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LONG-TIME BEHAVIOR FOR A NONLINEAR
FOURTH-ORDER PARABOLIC EQUATION

MARÍA J. CÁCERES, J. A. CARRILLO, AND G. TOSCANI

Abstract. We study the asymptotic behavior of solutions of the initial-
boundary value problem, with periodic boundary conditions, for a fourth-order
nonlinear degenerate diffusion equation with a logarithmic nonlinearity. For
strictly positive and suitably small initial data we show that a positive solution
exponentially approaches its mean as time tends to infinity. These results are
derived by analyzing the equation verified by the logarithm of the solution.

1. Introduction

We investigate the long-time behavior for solutions f = f(t, x) of the initial
periodic-boundary value problem

ft = −(f(log f)xx)xx,(1.1)

f(0, x) = f0(x) ∈ H1
+(S1),(1.2)

where x ∈ X and t ∈ R
+, with X = S1 parameterized by a variable x satisfying

0 ≤ x ≤ 1. Equation (1.1), which can be equivalently written as

ft = −fxxxx +
(

f2
x

f

)
xx

,

arises as a scaling limit in the study of interface fluctuations in a certain spin system
[6], and also models the electron concentration in a quantum semiconductor device
with zero temperature and negligible electric field [7].

The initial periodic-boundary value problem for (1.1) was first studied by Bleher,
Lebowitz and Speer in [1]. They proved local in time existence of positive solutions
for strictly positive initial data and global existence (in time) for “small” initial
data. Moreover, in this last case they were able to show convergence without rate
to the constant steady state

∫
S1 f0.

Following the numerical investigation done in [3], one can conjecture exponential
convergence towards the constant steady state for global (in time) solutions of the
initial–boundary value problem (1.1)-(1.2) with periodic boundary conditions (see
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also [2, 5, 9]). Indeed, this conjecture has recently been proved in [9] by different
techniques for (1.1) with the boundary conditions introduced in [7, 8].

Concerning the Cauchy problem for (1.1), it was remarked [2, 5] that (1.1) is
a particular case of a class of fourth order diffusion equations which admit self-
similar solutions. The self-similar profiles for (1.1) can be defined by a minimization
problem involving the physical entropy and thus given by modified heat kernels. It
is formally argued in [2, 5] and numerically investigated in [3] that this property
should provide an algebraic decay in L1-norm of solutions of (1.1) towards the
corresponding self-similar profile.

In this work, we show that under suitable smallness assumptions on the initial
data, the equilibration rate of solutions of (1.1) with periodic boundary conditions
is exponential. Instead of working directly with (1.1)-(1.2), we rather consider the
initial value problem in terms of log f . Setting α(t, x) = log f(t, x), α = α(t, x)
then satisfies the equation

(1.3) αt = −
(
αxxxx + 2αxαxxx + αxxα2

x + α2
xx

)
= −e−α(eααxx)xx.

The initial value problem (1.1)-(1.2) is in this way translated into the initial value
problem (1.3) with the initial condition

(1.4) α(0, x) = α0(x) = log f0(x).

Equation (1.3) plays an important role in the analysis of (1.1)-(1.2). In fact, all
Lyapunov functionals studied in [1] can be easily recovered in this framework. More-
over, the form (1.3) allows us to recognize conditions under which the initial value
problem (1.1)-(1.2) stabilizes exponentially.

It is remarkable that (1.1) can be equivalently written in many ways, which can
be fruitfully used to get different results. While the form (1.3) to our knowledge
has never been used before, in [1] was considered the equation

wt = −wxxxx +
w2

xx

w
,

obtained by setting f = w2.
Before we state the main results of this work, we summarize the existence results

given by Bleher, Lebowitz and Speer in [1], since they are the starting point of our
analysis.

Theorem 1.1 ([1, Theorem 4.2]). Suppose that f0 ∈ H1
+(S1). Then the following

hold:
(a) Local existence and uniqueness of a mild solution: For some T > 0

there exists a unique mild solution f = f(t, x) of the initial value problem
(1.1)-(1.2), such that f ∈ C+([0, T ]; H1(S1)).

(b) Regularity of mild solutions: If f ∈ C+([0, T ]; H1(S1)) is a mild solu-
tion of the initial value problem (1.1)-(1.2), then f ∈ C((0, T ]; Hr(S1)) for
all r; moreover, f is a classical solution of (1.1)-(1.2) in Hr(S1) for any r.

Let I = [0, T (f0)) be the maximal interval where the solution of the initial value
problem (1.1)-(1.2) exists.

Theorem 1.2 ([1, Theorem 5.1]). Let f0 ∈ H1
+(S1). Let f∈C+([0, T (f0)); H1(S1))

be the mild solution of the initial value problem (1.1)-(1.2) defined on a maximal
half-open interval. If T (f0) < ∞, then h = limt↗T (f0) f(t) exists in C1, but the
limiting function h vanishes at least at one point of S1.
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Theorems 1.1 and 1.2 show that preservation of strict positivity of the solution
implies global existence. This property is at the basis of our main results.

In what follows, let us denote by f̄ the mean value of f in S1,

f̄ =
∫

S1
f(x) dx.

We prove

Theorem 1.3. Let f0 ∈ H1
+(S1) be such that

(H)
∫

S1

f2
x(0, x)

f2(0, x)
dx < 12,

and let f(t, x) be the solution of (1.1)-(1.2). Then
(a) the initial value problem (1.1)-(1.2) has a unique global in time solution;

(b)
∫

S1

f2
x(t, x)

f2(t, x)
dx converges exponentially to 0, as t → ∞;

(c) ‖f(t) − f̄0‖H1(S1) converges exponentially to 0, as t → ∞.

By standard Sobolev inequalities, the previous result implies that for any p ∈
[1, 2], ‖f‖Lp(S1) converges exponentially to f̄0. If 1 ≤ p ≤ 4/3 we will show that
this exponential convergence to equilibrium follows independently of assumption
(H), provided the initial data are such that global existence can be guaranteed.
Precisely we prove

Theorem 1.4. Let f be a global solution of the initial value problem (1.1)-(1.2).
Then, for 1 ≤ p ≤ 4/3

(1.5) 0 ≤
∫

S1
fp dx − f̄0

p ≤
(∫

S1
fp
0 dx − f̄0

p
)

e−Kt,

where K = 64π4(p − 1)/p.

Classical Csiszar–Kullback inequalities [10],

(1.6)
(∫

S1

∣∣∣f − f̄
∣∣∣ dx

)2

≤ 4f̄2−p

p(p − 1)

(∫
S1

fp dx − f̄p

)
, 1 < p ≤ 2,

will then show exponential convergence in L1(S1) of the solution towards the steady
state with the explicit rate K/2.

The paper is organized as follows. In Section 2, by using (1.3), we recover
the monotonicity in time of the Lyapunov functionals obtained in [1] by different
methods. Section 3 is devoted to the proof of the large–time results for small
positive initial data (Theorem 1.3) and to the exponential Lp-decay (Theorem 1.4).

2. Entropy functionals revisited

The existence of various functionals Ψ(f, fx), which behave monotonically in
time when f is the solution of (1.1)-(1.2), was already discussed in [1]. In this
section we show that the monotonicity of these Lyapunov functionals can easily be
obtained as a consequence of (1.3). Throughout the section we will mainly work
formally, and we will restrict ourselves to the case X = S1. The results however
can be rigorously justified for classical solutions of our problem, even on the whole
line R, provided f and its derivatives decay fast enough at infinity to guarantee a
correct integration by parts.
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In addition to (1.3),

αt = −
(
αxxxx + 2αxαxxx + αxxα2

x + α2
xx

)
= −e−α(eααxx)xx,

a second equation will be widely used in this section,

(2.1) (αx)t = −
(
αxxxxx + 2αxαxxxx + 4αxxαxxx + α2

xαxxx + 2αxα2
xx

)
.

Equation (1.3) can be obtained in two lines. In fact

αt = log ft =
ft

f
= − (f(log f)xx)xx

f
= −

(
αxx

fxx

f
+ 2αxαxxx + αxxxx

)

and

αxx =
(

fx

f

)
x

=
fxx

f
−

(
fx

f

)2

,
fxx

f
= αxx + (αx)2.

For the second equality in (1.3) we only use α = log f and consequently eα =
f . Equation (2.1) is obtained from (1.3) by differentiating with respect to the
x-variable.

2.1. Functionals depending of α. The functionals
∫

S1 fp dx,
∫

S1 f log f dx and∫
S1 log f dx can easily be rewritten in terms of log f . They are nothing but par-

ticular cases of functionals depending of α,
∫

S1 φ(α) dx. Therefore, for α(t, x), the
solution to our problem, we begin by finding the expression of the time–derivative
of

∫
S1 φ(α(t, x)) dx.

Proposition 2.1. Let φ ∈ C∞(R) and α = log f , where f is a (positive) classical
solution of (1.1)-(1.2). Then

d

dt

∫
S1

φ(α) dx =
∫

S1
α2

xx [φ′(α) − φ′′(α)] dx

+
1
3

∫
S1

α4
x

[
φ′′(α) − 2φ′′′(α) + φ(iv)(α)

]
dx,(2.2)

where prime denotes differentiation of φ(·) with respect to its argument.

Proof. Differentiation with respect to time gives

d

dt

∫
S1

φ(α) dx =
∫

S1
φ′(α)αt dx = −

∫
S1

φ′(α)[αxxxx +2αxαxxx +αxxα2
x +α2

xx] dx.

Integrating by parts, we can reduce the order of the derivatives with respect to x
of α in the first three terms. We obtain

−
∫

S1
φ′(α)αxxxx dx =

∫
S1

φ′′(α)αxαxxx dx=−
∫

S1

[
φ′′′(α)α2

xαxx+φ′′(α)α2
xx

]
dx

= −
∫

S1

[
φ′′′(α)

(α3
x)x

3
+ φ′′(α)α2

xx

]
dx =

∫
S1

φ(iv)(α)
α4

x

3
dx −

∫
S1

φ′′(α)α2
xx dx.

Moreover

−2
∫

S1
φ′(α)αxαxxx dx = 2

∫
S1

[
φ′′(α)α2

xαxx + φ′(α)α2
xx

]
dx

= 2
∫

S1

[
φ′′(α)

(α3
x)x

3
+ φ′(α)α2

xx

]
dx = −2

∫
S1

φ′′′(α)
α4

x

3
dx + 2

∫
S1

φ′(α)α2
xx dx.
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Finally

−
∫

S1
φ′(α)αxxα2

x dx = −
∫

S1
φ′(α)

(α3
x)x

3
dx =

∫
S1

φ′′(α)
α4

x

3
dx.

Collecting these identities we obtain (2.2). �

The proposition allows us to immediately find some of the functionals which
behave monotonically in time. In fact, for any given φ it is enough to check the sign
of the expressions φ′(α)−φ′′(α) and φ′′(α)− 2φ′′′(α) + φ(iv)(α). The first example
of functional which behaves monotonically is clearly obtained setting φ(α) = α. In
this case φ′ ≡ 1, while φ′′ ≡ φ′′′ ≡ φ(iv) ≡ 0 and (2.2) becomes

(2.3)
d

dt

∫
S1

log f dx =
∫

S1
α2

xx dx.

Thus we have

Corollary 2.2. Let f be a (positive) classical solution of (1.1)-(1.2). Then,∫
S1 log f(t, x) dx is nondecreasing in time.

Let us now set φ(α) = exp(pα), p > 0, which implies φ(α) = fp. We recover the
following:

Corollary 2.3. Let f be a (positive) classical solution of (1.1)-(1.2). Then

(2.4)
d

dt

∫
S1

fp dx = p(1 − p)
[∫

S1
epαα2

xx dx +
p(1 − p)

3

∫
S1

epαα4
x dx

]
.

Furthermore,
∫

S1 fp dx is nondecreasing for 0 < p < 1, nonincreasing for 1 < p ≤ 3
2

and constant for p = 1.

Proof. The sign of the right–hand side of (2.4) is clearly positive when 0 < p < 1,
while it is equal to zero when p = 1. To conclude the proof we have only to check
that the right–hand side of (2.4) is nonpositive for 1 < p ≤ 3

2 . To this aim, consider
that, for all p ≥ 0, the following inequality holds:

(2.5)
∫

S1
epαα2

xx ≥ p2

9

∫
S1

epαα4
x dx.

In fact, for any constant d ∈ R,

(2.6) 0 ≤
∫

S1
epα[αxx + dα2

x]2 dx.

Expanding the square, integrating by parts the integral containing the product
αxαxx, and using analogous arguments as given in the proof of Proposition 2.1, we
obtain the inequality

(2.7)
∫

S1
epαα2

xx ≥
(

2
3
dp − d2

) ∫
S1

epαα4
x dx.

The function u = u(d) = 2
3dp − d2 attains the maximum value at d = p/3, where

u(p/3) = p2/9. Since inequality (2.7) holds for any d ∈ R, we can take d = p/3,
which shows (2.5).
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For p > 1, p(1 − p) < 0. Thus, to show that for a given p the right–hand side of
(2.4) is nonpositive is equivalent to showing that

(2.8)
∫

S1
epαα2

xx dx ≥ p(p − 1)
3

∫
S1

epαα4
x dx.

By (2.5) this inequality holds if p2/9 ≥ p(p − 1)/3, which gives p ≤ 3/2. We point
out that under the assumption f0 �= f̄0 we obtain d

dt

∫
S1 fp dx < 0, since in this

case inequality (i) is strict. �
Remark 2.4. The proof of Corollary 2.3 is quite different from the proof in [1]. In [1]
d
dt

∫
S1 fp dx is shown to be the integral of a semi-definite quadratic form provided

1 < p < 3/2. In addition, (2.4) can be further analyzed to get explicit decay–rates
of the Lp–norm of the solution.

To end up, we remark that a third possible choice is φ(α) = αeα. In this way,
we recover the monotonicity in time of the functional

∫
S1 f log f dx.

Corollary 2.5. Let f be a (positive) classical solution of (1.1)-(1.2). Then

(2.9)
d

dt

∫
S1

f log f dx = −
∫

S1
α2

xxeα dx ≤ 0.

Proof. If φ(α) = αeα, then

φ′(α) = eα(1 + α), φ′′(α) = eα(2 + α), φ′′′(α) = eα(3 + α), φ(iv)(α) = eα(4 + α).

Therefore,

φ′(α) − φ′′(α) = −eα, φ′′(α) − 2φ′′′(α) + φ(iv)(α) = 0.

�
Remark 2.6. Unlikely, from (2.2) it seems difficult to recover other functionals
which vary monotonically in time. The natural choice φ(α) = αqepα gives no new
functionals (in addition to the previously known ones corresponding to q = 1, p = 0,
q = 1, p = 1 and q = 0, p < 1 or q = 0, 1 < p ≤ 3/2).

2.2. Functionals depending on α and αx. We will consider in this section func-
tionals which depend both on the derivative fx and jointly on f and its derivative
fx. As a main example in the first class we will study the evolution in time of the
functional

∫
S1 α2

x dx, from which we will obtain under suitable smallness assump-
tions on the initial value both positivity of the solution and exponential convergence
to the constant steady state (see next section).

An important example of functionals which depend jointly on f and its derivative
fx is furnished by the Fisher information,

I(f) =
∫

S1

f2
x

f
dx.

In this class, we will again recover all the functionals which were considered in [1].
We begin our study by considering functionals depending only on αx.

Proposition 2.7. Let φ ∈ C∞(R). Then
d

dt

∫
S1

φ(αx) dx =
∫

S1
φ′′(αx)(α2

xα2
xx − α2

xxx) dx −
∫

S1
φ′′′(αx)αxα3

xx dx

+
1
3

∫
S1

φ(iv)(αx)α4
x dx.(2.10)
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Proof. We have

d

dt

∫
S1

φ(αx) dx =
∫

S1
φ′(αx)(αx)t dx

= −
∫

S1
φ′(αx)

(
αxxxxx + 2αxαxxxx + 4αxxαxxx + α2

xαxxx + 2αxα2
xx

)
dx,

where we used (2.1). Various integration by parts permits us to reduce the order of
the derivatives and show (2.10). Since the computations are very similar to those
we did in Proposition 2.1, we leave them to the reader. �

The most important example is given by the choice φ(r) = r2. In this case we
obtain

Corollary 2.8. Let f be the solution of (1.1)-(1.2). Then

(2.11)
1
2

d

dt

∫
S1

α2
x dx = −

∫
S1

α2
xxx dx +

∫
S1

α2
xα2

xx dx.

Lastly, we consider functionals depending jointly on α and αx. In particular,
we will study the evolution in time of functionals φ(α, αx) = φ1(α)φ2(αx), where
φ1(s) = es and φ2(s) = s2. This class includes, among others, the Fisher informa-
tion. The monotonicity in time of this functional follows easily in our framework.

Proposition 2.9. Let f be a solution of (1.1)-(1.2). Then

d

dt

∫
S1

f2
x(t)
f(t)

dx = −2
∫

S1
eα(αxαxx + αxxx)2 dx,

which implies that the Fisher information

I(f)(t) =
∫

S1

f2
x(t, x)
f(t, x)

dx

is nonincreasing in time.

Proof. We use the second equality in (1.3).

d

dt

∫
S1

f2
x(t)
f(t)

dx =
d

dt

∫
S1

eαα2
x dx =

∫
S1

eα(α2
xαt + 2αxαxt) dx

=
∫

S1
[eαα2

x − (2eααx)x]αt dx =
∫

S1
[eαα2

x − 2eα(α2
x + αxx)]αt dx

=
∫

S1
eα(α2

x + 2αxx)e−α(eααxx)xx dx = −
∫

S1
eα(α2

x + 2αxx)x(αxαxx + αxxx) dx.

This concludes the proof. �

Remark 2.10. The previous proof can be extended to show that the functionals

Ip(f) =
∫

S1

[
f2

x(t, x)/f(t, x)
]p

dx

are nonincreasing in time if 1 ≤ p ≤ 3/2. In terms of α, these functionals in fact
take the form

∫
S1 epα

[
α2

x

]p
dx, which allows explicit computations. In this case

however, the proof in terms of α does not develop essential simplifications with
respect to the proof given in [1].
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To conclude this section we remark that the time monotonicity of the various
functionals considered in [1] can be viewed in a unified picture by using (1.3) to
study their evolution. In addition, we can show in this way that the convex func-
tional (2.11) has a monotone in time evolution for some suitably small initial data.
As we will show in the next section, the study of the time evolution of this functional
permits us to obtain a new result of exponential convergence towards equilibrium
for the solution of (1.1)-(1.2), with an explicitly computable rate.

3. Convergence to equilibrium

In this section we will deal with the problem of finding conditions on the initial
values that guarantee the positivity of the solution on (1.1)-(1.2) and consequently
its global existence. As a by–product of our analysis, we obtain exponential con-
vergence to equilibrium.

For the initial–boundary value problem (1.1)-(1.2) the equilibrium states f∞ > 0
are given by constants, since by (2.3) these states are such that

(log f∞)xx = 0,

and thus
f∞(x) = eC3x+C4 .

Then, the periodic boundary conditions imply that f∞ must be constant (f∞(x) =
eC4). On the other hand, since the equilibrium solution must have mass equal to
f̄0, one concludes that f∞(x) = f̄0.

Theorems 1.1 and 1.2 give us a way to prove global existence of the solution
for the initial value problem (1.1)-(1.2). On the basis of these theorems, it is in
fact enough to show that the solution remains strictly positive to infer that this
solution exists for all times. Therefore, we focus on conditions on the initial value
that guarantee strict positivity of the solution. Before going further, we recall some
standard Sobolev inequalities and embeddings with optimal constants which will
be used in the rest of the paper.

Lemma 3.1. If g ∈ W 1,1 and ḡ = 0, then

‖g‖C0 ≤ 1
2
‖gx‖L1,(3.1)

‖g‖C0 ≤ 1
2
√

3
‖gx‖L2,(3.2)

‖g‖L2 ≤ 1
2π

‖gx‖L2 .(3.3)

In the following proposition we recover a condition that guarantees that the
functional

∫
S1 α2

x(t) dx is nonincreasing in time. This condition will be enough
to obtain both global existence and exponential convergence towards equilibrium,
with an explicit rate.

Proposition 3.2. Let the initial value f0 satisfy f0 �= f̄0 and condition (H). Then,
the solution of the initial value problem (1.1)-(1.2) f ∈ C(I, H1(S1)+), and∫

S1

(
fx

f

)2

(t) dx < 12,

for all t ∈ I.
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Proof. We apply (3.1) to αxx(t). For every t ∈ I, we obtain in this way

(3.4) |αxx(t)|2 ≤ 1
12

∫
S1

α2
xxx(t) dx.

Using this bound into (2.9) gives

(3.5)
1
2

d

dt

∫
S1

α2
x(t) dx ≤ −

(∫
S1

α2
xxx(t) dx

) (
1 − 1

12

∫
S1

α2
x(t) dx

)
.

We conclude the proof by a connection argument. Let

F (t) =
∫

S1

(
fx

f

)2

(t, x) dx

and
A = {t ∈ I such that F (s) < 12, ∀s ∈ [0, t]}.

A is not empty since

1 − 1
12

∫
S1

α2
x(0) dx > 0

by assumption (H). Therefore 0 ∈ A. A is obviously an open set, since F is
continuous.

Let t∗ ∈ Ā. If t∗ ≤ tn for some n, t∗ ∈ A and we finish the proof. Then, let {tn}
be an increasing sequence in I, such that {tn} → t∗, t∗ ∈ I. Thus, ∀n F (tn) < 12.

Condition f0 �= f̄0 implies (by the uniqueness of solution) that f(t) �= f̄0, ∀t ∈ I.
Thus, ∫

S1
α2

xxx(s) > 0,

since, otherwise f(t) = f̄0 in contradiction with the previous statement. Hence, for
all n, d

dt

∫
S1 α2

x(s) dx < 0 ∀s ∈ [0, tn] since in this interval F (s) < 12. Therefore
for all n, F is decreasing in [0, tn] and since {tn} → t∗ we conclude that F (t∗) <
F (0) < 12.

We proved in this way that t∗ ∈ A and that A is a closed set. Thus A = I. �

We are now in a position to prove our first main theorem, namely Theorem
1.3. We remark that we can skip the initial condition, f0 = f̄0, since in this case
f(t) = f̄0, t ≥ 0 and there is nothing to prove.

Theorem 3.3. Let the initial data f0 satisfy f0 ∈ H1
+(S1) and condition (H). If

f(t, x) is the solution of (1.1)-(1.2), then
(a) T (f0) = ∞;
(b)

∫
S1 f2

x(t, x)/f2(t, x) dx converges exponentially to 0, when t tends to infin-
ity, and the following bound holds:∫

S1

f2
x(t, x)

f2(t, x)
dx ≤ M1e

−M2t,

where M1 = 12
(
12/

∫
S1 α2

x(0) dx − 1
)−1

> 0 and M2 = 2(2π)4;
(c) ‖f(t)− f̄0‖H1(S1) converges exponentially to 0, when t tends to infinity, and

for a given constant C = C(f0) the following bound holds:

(3.6) ‖f(t) − f̄0‖2
H1(S1) ≤ CM1e

−M2t.
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In (3.6)

C =
(

1
4π2

+ 1
)

exp
(

2 + 2 max
{
| log f̄0|,

∣∣∣∣
∫

S1
log f0

∣∣∣∣
})

.

Proof. The proof of (a) follows by a contradiction argument. Suppose that T (f0) <
∞. By Theorem 1.2, this implies that the limiting function h = limt↗T (f0) f(t)
vanishes at some point.

By Lemma 3.1 applied to log f(t), for all t ∈ I we obtain

(3.7)
∣∣∣∣
∣∣∣∣log f(t) −

∫
S1

log f(t) dx

∣∣∣∣
∣∣∣∣
L∞(S1)

≤ 1
2
√

3
‖(log f(t))x‖L2(S1) < 1.

The last inequality is a consequence of Proposition 3.2. Thus,

(3.8) ‖ log f(t)‖L∞(S1) < 1 +
∣∣∣∣
∫

S1
log f(t) dx

∣∣∣∣ .

The right side of this inequality is bounded since Jensen’s inequality, applied to the
convex function − log r, yields

(3.9) − log
∫

S1
f(t) dx ≤ −

∫
S1

log f(t) dx.

Corollary 2.2 implies

(3.10)
∫

S1
log f0 dx ≤

∫
S1

log f(t) dx ≤ log
∫

S1
f(t) dx = log

∫
S1

f0 dx.

Hence, ‖ log f(t)‖L∞(S1) is uniformly bounded in t ∈ I, which is in contradiction
with the fact that h vanishes at some point in S1.

Next, Lemma 3.1 gives the bounds

α2
xx ≤ 1

12

∫
S1

α2
xxx dx

and

(2π)4
∫

S1
α2

x dx ≤
∫

S1
α2

xxx dx.

In this way, we obtain from (2.11) the inequality

(3.11)
1
2

d

dt

∫
S1

α2
x dx ≤ −(2π)4

∫
S1

α2
x dx

[
1 − 1

12

∫
S1

α2
x dx

]
.

Proposition 3.2 in fact guarantees that 1 − 1
12

∫
S1 α2

x dx > 0. Let us denote y(t) =∫
S1 αx(t, x)2 dx. Then we can rewrite (3.11) as the logistic differential inequality

(3.12)
dy

dt
≤ −2(2π)4y(1 − 1

12
y).

Setting z = ye2(2π)4t, (3.12) changes to

(3.13)
dz

dt
≤ 2(2π)4

12
z2e−2(2π)4t.
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Integrating the differential inequality (3.13) and going back to original variables we
find ∫

S1
α2

x dx ≤ e−2(2π)4t
(

1∫
S1 α2

x(0) dx
− 1

12 + e−2(2π)4t

12

)−1

= 12e−2(2π)4t
(

12∫
S1 α2

x(0) dx
− 1 + e−2(2π)4t

)−1

.(3.14)

Once again using the bound
∫

S1 α2
x(0) dx < 12, we finally get

(3.15)
∫

S1
α2

x dx ≤ 12e−2(2π)4t

(
12∫

S1 α2
x(0) dx

− 1
)−1

.

Inequality (3.15) shows (b).
Finally, to prove (c) we use Lemma 3.1 to obtain

(3.16)
∫

S1
|f(t, x) − f̄ |2 dx ≤ 1

4π2

∫
S1

f2
x(t, x) dx.

Next,
(3.17)∫

S1
f2

x(t, x) dx =
∫

S1

f2
x(t, x)

f2(t, x)
f2(t, x) dx ≤ sup

x∈[0,1]

f2(t, x)
(∫

S1

f2
x(t, x)

f2(t, x)
dx

)
.

Thus

‖f(t) − f̄0‖H1(S1) ≤
(

1
4π2

+ 1
)

sup
x∈[0,1]

f2(t, x)
(∫

S1

f2
x(t, x)

f2(t, x)
dx

)
.

We must note that supx∈[0,1] f
2(t, x) is uniformly bounded for all t ∈ I, since in

the proof of (a) we showed that ‖ log f(t)‖L∞(S1) is uniformly bounded in time. If
| log f(t, x)| ≤ D, f2(t, x) ≤ e2D. By (3.8) and (3.10), | log f(t, x)| can be bounded
by D = 1 + max {| log f̄0|, |

∫
S1 log f0|}. This shows (3.6), since we can define C =

( 1
4π2 + 1)e2D. In order to conclude, we must only recall that f̄ = f̄0 and, as a

consequence of (b), ‖f(t) − f̄0‖2
H1(S1) tends exponentially to 0 when t → ∞. �

Remark 3.4. The conditions for the initial value, f0 ∈ H1
+(S1) and (H) can be

replaced by f0 ∈ H1(S1), f0 �= 0, f0 nonnegative and (H), since these hypotheses
imply f0 > 0. In fact, if f0 �= 0, we can consider z ∈ [0, 1] such that f0(z) �= 0.
Then, for all x ∈ [0, 1],

| log f0(x) − log f0(z)| = |
∫ x

z

(log f0)y dy| ≤
∫ x

z

|(log f0)y| dy ≤
∫ 1

0

|(log f0)y| dy.

Using Hölder inequality we obtain∫ 1

0

|(log f0)y | dy ≤
(∫ 1

0

|(log f0)y|2 dy

)1/2

.

Since we assume (H),
| log f0(x) − log f0(z)| ≤ 2

√
3;

therefore
| log f0(x)| ≤ 2

√
3 + | log f0(z)|.

In this way, since f0(z) �= 0, log f0 is bounded, which implies f0 > 0.
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Remark 3.5. The condition

(3.18) ‖f0x‖L2 <
√

3f̄0

implies (H). This follows easily from Lemma 3.1, since

f0 > f̄0 − ‖f0 − f̄0‖L∞ ≥ f̄0 −
1

2
√

3
‖f0x‖L2 >

f̄0

2
.

In this way, we obtain∫
S1

f0
2
x

f2
0

dx <
4

f̄0
2

∫
S1

f0
2
x dx =

4

f̄0
2 ‖f0x‖2

L2 < 12.

We remark that condition (3.18) is stronger than condition (ii) given in Theorem
5.2 in [1], i.e.

(3.19) ‖f0x‖L2 <
4f̄0√

3
,

which implies global existence. This shows that our theorem does not provide
exponential convergence to equilibrium in the whole set of initial values for which
there is global existence.

By classical Sobolev imbeddings, Theorem 3.3 also shows that for 1 ≤ p ≤ 2
‖f‖Lp(S1) converges exponentially to ‖f̄0‖Lp(S1). By the previous remark, this is
true only for initial data sufficiently close to the stationary solution.

In what follows, we show that effectively for some exponent p we can obtain a
more general convergence result. In more detail, we will prove that if 1 ≤ p ≤
4/3 the exponential convergence of ‖f‖Lp(S1) to f̄0 can be shown without initially
assuming hypothesis (H). To draw this conclusion, one only needs to assume global
existence, which could be guaranteed if some of the conditions given in [1] hold.
Classical Csiszar-Kullback inequalities [10] will then imply L1–convergence towards
the stationary solution at explicit exponential rate.

Theorem 3.6. Let f be a global solution of the initial value problem (1.1)-(1.2),
such that for some 1 ≤ p ≤ 4/3, ||f0||Lp(S1) is bounded. Then

(3.20)
∫

S1
fp dx − f̄0

p ≤
[∫

S1
fp
0 dx − f̄0

p
]

e−Kt,

where

K =
64π4(p − 1)

p
.

Proof. To prove the theorem, we follow ideas introduced recently in [10] to study
the large–time behavior of the thin film equation. We recall that in the previous
section we obtained the time decay of

∫
S1 fp dx, (2.4). We used (2.4) only to

conclude that
∫

S1 fp dx is nonincreasing if 1 ≤ p ≤ 3
2 . Here we will study in more

detail the absolute value of the right-hand side of (2.4), which we denote from now
on the entropy production. The idea is to show that the entropy production, i.e.

Ap(α) = p(p − 1)
[∫

S1
α2

xxepα dx +
p(1 − p)

3

∫
S1

α4
xepα dx

]
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is such that, for some explicitly computable constant c,∫
S1

[(
f

p
2

)
xx

]2

dx ≤ cAp(α).

Then, various Poincaré’s inequalities lead to (3.20). A direct computation shows
that, for all p > 0, if f is a smooth function in C2(S1), then

(3.21)
∫

S1

[(
f

p
2

)
xx

]2

dx =
p2

4

∫
S1

epα

(
α2

xx − p2

12
α4

x

)
dx.

In fact, since ∫
S1

[(
f

p
2

)
xx

]2

dx =
∫

S1

[(
e

pα
2

)
xx

]2

dx,

we obtain
(3.22)∫

S1

[(
f

p
2

)
xx

]2

dx =
∫

S1

[(p

2
αxe

pα
2

)
x

]2

dx =
p2

4

∫
S1

[
αxxe

pα
2 +

p

2
α2

xe
pα
2

]2

dx

=
p2

4

∫
S1

epα

[
α2

xx +
p2

4
α4

x + pαxxα2
x

]
dx =

p2

4

∫
S1

epα

(
α2

xx − p2

12
α4

x

)
dx.

In the last step we used the identity

p

∫
S1

epαα2
xαxx dx =

p

3

∫
S1

epα(α3
x)x dx = −p2

3

∫
S1

epαα4
x dx.

It is now immediate to compare formula (3.21) with the entropy production. We
claim in fact that, for 1 < p ≤ 4

3 ,

(3.23) Ap(α) ≥ 4(p − 1)
p

∫
S1

[(
f

p
2

)
xx

]2

dx.

By (2.4) and (3.21), to prove (3.23) is equivalent to show that

p(p−1)
[∫

S1
α2

xxepαdx+
p(1 − p)

3

∫
S1

α4
xepαdx

]
≥ 4(p − 1)

p

p2

4

∫
S1

epα

(
α2

xx − p2

12
α4

x

)
dx,

or, simplifying the constant,∫
S1

α2
xxepα dx +

p(1 − p)
3

∫
S1

α4
xepα dx ≥

∫
S1

epα

(
α2

xx − p2

12
α4

x

)
dx.

This of course holds when
−(p − 1) ≥ −p

4
,

and thus 1 ≥ 3p/4 or equivalently 4
3 ≥ p.

To finish the proof we apply the following Poincaré inequalities (see Lemma 3.1):∫
S1

[(
f

p
2

)
x

]2

dx ≤ 1
4π2

∫
S1

[(
f

p
2

)
xx

]2

dx,(3.24)

∫
S1

[
f

p
2 −

∫
S1

f
p
2 dx

]2

dx ≤ 1
4π2

∫
S1

[(
f

p
2

)
x

]2

dx.(3.25)

Hence we obtain from (3.23)

(3.26)
d

dt

∫
S1

fp dx ≤ −64π4(p − 1)
p

∫
S1

[
f

p
2 −

∫
S1

f
p
2 dx

]2

dx
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or equivalently

(3.27)
d

dt

∫
S1

fp dx ≤ −64π4(p − 1)
p

[∫
S1

fp −
(∫

S1
f

p
2 dx

)2

dx

]
.

Since 1 ≤ p ≤ 4/3, p/2 < 1. By Hölder’s inequality we obtain∫
S1

f
p
2 dx ≤

(∫
S1

f
p
2

2
p dx

) p
2

(∫
S1

1
2

2−p

) 2−p
2

= f̄0
p/2

and

f̄0
p =

(∫
S1

f dx

)p

≤
(∫

S1
fp dx

) (∫
S1

1p∗
) p

p∗

=
∫

S1
fp dx.

Therefore,

(3.28)
d

dt

∫
S1

fp dx ≤ −64π4(p − 1)
p

[∫
S1

fp dx − f̄0
p
]
≤ 0.

Inequality (3.28) can be written as

(3.29)
d

dt

(∫
S1

fp dx − f̄0
p
)

≤ −64π4(p − 1)
p

[∫
S1

fp dx − f̄0
p
]

,

which implies

(3.30)
∫

S1
fp dx − f̄0

p ≤
[∫

S1
fp
0 dx − f̄0

p
]

e−Kt,

where

K =
64π4(p − 1)

p
.

�

Remark 3.7. Theorem 3.3 remains true for other boundary conditions assuming
global existence of smooth solutions, such as nonflux boundary, which are conditions
which guarantee conservation of mass (

∫
S1 ft dx = 0),

fx(t, 0) = fx(t, 1) = fxxx(t, 0) = fxxx(t, 1) = 0.

In this case, the conditions are directly translated to α,

αx(t, 0) = αx(t, 1) = αxxx(t, 0) = αxxx(t, 1) = 0.

The obvious reason for this is that we can perform the same integration by parts,
and the boundary terms vanish. On the other hand, for the same reason Theorem
3.6 does not hold.
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