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FREQUENTLY HYPERCYCLIC OPERATORS

FRÉDÉRIC BAYART AND SOPHIE GRIVAUX

Abstract. We investigate the subject of linear dynamics by studying the no-
tion of frequent hypercyclicity for bounded operators T on separable complex
F-spaces: T is frequently hypercyclic if there exists a vector x such that for
every nonempty open subset U of X, the set of integers n such that T nx be-
longs to U has positive lower density. We give several criteria for frequent
hypercyclicity, and this leads us in particular to study linear transformations
from the point of view of ergodic theory. Several other topics which are classi-
cal in hypercyclicity theory are also investigated in the frequent hypercyclicity
setting.

1. Introduction

1.1. The global setting. In this paper, we will be concerned with the study of the
dynamics of linear operators on a complex separable F-space X, i.e. a topological
space whose topology is induced by a complete invariant metric ρ. Let us first recall
the following definitions: a bounded operator T on X is said to be topologically
transitive if for every pair (U, V ) of nonempty open subsets of X there exists an
integer n (and hence infinitely many integers) such that Tn(U) ∩ V is nonempty.
Since the space X is assumed to be separable, a simple Baire Category argument
shows that T is topologically transitive if and only if there exists a vector x of X
such that the orbit Orb(x, T ) = {Tnx; n ≥ 0} of x under the action of T is dense
in X. Such a vector is called a hypercyclic vector for T , and T itself is called a
hypercyclic operator. We will denote by HC(T ) the set of hypercyclic vectors for
T .

Studying the dynamics of an operator is studying the behaviour of the iterates
Tnx for x ∈ X. One may think at first sight that the dynamics of a linear operator
ought to be less complicated than the dynamics of a general continuous function on
a metric space. When the space X is finite dimensional, this proves to be true: no
operator on X is ever hypercyclic, and using Jordan canonical forms, one can easily
describe the behaviour of all the orbits. But the situation in infinite-dimensional
spaces is more involved, as the following result of Feldman [19] testifies: there
exists a hypercyclic operator such that each continuous function on a compact
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metric space X is topologically conjugate to the restriction of this operator to an
invariant compact set.

The study of hypercyclic operators originated in the work of Birkhoff in 1929
([11]), who proved that the translation operator f �→ [z �→ f(z + 1)] on H(C) is
hypercyclic. The first example of a hypercyclic operator in the Banach space setting
dates back to 1969 ([46]), and is due to Rolewicz. Hypercyclic operators have been
extensively studied since the 80’s, one reason for the interest in this topic being the
relation of hypercyclicity to the Invariant Subset Problem. For a thorough account
of what has been done in this area, see the survey [32], and also [33] for more recent
results. Our purpose in this paper is to study hypercyclic operators from the point
of view of topological dynamics and ergodic theory, and to quantify the frequency
with which the iterates of a given hypercyclic vector visit any nonempty open set.
We recall the following definition.

Definition 1.1. Let A be a subset of N. We say that A has positive lower density
if

dens(A) = lim inf
N→+∞

# {n ≤ N ; n ∈ A}
N

> 0,

where #B stands for the cardinal number of B.

Our main definition is:

Definition 1.2. An operator T on X is said to be frequently hypercyclic provided
there exists a vector x such that for every nonempty open subset U of X, the set
of integers n such that Tnx belongs to U has positive lower density. In this case, x
is called a frequently hypercyclic vector for T , and the set of frequently hypercyclic
vectors will be denoted by FHC(T ).

It will be convenient in the sequel to reformulate the above definition as follows:
for any operator T on an F-space X endowed with a complete invariant metric ρ,
any two vectors x and f in X and any positive real number ε, consider the following
subset of N:

App(T, x, f, ε) = {n ∈ N ; ρ(Tnx, f) < ε} .

Then T is frequently hypercyclic if and only if there exists a vector x such that, for
each f ∈ X and each ε > 0, dens(App(T, x, f, ε)) > 0.

1.2. Motivation: the Hypercyclicity Criterion Problem. A well-known open
question in hypercyclicity is to determine whether every hypercyclic operator satis-
fies the so-called Hypercyclicity Criterion (the first version of it was given by Kitai
in [38], and it was independently rediscovered and strengthened by Gethner and
Shapiro in [26]). The version we give here is due to Bès (see for instance [10]).

Hypercyclicity Criterion. Suppose that T is a bounded operator on X such that
there exist a strictly increasing sequence (nk) of positive integers, two dense subsets
V and W of X and a sequence (Snk

) of maps (not necessarily linear nor continuous)
Snk

: W → X such that:
1. for every v ∈ V , the sequence (Tnkv)k≥0 tends to 0,
2. for every w ∈ W , the sequence (Snk

w)k≥0 tends to 0,
3. for every w ∈ W , the sequence (TnkSnk

w)k≥0 tends to w.
Then T is hypercyclic.

It was shown by Bès and Peris in [10] that the Hypercyclicity Criterion Problem
is equivalent to the following question of Herrero ([34]).
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Question 1.3. If T is hypercyclic on X, is T ⊕ T hypercyclic on X ⊕ X?

This is a question of simultaneous approximation, and until now it has been
investigated using Baire Category arguments and some “regularity” assumptions
(see for instance [10], [31] or [8]). This has meant studying the “global” behaviour
of the operator, i.e. the behaviour of the sets T−n(U), n ≥ 0, where U is a
nonempty open set. Here we focus on the study of the “individual” behaviour of
an orbit, i.e. of the iterates Tnx, n ≥ 0, for some fixed x. This implies forgetting
about Baire Category arguments. A natural tool which can replace it is measure
theory, and this comes quite naturally into the picture: if T is a measure-preserving
transformation on a probability space (X,B, µ), it is known that T ×T is ergodic on
(X ×X,B⊗B, µ⊗µ) if and only if T is weak-mixing (the definitions are recalled in
Section 3). There is an obvious formal similarity between this result and Question
1.3 above, which leads us to search for conditions implying that an operator has an
invariant nondegenerate measure with respect to which it is ergodic, weak-mixing,
strong-mixing, etc. It turns out that these questions are best investigated in terms
of frequent hypercyclicity.

Questions of this kind have already been considered by Flytzanis in [21] and [22],
and some related ideas are also present in the work of Bourdon and Shapiro [14].
We now give a brief description of our results.

1.3. Main results. At this early stage, it is neither clear whether frequently hy-
percyclic operators do exist, nor is it clear that a hypercyclic operator is not always
frequently hypercyclic. In the first part of this paper (Section 2), we give a criterion
which ensures that an operator is frequently hypercyclic (Theorem 2.1). This crite-
rion, which bears a similarity to the Hypercyclicity Criterion, relies on a technical
lemma (Lemma 2.2) whose proof is given also in Section 2. In this way Birkhoff’s
translation operator, MacLane’s differentiation’s operator on H(C), and multiples
ωB, |ω| > 1, of the backward shift B on �p, 1 ≤ p < +∞, or c0 can be seen to be
frequently hypercyclic. We also give some examples of hypercyclic operators which
are not frequently hypercyclic (Example 2.9). This is the case for instance for the
the backward shift on the Bergman space A2.

In Section 3, we restrict ourselves to the Hilbert space setting and show that
whenever the operator T has sufficiently many eigenvectors associated to eigenval-
ues of modulus 1, T is frequently hypercyclic (Theorem 3.2). In particular T is
hypercyclic (and even weakly topologically mixing), which can be seen as a coun-
terpart to the Godefroy-Shapiro Criterion for hypercyclicity ([27]). The proof of
Theorem 3.2 uses tools from ergodic theory, which were introduced in this setting by
Flytzanis in his seminal paper [21]: an operator which has a perfectly spanning set
of eigenvectors associated to unimodular eigenvalues (Definition 3.1) admits a non-
degenerate Gaussian invariant measure with respect to which T is a weak-mixing
transformation (Theorem 3.22). In many cases, T is even strong-mixing (Theorem
3.29). From these results follows that quite a lot of hypercyclic operators are in
fact frequently hypercyclic: perturbations of operators by big multiples of the back-
ward shift, adjoints of multipliers on holomorphic function spaces, hyperbolic and
parabolic composition operators on the Hardy space associated to automorphisms
of the unit disk, etc.

In Section 4, we study the structure of the set FHC(T ) of frequently hypercyclic
vectors of a given operator T , focusing on the lack of Baire Category methods which
lies at the core of the frequent hypercyclicity theory: all the operators considered in
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Sections 2 and 3 have been proved to be frequently hypercyclic using either a direct
construction of a frequently hypercyclic vector or measure-theoretic considerations.
These arguments cannot be simplified by a Baire Category argument: for all con-
crete frequently hypercyclic operators exhibited in this paper, FHC(T ) does not
contain a residual set (Proposition 4.1). Thus several results which are classical in
hypercyclicity theory wax into somewhat puzzling questions when transposed in the
frequent hypercyclicity setting. When residuality does not play a crucial part in the
proof of a hypercyclicity result, it usually can be extended to a frequent hypercyclic-
ity result. This is the case for instance for a well-known result of Ansari regarding
powers of hypercyclic operators ([2]): we prove that if T is frequently hypercyclic,
T q is also frequently hypercyclic for any q ≥ 1, and that FHC(T q) = FHC(T ).
On the other hand, frequently hypercyclic operators can behave in an unexpected
way when considering problems of common frequent hypercyclicity: if B is the
backward shift on �2 and |λ| > 1, λB is frequently hypercyclic, and it was proved
by Abakumov and Gordon ([1]) that

⋂
|λ|>1 HC(λB) is nonempty. We show that⋂

|λ|>1 FHC(λB) is empty (Theorem 4.5). But if Ta is the translation operator
f �→ [z �→ f(z +a)] on H(C), then

⋂
a∈C\{0} FHC(Ta) is nonempty (Theorem 4.6).

Thus the structure of FHC(T ) remains rather mysterious, and seems to deserve to
be investigated further.

2. A frequent hypercyclicity criterion

2.1. Main result. Our first task is to exhibit some examples of frequently hy-
percyclic operators. This is done thanks to the following Frequent Hypercyclicity
Criterion.

Theorem 2.1. Let X be a separable F-space, ρ an invariant metric which makes
it complete, and T a continuous operator on X. Suppose that there exist a dense
sequence (xl)l≥1 of vectors of X and a map S defined on X such that

(1) the series
∑

k≥1 ρ (T kxl, 0) is convergent for every l ≥ 1,
(2) the series

∑
k≥1 ρ (Skxl, 0) is convergent for every l ≥ 1,

(3) TS = I.

Then T is frequently hypercyclic.

When T is frequently hypercyclic, it clearly has a dense set of frequently hy-
percyclic vectors. This criterion is a strengthened version of the Hypercyclicity
Criterion, but its proof does not rely on a Baire Category argument. A frequently
hypercyclic vector is obtained in a constructive way by making use of the following
lemma.

Lemma 2.2. There exist a strictly increasing sequence (nk)k≥1 of integers, a se-
quence (mk)k≥1 of integers and a sequence (Rk)k≥1 of positive real numbers such
that:

(1) nk ≥ Rk and nk+1 − nk ≥ Rk+1 + Rk for every k ≥ 1,
(2) for every l ≥ 1 and R > 0, the set E(l, R) = {nk ; Rk ≥ R and mk = l}

has positive lower density.

We postpone the proof of this technical lemma, and now give the proof of The-
orem 2.1.
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Proof. The proof will be carried out in the Banach space setting, the obvious mod-
ifications (using the invariance of the metric ρ) in the general case being left to the
reader. Let ck(l) = ||T kxl||+ ||Skxl||. The series

∑
k≥1 ck(l) is convergent for every

l ≥ 1. Let (Nl)l≥1 be a strictly increasing sequence of integers such that for every
j ≤ l, ∑

k≥Nj

ck(l) ≤ 1
2j+l

.

Let (nk), (mk) and (Rk) be the three sequences given by Lemma 2.2, and set

yk =
{

xmk
if Rk ≥ Nmk

,
0 otherwise.

We claim that x is a frequently hypercyclic vector, where

x =
∑
k≥1

Snkyk.

Observe first that this series is convergent:∑
k≥1

‖Snkyk‖ =
∑
l≥1

∑
mk=l

Rk≥Nl

‖Snkxl‖ ≤
∑
l≥1

∑
mk=l

Rk≥Nl

cnk
(l).

Since Rk ≥ Nl, nk ≥ Nl, hence

∑
mk=l

Rk≥Nl

cnk
(l) ≤

∑
p≥Nl

cp(l) ≤
1
4l

,

which proves that the series
∑

k≥1 Snkyk is convergent. In order to show that x
is frequently hypercyclic, let f be a vector in X and ε > 0. Let l0 be such that
‖f − xl0‖ ≤ ε

2 and 4
2l0

≤ ε
2 , and choose R such that R > Nl0 . We are going to

show that whenever n belongs to E(l0, R), ||Tnx− f || ≤ ε. Let n = nk0 be such an
integer. Then

‖Tnx − f‖ ≤ ‖Tnx − xl0‖ +
ε

2
≤ ‖Tnk0 Snk0yk0 − xl0‖ +

∑
k<k0

‖TnSnkyk‖ +
∑
k>k0

‖TnSnkyk‖ +
ε

2
.

The first term is equal to Tnk0 Snk0 xmk0
− xl0 = xl0 − xl0 = 0. We now have to

obtain an upper bound for the remaining two sums.
• If k < k0, then TnSnkyk = Tn−nkyk. Hence∑

k<k0

‖TnSnkyk‖ =
∑
l≥1

∑
k<k0
mk=l

Rk≥Nl

∥∥Tn−nkxl

∥∥ ≤∑
l≥1

∑
k<k0
mk=l

Rk≥Nl

cn−nk
(l)

≤
l0∑

l=1

∑
k<k0
mk=l

Rk≥Nl

cn−nk
(l) +

+∞∑
l=l0+1

∑
k<k0
mk=l

Rk≥Nl

cn−nk
(l).
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Now n − nk = nk0 − nk ≥ Rk0 ≥ Nl0, the final inequality holding because nk0

belongs to E(l0, R) and R > Nl0 ; hence,
l0∑

l=1

∑
k<k0
mk=l

Rk≥Nl

cn−nk
(l) ≤

l0∑
l=1

∑
p≥Nl0

cp(l) ≤
l0∑

l=1

1
2l+l0

≤ 1
2l0

≤ ε

8
.

Also, if k < k0, n − nk ≥ nk+1 − nk ≥ Rk; hence,
+∞∑

l=l0+1

∑
k<k0
mk=l

Rk≥Nl

cn−nk
(l) ≤

+∞∑
l=l0+1

∑
p≥Nl

cp(l) ≤
+∞∑

l=l0+1

1
4l

≤ 1
2l0

<
ε

8
.

Thus ∑
k<k0

‖TnSnkyk‖ <
ε

4
.

• It remains to deal with the sum
∑

k>k0
‖TnSnkyk‖. Here TnSnkyk = Snk−nxl

if mk = l, and Rk ≥ Nl. This gives

∑
k>k0

‖TnSnkyk‖ ≤
l0∑

l=1

∑
k>k0
mk=l

Rk≥Nl

∥∥Snk−nxl

∥∥+
+∞∑

l=l0+1

∑
k>k0
mk=l

Rk≥Nl

∥∥Snk−nxl

∥∥ .

Since nk − n ≥ nk0+1 − nk0 ≥ Rk0 ≥ Nl0 , the first sum is less than
l0∑

l=1

∑
p≥Nk0

cp(l) ≤
l0∑

l=1

1
2l+l0

≤ 1
2l0

<
ε

8
.

On the other hand, if k > k0, nk − n ≥ nk − nk−1 ≥ Rk; hence the second sum is
again less than

+∞∑
l=l0+1

∑
p≥Nl

cp(l) ≤
+∞∑

l=l0+1

1
4l

≤ 1
2l0

<
ε

8
.

Putting everything together, we obtain that if n = nk0 belongs to E(l0, R), then
we have ||Tnx − f || < ε. Therefore x is a frequently hypercyclic vector for T , and
this proves Theorem 2.1. �

2.2. Proof of Lemma 2.2. We now proceed with the proof of Lemma 2.2. Let
us first fix a sequence (αi)i≥1 of positive real numbers satisfying 0 < αi < 1 and∏+∞

i=1 αi ≥ 1/2. The proof of the lemma will be done by induction: in Step j, we
construct three blocks (nk)k=Γj ...Γj+1−1, (Rk)k=Γj ...Γj+1−1 and (mk)k=Γj ...Γj+1−1

out of the three sequences (nk), (Rk) and (mk) such that three properties are
satisfied. We will repeatedly use the following notation:

Notation. Bj =
{
nΓj

, . . . , nΓj+1−1

}
, Lj = max Bj and Ej(l, R) = E(l, R) ∩ Bj .

The three properties which must be satisfied at Step j are stated below. The first
one is simply taken out of Lemma 2.2, the meaning and interest of the inequalities
of the second and third will be made clear during the proof.

Induction Step.
(1) nk ≥ Rk and nk+1 − nk ≥ Rk+1 + Rk for every k = Γj , . . . , Γj+1 − 1,
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(2) we have
Lj

Lj + (j + 1)
> αj+1,

(3) for every l ≤ j and 0 ≤ R ≤ j
2 ,

#Ej(l, R)
Lj + (j + 2)(j + 1)

≥
(

j∏
i=1

αi

)
δl,R,

where δl,R is some positive constant which does not depend on j (for in-
stance

δl,R =
1

Lq + (q + 1)(q + 2)
1

(
∏q

i=1 αi)
with q = max(l, �R� + 1) will do).

Step 1. Set R1 = 1, m1 = 1 and choose n1 large enough so that
n1

n1 + 2
> α2.

Set B1 = {n1}. Observe that for any R ≤ 1/2, #E1(1, R) = 1. The numbers δ1,R

are definitively adjusted so that the inequalities of assertion (3) of the induction
step are satisfied.

Step j. Suppose that the construction has been carried out until Step j − 1. In
order to simplify the notations, we let Bj−1 = {nu, . . . , nv} be the set of integers
(nk) exhibited throughout Step j − 1. In particular, one has Lj−1 = nv. The
construction for Step j is split into two parts. Our first task is to allow l to go to
j and R to go to j/2 in the inequalities of assertion (3). To this aim, we define

nv+1 = nv + j Rv+1 = j/2 mv+1 = 1
nv+2 = nv + 2j Rv+2 = j/2 mv+2 = 2

...
...

...
nv+j = nv + j × j Rv+j = j/2 mv+j = j.

Note that for l ≤ j −1 and R ≤ (j −1)/2, the factor δl,R appearing in assertion (3)
is already defined. To be sure that assertion (3) remains true after Step j for this
range of l and R, we have to add as many shifted copies of Bj−1 as necessary, and
we will need assertion (2) of the induction hypothesis. So, let r > 0, whose precise
value will be given later. For p in {0, . . . , r} and i in {0, . . . , v − u}, set

nv+j+p(v−u+1)+i+1 = (p + 1)(nv + j) + j2 + nu+i,

Rv+j+p(v−u+1)+i+1 = Ru+i,

mv+j+p(v−u+1)+i+1 = mu+i.

The constraints on Rk and nk of assertion (1) are satisfied: this is obvious if k
belongs to {v + 1, . . . , v + j}, and this follows from the induction hypothesis if k is
greater than v + j. Let us now explain how to choose r. Let l and R be such that
l < j and R < (j − 1)/2, and write

Ej−1(l, R) = {n′
1, . . . , n

′
w} .

The induction hypothesis implies that

w

nv
≥
(

j−1∏
i=1

αi

)
δl,R.
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Now, observe that (p+1)(nv +j)+j2+n′
i belongs to Ej(l, R) for any p in {0, . . . , r}

and any i ∈ {1, . . . , w}. This yields that

#Ej(l, R)
Lj + (j + 2)(j + 1)

≥ (r + 1)w
(r + 1)(Lj−1 + j) + j2 + Lj−1 + (j + 2)(j + 1)

≥
(

j−1∏
i=1

αi

)
δl,R

(r + 1)Lj−1

Kj + (r + 2)(Lj−1 + j)
,

where Kj is a constant which depends only on j. This is where the inequality of
assertion (2) comes into the picture. We choose r large enough so that

(r + 1)Lj−1

Kj + (r + 2)(Lj−1 + j)
≥ αj .

This can be done since condition (2) is satisfied at Step j−1. But it is also necessary
to have r large enough so that

Lj

Lj + (j + 1)
=

(r + 1)(nv + j) + j2 + nv

(r + 1)(nv + j) + j2 + nv + j + 1
> αj+1.

With this assumption, we ensure that the inequality of assertion (2) is true after
Step j, and therefore we prepare Step j + 1. If now l and R are such that l = j
or j−1

2 < R ≤ j
2 , δl,R has not yet been defined. But observe that nv+l belongs to

Ej(l, R), and thus it suffices to choose δl,R so that

1
Lj + (j + 2) × (j + 1)

≥
(

j∏
i=1

αi

)
δl,R.

This finishes the construction.
Let l ≥ 1 and R > 0 be arbitrary; it now remains to prove that the set E(l, R)

has positive lower density. For N ≥ 1, let

EN = {nk ≤ N ; nk ∈ E(l, R)} .

Let j0 be an integer such that l ≤ j0 and R ≤ j0/2, and let N be any integer with
N ≥ Lj0 . There exists a j > j0 with Lj−1 ≤ N < Lj . We evaluate the cardinal
#EN of EN using two different methods, according to the value of N .

Case 1: Lj−1 ≤ N ≤ Lj−1 + (j + 1) × j. Clearly Ej−1(l, R) ⊆ EN , from which
we deduce that

#EN

N
≥ #Ej−1(l, R)

Lj−1 + (j + 1) × j
≥
(

j−1∏
i=1

αi

)
δl,R ≥ δl,R

2
.

This explains why we required more than the simple assumption

#Ej(l, R)
Lj

≥
(

j∏
i=1

αj

)
δl,R

in assertion (3) of the induction hypothesis: Lj−1 + (j + 1) × j is indeed the first
integer where a shifted block of Bj−1 begins during the construction of Bj .

Case 2: N > Lj−1 + (j + 1) × j. There exists an integer p ≥ 0 such that

(p + 1)(Lj−1 + j) + j2 ≤ N < (p + 2)(Lj−1 + j) + j2.
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But it follows from the construction that EN contains the set

Ej−1(l, R) ∪
[
(Lj−1 + j) + j2 + Ej−1(l, R)

]
∪ · · · ∪

[
p(Lj−1 + j) + j2 + Ej−1(l, R)

]
.

This gives the following lower bound for #EN :

#EN ≥ (p + 1)#Ej−1(l, R) ≥ (p + 1)
δl,R

2
×
(
Lj−1 + (j + 1)j

)
.

On the other hand, we get an upper bound for N by writing

N ≤ (p + 2)
(
Lj−1 + j(j + 1)

)
.

Hence
#EN

N
≥ δl,R

2
p + 1
p + 2

≥ δl,R

4
from which it follows that E(l, R) has positive lower density. �

2.3. Examples. Theorem 2.1 and Lemma 2.2 give us our first examples of fre-
quently hypercyclic operators.

Example 2.3. Let B be the classical backward shift on �p with canonical basis
(en)n≥0, 1 ≤ p < +∞, defined by the relations Be0 = 0 and Ben = en−1 for n ≥ 1.
For any ω such that |ω| > 1, ωB is frequently hypercyclic on �p. Indeed, take
(xl) to be a dense sequence in �p of vectors whose support is finite, and define S by
Sen = 1

ω en+1 for n ≥ 0. Then (ωB)S = I, (ωB)kxl = 0, provided k is large enough,
and ‖Skxl‖ ≤ 1

|ω|k ‖xl‖. Theorem 2.1 ensures that ωB is frequently hypercyclic.
The frequent hypercyclicity of more general shifts will be investigated later on in
Example 2.7.

Example 2.4. Let H(C) be the space of entire functions, endowed with the topol-
ogy of uniform convergence on compact sets. MacLane proved in [40] the existence
of an entire function having the property that the sequence of its derivatives is
dense in H(C). In other words, the operator D of differentiation is hypercyclic on
H(C). But D is in fact frequently hypercyclic.

Proof. Recall that H(C) is an F-space with the usual metric

ρ(f, g) =
∑
n≥1

1
2n

(
sup|z|≤n |f(z) − g(z)|

1 + sup|z|≤n |f(z) − g(z)|

)

for f, g ∈ H(C). Let D be the set of polynomials with coefficients in Q + iQ, and
enumerate this dense set as (Pk)k≥1. Of course DnPk = 0 for n large enough. The
right-inverse S is the operator of anti-derivation defined as

Sf(z) =
∫

(0,z)

f(ξ)dξ

for every f ∈ H(C), where (0, z) is any path connecting 0 and z. Then DS =
I, and it is proved in [16] that for any Pk in D, the series

∑
n≥1 ρ (SnPk, 0) is

convergent. �

Example 2.5. Let T be Birkhoff’s translation operator on H(C) ([11]) defined by
Tf(z) = f(z + 1) for every f ∈ H(C). Then T is frequently hypercyclic.
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Proof. For this example, it is convenient to give a direct proof involving Arakel-
jan’s Theorem and our Lemma 2.2 again. We recall Arakeljan’s Theorem below as
Lemma 2.6.

Lemma 2.6. Denote by C = C ∪ {∞} the extended complex plane. Let F ⊂ C be
a closed set such that C\F is connected and locally connected at ∞. Then for every
function g : F → C, continuous on F and holomorphic in its interior, there is an
entire function ϕ such that for every z in F ,

|ϕ(z) − g(z)| ≤ exp
(
−|z|1/4

)
.

In fact, in the previous statement, exp
(
−t1/4

)
can be replaced by any positive

error function ε(t) such that∫ +∞

1

t−3/2 log ε(t)dt > −∞.

So Arakeljan’s Theorem allows us to approximate g by ϕ at infinity.
As in Theorem 2.1, consider the sequences (nk), (Rk) and (mk) given by Lemma

2.2. Enumerate the complex polynomials with coefficients in Q + iQ as (Pk)k≥1,
and let Dk be the closed disk of C with center nk and radius Rk/2. These disks
are disjoint, which makes it possible to define a function g on the closed set F =⋃

k≥1 Dk by the formula

g(z) = Pmk
(z − nk) if z belongs to Dk.

Since C\F is connected and locally connected at ∞, Arakeljan’s Theorem can be
applied to obtain an entire function ϕ such that

|ϕ(z) − g(z)| ≤ exp
(
−|z|1/4

)
for every z ∈ F . We claim that ϕ is a frequently hypercyclic vector for T . Indeed,
let K be any compact subset of C, f any entire function, and ε > 0. One can find
l ≥ 1 and R > 0 such that ‖Pl − f‖C(K) < ε/2 and K ⊂ D(0, R/2). Take n = nk

in E(l, R) and z in K. Then

|Tnϕ(z) − f(z)| ≤ |ϕ(z + nk) − f(z)|
≤ |ϕ(z + nk) − g(z + nk)| + |Pl(z) − f(z)|

≤ ε

2
+ exp

(
−|nk − R|1/4

)
.

In other words, if nk belonging to E(l, R) is large enough, then ‖Tnkϕ − f‖C(K)

< ε, which proves our claim. �

Example 2.7. Let (en)n≥0 be the canonical basis of one of the spaces �p, 1 ≤ p <
+∞, and (ωn)n≥1 a bounded sequence of positive numbers, bounded away from 0.
Let B be the backward shift on �p with weights (ωn): Be0 = 0 and Ben = ωnen−1

for n ≥ 1. If the series ∑
n≥1

1
(ω1 . . . ωn)p

is convergent, then B is frequently hypercyclic.
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Proof. Suppose that the series above is convergent. Theorem 2.1 cannot be applied
directly (this would be the case under the stronger assumption that the series∑

n≥1
1

ω1...ωn
converges), but the same method of proof applies. Let (nk), (mk)

and (Rk) be the sequences obtained in Lemma 2.2. Remark that mk ≤ 2Rk (this
is clear from the proof of Lemma 2.2), hence nk+1 − nk ≥ mk/2. Let D be the
set of finitely supported vectors of �p with coordinates in Q + iQ, and write D as
(xl)l≥1, assuming moreover that the support of xl, denoted by supp(xl), is a subset
of [0, l/2[. Let S be the forward shift defined by Sen = 1

ωn+1
en+1, and γ, C two

positive constants with γ ≤ |ωn| ≤ C for any n. Then supp(yk) ⊆ [0, mk/2[, where
the yk’s are the vectors that appear in the proof of Theorem 2.1. This implies that
the supports of the vectors Snkyk are successive and disjoint (max supp(Snkyk) <
min supp(Snk+1yk+1)). Hence ||x||p =

∑
||Snkyk||p. Now

||Snkxl||p ≤ 1
(ω1 . . . ωnk

)p

(
C

γ

)l

||xl||p,

and the series
∑

k≥1 ||Snkxl||p is convergent. If (Nl)l≥1 is a strictly increasing
sequence such that for every l and every j ≤ l,∑

nk≥Nl

||Snkxl||p ≤ 1
2j+l

,

then ∑
k≥1

‖Snkyk‖p =
∑
l≥1

∑
mk=l

Rk≥Nl

‖Snkxl‖p ≤
∑
l≥1

∑
nk≥Nl

‖Snkxl‖p ≤ 1
4l

,

and x is well defined. Since the vectors Sn−nkyk, or Bn−nkyk, that appear in the
sequel of the proof have successive supports again, the rest of the proof follows
along the same lines, and x is easily seen to be a frequently hypercyclic vector for
B. �

On the other hand, it is easy to exhibit hypercyclic operators which are not
frequently hypercyclic.

Example 2.8. With the same notation as above, let B be the backward shift on
�p with weights (ωn). If for every sequence (nk)k≥1 with positive lower density the
series ∑

k≥1

1
(ω1 . . . ωnk

)p

is divergent, then B is not frequently hypercyclic.

Proof. Suppose that x is a frequently hypercyclic vector for B and let {nk} be the
set of integers such that ||Bnkx − e0|| < 1

2 . Then

|xnk
|p ≥ 1

2(ω1 . . . ωnk
)p

.

But the series
∑

|xnk
|p is convergent, and hence {nk} cannot have positive lower

density, a contradiction. �
For instance:

Example 2.9. The backward shift on �2 with weight ωn =
√

1 + 1
n , n ≥ 1, is

hypercyclic but not frequently hypercyclic.
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Proof. We have (ω1 . . . ωn)2 = n + 1. If E has positive lower density, there exists a
positive δ such that, for any N0 in N, there exists N1 ≥ N0 with #{N0 ≤ n+1 ≤ N1;
n ∈ E} ≥ δN1. This implies∑

N0≤n≤N1
n∈E

1
n + 1

≥ δN1 ×
1

N1
= δ.

The series ∑
n∈E

1
n + 1

diverges: B is not frequently hypercyclic. �

Remark that B can be seen as the backward shift on the Bergman space A2.
The fact that B is hypercyclic when it operates on A2 was shown in [26]; see also
[27]. Remark also that this shift is frequently hypercyclic on �p if and only if p > 2.
In particular, frequently hypercyclic shifts are not the same on each �p, a situation
which does not appear if we only consider the hypercyclicity phenomenon: it is
known that the backward shift on �p with weights (ωn) is hypercyclic if and only if
there exists a sequence (nk) such that ω1 . . . ωnk

tends to infinity ([47]). It would be
interesting to have a characterization of the frequently hypercyclic backward shifts
on �p. In view of Examples 2.7 and 2.8, the following conjecture seems plausible.

Conjecture 2.10. The backward shift B with weight (ωn)n≥1 is frequently hyper-
cyclic on �p if and only if there exists a sequence (nk)k≥1 with positive lower density
such that the series ∑

k≥1

1
(ω1 . . . ωnk

)p

is convergent.

3. The role of the unimodular point spectrum

3.1. Main result. In this section, we restrict ourselves to the case when the under-
lying space is a complex Hilbert space H of infinite dimension. Our aim is to show
that operators with sufficiently many eigenvectors associated to unimodular eigen-
values are frequently hypercyclic. Let us first make this assumption on eigenvectors
precise.

Definition 3.1. Let T be a bounded operator on H. We say that T has a perfectly
spanning set of eigenvectors associated to unimodular eigenvalues if there exists
a continuous probability measure σ on the unit circle T such that for every σ-
measurable subset A of T with σ(A) = 1, the eigenspaces ker(T −λI), λ ∈ A, span
a dense subspace of H. Here σ is said to be continuous if σ({λ}) = 0 for every
λ ∈ T.

Our aim will be to prove the following theorem.

Theorem 3.2. If T has a perfectly spanning set of eigenvectors associated to uni-
modular eigenvalues, then T is frequently hypercyclic. In particular T is hypercyclic.
It is even weakly topologically mixing: if U and V are two nonempty open subsets
of H, there exists a sequence (nk) of integers of density 1 such that Tnk(U) ∩ V is
nonempty for every k.
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Several remarks are in order before we launch ourselves in the proof of Theorem
3.2: first of all, Theorem 3.2 implies that any operator with a perfectly spanning
set of eigenvectors associated to unimodular eigenvalues is hypercyclic. This is not
obvious, and a direct proof which is also valid in the Banach space setting is given
in [5]; see also [4] for a simplified proof in a special case. This hypercyclicity result
can be seen as a counterpart to a criterion of Godefroy and Shapiro ([27]), which
runs as follows.

Godefroy-Shapiro Criterion. Suppose that the eigenspaces ker(T −λI), |λ| > 1,
span a dense subspace of H as well as the eigenspaces ker(T − λI), |λ| < 1. Then
T is hypercyclic.

Here we consider the eigenspaces associated to unimodular eigenvalues, but a
simple density assumption is not sufficient to obtain hypercyclicity: any diagonal
operator on a Hilbert space with unimodular diagonal coefficients has a spanning
set of eigenvectors associated to unimodular eigenvalues, but is very far from being
hypercyclic. Theorem 3.2 is rather easy to apply, and there is a simple argument
which gives us a whole bunch of operators with a perfectly spanning set of eigen-
vectors associated to unimodular eigenvalues.

Example 3.3. Let B be the backward shift on �2 with canonical basis (en)n≥0.
Then for any ω such that |ω| > 1, ωB has a perfectly spanning set of eigenvectors
associated to unimodular eigenvalues.

Proof. It is easy to see that λ is an eigenvalue of ωB if and only if |λ| < |ω|, and
that in this case ker(ωB − λI) is the 1-dimensional space spanned by the vector

xλ =
+∞∑
n=0

(
λ

ω

)n

en.

Let σ be the normalized length measure on the unit circle T: dσ = 1
2π dθ, and

suppose that A is a subset of T of full measure. Let x be such that 〈x, xλ〉 = 0 for
every λ ∈ A. Then the analytic function Φ defined on D(0, |ω|) by

Φ(λ) =
+∞∑
n=0

〈x, en〉
(

λ

ω

)n

vanishes on A. Since A is an uncountable subset of T, A has an accumulation point
in D(0, |ω|), hence Φ is identically zero, 〈x, en〉 = 0 for every n ≥ 0 and x = 0. The
kernels ker(ωB − λI), λ ∈ A, span a dense subspace of �2. �
Example 3.4. Let T be any upper-triangular operator on �2 with respect to an
orthonormal basis (en)n≥0, and B the backward shift with respect to this same
basis. For every ω such that |ω| > max(1, ||T ||), T + ωB has a perfectly spanning
set of eigenvectors associated to unimodular eigenvalues.

Proof. This is basically the same argument as above; see [29] for details. �
Example 3.5. Let Ω be a connected open subset of C, and H a nontrivial Hilbert
space of analytic functions on Ω such that the point evaluations f �−→ f(z) are
bounded for every z ∈ Ω. Let φ be a multiplier, i.e. a function such that for every
f ∈ H, φf is also in H. This multiplier defines a linear multiplication operator Mφ

by the formula
Mφ(f) = φf
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for f ∈ H. The hypercyclicity of adjoints of multipliers was studied by Godefroy
and Shapiro in [27], where it was shown that M∗

φ is hypercyclic whenever φ is
a nonconstant multiplier such that φ(Ω) intersects the unit circle. In fact every
such M∗

φ has a perfectly spanning set of eigenvectors associated to unimodular
eigenvalues.

Proof. Let γ be a nonempty open subarc contained in φ(Ω)∩T, where φ(Ω) denotes
the set of complex conjugates of elements of φ(Ω). Let σ be the normalization of
the length measure restricted to γ:

dσ =
1

l(γ)
�γdθ.

For every z ∈ Ω, let kz be the reproducing kernel defined by the relation f(z) =
〈f, kz〉 for every f ∈ H. Then M∗

φkz = φ(z)kz. Thus every element of γ is an
eigenvalue of M∗

φ . Suppose now that A is a subset of T which satisfies σ(A) = 1,
and that f is a function in H such that 〈f, kz〉 = 0 whenever φ(z) belongs to A.
Then f(z) = 0 whenever z belongs to φ−1(A) (here A denotes the conjugate set of
A). Now φ−1(A) is an uncountable subset of Ω, hence φ−1(A) has an accumulation
point in Ω and f vanishes identically on Ω. This proves our claim. �

Example 3.6. Let φ be an automorphism of the unit disk D, and Cφ the com-
position operator defined on H2(D) by the formula Cφ(f) = f ◦ φ. This operator
is bounded on H2(D), and it is hypercyclic if and only if φ has no fixed point in
the unit disk D ([15]). The automorphism φ is said to be parabolic when it has
exactly one (attractive) fixed point in T, and hyperbolic when it has exactly two
fixed points in T (one of which is exactly attractive). We will assume that 1 is the
attractive fixed point of the automorphism φ. Then, it is easier to describe such an
automorphism using the map ψ = θ ◦ φ ◦ θ−1 instead of φ on the right half-plane
C+, where θ is the Cayley map from D onto C+ defined by

θ(z) =
1 + z

1 − z
.

When φ is a parabolic automorphism, ψ is a translation operator on C+:

ψ(z) = Ta(z) = z + ia,

with a ∈ R and a �= 0 (a parabolic automorphism is conjugate to a translation),
and when φ is a hyperbolic automorphism, then

ψ(z) = hλ,b(z) = λ(z − ib) + ib,

with λ > 1 and b ∈ R (a hyperbolic automorphism is conjugate to a dilation).
Parabolic and hyperbolic composition operators have a perfectly spanning set of
eigenvectors associated to unimodular eigenvalues.

Proof. Suppose that φ is a parabolic automorphism conjugated to Ta, and for t ≥ 0,
let

et(z) = exp
(
−t

1 + z

1 − z

)
.

Then et is an eigenfunction for Cφ associated to the eigenvalue e−ita. It is well
known that the functions et, t ≥ 0, span a dense subspace of H2(D) (for a discussion
about the origin of this result, see [24, p. 53]; a simple proof due to D. Sarason
can be found in [25]). Take σ to be the normalized length measure on T, and let
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A be a measurable subset of T with σ(A) = 1. If 〈f, et〉 = 0 for every t such that
e−ita is in A, then 〈f, et〉 = 0 for every t in a dense subset of R+. Since et depends
continuously on t, 〈f, et〉 vanishes for every t, and hence f = 0.

The following proof for a hyperbolic automorphism was kindly pointed out to us
by the referee. It simplifies our earlier proof which was based on results of Nordgren,
Rosenthal and Wintrobe ([44]). So, suppose that φ is a hyperbolic automorphism
whose Denjoy-Wolff point is 1, and set λ = 1

φ′(1) . Observe that for each real number
r,

fr(z) = exp
(

ir

log(λ)
log
(

1 + z

1 − z

))
is an eigenvector for Cφ with corresponding eigenvalue eir. Each function fr is
analytic and bounded on D, hence belongs to H2(D). With the same notation as
above, suppose that A is a measurable subset of T with σ(A) = 1, and that for some
g ∈ H2(D), 〈fr, g〉 = 0 for every r such that eir belongs to A. Since the function
r �→ 〈fr, g〉 is analytic in a neighborhood of the origin, this implies that its Taylor
coefficients at 0 must vanish: for every n ≥ 0,

〈
(

log
(

1 + z

1 − z

))n

, g〉 = 0.

These powers are dense in H2 ([15], Theorem 3.8), so it follows that g = 0. �

Thus Theorem 3.2 yields:

Corollary 3.7. All the operators considered in the previous examples (multiples of
the backward shift, perturbations of upper-triangular operators by big multiples of a
backward shift, adjoints of multipliers on spaces of holomorphic functions, parabolic
and hyperbolic composition operators) are frequently hypercyclic.

It is interesting to note that all the operators exhibited in [29] and [30] have in
fact a perfectly spanning set of unimodular eigenvectors. This implies the following.

Corollary 3.8. Every bounded operator on a separable Hilbert space can be written
as the sum of two frequently hypercyclic operators. Every bounded operator on one
of the spaces �p, 1 ≤ p < +∞, can be written as the sum of six frequently hypercyclic
operators.

The rest of Section 3 is devoted to the proof of Theorem 3.2. Our strategy is
to use a relation between topological dynamics (here, frequent hypercyclicity) and
ergodic theory.

3.2. Ergodic theory and frequent hypercyclicity. Let us first recall some basic
definitions from ergodic theory. For more information on this topic, see for instance
[50].

Definition 3.9. The measure-preserving transformation T : (H,B, m)→(H,B′, m)
is said to be ergodic when one of the following equivalent assertions is satisfied:

(1) for every element A, B of B such that m(A) > 0 and m(B) > 0, there exists
an integer n such that m(T−n(A) ∩ B) > 0,

(2) if B is an element of B which satisfies T−1(B) = B, then m(B) = 0 or
m(B) = 1,
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(3) for every A, B ∈ B,

lim
N→∞

1
N

N−1∑
k=0

m(T−k(A) ∩ B) = m(A)m(B),

(4) for every f, g ∈ L2(H,B, m),

lim
N→∞

1
N

N−1∑
k=0

〈Uk
T f, g〉 = 〈f, 1〉〈g, 1〉.

The fact that assertions (3) and (4) are equivalent to assertions (1) and (2) uses
Birkoff’s ergodic theorem. Changing the mode of convergence in assertions (3)
and (4) above gives the notions of weak-mixing and strong-mixing transformations,
which will be of interest to us in the sequel.

Definition 3.10. The measure-preserving transformation T : (H,B, m)→(H,B′, m)
is said to be weak-mixing when one of the following equivalent assertions is satisfied:

(1) for every A, B ∈ B,

lim
N→∞

1
N

N−1∑
k=0

|m(T−k(A) ∩ B) − m(A)m(B)| = 0,

(2) for every f, g ∈ L2(H,B, m),

lim
N→∞

1
N

N−1∑
k=0

|〈Uk
T f, g〉 − 〈f, 1〉〈g, 1〉| = 0.

Definition 3.11. The measure-preserving transformation T : (H,B, m)→(H,B′, m)
is said to be strong-mixing when one of the following equivalent assertions is satis-
fied:

(1) for every A, B ∈ B,

lim
n→∞

m(T−n(A) ∩ B) = m(A)m(B),

(2) for every f, g ∈ L2(H,B, m),

lim
n→∞

〈Un
T f, g〉 = 〈f, 1〉〈g, 1〉.

Of course a strong-mixing transformation is weak-mixing, and a weak-mixing
transformation is ergodic. Moreover, T is weak-mixing if and only if T × T is
ergodic on (X × X,B ⊗ B, m ⊗ m) (see for instance [50, p. 46]).

The next proposition explains why ergodic theory is of interest to us in this
setting.

Proposition 3.12. Let T be a bounded operator on H. Suppose that there exists
a measure m on (H,B, m) whose support is H and such that T : (H,B, m) −→
(H,B, m) is a measure-preserving ergodic transformation. Then T is frequently
hypercyclic, and the set FHC(T ) has m-measure 1.

Proof. Let (Up)p≥1 be a countable basis of nonempty open subsets of X. Birkhoff’s
ergodic theorem ensures that for m-almost every x in X,

1
N

#{k ≤ N ; T kx ∈ Up} −→ m(Up)
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as N tends to infinity. Since m(Up) is positive for every p, it follows that m-almost
every x in X is frequently hypercyclic for T . �

So our interest lies in constructing (if such a thing is possible) an invariant
measure on H for a bounded operator T with respect to which T is ergodic, where
we additionally require that the support of the measure be the whole space H.
Gaussian measures are especially well suited to this purpose. Questions of this
kind were first investigated by Flytzanis in his paper [21] (see also [22]), the crucial
tool being the intertwining equation TK = KV , which will be of constant use
in the sequel. Proposition 3.18 below is stated in [21], as well as a first version
of Theorem 3.22 under somewhat different assumptions on the eigenvectors, and
when T verifies some supplementary conditions (T has to be injective with simple
eigenvalues). Some complements are given in [22] to the effect that these additional
assumptions can be removed. Since several points in the argument in [21] are rather
difficult to follow, we give below a complete self-contained exposition of a proof of
Theorem 3.22. This new proof also has the advantage that it can be extended to
the Banach space setting under suitable assumptions on the geometry of the space;
see [6]. As for Proposition 3.18, a proof is sketched in the announcement [20], and
Section 3.3 below, which is mostly expository, expands on this.

3.3. Gaussian measures on Hilbert spaces. We begin by recalling some def-
initions and facts about Gaussian measures on complex Hilbert spaces. All the
definitions and facts on Gaussian measures stated below can be found in one of the
references [39], [12] or [35].

Definition 3.13. Let (Ω,F , P ) be a probability space and f : (Ω,F , P ) −→ C a
complex-valued measurable function. Then f is said to have complex symmetric
Gaussian distribution if the real and imaginary parts �ef and �mf of f have
independent centered Gaussian distribution with the same variance.

This is equivalent to saying that �ef and �mf are jointly normal and that f
and λf have the same distribution for any λ of modulus 1 ([35, p. 13]).

Definition 3.14. Let H be a complex Hilbert space. A Gaussian measure on
H is a probability measure m on H such that for every x ∈ H, the function
fx : y �−→ 〈y, x〉 has symmetric complex Gaussian distribution.

In particular with this terminology, such a measure is centered:∫
H

〈y, x〉dm(y) =
∫

H

fx(y)dm(y) =
∫

H

y d(fx(m))(y) = 0.

Moreover the quantity ∫
H

||z||2dm(z)

is always finite. A Gaussian measure is completely determined by its covariance
operator S defined on H by the relation

〈Sx, y〉 =
∫

H

〈x, z〉〈y, z〉dm(z) for every x, y ∈ H.

Since m has a moment of order two, S is a bounded self-adjoint positive operator
on H. Moreover, S is of trace class, and the support of the measure m is the norm-
closure of the range of S. Thus the support of m is the whole space if and only if S
is injective. In this case we say that the measure m is nondegenerate. Conversely,
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if S is a bounded self-adjoint positive operator of trace class, there exists a unique
Gaussian measure on H whose covariance operator is S. This shows that finding an
invariant Gaussian measure for an operator boils down to solving a certain operator
equation.

Proposition 3.15. Let T be a bounded operator on H. The following assertions
are equivalent:

(1) T admits an invariant nondegenerate Gaussian measure,
(2) there exists a bounded self-adjoint positive operator S of trace class which

is injective and satisfies TST ∗ = S,
(3) there exist a Hilbert space G, a compact operator K : G → H which is

Hilbert-Schmidt with dense range and a co-isometry V : G → G such that
TK = KV (and hence K∗T ∗ = V ∗K∗).

The equation above was introduced by Flytzanis in [21], and will be referred to
as equation

(F ) TK = KV.

Proof. If m is a Gaussian measure on H, T (m) is also a Gaussian measure on H.
Let S′ be its covariance operator. Then

〈S′x, y〉 =
∫

H

〈x, z〉〈y, z〉d(T (m))(z) =
∫

H

〈T ∗x, z〉〈T ∗y, z〉dm(z) = 〈TST ∗x, y〉,

hence S′ = TST ∗. The equivalence of assertions (1) and (2) then follows directly
from the fact that a centered Gaussian measure is completely determined by its
covariance operator.

(3) ⇒ (2) is easy: set S = KK∗. It is a bounded self-adjoint positive operator,
it is injective since K has dense range, and since K∗ is Hilbert-Schmidt, S is of
trace class. Moreover TST ∗ = TKK∗T ∗ = KV V ∗K∗ = S, which proves (2).

(2) ⇒ (3): consider the polar decomposition of (T
√

S)∗: there exist a self-
adjoint operator P and an isometry W such that (T

√
S)∗ = WP . Set V = W ∗:

P being the unique positive square root of (T
√

S)(T
√

S)∗ = S, P =
√

S and√
ST ∗ = V ∗√S, i.e. T

√
S =

√
SV . Setting K =

√
S yields equation (F ). It is

clear that K is Hilbert-Schmidt and injective, and since K is self-adjoint, it also
has dense range. �

Unimodular eigenvectors are the main tool we use to construct Gaussian invari-
ant measures. We need one more definition here.

Definition 3.16. Let T be a bounded operator on H, and let σ be a probability
measure on T. Then T is said to have a σ-spanning set of eigenvectors associated
to unimodular eigenvalues if for every Borel subset A of T with σ(A) = 1, the
eigenspaces ker(T − λI) for λ ∈ A span a dense subspace of H.

Thus T has a perfectly spanning set of eigenvectors associated to unimodular
eigenvalues if and only of it has a σ-spanning set of eigenvectors associated to
unimodular eigenvalues for some continuous measure σ. The eigenspaces can be
described via countably many Borel functions.

Lemma 3.17. Let T be a bounded operator on H. There exists a sequence of Borel
measurable and bounded functions Ei : T → BH , i ≥ 1, such that for every λ ∈ T,
the span of the sequence of vectors (Ei(λ))i≥1 is dense in ker(T − λI).
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Here BH denotes the closed unit ball of H. A stronger result was obtained by
Dixmier and Foias in [17], where it is shown that the functions (Ei)i≥1 can be
chosen so that

(1) if ker(T − λI) has finite dimension dλ, Ei(λ) = 0 for i > dλ, and
(2) for every λ ∈ T, the sequence of vectors (Ei(λ))i≥1 is an orthonormal basis

of the eigenspace ker(T − λI).

Results of this kind were also obtained by Nikolskaya in [42] and [43]. Here we give
a simple direct proof of Lemma 3.17.

Proof. Let (xi) be a dense sequence of vectors of the unit sphere of H, and for λ ∈ T,
denote by Pλ the orthogonal projection onto ker(T − λI). Let Ei be defined on T

by Ei(λ) = Pλxi. Then Ei is a Borel map on T (this follows directly from the fact
that λ �→ ||Pλx|| is upper semi-continuous for every x ∈ H; see for instance [17])
and the closed linear span of the vectors Ei(λ) is exactly the eigenspace ker(T −λI).
Clearly each Ei(λ) is in ker(T − λI), and if x is orthogonal to Pλxi for every i, x
is orthogonal to the range of Pλ. �

Proposition 3.18. Suppose that T has a σ-spanning set of eigenvectors associated
to unimodular eigenvalues. Then T satisfies equation (F ). In particular T has a
nondegenerate invariant Gaussian measure.

Proof. Let (Ei)i≥1 be the sequence of eigenvector fields given by Lemma 3.17. Let V
be defined on the space

⊕
i≥1 L2(T, σ) of sequences (fi)i≥1 of functions of L2(T, σ)

such that
∑

i≥1 ||fi||2 < +∞ by

V

⎛
⎝⊕

i≥1

fi

⎞
⎠ (λ) =

⊕
i≥1

λfi(λ).

In other words, V acts as the multiplication operator by λ on each component
L2(T, σ). It is clearly a unitary operator. Now let K :

⊕
i≥1 L2(T, σ) → H be

defined by

K

⎛
⎝⊕

i≥1

fi

⎞
⎠ =

+∞∑
i=1

1
2i

∫
T

fi(λ)Ei(λ)dσ(λ).

Then K is a well-defined Hilbert-Schmidt operator: each Ki : L2(T, σ) → H which
maps fi onto

∫
T

fi(λ)Ei(λ)dσ(λ) is a kernel operator with a square-summable ker-
nel. Let us now show that K has dense range, and suppose to this aim that x ∈ H
satisfies 〈x, K(

⊕
i≥1 fi)〉 = 0 for every square-summable sequence (fi)i≥1. Taking

all the elements in this sequence to be 0 except one which is arbitrary, this yields
that for every i ≥ 1 and every f ∈ L2(T, σ),

〈x,

∫
T

f(λ)Ei(λ)dσ(λ)〉 = 0.

This in turn implies that 〈x, Ei(λ)〉 = 0 σ-almost surely, which means that x is
orthogonal to ker(T − λI) except for λ in a set of σ-measure 0. The assumption
that T has a σ-spanning set of eigenvectors implies that x = 0, and K has dense
range. It remains to check that equation (F ) is satisfied with this choice of the
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pair (K, V ). Using the fact that Ei(λ) belogs to ker(T − λI), we get that for every
(fi)i≥1 ∈

⊕
i≥1 L2(T, σ),

TK

⎛
⎝⊕

i≥1

fi

⎞
⎠ =

+∞∑
i=1

1
2i

∫
T

fi(λ)TEi(λ)dσ(λ) =
+∞∑
i=1

1
2i

∫
T

fi(λ)λEi(λ)dσ(λ)

=
+∞∑
i=1

1
2i

∫
T

V

⎛
⎝⊕

i≥1

fi

⎞
⎠ (λ)Ei(λ)dσ(λ) = KV

⎛
⎝⊕

i≥1

fi

⎞
⎠ .

This proves our claim. �

This yields a sufficient condition for an operator to have an invariant nondegen-
erate Gaussian measure.

Proposition 3.19. Let T be a bounded operator on H such that the eigenvectors
associated to unimodular eigenvalues span a dense subspace of H. Then T has a
nondegenerate Gaussian invariant measure.

Proof. For each i ≥ 1, choose a sequence (λ(i)
n )n≥0 of unimodular eigenvalues such

that sp[Ei(λ
(i)
n ), i ≥ 1, n ≥ 0] = H. Let

σ =
1
C

+∞∑
i=1

1
2i

(
+∞∑
n=0

1
2n

δ
λ

(i)
n

)
,

where C is a normalization constant which turns σ into a probability measure.
Then T has a σ-spanning set of eigenvectors associated to unimodular eigenvalues,
and the result follows from Proposition 3.18. �

Remark 3.20. Suppose that T admits an invariant measure µ such that∫
H

||z||2dµ(z)

is finite and whose support is the whole space. Then T admits a nondegenerate
Gaussian invariant measure m: define S on H by the relation

〈Sx, y〉 =
∫

H

〈x, z〉〈y, z〉dµ(z) for every x, y ∈ H.

Since µ has a moment of order two, S is well defined, self-adjoint, positive and of
trace class. Let m be the Gaussian measure whose covariance operator is S. Then

〈TST ∗x, y〉 =
∫

H

〈x, z〉〈y, z〉d(T (µ))(z) = 〈Sx, y〉

and m is T -invariant. Now if Sx = 0, 〈x, z〉 = 0 µ-almost surely, hence x = 0: m is
nondegenerate. Thus the assumption that m is Gaussian is not a restriction here.

Let us conclude this section with an example.

Example 3.21. Let B be the weighted backward shift on �2 with weights (ωn)n≥1,
where (ωn)n≥1 is a bounded sequence of positive real numbers. Suppose that

lim inf
n→+∞

(ω1 . . . ωn)1/n > 1,

and let ω0 = 1. The canonical basis of �2 is denoted as usual by (en)n≥0. In this
case the unimodular point spectrum of B is simple, B has a perfectly spanning set
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of eigenvectors associated to unimodular eigenvalues, and ker(T − λI) is spanned
by the vector

E(λ) =
+∞∑
n=0

λn

ω0 . . . ωn
en

for |λ| = 1. This makes it easy to determine the covariance operator of the measure
m: for every f ∈ L2(T, dθ)

K(f) =
+∞∑
n=0

(∫ 2π

0

f(eiθ)
einθ

ω0 . . . ωn

dθ

2π

)
en,

and for every x ∈ �2,

K∗x =
+∞∑
n=0

〈x, en〉
ω0 . . . ωn

e−inθ.

Hence

Sx = KK∗x =
+∞∑
n=0

〈x, en〉
(ω0 . . . ωn)2

en,

and S is a diagonal operator with respect to the basis (en)n≥0. Remark that the
series ∑

n≥0

1
(ω0 . . . ωn)2

is convergent, and S is indeed a trace class operator. This means that the Gaussian
measure of covariance operator S can be seen as the restriction to �2 of the product
measure defined on CN � (R2)N by µ =

⊗
n≥0 µn, where µn is the 2-dimensional

centered Gaussian measure on R2 whose covariance matrix is⎛
⎜⎜⎝

1
(ω0 . . . ωn)2

0

0
1

(ω0 . . . ωn)2

⎞
⎟⎟⎠ .

3.4. Ergodic properties of measure-preserving operators. Our aim in this
section is to obtain conditions implying that an operator T which admits a non-
degenerate invariant Gaussian measure is ergodic with respect to this measure. In
what follows we will denote by m a Gaussian measure on H, and by B the σ-algebra
of Borel subsets of H. Let

T : (H,B, m) −→ (H,B, m)

be a bounded operator which is also a measure-preserving transformation. We
denote by UT the associated isometry on L2(H,B, m):

UT : L2(H,B, m) −→ L2(H,B, m)

f �−→ [z �→ f ◦ T (z)].

This is clearly an isometry, but it is not necessarily onto. In order to make UT into
a unitary operator, it suffices to change the σ-algebra on the right-hand side: recall
that B is the σ-algebra generated by the functions �e〈 . , x〉 : z �→ �e〈z, x〉, and
consider the σ-algebra B′ generated by the functions �e〈 . , T ∗x〉, x ∈ H. Then B′ is
contained in B and the functions of the form z �→ P (�e〈z, T ∗x1〉, . . . ,�e〈z, T ∗xr〉),
where P is a polynomial in r independent variables on Cr and x1, . . . , xm are m
arbitrary vectors of H, form a dense subset of L2(H,B′, m) ([45, Ch. 8, Theorem
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1.2]). Recall that since 〈., x〉 is Gaussian, 〈., x〉k belongs to L2(H,B, m) for every
k ≥ 0. This implies that

UT : L2(H,B, m) −→ L2(H,B′, m)
f �−→ f ◦ T

is a surjective isometry operator. We will not introduce any new notation for this
operator, and will specify when needed the σ-algebras involved. The operator above
is in fact the canonical isometry associated to the measure-preserving transforma-
tion

T : (H,B, m) −→ (H,B′, m).

Our aim is now to prove the following theorem, which gives a sufficient condition
for an operator to have a nondegenerate Gaussian invariant measure with respect
to which it is weak-mixing.

Theorem 3.22. Suppose that T has a perfectly spanning set of eigenvectors asso-
ciated to unimodular eigenvalues. There exists a nondegenerate Gaussian invariant
measure m on H such that T : (H,B, m) → (H,B, m) is a weak-mixing transfor-
mation.

In order to prove Theorem 3.22, we will use assertion (2) of Definition 3.10. It
suffices to prove the convergence for B′-measurable functions (if f is B-measurable,
then UT f is B′-measurable), and moreover there is no loss of generality in assuming
that 〈f, 1〉 = 〈g, 1〉 = 0. Thus we are going to show that whenever f and g are B′-
measurable and 〈f, 1〉 = 〈g, 1〉 = 0,

lim
N→∞

1
N

N−1∑
k=0

|〈Uk
T f, g〉| = 0.

Since the sequence (|〈Uk
T f, g〉|)k≥0 is bounded, this is equivalent (see [50, p. 43]) to

showing that

lim
N→∞

1
N

N−1∑
k=0

|〈Uk
T f, g〉|2 = 0.

Remark that all the functions fx = 〈 . , x〉 : z �→ 〈z, x〉 belong to L2(H,B, m) since
m has a moment of order two, and that these functions have zero mean. We first
consider the special case where f and g are one of these functions fx.

Lemma 3.23. For any x and y in H,

lim
N→∞

1
N

N−1∑
k=0

|〈Uk
T fx, fy〉|2 = 0.

Proof. Let σ be the measure given in Definition 3.1, let K and V be as in the proof
of Proposition 3.18, and let S = K∗K. We have

〈Uk
T fx, fy〉 =

∫
H

〈T kz, x〉〈z, y〉dm(z) = 〈T kSy, x〉.

But S = KK∗ with K∗T ∗ = V ∗K∗, hence 〈Uk
T fx, fy〉 = 〈V kK∗y, K∗x〉. Now V

acts on
⊕

i≥1 L2(T, σ) as multiplication by λ on each component. Writing K∗x
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as (fi)i≥1 and K∗y as (gi)i≥1 with fi and gi in L2(T, σ) and
∑

i≥1 ||fi||2 < +∞,∑
i≥1 ||gi||2 < +∞ yields that

〈Uk
T fx, fy〉 =

+∞∑
i=1

∫
T

λkgi(λ)fi(λ)dσ(λ) =
∫

T

λk
+∞∑
i=1

gi(λ)fi(λ)dσ(λ),

and the sequence (〈Uk
T fx, fy〉) appears as the negative half of the sequence of Fourier

coefficients of the measure

dµ(λ) =
+∞∑
i=1

gi(λ)fi(λ)dσ(λ).

Since σ is continuous, µ is also continuous, and Wiener’s theorem (see [36, p. 42])
implies that the Cesaro mean

1
N

N−1∑
k=0

|〈Uk
T fx, fy〉|2 = 0

goes to zero as n goes to infinity. �
Now consider the following two closed subspaces of L2(H,B, m) and L2(H,B′, m)

respectively:

G = spL2(H,B,m) [ 〈 . , x〉 ; x ∈ H ],

G′ = spL2(H,B′,m) [ 〈 . , T ∗x〉 ; x ∈ H ].

These subspaces are Gaussian subspaces in the sense that any function in G or
G′ has symmetric complex Gaussian distribution: indeed this is the case for any
function 〈 . , x〉 since the measure m is centered Gaussian, and the norm-closure of a
space of Gaussian functions is also Gaussian. The following lemma follows directly
from Lemma 3.23 and some straightforward computations.

Lemma 3.24. For any functions f and g in G,

lim
n→∞

1
N

N−1∑
k=0

|〈Uk
T f, g〉|2 = 0.

The theory of Fock spaces then allows us to extend this property to general
functions f and g in B′. Here we recall the definitions and facts about Fock spaces
that will be of use in the sequel; for a thorough account see [45, Ch. 8] or [35].

Since B (resp. B′) is the σ-algebra generated by the functions in G (resp. G′),
applying the Weierstrass Theorem gives that ([45, Ch 8, Theorem 1.2])

L2(H,B, m) = spL2(H,B,m) [ gk ; g ∈ G , k ≥ 0 ],

L2(H,B′, m) = spL2(H,B′,m) [ g′k ; g′ ∈ G′ , k ≥ 0 ].

Let Gn denote the space of homogeneous polynomials of degree n of elements of
G, with G0 = C. Then the spaces Gn, n ≥ 0, are linearly independent ([45, Ch. 8,
Lemma 2.3]), and the Wick transform orthonormalizes these subspaces.

Definition 3.25. The Wick transform is defined on the spaces Gn in the following
way:

(1) if f is constant, : f : = f ,
(2) if f ∈ Gn, n ≥ 1, : f : = f − Pnf .
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Here Pn denotes the orthogonal projection onto spL2(H,B,m) [Gk ; 0 ≤ k ≤ n−1 ].

Hence we have

L2(H,B, m) =
⊕
k≥0

: Gk : and L2(H,B′, m) =
⊕
k≥0

: G
′k :,

where the sums above are orthogonal direct sums. This decomposition allows one to
identify L2(H,B, m) (resp. L2(H,B′, m)) with the Fock space F(G) (resp. F(G′)),
which we now define.

On the Hilbert tensor product
⊗

n G, consider the scalar product 〈 . , . 〉⊗ defined
on elementary tensors by

〈g1 ⊗ . . . ⊗ gn, h1 ⊗ . . . ⊗ hn〉⊗ = 〈g1, h1〉 . . . 〈gn, hn〉 for gi, hi ∈ G.

The space Gn
	 is the range of the projection

Sym :
⊗

n

G −→ Gn
	,

f1 ⊗ . . . ⊗ fn �−→ 1
n!

∑
τ∈Σn

fτ1 ⊗ . . . ⊗ fτn
.

Then

〈Sym(g1 ⊗ . . . ⊗ gn), Sym(h1 ⊗ . . . ⊗ hn)〉⊗ =
1
n!

∑
τ∈Σn

〈gτ1 , h1〉 . . . 〈gτn
, hn〉.

For f and g in Gn
	, the symmetric scalar product 〈 . , . 〉	 is defined by the formula

〈f, g〉	 = n!〈f, g〉⊗.

Definition 3.26. The Fock space F(G) over G is

F(G) =
⊕
n≥0

Gn
	,

where the sum is an orthogonal direct sum and each Gn
	 is endowed with the scalar

product 〈 . , . 〉	.

One of the interests of this is that L2(H,B, m) can be identified with F(G) thanks
to the map

: Gn : −→ Gn
	

: f1 . . . fn : �−→ Sym(f1 ⊗ . . . ⊗ fn),

which extends uniquely to an isometry of : Gn : onto Gn
	. Since

L2(H,B, m) =
⊕
k≥0

: Gk :,

this yields that L2(H,B, m) = F(G) and also that L2(H,B′, m) = F(G′).

Definition 3.27. If A is any contraction from G into G′, it is possible to define its
Fock power F(A) from F(G) into F(G′): the nth tensor product

⊗
n A of A acts

on
⊗

n G and maps
⊗

n G into
⊗

n G′ by the formula

(
⊗

n

A)(f1 ⊗ . . . ⊗ fn) = Af1 ⊗ . . . ⊗ Afn.

Now
⊗

n A maps symmetric tensor products on symmetric tensor products, and
this makes it possible to consider the restriction of F(A) to Gn

	. Defining F(A) on
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Gn
	 to be this restriction, F(A) extends to a contraction on F(G) into F(G′), which

is the Fock power of A.

We now come back to our main problem: recall that our measure-preserving
transformation T induces a surjective isometry operator UT : L2(H,B, m) →
L2(H,B′, m), and that moreover UT (G) = G′.

Lemma 3.28. The operator UT : L2(H,B, m) → L2(H,B′, m) can be identified to
the Fock power of its restriction to G via the isometry

: f1 . . . fn : �−→ Sym(f1 ⊗ . . . ⊗ fn)

of : Gn : onto Gn
	.

Proof. Denote by VT the restriction of UT to G: VT (G) = G′. Then

F(VT )(Sym(f1 ⊗ . . . ⊗ fn)) = Sym(UT f1 ⊗ . . . ⊗ UT fn),

hence we need to show that for every n-tuple f1, . . . , fn of elements of G,

UT (: f1 . . . fn :) = : UT f1 . . . UT fn :

(and this will imply that UT (: Gn :) = : G′n :). Recall that

: f1 . . . fn : = f1 . . . fn − Pn(f1 . . . fn),

where Pn denotes the projection onto spL2(H,B,m) [Gk ; 0 ≤ k ≤ n−1 ]. In the same
way, P ′

n denotes the orthogonal projection onto

spL2(H,B,m) [G′k ; 0 ≤ k ≤ n − 1 ].

Hence we have to show that UT (Pn)(f1 . . . fn) = P ′

n(UT (f1 . . . fn)). Now
P ′

n(UT (f1 . . . fn)) is characterized by the two facts that P ′

n(UT (f1 . . . fn)) is in
spL2(H,B,m) [G′k ; 0 ≤ k ≤ n − 1 ] and

〈P
′

n(UT (f1 . . . fn)), h′
1 . . . h′

k〉	 = 〈(UT (f1 . . . fn)), h′
1 . . . h′

k〉	
for any h′

1 . . . h′
k in G′. Now P ′

n(UT (f1 . . . fn)) is clearly in

spL2(H,B,m) [G′k ; 0 ≤ k ≤ n − 1 ],

and

〈UT (Pn(f1 . . . fn)), h′
1 . . . h′

k〉	 = 〈Pn(f1 . . . fn), U−1
T (h′

1 . . . h′
k)〉	

= 〈f1 . . . fn, U−1
T (h′

1 . . . h′
k)〉	

= 〈UT (f1 . . . fn), h′
1 . . . h′

k〉	.

Thus UT : L2(H,B, m) → L2(H,B′, m) can be identified to F(VT ) : F(G) →
F(G′). �

Proof of Theorem 3.22. Let f1, . . . , fr, g1, . . . , gs be elements of G. Let us show that
the Cesaro mean

1
N

N−1∑
k=0

|〈Uk
T (: f1 . . . fr :), : g1 . . . gs :〉|

goes to zero as N goes to infinity. By Lemma 3.28, this quantity is equal to

1
N

N−1∑
k=0

|〈: Uk
T (f1 . . . fr) :, : g1 . . . gs :〉|.
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If r �= s, this quantity is 0. If r = s, it is equal to

1
N

N−1∑
k=0

|〈Sym(Uk
T f1 ⊗ . . . Uk

T fr), Sym(g1 ⊗ . . . ⊗ gr)〉	|

=
1
N

N−1∑
k=0

|
∑

τ∈Σr

〈Uk
T fτ(1), g1〉 . . . 〈Uk

T fτ(r), gr〉|

≤
∑

τ∈Σr

(
1
N

N−1∑
k=0

|〈Uk
T fτ(1), g1〉 . . . 〈Uk

T fτ(r), gr〉|
)

≤ C
∑

τ∈Σr

(
1
N

N−1∑
k=0

|〈Uk
T fτ(1), g1〉|

)

for some positive constant C. Lemma 3.24 implies that the limit of this last sum
is 0. Since

L2(H,B, m) =
⊕
k≥0

: Gk :,

this finally yields that T is weak-mixing with respect to m. �

The conclusion of Theorem 3.22 can be strengthened to give strong-mixing trans-
formations if we impose an additional restriction on the measure σ.

Theorem 3.29. Suppose that T has a σ-spanning set of eigenvectors associated to
unimodular eigenvalues, with σ a Rajchman measure, which means that the Fourier
coefficients of the measure σ tend to zero as |n| goes to infinity (this is the case in
particular if σ is absolutely continuous with respect to the Lebesgue length measure
on T). Then T admits a nondegenerate Gaussian invariant measure such that
T : (H,B, m) −→ (H,B, m) is strong-mixing.

Proof. We retain the notation of the previous theorem. Our goal is now to show
that for any pair (f, g) of B′-measurable functions with 〈f, 1〉 = 〈g, 1〉 = 0, 〈UN

T f, g〉
tends to zero. For any x and y in H, 〈UN

T fx, fy〉 is the (−N)th Fourier coefficient of a
measure which is absolutely continuous with respect to σ. But any measure which is
absolutely continuous with respect to a Rajchman measure is a Rajchman measure,
too (see for instance [37, p. 77]). Hence 〈UN

T fx, fy〉 tends to zero. The rest of the
proof runs exactly along the same lines, and just as before the concluding argument
is that if f1, . . . , fn are n elements of G and τ ∈ Σn, 〈Uk

T fτ(1), g1〉 . . . 〈Uk
T fτ(n), gn〉

goes to 0 as N goes to infinity. �

We are now ready to prove Theorem 3.2.

Proof of Theorem 3.2. The first point follows directly from Theorem 3.22 and Prop-
osition 3.12. The proof of the second assertion of Theorem 3.2 uses the weak-
mixing property of T : for any pair (A, B) of measurable subsets of H, there exists
a sequence (nk) of density 1 such that m(T−nk(A)∩B) → m(A)m(B) ([50, p. 43]).
Applying this to a pair (U, V ) of nonempty open subsets of H implies in particular
that T−nk(U) ∩ V is nonempty for a sequence (nk) of density 1.

When T satisfies the assumptions of Theorem 3.29, T is even topologically mix-
ing: choose a measure m with respect to which T is strong-mixing. Then for any
measurable sets A and B, m(T−n(A)∩B) → m(A)m(B), hence for any pair (U, V )
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of nonempty open sets, there exists an integer n0 such that T−n(U)∩V is nonempty
for every n ≥ n0. �

Remark 3.30. That the operator K which appears in the equation TK = KV
is Hilbert-Schmidt, is crucial, and cannot be replaced by a weaker compactness
assumption: if we suppose merely that K is compact (and that V n tends weakly to
zero as |n| goes to infinity for instance), then T is still hypercyclic ([5], see also [4] for
a simplified proof in a special case), but not necessarily frequently hypercyclic. This
happens for instance for the backward shift B on the Bergman space A2: B satisfies
the equation TK = KV with V the multiplication operator by the independent
variable λ on L2(T, dθ

2π ) and K : L2 → A2 the complex Riesz projection defined
by Kf(z) =

∑+∞
n=0 f̂(n)zn. Then K is compact and has dense range, but is not

Hilbert-Schmidt. This is coherent with the fact that B is hypercyclic without being
frequently hypercyclic. The idea of using equation (F ) to prove the hypercyclicity of
an operator was introduced by Bourdon and Shapiro in [14], where they investigate
the hypercyclicity properties of functions φ(B) of the Bergman backward shift, and
show that B satisfies equation (F ).

Remark 3.31. We can now give a kind of negative answer to something we suggested
in the Introduction: the Hypercyclicity Criterion Problem is not clearly related to
the ergodic-theoretic statement that if T is a measure-preserving transformation on
a measure space (X,B, µ), T ×T is ergodic on (X×X,B⊗B, µ⊗µ) if and only if T
is weak-mixing: an operator which is not frequently hypercyclic cannot be ergodic
with respect to an invariant measure µ on H whose support is the whole space. It
was conceivable to think that both problems were in some sense related, but this
seems to point out that the situation is much more involved.

4. Properties of frequently hypercyclic operators

As we already mentioned in the Introduction, our purpose in this section is to
understand better the difference between the notions of hypercyclicity and frequent
hypercyclicity, the main difference being the lack of Baire Category arguments in
hypercyclicity results. Recall that as soon as T is hypercyclic, the set of hypercyclic
vectors for T can be written as

HC(T ) =
⋂
k≥1

⋃
n≥0

{x ∈ X; Tnx ∈ Bk} ,

where (Bk)k≥1 is a countable basis of open sets of X. Hence HC(T ) is a dense Gδ

subset of X. This breaks down for frequently hypercyclic vectors.

Proposition 4.1. Let T be a bounded operator on a Banach space X. Suppose
that one of the two following conditions is satisfied:

• there exists a dense subset X0 of X with Tnx → 0 for any x ∈ X0,
• there exists a dense subset Y0 of X with ‖Tnx‖ → +∞ for any x ∈ Y0.

Then FHC(T ) is not a residual set in X.

In particular, this is true for all concrete frequently hypercyclic operators (back-
ward shifts, adjoints of multipliers, composition operators) considered in this paper.
By a result of Müller ([41]), the second condition is fulfilled as soon as the spectral
radius r(T ) of T satisfies r(T ) > 1.
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Proof. We just consider the case where the first condition is satisfied. The proof for
the other case is exactly the same, provided we replace the inequalities < 1/2 by
inequalities > 2. By contradiction, suppose that FHC(T ) contains a set

⋂
k≥1 Ωk,

where the Ωk’s are dense open subsets of X. We construct by induction a se-
quence (wk)k≥1 of vectors of X, a sequence (ρk)k≥1 of positive real numbers and
an increasing sequence of integers (Nk)k≥1 such that:

(1) (ρk)k≥1 decreases to zero.
(2) B(wk, ρk) ⊆ B(wk−1, ρk−1).
(3) B(wk, ρk) ⊆ Ωk.
(4) For each w in B(wk, ρk), and for each n ∈ [Nk, kNk], ‖Tnw‖ < 1/2.

Step 1: Let z1 belong to Ω1, and let r1 > 0 be such that B(z1, r1) ⊆ Ω1. By
density of X0, one may find w1 in B(z1, r1) and N1 ≥ 0 such that n ≥ N1 implies
‖Tnw‖ < 1/2. By continuity of TN1 , if ρ1 is chosen small enough (one should
impose B(w1, ρ1) ⊂ B(z1, r1)), one has ‖TN1w‖ < 1/2 for any w ∈ B(w1, ρ1).

Step k: Choose zk in Ωk ∩ B(wk−1, ρk−1), and rk > 0 such that B(zk, rk)
is contained in Ωk ∩ B(wk−1, ρk−1). As previously, one may consider wk in the
ball B(zk, rk) and Nk ≥ Nk−1 such that n ≥ Nk implies ‖Tnw‖ < 1/2. By
continuity of TNk , . . . , T kNk , one may adjust ρk < min(ρk−1, 1/k) so that it satisfies
B(wk, ρk) ⊂ B(zk, rk) and, if w belongs to B(wk, ρk) and n belongs to [Nk, kNk],
then ‖Tnw‖ < 1/2.

Now take w as the limit of (wk), which belongs to
⋂

k≥1 Ωk, and let e be any
unit vector of X. Observe that, for any k ≥ 1 and any n ∈ [Nk, kNk], one has
‖Tnw‖ ≤ 1/2. Therefore

1
kNk

# {n ≤ kNk ; n ∈ App(T, w, e, 1/4)} ≤ 1
k

,

and letting k go to infinity, we get that the lower density of App(T, w, e, 1/4) is
0. Hence w is not a frequently hypercyclic vector, and this contradicts the initial
assumption that

⋂
k≥1 Ωk ⊆ FHC(T ). �

But there is a linear property of the set of hypercyclic vectors, whose proof does
not involve any category argument, which remains true for frequently hypercyclic
operators.

Proposition 4.2. Let T be a frequently hypercyclic operator on a separable F-space
X. There is a dense invariant manifold M of X, every nonzero vector of which is
frequently hypercyclic for T .

Proof. The proof is patterned after Bourdon’s argument in [13]. Let x be a fre-
quently hypercyclic vector, and set M = {P (T )(x) , P ∈ K[ξ]} . Every nonzero
vector of M is frequently hypercyclic for T . Let y = P (T )(x) be such a vector with
P �= 0. Then P (T ) has dense range ([13], [9], [51]). Fix any f in X, and ε > 0, and
choose g ∈ X such that ‖P (T )(g)−f‖ < ε/2. Now if n ∈ App

(
T, x, g, ε/(2‖P (T )‖)

)
,

then

‖Tn(y) − f‖ ≤ ‖P (T )(Tnx) − P (T )(g)‖ + ‖P (T )(g) − f‖
< ‖P (T )‖‖Tnx − g‖ +

ε

2
≤ ε.

This proves that n belongs to App(T, y, f, ε), and therefore this last set has positive
lower density: y belongs to FHC(T ). �
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The lack of residuality properties makes it sometimes difficult to prove results for
frequently hypercyclic operators which are obviously true for hypercyclic operators:
for instance it is immediate that if T is a hypercyclic invertible operator, T−1 is
also hypercyclic. But we do not know the answer to the following question.

Question 4.3. Let T be an invertible frequently hypercyclic operator. Is T−1

frequently hypercyclic? What can be said about FHC(T−1)?

The same drawback appears when dealing with problems of common frequent
hypercyclicity: if (Tk)k≥1 is a sequence of hypercyclic operators,

⋂
k≥1 HC(Tk) is

a dense Gδ subset of X, in particular it is nonempty, and the Tk’s have a common
hypercyclic vector (and even a common dense linear manifold consisting, except for
0, of hypercyclic vectors ([28])). But it is unclear whether or not this extends to
frequently hypercyclic operators.

Question 4.4. Let (Tk)k≥1 be a sequence of frequently hypercyclic operators. Do
the Tk’s have a common frequently hypercyclic vector? Do they have a common
dense linear manifold of frequently hypercyclic vectors?

If T is an operator on a Hilbert space which satisfies the assumptions of Theorem
3.22 and m is the Gaussian measure with respect to which T is weak-mixing, then
m(FHC(T )) = 1, thus FHC(T ) is big in a measure-theoretic sense. In this case
it is easy to see that Question 4.3 has a positive answer: if T is invertible and
has a perfectly spanning set of eigenvectors associated to unimodular eigenvalues,
it is obvious that the same property holds true for T−1. But the situation is
already more intricate for Question 4.4, even for two operators: if T1 and T2 are
two operators satisfying the assumptions of Theorem 3.22, and m1 and m2 the two
Gaussian measures involved, then m1(FHC(T1)) = m2(FHC(T2)) = 1, but it may
happen that m1 and m2 are not absolutely continuous with respect to each other.
Let (αn)n≥1 be a sequence of positive numbers such that

ε ≤ lim supn→+∞ αn
1
n < 1

for some positive ε, and consider the weighted backward shift Bα on �2 with weights
(γn)n≥1 defined by γ1 = 1 and γn = αn−1

αn
for n ≥ 1. Then

1
γ1 . . . γn

= αn,

and we are exactly in the situation of Example 3.21: Bα is weak-mixing with respect
to mα, which can be identified via the unitary operator

U : �2 −→ CN

x �−→ (〈x, e1〉, . . . , 〈x, en〉, . . . )

to the product measure µα on CN, µα =
⊗

n≥0 µn,α, where µn,α is the 2-dimensional
centered Gaussian measure on R2 whose covariance matrix is(

αn 0

0 αn

)
.

Now if (αn)n≥1 and (βn)n≥1 are two such sequences and Bα and Bβ the associated
weighted shifts, the same computation as in [12, Example 2.7.6.] shows that mα
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and mβ are equivalent if and only if the product

+∞∏
n=1

2
√

αnβn

αn + βn

is convergent, which is in turn equivalent to the condition that

+∞∑
n=1

(√
αn

βn
− 1
)2

is finite. If we choose αn = 2−n and βn = 4−n, this condition is not satisfied,
and hence mα and mβ are orthogonal measures (two Gaussian measures are either
equivalent or mutually singular). Thus is does not follow that Bα and Bβ , which
are both frequently hypercyclic, have a common frequently hypercyclic vector.

Questions of common hypercyclicity have also been considered for some un-
countable families (Tλ)λ∈I of hypercyclic operators. Answering a question of Salas
([48]), Abakumov and Gordon have given in [1] the first positive result: the set⋂

λ>1 HC(λB), where B is the backward shift acting on �2, is nonempty. It is
proved in [16] that the same is true for

⋂
a>0 HC(Ta), where Ta is the translation

operator f �→ [z �→ f(z + a)] on H(C). Since each operator λB or Ta is individu-
ally frequently hypercyclic, a natural question arises. Does there exist a common
frequently hypercyclic vector for the family (λB)λ>1? for the family (Ta)a>0? The
answer is rather surprising.

Theorem 4.5. Let B be the backward shift acting on �2, and Λ an uncountable
subset of ]1, +∞[. Then the set of common frequently hypercyclic vectors for the
family (λB)λ∈Λ is empty.

Theorem 4.6. For a > 0, let Ta be the translation operator f �→ [z �→ f(z +a)] on
H(C). Then the set of common frequently hypercyclic vectors for the family (Ta)a>0

is nonempty.

Proof of Theorem 4.5. By contradiction, suppose that⋂
λ∈Λ

FHC(λB)

is nonempty. Then it contains a common frequently hypercyclic vector x = (xn)n≥0.
To each λ ∈ Λ, we associate the positive number

δλ = densApp(λB, x, e0, 1/2).

The uncountable family of positive numbers (δλ)λ∈Λ cannot be summable, thus
there exist λ1, . . . , λq in Λ such that

∑q
i=1 δλi

> 1. Fix ε > 0 with (1−ε)
∑q

i=1 δλi
>

1. There exists N0 ≥ 0 such that if N ≥ N0 and i ∈ {1, . . . , q}, then

1
N

#{1 ≤ n ≤ N ; ‖λn
i Bnx − e0‖ < 1/2} > (1 − ε)δλi

.

In particular, one can find i1 and i2 and infinitely many integers n such that at
the same time n belongs to App(λi1B, x, e0, 1/2) and App(λi2B, x, e0, 1/2). Without
loss of generality, one may suppose that i1 = 1, i2 = 2, and λ2 > λ1. Let r = λ2

λ1
> 1,

and choose n large enough so that rn > 3. Now the following two implications are
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simultaneously true:

if |λn
1xn − 1| ≤ ‖(λ1B)nx − e0‖ ≤ 1/2, then |λn

1xn| ≥
1
2
,

if |λn
2xn − 1| ≤ ‖(λ2B)nx − e0‖ ≤ 1/2 , then |λn

2xn| ≤
3
2
.

This is clearly a contradiction, since |λn
2xn| = rn |λn

1xn| > 3/2. �

The proof of Theorem 4.6 is inspired by the work of Costakis and Sambarino
([16]). It uses the following extension of the well-known result of Ansari ([2]) that
any power T q, q ≥ 1, of T is hypercyclic, and that moreover T and T q have the same
hypercyclic vectors. The same property holds for frequently hypercyclic operators.

Theorem 4.7. Let T be a frequently hypercyclic operator on a Banach space X.
For any q ≥ 1, T q is frequently hypercyclic, and T and T q share the same frequently
hypercyclic vectors.

Proof. For simplicity’s sake, we write down the proof for q = 2, the general argu-
ment being exactly the same. Let x be a frequently hypercyclic vector for T , y any
vector of X and ε > 0. Ansari’s result [2] implies that x and Tx are both hypercyclic
for T 2, hence that there exist two integers p0 and q0 such that ||T 2p0x − y|| < ε

2

and ||T 2q0+1x − y|| < ε
2 . Let

E =
{

n ∈ N ; ||Tnx − x|| <
ε

2 max(||T 2p0 ||, ||T 2q0+1||)

}
.

Then E has positive lower density. Let n belong to E. If n is even and n = 2m,
then

||T 2(m+p0)x − y|| ≤ ||T 2p0(T 2mx − x)|| + ||T 2p0x − y|| < ε.

If n is odd and n = 2m + 1, then

||T 2(m+q0+1)x − y|| ≤ ||T 2q0+1(T 2m+1x − x)|| + ||T 2q0+1x − y|| < ε.

Let F = {m + p0 , 2m ∈ E}∪{m + q0 + 1 , 2m + 1 ∈ E} . We have to show that F
has positive lower density. But this follows from the fact that if #E∩{1, 2, . . . , N} ≥
δN , then either #E ∩ {2, 4, . . . , 2�N

2 �} ≥ δ
2N or #E ∩ {1, 3, . . . , 2�N−1

2 � + 1} ≥
δ
2N . In the first case #F ∩ {1, 2, . . . , �N

2 � + p0} ≥ δ
2N , and in the second case

#F ∩ {1, 2, . . . , �N
2 � + q0 + 1} ≥ δ

2N . Hence F has positive lower density, and this
finishes the proof. �

We can now give the proof of Theorem 4.6.

Proof of Theorem 4.6. By Theorem 2.5, there exists a frequently hypercyclic vector
f for T1. We claim that f belongs to FHC(Ta) for every a > 0. Suppose first that
a is a rational number and write it as p/q. Fix h ∈ H(C), K a compact subset of
C, and ε > 0. Theorem 4.7 implies that f is frequently hypercyclic for T p, and
it is straightforward to check that if m satisfies

∥∥(T p
1 )m

f − h
∥∥

C(K)
< ε, then mq

satisfies
‖(Ta)mq

f − h‖C(K) < ε,

which proves that f belongs to FHC(Ta). Suppose now that a is irrational. Con-
sider h, K, ε as previously. The uniform continuity of h on compact subsets of C
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implies the existence of a δ, 0 < δ < 1, such that |h(z)−h(w)| < ε as soon as z ∈ K
and |z − w| < δ. We set

Kδ = K + δD,

and choose Q ≥ 1 an integer with Q > 2 maxz∈Kδ
|z|. The minimality of the

rotation of irrational angle a/Q (see [18]) implies that there exist M > 0 and an
increasing sequence of integers (nk) such that⎧⎨

⎩
n0 = 0,

0 ≤ nka [mod Q] < δ,
nk+1 − nk < M.

Writing α =
[

Ma+1
Q

]
, by Runge’s Theorem there exists h0 ∈ H(C) satisfying

|h0(z) − h(z + jQ)| < ε

for z ∈ Kδ − jQ, j = 0, . . . , α. We denote by L the compact set

L = Kδ ∪ (Kδ − Q) ∪ · · · ∪ (Kδ − αQ).

Since
App(TQ

1 , f, h0, ε, L) =
{
n ∈ N ; ||(TQ

1 )Nf − h0||C(L) < ε
}

has positive lower density, one can find an increasing sequence of integers (uk) with
positive lower density such that

uk+1 − uk >
Ma

Q
and uk ∈ App

(
TQ

1 , f, h0, ε, L
)

.

For each k, let j(k) be the smallest possible integer such that nj(k)a ≤ Quk ≤
nj(k)a + Ma. Since Quk+1 > Quk + Ma and nk+1 − nk < M , it is plain that
nj(k) �= nj(k′) for k �= k′. Let us write nj(k)a = mkQ + δk with 0 < δk < δ, and
mkQ = Quk − Qαk. Since

mkQ ≤ Quk ≤ mkQ + Ma + 1,

one gets

0 ≤ αk ≤ Ma + 1
Q

.

Putting everything together, we obtain that for any z in K,

|f(z + nj(k)a) − h(z)| = |f [(z + δk − Qαk) + Quk] − h(z)|
≤ ε + |h0(z + δk − Qαk) − h(z)|
< 2ε + |h(z + δk) − h(z)| ≤ 3ε.

This proves that nj(k) belongs to App(Ta, f, h, 3ε, K). Now, uk �→ nj(k) is one-to-
one, and

nj(k) ≤
Quk

a
.

The fact that dens(uk) > 0 ensures that dens
(
App(Ta, f, h, 3ε, K)) > 0, and the

claim follows. �

In connection with the Hypercyclicity Criterion Problem, the following question
is intriguing.

Question 4.8. Let T be a frequently hypercyclic operator on X. Is T ⊕ T hyper-
cyclic on X ⊕ X?
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The answer is clearly affirmative for all the operators constructed here. Another
question could be:

Question 4.9. Let T be a frequently hypercyclic operator on X. Is T⊕T frequently
hypercyclic on X ⊕ X?

Again this is true for all the frequently hypercyclic operators exhibited here (if
T satisfies the assumptions of Theorem 2.1, so does T ⊕T , and if T has a perfectly
spanning set of eigenvectors associated to unimodular eigenvalues, so does T ⊕ T ).
But the question in the general setting does not seem to be trivial, because very
little is known regarding the size of FHC(T ): for all we know, FHC(T ) may be
equal to C[T ](x0) \ {0}, where x0 is a frequently hypercyclic vector for T , and of
course in this case T ⊕ T cannot be frequently hypercyclic (a vector of the form
x⊕p(T )x cannot even be hypercyclic: its orbit under the action of T⊕T is contained
in the proper closed subspace of vectors x1 ⊕ x2 satisfying p(T )x1 − x2 = 0). This
possibility is ruled out in the hypercyclicity setting because HC(T ), being a dense
Gδ set, cannot coincide with a Kσ set.

We finish this paper with a last natural question concerning the existence of
frequently hypercyclic operators on general separable Banach spaces. A result of
Ansari ([3]) and Bernal-González ([7]) is that every separable Banach space of
infinite dimension supports a hypercyclic operator.

Question 4.10. Does every separable Banach space of infinite dimension support
a frequently hypercyclic operator?

A positive answer to Question 4.10 would request that we construct frequently
hypercyclic operators of the form T = I + Q, where Q is a compact quasinilpotent
operator, but we do not know whether this is possible or not (we rather suspect it
is not . . .).
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Added in proof

Conjecture 2.10 has been disproved by K.-G. Grosse-Erdmann and A. Peris in
Frequently dense orbits, C. R. Math. Acad. Sci. Paris 341 (2005), pp 123–128,
MR2153969 (2006a:47017). In this same paper, the authors give a positive answer
to Question 4.8.
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