yields as a further corollary the following result, first established in [I4],
because clearly a ring which is a union of exchange rings is an exchange ring by
Proposition [Tl

Corollary 3.3. The ring B(R) is an exchange ring for all regular rings R.

Our final corollary helps quantify the wide range of exchange algebras produced
by our constructions.

Corollary 3.4. (1) Over any field F, and for any real number r € [0,1], there is
an exchange algebra of bandwidth dimension r.

(2) For a countable field F, the exchange algebra in (1) can be chosen to be
countable-dimensional.

Proof. (1) For this statement, we can take the algebra Gg(r) and appeal to Corol-
lary and [13, Corollary 8.1].

(2) Now suppose F' is a countable field and r € [0, 1]. By [I3] Theorem 0.1] there
is a finitely generated F-algebra A C Gp(r) of bandwidth dimension r. Of course,
since F is countable, A (and any countable-dimensional algebra) is countable. Also,
by Corollary[B.2], we know Gr(r) is an exchange algebra. There is now a standard
way of extending A to a countable subalgebra B of G (r) such that B is an exchange
algebra, using the condition in Proposition [[ 1l Namely, we take B as the union
of a chain A1 = A C Ay C --- of subalgebras of Gp(r) constructed inductively as
follows: If A, = {a1,a2,as,...}, choose idempotents fi, fa, f3,... in Gp(r) such
that f; = a;z; and 1 — f; = (1 — a;)y; for some x;,y; € Gp(r), and let A, 1 be the
F-subalgebra generated by A,, and f;, x;, y; for i =1,2,3,....

That B has bandwidth dimension r follows from the squeezing A C B C Gp(r),
because both A and Gp(r) are of that dimension. O

Remark 3.5. In contrast to Corollary[3.4] it appears to be an open question whether
there are countable dimensional (von Neumann) regular algebras of arbitrary band-
width dimension r € [0, 1]. O
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