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GENERALIZED AHLFORS FUNCTIONS

MIRAN ČERNE AND MANUEL FLORES

Abstract. Let Σ be a bordered Riemann surface with genus g and m bound-
ary components. Let {γz}z∈∂Σ be a smooth family of smooth Jordan curves
in C which all contain the point 0 in their interior. Let p ∈ Σ and let F be
the family of all bounded holomorphic functions f on Σ such that f(p) ≥ 0
and f(z) ∈ γ̂z for almost every z ∈ ∂Σ. Then there exists a smooth up to the
boundary holomorphic function f0 ∈ F with at most 2g +m− 1 zeros on Σ so
that f0(z) ∈ γz for every z ∈ ∂Σ and such that f0(p) ≥ f(p) for every f ∈ F .
If, in addition, all the curves {γz}z∈∂Σ are strictly convex, then f0 is unique
among all the functions from the family F .

1. Introduction

Let Σ be the interior of a bordered Riemann surface with genus g and m real an-
alytic boundary components. Let p ∈ Σ and let Fp be the family of all holomorphic
functions from Σ to the unit disc ∆ which take p to 0 and which have, in a fixed
coordinate chart, nonnegative derivative at p. Trying to imitate the proof of the
Riemann mapping theorem, that is, trying to maximize the derivative f ′(p) over
all functions f ∈ Fp, one gets the Ahlfors function at point p [1, 2]. The existence
of the ‘maximal’ function follows from the normal family argument, however it is
nontrivial to show that any Ahlfors function is a proper map from Σ to ∆ and that
it has at most 2g + m zeros on Σ, [1, 2]. For importance and usefulness of Ahlfors
functions see [6, 7, 8, 9, 13, 14].

In this paper we give some natural generalizations of these results which we
hope will give some new insight on the geometry of the problem. We will say that
a family of simple closed curves {γz}z∈∂Σ in C is a Ck (k ∈ N) family of Jordan
curves in C if there exists a function ρ ∈ Ck(∂Σ × C) such that

γz = {w ∈ C; ρ(z, w) = 0}
and (∂wρ)(z, w) �= 0 for every z ∈ ∂Σ and w ∈ γz. We call ρ a defining function
for the family {γz}z∈∂Σ.
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672 MIRAN ČERNE AND MANUEL FLORES

The interior of a simple closed curve γ ⊆ C is the bounded component of C \ γ,
and γ̂ will denote the closure of the interior of γ. We will say that a simple closed
curve γ ⊆ C is convex if γ̂ is a convex set in C, and that γ ⊆ C is strictly convex if
γ̂ is a strictly convex set in C.

Let k be a nonnegative integer and let 0 < α < 1. We denote by Ck,α(∂Σ) the
Hölder space of all real k times differentiable functions on the boundary ∂Σ whose
derivatives of order k are Hölder continuous of order α, and we denote by Ak,α(Σ)
the space of all holomorphic functions on Σ which are of class Ck,α on Σ.

Let p ∈ Σ and let F be the family of all bounded holomorphic functions f on Σ
such that f(p) ≥ 0 and f(z) ∈ γ̂z for almost every z ∈ ∂Σ.

Theorem 1.1. Let Σ be a bordered Riemann surface with genus g and m real
analytic boundary components. Let {γz}z∈∂Σ be a Ck+1 (k ≥ 3) family of Jordan
curves in C which all contain the point 0 in their interior. Then there exists a
holomorphic function f0 ∈ F ∩ Ak,α(Σ) with at most 2g + m − 1 zeros on Σ so
that f0 is a ‘proper’ map, that is, f0(z) ∈ γz for every z ∈ ∂Σ, and such that
f0(p) ≥ f(p) for every f ∈ F .

In the case of the disc Σ = ∆ the result follows from results in [20]. See also [29].
In addition, it also follows from results in [20] that f0 is unique among all functions
from F . Although it seems natural to expect that the same uniqueness holds in
general, we were only able to show the uniqueness in the case of the strictly convex
curves γz.

Theorem 1.2. Let {γz}z∈∂Σ be a Ck+1 (k ≥ 3) family of convex Jordan curves in
C which all contain the point 0 in their interior and which are strictly convex on a
set z ∈ ∂Σ with positive measure. Then there is a unique function f0 ∈ F such that

f0(p) = max{f(p); f ∈ F}.
To include Ahlfors functions in these results one needs the following corollary.

Corollary 1.3. Let n ∈ N and let D ≥ n p be a divisor on Σ of a finite degree whose
coefficient at p is n. Let FD be the family of all bounded holomorphic functions f
on Σ such that (f) ≥ D, f(z) ∈ γ̂z for almost every z ∈ ∂Σ and which have, in
a fixed coordinate chart, a nonnegative n-th derivative at p. Then there exists a
holomorphic function f0 ∈ FD ∩Ak,α(Σ) with at most deg(D)+2g+m−1 zeros on
Σ so that f0 is a ‘proper’ map, that is, f0(z) ∈ γz for every z ∈ ∂Σ, and such that
f

(n)
0 (p) ≥ f (n)(p) for every f ∈ FD. If, in addition, the family of Jordan curves
{γz}z∈∂Σ is convex for every z ∈ ∂Σ and strictly convex on a set z ∈ ∂Σ with
positive measure, there is a unique function f0 ∈ FD such that

f
(n)
0 (p) = max{f (n)(p); f ∈ FD}.

A consequence of this corollary is also a result from [11], where the following
special case was considered: Σ is a planar domain (g = 0), divisor D = n p and all
the curves γz (z ∈ ∂Σ) are unit circles centered at 0.

To put these results in a wider context we recall the notion of the (nonlinear)
Riemann-Hilbert problem on Σ, which for a given Ck family of simple closed curves
{γz}z∈∂Σ in C asks for a continuous up to the boundary holomorphic function f on
Σ such that f(z) ∈ γz for every z ∈ ∂Σ. It was proved in [12] that if k ≥ 4 and if all
curves γz (z ∈ ∂Σ) contain the point 0 in their interior, then there exists a solution
of the corresponding Riemann-Hilbert problem with at most 2g+m−1 zeros on Σ.
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Similar previous results can be found in [5, 20, 30]. See also [17, 18, 19, 25, 31] and
the references therein. The condition that all curves γz (z ∈ ∂Σ) contain the point
0 in their interior can be replaced ([12, 20]) by a seemingly more general, however
equivalent, condition that there exists a continuous analytic selector for {γz}z∈∂Σ,
that is, that there exists a continuous up to the boundary holomorphic function f
on Σ such that f(z) ∈ Int(γz) for every z ∈ ∂Σ. Hence it follows that all our results
also appropriately hold in the cases where the condition that all curves {γz}z∈∂Σ

contain the point 0 in their interior is replaced by the condition that there exists
a continuous analytic selector for {γz}z∈∂Σ. The following theorem shows that
the existence of solutions of the Riemann-Hilbert problem for {γz}z∈∂Σ is actually
equivalent to the existence of a ‘bounded’ analytic selector for {γz}z∈∂Σ.

Theorem 1.4. Let Σ be a bordered Riemann surface with genus g and m real
analytic boundary components. Let {γz}z∈∂Σ be a Ck+1 (k ≥ 3) family of Jordan
curves in C. Either there is no bounded holomorphic function f on Σ such that
f(z) ∈ γ̂z almost everywhere on ∂Σ, or there exists a solution of the Riemann-
Hilbert problem for {γz}z∈∂Σ. In the latter case there always exists a solution f0

of the Riemann-Hilbert problem for {γz}z∈∂Σ such that the winding number of the
outer normal to γz at f0(z) along ∂Σ is at most 2g + m − 1.

Let A(Σ × C) denote the space of all continuous functions on Σ × C, which are
holomorphic on Σ × C, equipped with the topology of the uniform convergence
on compact subsets of Σ × C. Recall that the A(Σ × C)-hull K̂ of a compact set
K ⊆ Σ × C is defined as

K̂ = {(z, w) ∈ Σ × C ; |h(z, w)| ≤ max
K

|h| for every h ∈ A(Σ × C)}.

Let
T =

⋃
z∈∂Σ

({z} × γz).

Then T is the union of m totally real tori in ∂Σ×C, and by the maximum principle
the graph of every function from the family F belongs to the A(Σ × C)-hull of T .
In the case of the disc Σ = ∆ it follows from results in [3], [20] and [29] that the
(polynomial) A(∆×C)-hull of T over Σ equals the union of graphs of functions from
F . For a bordered Riemann surface Σ �= ∆ it is known that in general T̂ ∩ (Σ×C)
cannot be given as the union of graphs of functions from F (it might even happen
that T̂ ∩ (Σ × C) �= ∅ but F = ∅, [4, 16]), however Theorem 1.1 gives some ‘lower’
bound on the size and geometry of the A(Σ × C)-hull of T .

2. Extremal functions

The standard normal family argument and the next lemma show that there exists
a function f0 ∈ F such that

f0(p) = max{f(p); f ∈ F}.

Lemma 2.1. For every z0 ∈ ∂Σ we have

γ̂z0 = T̂ ∩ ({z0} × C).

Proof. Let w0 �∈ γ̂z0 . Since γ̂z0 is simply connected, there exists a polynomial Q(w)
so that ‖Q‖γ̂z0

< Q(w0) = 1. Let ϕ be an Ahlfors function on Σ which takes z0 to
1 and let ϕ−1(1) = {z0, z1, . . . , zr}. Let µ be a holomorphic function on Σ smooth
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up to the boundary such that µ(z0) = 1 and µ(z1) = · · · = µ(zr) = 0. We consider
functions

(z, w) 	−→ Fn(z, w) = µ(z)
1

(2 − ϕ(z))n
Q(w)

from A(Σ×C). Then Fn(z0, w0) = 1 for every n ∈ N. By continuity it follows that
there is a neighbourhood U of z0 on ∂Σ so that for every n ∈ N and every z ∈ U it
holds that

‖µ(z)
1

(2 − ϕ(z))n
Q‖γ̂z

< 1.

On the other hand we have that the sequence {µ(z) 1
(2−ϕ(z))n }n∈N converges uni-

formly on compact subsets of Σ \ {z0} to 0. The boundedness of Q on T implies
that there exists n ∈ N so that ‖Fn‖T < 1. Hence (z0, w0) is not in T̂ and so
T̂ ∩ ({z0} × C) ⊆ γ̂z0 . The reverse inclusion is obvious. �

To proceed with the proof of Theorem 1.1 we define different families of holo-
morphic functions on Σ we will need in our argument. We will denote by FC the
family of all continuous up to the boundary holomorphic functions from F , and we
will denote by FRH the family of all functions from FC which solve the Riemann-
Hilbert problem for {γz}z∈∂Σ. It is a consequence of Čirka’s theorem [15] on the
regularity of an analytic set with boundary in a maximal real manifold that each
member of FRH is of class Ck,α. On the other hand it follows from [12] that FRH

is nonempty. Namely, let g ∈ Ak+1(Σ) be a holomorphic function such that it has
the only simple zero on Σ at point p. We consider the Riemann-Hilbert problem
for the Ck+1 family of Jordan curves in C defined as

γ̃z =
1

g(z)
γz.

This family still has the property that each curve γ̃z (z ∈ ∂Σ) contains the point 0
in their interior. Let h be a solution of the corresponding Riemann-Hilbert problem.
Then f = g h ∈ FRH . Finally, for each n ∈ N ∪ {0} we define the family Fn of
all functions from FRH which have at most n zeros on Σ. Then F0 ⊆ F1 ⊆ · · · ⊆
FRH ⊆ FC , and there exists n0 ∈ N ∪ {0} such that Fn �= ∅ for all n ≥ n0.

It follows from results in [12], [21], [26] and [32] that each family Fn (n ∈ N∪{0})
is compact in Gromov’s topology, that is, if {fl} ⊆ Fn is a sequence, then there
exists a subsequence {flj}, a finite set Γ ⊂ ∂Σ and a holomorphic function f∞ ∈ Fn

such that {flj} converges to f∞ in the Ck,α sense on compact subsets of Σ \ Γ.
The compactness tells us that for each n ≥ n0 there exists a function fn ∈ Fn

so that
fn(p) = max{f(p); f ∈ Fn}.

The following lemma implies that all these functions belong to F2g+m−1.

Lemma 2.2. Let f ∈ FRH be a solution of the Riemann-Hilbert problem for
{γz}z∈∂Σ with more than 2g + m − 1 zeros on Σ. Then there exists f̃ , a solu-
tion of the Riemann-Hilbert problem for {γz}z∈∂Σ so that

f̃(p) > f(p).

Proof. Let f ∈ Ak,α(Σ) ∩ F be a solution of the Riemann-Hilbert problem for
{γz}z∈∂Σ with more than 2g + m − 1 zeros. We will show that it is possible to
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slightly perturb f and get another solution f̃ of the Riemann-Hilbert problem so
that f̃(p) > f(p).

Let ρ be a Ck+1 defining function for {γz}z∈∂Σ. The map

Ψ : A1,α(Σ) −→ C1,α(∂Σ),

(Ψ(h))(z) = ρ(z, h(z))

is C1 [22], and its derivative at f ∈ A1,α(Σ) is

(DΨ(f)h)(z) = 2Re((∂wρ)(z, f(z))h(z)).

Geometric assumptions on the family of simple closed curves {γz}z∈∂Σ imply
that the winding number of the normal to γz at f(z), that is, the winding number
of the nonzero function a(z) = (∂wρ)(z, f(z)) on ∂Σ, equals the winding number
of f on ∂Σ which in turn is equal to the number n of zeros of f .

The linear operator DΨ(f) is a Fredholm operator of index 2n − (2g + m − 2),
and it has no cokernel if n ≥ 2g +m− 1, [24]. The implicit function theorem shows
that in the case n ≥ 2g + m − 1 the family M of all nearby to f solutions of the
Riemann-Hilbert problem for {γz}z∈∂Σ is a q = 2n − (2g + m − 2) dimensional
submanifold of A1,α(Σ).

Let f(·, s) be a local C1 parametrization of M with the parameter space 0 ∈
S ⊆ Rq such that f(·, 0) = f . The derivative (Dsf)(·, 0) is an isomorphism from
Rq onto the tangent space of M at f , that is, for every s ∈ Rq we have

(2.1) Re(a(z) (Dsf)(z, 0)s) = 0 (z ∈ ∂Σ).

We consider the mapping Φ : S → C defined by Φ(s) = f(p, s). We will show
that Φ is a submersion in a neighbourhood of 0 ∈ S. Therefore for every value v

close enough to f(p) the equation Φ(s) = v has a solution s(v) and f̃ = f(·, s(v)) ∈
A1,α(Σ) is found. By a theorem of Čirka, [15], we also have f̃ ∈ Ak,α(Σ).

To prove that the derivative (DΦ)(0) : Rq → C is surjective we have to prove
that the partial derivative (Dsf)(p, 0) : Rq → C is surjective.

We argue by contradiction. Let us assume that the image of (Dsf)(p, 0) is either
0 or 1 dimensional. In either case its image lies in a line in R2, and we may assume,
without loss of generality, that its image is contained in the real line, that is,

Re(i (Dsf)(p, 0)s) = 0

for every s ∈ Rq.
Let hj(z) = (Dsf)(z, 0)ej , j = 1, . . . , q, be the image of the standard basis

of the space Rq. Then hj(p) ∈ R for each j and hence there is another basis ẽj ,
j = 1, . . . , q, of Rq so that for their images h̃j(z) = (Dsf)(z, 0)ẽj we have h̃j(p) = 0,
j = 1, . . . , q − 1.

From (2.1) it follows that

Re(a(z) h̃j(z)) = 0

for every z ∈ ∂Σ and j = 1, . . . , q. Let g ∈ Ak,α(Σ) be such that it has the only
simple zero on Σ at point p. Then h̃j(z) = g(z) gj(z) for some gj ∈ Ak,α(Σ),
j = 1, . . . , q − 1. Therefore

Re(a(z) g(z) gj(z)) = 0

for every z ∈ ∂Σ and j = 1, . . . , q − 1, and the linear independence of functions h̃j ,
j = 1, . . . , q − 1, implies the linear independence of functions gj , j = 1, . . . , q − 1.
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For z ∈ ∂Σ we define
b(z) = a(z) g(z).

Then b is a nonzero function on ∂Σ of class Ck,α, and its winding number on ∂Σ is

W (b) = W (a) − W (g) = W (a) − 1 = n − 1.

Hence W (b) ≥ 2g + m − 1, and the space of solutions of the linear homogeneous
Riemann-Hilbert problem Re(b(z) h(z)) = 0 is 2(n − 1) − (2g + m − 2) = q − 2
dimensional, [24]. Thus the functions gj , j = 1, . . . , q − 1, have to be linearly
dependent, which is a contradiction. �

Let us summarize our results.

Lemma 2.3.

max{f(p); f ∈ FRH} = max{f(p); f ∈ F2g+m−1}.

Proof. Lemma 2.2 and Gromov’s compactness imply

max{f(p); f ∈ F2g+m−1} = max{f(p); f ∈ Fn}

for every n ≥ 2g + m − 1.
Let ε > 0 and let fε ∈ FRH be such that

fε(p) > sup{f(p); f ∈ FRH} − ε.

Function fε has finitely many zeros on Σ, and hence there is n ≥ 2g + m − 1 so
that fε ∈ Fn. Therefore

max{f(p); f ∈ F2g+m−1} ≥ fε(p) ≥ sup{f(p); f ∈ FRH} − ε.

Since ε > 0 was arbitrary, we get

max{f(p); f ∈ F2g+m−1} ≥ sup{f(p); f ∈ FRH}.

The reverse inequality is obvious. �

Recall ([12]) that there exists a Ck+1 strongly plurisubharmonic function v on
Σ×C such that T =

⋃
z∈∂Σ({z}×γz) is a Lagrangian submanifold for the symplectic

form ω = i∂∂v and that the ω-area of any fiber {z} × γ̂z is 1.
Let X = (0, X0) be a Ck+1 vertical vector field on ∂Σ × C with the following

properties ([29]):
1. X0(z, w) is transversal to γz for every z ∈ ∂Σ and w ∈ γz.
2. There are 0 < r < R < ∞ so that X0(z, w) = w for every z ∈ ∂Σ and

w ∈ C such that |w| ≤ r or |w| ≥ R.
3. X0(z, w) = 0 if and only if w = 0.

Let Φt be the flow of vector field X and let

{z} × γt
z = Φt({z} × γz).

Let A(z, t) =
∫
{z}×γ̂t

z
ω be the ω-area of the fiber {z} × γ̂t

z. Then A(z, t) ∈
Ck+1(∂Σ×R) and the properties of vector field X and the fact that v is a strongly
plurisubharmonic function imply that A(z, t) has a nonvanishing t-derivative.

Let a > 0. For each z ∈ ∂Σ there exists exactly one time t(z, a) such that
A(z, t(z, a)) = a, and by the implicit function theorem this dependence is Ck+1
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smooth in (z, a) ∈ ∂Σ × (0,∞). Let πw : Σ × C → C be the projection on the
second coordinate. The family

{πw(Φt(z,a)({z} × γz))}z∈∂Σ

of Ck+1 Jordan curves in C has the property that the ω-area of any fiber is a.
The next lemma takes care of functions from F continuous up to the boundary.

Lemma 2.4.
max{f(p); f ∈ FRH} = max{f(p); f ∈ FC}.

Proof. Let ε > 0 and let fε ∈ FC be such that

fε(p) > sup{f(p); f ∈ FC} − ε.

There exists {γn
z }z∈∂Σ, n ∈ N, a sequence of Ck+1 families of simple closed

curves in C such that the ω-area of any fiber {z}× γ̂n
z is a constant which depends

only on n,

γ̂n+1
z ⊆ Int(γn

z ) (z ∈ ∂Σ)
for every n ∈ N, and ⋂

n∈N

γ̂n
z = γ̂z (z ∈ ∂Σ).

It follows from results in [12] that for each n ∈ N there exists gn ∈ Ak,α(Σ) a
solution of the Riemann-Hilbert problem for {γn

z }z∈∂Σ such that fε(p) ≤ gn(p). To
get gn let δn > 0 be so small that the disc ∆(fε(z), 3δn) is contained in γ̂n

z for every
z ∈ ∂Σ. Then there exists ([10], [23]) a smooth up to the boundary holomorphic
function fn

ε such that ‖fn
ε −fε‖∞ < δn on Σ. Also, let g ∈ Ak+1(Σ) be such that it

has the only simple zero on Σ at point p. We consider the Riemann-Hilbert problem
for the family of Ck+1 Jordan curves

γ̃n
z =

1
g(z)

(γn
z − fn

ε (z) − (fε(p) − fn
ε (p)) − δn)

which all contain 0 in their interior. Let hn be a solution of the corresponding
Riemann-Hilbert problem. Then

gn = fn
ε + (fε(p) − fn

ε (p)) + δn + g hn.

Lemma 2.3 implies that there exists a sequence of holomorphic functions {fn}n∈N

on Σ of class Ck,α such that
a) fn solves the Riemann-Hilbert problem for {γn

z }z∈∂Σ.
b) fn has at most 2g + m − 1 zeros on Σ.
c) fn(p) ≥ fε(p) ≥ sup{f(p); f ∈ FC} − ε.

By Gromov’s compactness theorem [21], [26], [32] there exists a subsequence {fnj
},

a finite set Γ ⊂ ∂Σ and a holomorphic function f∞ ∈ FRH such that {fnj
} converges

in the Ck,α sense on compact subsets of Σ \ Γ to f∞, a solution of the Riemann-
Hilbert problem for {γz}z∈∂Σ. Hence

max{f(p); f ∈ FRH} ≥ f∞(p) ≥ sup{f(p); f ∈ FC} − ε.

Since ε > 0 was arbitrary we get

max{f(p); f ∈ FRH} ≥ sup{f(p); f ∈ FC}.
The reverse inequality is trivial. �
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The following lemma completes the proof of Theorem 1.1.

Lemma 2.5.
max{f(p); f ∈ F} = max{f(p); f ∈ FC}.

Proof. Let {γn
z }z∈∂Σ, n ∈ N, be a sequence of Ck+1 families of Jordan curves in

C as in the proof of Lemma 2.4 such that the ω-area of any fiber {z} × γ̂n
z is a

constant which depends only on n,

γ̂n+1
z ⊆ Int(γn

z ) (z ∈ ∂Σ)

for every n ∈ N, and ⋂
n∈N

γ̂n
z = γ̂z (z ∈ ∂Σ).

Let {Σl}l∈N be an increasing sequence p ∈ Σl ⊆ Σl+1 (l ∈ N) of domains in
Σ with real analytic boundaries, of the same topological type as Σ, and such that
their union is Σ. Let J be the complex structure on Σ. Then (Σl, J) is a sequence of
Riemann surfaces which ‘converges’ to (Σ, J), that is, let {ψl}l∈N be a sequence of
smooth diffeomorphisms ψl : Σ → Σl, ψl(p) = p, which in the C∞ sense converges
to the identity map, and let

Jl = (Dψl)−1 ◦ J ◦ Dψl.

Then {Jl}l∈N is a sequence of complex structures on Σ which C∞ converges to J .
Let n ∈ N be fixed and let f0 ∈ F be such that

f0(p) = max{f(p); f ∈ F}.
For every l we define fl = f0◦ψl a smooth up to the boundary holomorphic function
on (Σ, Jl).

Since the graph of f0 belongs to a A(Σ × C)-hull of the tori

T =
⋃

z∈∂Σ

({z} × γz),

which forms a closed subset of Σ × C, we get that there exists l0 ∈ N so that for
every l > l0 we have

fl(z) ∈ Int(γn
z ) (z ∈ ∂Σ).

If not, there exists a sequence lj → ∞ and a sequence zj ∈ ∂Σ which converges to
z0 ∈ ∂Σ such that

wj = flj (zj) = f0(ψlj (zj)) �∈ Int(γn
zj

).
Since f0 is bounded, there exists, after passing to a subsequence, the limit w0 of
sequence {wj}j∈N. Therefore the sequence

(ψlj (zj), wj) = (ψlj (zj), f0(ψlj (zj)))

of points from the graph of f0 converges to (z0, w0) �∈ {z0} × γ̂z0 , which is a con-
tradiction.

By Lemma 2.4 there exists a sequence {gl}l>l0 of Ck,α functions on Σ such that
for every l > l0

a) gl is holomorphic on (Σ, Jl).
b) gl solves the Riemann-Hilbert problem on (Σ, Jl) for {γn

z }z∈∂Σ.
c) gl has at most 2g + m − 1 zeros on Σ.
d) gl(p) ≥ fl(p) = f0(ψl(p)) = f0(p).
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Let l → ∞. Using Gromov’s compactness theorem we get that there exists a
Ck,α(Σ) holomorphic function f̃n on (Σ, J) such that

a) f̃n solves the Riemann-Hilbert problem on (Σ, J) for {γn
z }z∈∂Σ.

b) f̃n has at most 2g + m − 1 zeros on Σ.
c) f̃n(p) ≥ f0(p) = max{f(p); f ∈ F}.

Let n → ∞, and the proof is finished as in Lemma 2.4. �

A similar argument also gives the following theorem.

Theorem 2.6. Let Σ be a bordered Riemann surface with genus g and m real
analytic boundary components. Let {γz}z∈∂Σ be a Ck+1 (k ≥ 3) family of Jordan
curves in C which all contain the point 0 in their interior. Then there exists a
holomorphic function f0 ∈ Ak,α(Σ) with at most 2g + m − 1 zeros on Σ so that
f0(z) ∈ γz for every z ∈ ∂Σ and such that

|f0(p)| = max{|f(p)|; f ∈ H∞(Σ), f(z) ∈ γ̂z (a.e. z ∈ ∂Σ)}.

Proof of Corollary 1.3. Here we prove the existence part of Corollary 1.3. The
uniqueness part is proved in the next section.

Let g be a smooth up to the boundary holomorphic function on Σ such that
(g) = D and g(n)(p) > 0 in a given coordinate chart. Let us consider the Ck+1

family of Jordan curves in C defined as

γ̃z =
1

g(z)
γz.

By Theorem 1.1 there exists a solution of the corresponding Riemann-Hilbert prob-
lem f1 ∈ F ∩Ak,α(Σ) with at most 2g + m− 1 zeros on Σ so that f1(p) ≥ f(p) for
every bounded holomorphic function f on Σ, such that f(p) ≥ 0 and f(z) ∈ ̂̃γz for
almost every z ∈ ∂Σ. Finally we define f0 = g f1. �

3. Uniqueness

In this section we show the uniqueness of the extremal functions in the case where
the given smooth family of smooth Jordan curves in C consists of convex curves
which are strictly convex on a set z ∈ ∂Σ with positive measure. This follows
immediately once we prove that in this case every extremal function f is ‘almost
proper’, that is, f(z) ∈ γz for almost every z ∈ ∂Σ. Namely, let f1 and f2 be two
different extremal function for p ∈ Σ. Then f1(z) �= f2(z) for almost every z ∈ ∂Σ,
and since {γz}z∈∂Σ are strictly convex on a set z ∈ ∂Σ with positive measure, we
get that f = (f1 + f2)/2 is an extremal function such that f(z) ∈ Int(γz) on a set
z ∈ ∂Σ with positive measure. This leads to a contradiction, and we get uniqueness.

Let K1, . . . , K2g+m−1 be oriented smooth simple closed curves in Σ which form
a canonical basis for H1(Σ), [24, 28]. Let u be a harmonic function on Σ. For each
canonical cycle Kj , j = 1, . . . , 2g + m − 1, we assign u its period along Kj ,

Pj(u) =
1
π i

∫
Kj

∂u.

Here, ∂u = 1
2 (du − i du ◦ J), where J is the complex structure on Σ. If u is a real

harmonic function on Σ, all its periods are real.
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Remark 3.1. The periods of a harmonic function u can also be defined using oper-
ator dc = i(∂ − ∂) = − du ◦ J ,

Pj(u) =
1
2π

∫
Kj

dcu.

Recall that a harmonic function u on Σ has a well-defined harmonic conjugate if
and only if all its periods are 0. On the other hand, if this condition is not satisfied,
one can still define, via the integration, a multiple-valued harmonic conjugate of u.
In a special case when all the periods of a real harmonic function u are integers, the
harmonic conjugate of u might not be well defined, however its composition with
the exponential function is a well-defined function on Σ, and we get a holomorphic
function f on Σ such that

|f(z)| = eu(z) (z ∈ Σ).

We claim that there exist 2g + m− 1 smooth up to the boundary real harmonic
functions h1, . . . , h2g+m−1 on Σ such that the matrix

(3.1) P =

⎡
⎢⎣

P1(h1) . . . P1(h2g+m−1)
...

. . .
...

P2g+m−1(h1) . . . P2g+m−1(h2g+m−1)

⎤
⎥⎦

is invertible.
Let G : Σ × Σ → [−∞, 0] be the Green’s function on Σ. For every real smooth

function ϕ on ∂Σ we define

Φ(ϕ)(z) =
2
i

∫
∂Σ

∂wG(z, w) ϕ(w).

Then Φ(ϕ) is a smooth up to the boundary real harmonic function on Σ such that
Φ(ϕ)|∂Σ = ϕ.

Let us observe the linear map which to any real harmonic function u on Σ assigns
all its periods

u 	−→ (P1(u), . . . , P2g+m−1(u)) ∈ R2g+m−1.

If there are no smooth up to the boundary real harmonic functions h1, . . . , h2g+m−1

on Σ such that matrix P is invertible, then there exist real numbers λ1, . . . , λ2g+m−1,
which are not all equal to 0, such that

λ1 P1(u) + · · · + λ2g+m−1 P2g+m−1(u) = 0

for every real harmonic function u on Σ. Thus for every real smooth function ϕ on
Σ we have

λ1 P1(Φ(ϕ)) + · · · + λ2g+m−1 P2g+m−1(Φ(ϕ)) = 0.

Let us compute

Pj(Φ(ϕ)) = − 2
π

∫
Kj

∂z(
∫

∂Σ

∂wG(z, w) ϕ(w)) = − 2
π

∫
∂Σ

ϕ(w) ∂w(
∫

Kj

∂zG(z, w)).

Therefore for every real smooth function ϕ on ∂Σ we have∫
∂Σ

ϕ(w) (λ1 ∂w(
∫

K1

∂zG(z, w)) + · · · + λ2g+m−1 ∂w(
∫

K2g+m−1

∂zG(z, w))) = 0

and hence

λ1 ∂w(
∫

K1

∂zG(z, w)) + · · · + λ2g+m−1 ∂w(
∫

K2g+m−1

∂zG(z, w)) = 0
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for every w ∈ ∂Σ. It is known ([28]) that Zj(w) = ∂w(
∫

Kj
∂zG(z, w)), j =

1, . . . , 2g + m− 1, are R linearly independent holomorphic differentials on Σ. Thus
λ1 = · · · = λ2g+m−1 = 0.

Lemma 3.2. Let E ⊆ ∂Σ be a subset of positive measure. For each ε > 0 let Hε

be the set of all bounded holomorphic functions f on Σ such that |f | ≤ 1 almost
everywhere on E and |f(z)| ≤ ε almost everywhere on ∂Σ \ E. Let p ∈ Σ and let
M(ε) = supHε

|f(p)|. Then

lim
ε↓0

M(ε)
ε

= ∞.

See [27] for similar and more general results in the case of the disc.

Proof. Let h1, . . . , h2g+m−1 be smooth up to the boundary real harmonic functions
on Σ so that matrix P of their periods (3.1) is invertible and let K be the cube
[0, 1]2g+m−1 ⊆ R2g+m−1. Without loss of generality we may assume that P is the
identity matrix.

Let ε > 0, let

χε(z) =
{

0, z ∈ E,
log(ε), z ∈ ∂Σ \ E,

and let uε be the harmonic function on Σ such that uε = χε almost everywhere
on ∂Σ. Let αj(ε) = Pj(uε) − [Pj(uε)] (j = 1, . . . , 2g + m − 1) and let a(ε) =
(α1(ε), . . . , α2g+m−1(ε)) ∈ K. Here, [x] denotes the integer part of x ∈ R.

Then all the periods of the harmonic function

u0 = uε − (α1(ε) h1 + · · · + α2g+m−1(ε) h2g+m−1)

are integers, and hence there is a well-defined holomorphic function F on Σ such
that

|F (z)| = eu0(z) (z ∈ Σ).

Let

C = max{λ1 h1(z) + · · · + λ2g+m−1 h2g+m−1(z); (λ1, . . . , λ2g+m−1) ∈ K, z ∈ Σ}
and let µ > 0 be the value at p of the harmonic function on Σ whose boundary
values are almost everywhere equal to 1 on E and 0 elsewhere. Then

|F (p)|
ε

≥ ε−µe−C .

Also, let

c = min{λ1 h1(z) + · · · + λ2g+m−1 h2g+m−1(z); (λ1, . . . , λ2g+m−1) ∈ K, z ∈ ∂Σ}.
Then holomorphic function ec F (z) belongs to Hε and hence

M(ε)
ε

≥ |ecF (p)|
ε

≥ ε−µec−C ,

which proves the lemma. �

Lemma 3.3. Let Q ⊆ C be a compact convex set which contains the point 0 in its
interior. Let γ = ∂Q be the boundary of Q and let c = d(0, γ) be the distance of
point 0 to γ. Then for every λ ≥ 0 the distance of sets λγ and γ is

d(λγ, γ) = c|1 − λ|.
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Corollary 3.4. If {γz}z∈∂Σ is a C1 family of convex curves in C which all contain
0 in their interior, there exist constants 0 < c < C < ∞ such that

c |1 − λ| ≤ d(λγz, γz) ≤ C |1 − λ|

for every λ ≥ 0 and every z ∈ ∂Σ.

Proof of Lemma 3.3. We first consider the special case where Q is the intersection
of finitely many half-planes, that is, there exist complex numbers a1, . . . , an of the
unit length and positive real numbers r1, . . . , rn such that

Q = {z ∈ C, Re(ajz) ≤ rj , j = 1, . . . , n}.

A point z ∈ Q belongs to the boundary γ if and only if Re(ajz) = rj for at least
one j = 1, . . . , n.

Let λ > 0, let a be a unitary complex number and let r ∈ R. The dilation z 	→ λz
maps lines to parallel lines. In particular it maps the line given by the equation
Re(az) = r to the line Re(az) = λr, and their distance equals

(3.2) |1 − λ||r|.

Observe that the geometric meaning of |r| is the distance of point 0 to the line
Re(az) = r.

The curve λγ is the boundary of the convex set

λQ = {z ∈ C, Re(ajz) ≤ λrj , j = 1, . . . , n},

and the distance d(λγ, γ) is the distance between two closest parallel lines which
define Q and λQ. From (3.2) it follows that

d(λγ, γ) = c|1 − λ|,

where c = d(0, γ).
In general we know that Q equals the intersection of all closed half-planes Π such

that Q ⊆ Π. Let λ > 0 and let z, w, p be points from γ such that

d(0, γ) = |p|, d(λγ, γ) = |λw − z|.

There exist complex numbers a1, . . . , an of the unit length and positive real numbers
r1, . . . , rn such that

Q ⊆ Q̃ = {z ∈ C, Re(ajz) ≤ rj , j = 1, . . . , n}

is a compact set which contains the points z, w, p on its boundary. Let γ̃ be the
boundary of Q̃. Then we have

c|1 − λ| = d(λγ̃, γ̃) ≤ d(λγ, γ) ≤ c|1 − λ|.

The first equality holds by the observations above and the choice of point p. The
next inequality holds because of the choice of points z, w, and the last inequality is
again a consequence of the choice of point p. This proves the lemma. �

The next proposition, together with the observation from the beginning of this
section, completes the proof of Theorem 1.2. See [27] for more on the ‘almost
properness’ of the extremal functions in the disc case.
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Proposition 3.5. Let {γz}z∈∂Σ be a C1 family of convex Jordan curves in C which
all contain the point 0 in their interior. Let p ∈ Σ and let F be the family of all
bounded holomorphic functions f on Σ such that f(p) ≥ 0 and f(z) ∈ γ̂z for almost
every z ∈ ∂Σ. Let f0 ∈ F be an extremal function, that is,

f0(p) = max{f(p); f ∈ F}.

Then f0(z) ∈ γz for almost every z ∈ ∂Σ.

Proof. Let f0 be an extremal function. Let us assume that there exists a set E ⊆ ∂Σ
of positive measure such that f0(z) ∈ Int(γz) for every z ∈ E. Let En = {z ∈
E; f0(z) ∈ (1 − 1

n )γ̂z}. Then
⋃

n En = E, and hence there exists a set E0 ⊆ ∂Σ of
positive measure and λ0 ∈ (0, 1) such that f0(z) ∈ λ0γ̂z for almost every z ∈ E0.

By Corollary 3.4 there exist constants 0 < c < C < ∞ such that

c|1 − λ| ≤ d(λγz, γz) ≤ C|1 − λ|

for every z ∈ ∂Σ and λ ≥ 0.
Let d0 = c (1 − λ0) > 0. If E0 has full measure in ∂Σ we are done, because we

can replace f0 with f0 +d0 ∈ F . Let us now consider the case where ∂Σ \E0 is not
of measure 0. Let ε > 0. The extremal value at p for the family {(1 + ε) γz}z∈∂Σ is
(1 + ε)f0(p). By Lemma 3.2 there exists a family {fε}ε>0 of bounded holomorphic
functions on Σ such that

1. fε(p) > 0,
2. |fε(z)| ≤ 1 almost everywhere on E0,
3. |fε(z)| ≤ c

d0
ε almost everywhere on ∂Σ \ E0,

and

(3.3) lim
ε↓0

fε(p)
ε

= ∞.

We define the family of functions {f0+d0fε}ε>0 which are bounded holomorphic
functions on Σ such that f0(z) + d0fε(z) ∈ (1 + ε) γ̂z almost everywhere on ∂Σ.
Since the extremal value at p for the family {(1 + ε) γz}z∈∂Σ is (1 + ε)f0(p), we
must have

f0(p) + d0fε(p) ≤ (1 + ε)f0(p)

and hence
fε(p)

ε
≤ f0(p)

d0
,

which is in contradiction with (3.3). �

Corollary 3.6. Let {γz}z∈∂Σ be a Ck+1 (k ≥ 3) family of convex Jordan curves
in C which all contain the point 0 in their interior. If there exists z0 ∈ ∂Σ such
that γz0 is a strongly convex curve in C, then there is a unique function f0 ∈ FRH

such that

f0(p) = max{f(p); f ∈ F}.

Remark 3.7. A curve γ ⊆ C is strongly convex if its curvature never vanishes.
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4. Bounded analytic selectors

The proof of Theorem 1.4 is similar to the proof of Lemma 2.5, and it is more
or less included in it.

Let f0 be a bounded holomorphic function on Σ such that f(z) ∈ γ̂z almost
everywhere on ∂Σ.

We start as in the proof of Lemma 2.5. Let {γn
z }z∈∂Σ, n ∈ N, be a sequence of

Ck+1 families of Jordan curves in C such that the ω-area of any fiber {z}× γ̂n
z is a

constant which depends only on n,

γ̂n+1
z ⊆ Int(γn

z ) (z ∈ ∂Σ)

for every n ∈ N, and ⋂
n∈N

γ̂n
z = γ̂z (z ∈ ∂Σ).

One should observe that the condition that each curve γz, z ∈ ∂Σ, contains the
point 0 in its interior is not essential for the existence of the sequence {γn

z }z∈∂Σ,
n ∈ N.

Also, let {Σl}l∈N be an increasing sequence Σl ⊆ Σl+1 (l ∈ N) of domains in
Σ with real analytic boundaries, of the same topological type as Σ, and such that
their union is Σ. Let J be the complex structure on Σ and let {ψl}l∈N be a sequence
of smooth diffeomorphisms ψl : Σ → Σl, which in the C∞ sense converges to the
identity map. We define

Jl = (Dψl)−1 ◦ J ◦ Dψl.

Then {Jl}l∈N is a sequence of complex structures on Σ which C∞ converges to J .
For every l we define fl = f0 ◦ ψl a smooth up to the boundary holomorphic

function on (Σ, Jl). Let n ∈ N be fixed. Since the graph of f0 belongs to T̂ , we get
that there exists l0 ∈ N so that for every l > l0 we have

fl(z) ∈ Int(γn
z ) (z ∈ ∂Σ).

From [12] it follows that there exists a sequence {gl}l≥l0 of Ck,α functions on Σ
such that

a) gl is holomorphic on (Σ, Jl).
b) gl solves the Riemann-Hilbert problem on (Σ, Jl) for {γn

z }z∈∂Σ.
c) The winding number of the outer normal to γn

z at gl(z) along ∂Σ is at most
2g + m − 1.

Let l → ∞. Using Gromov’s compactness theorem we get that there exists a
Ck,α(Σ) holomorphic function f̃n on (Σ, J) such that

a) f̃n solves the Riemann-Hilbert problem on Σ for {γn
z }z∈∂Σ.

b) The winding number of the outer normal to γn
z at f̃n(z) along ∂Σ is at most

2g + m − 1.
Let n → ∞, and the proof is finished by the compactness theorem.
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