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A MONOIDAL APPROACH
TO SPLITTING MORPHISMS OF BIALGEBRAS

A. ARDIZZONI, C. MENINI, AND D. ŞTEFAN

Abstract. The main goal of this paper is to investigate the structure of Hopf
algebras with the property that either its Jacobson radical is a Hopf ideal or
its coradical is a subalgebra. Let us consider a Hopf algebra A such that its
Jacobson radical J is a nilpotent Hopf ideal and H := A/J is a semisimple
algebra. We prove that the canonical projection of A on H has a section which
is an H–colinear algebra map. Furthermore, if H is cosemisimple too, then we
can choose this section to be an (H, H)–bicolinear algebra morphism. This fact
allows us to describe A as a ‘generalized bosonization’ of a certain algebra R in
the category of Yetter–Drinfeld modules over H. As an application we give a
categorical proof of Radford’s result about Hopf algebras with projections. We
also consider the dual situation. Let A be a bialgebra such that its coradical is
a Hopf sub-bialgebra with antipode. Then there is a retraction of the canonical
injection of H into A which is an H–linear coalgebra morphism. Furthermore,
if H is semisimple too, then we can choose this retraction to be an (H, H)–
bilinear coalgebra morphism. Then, also in this case, we can describe A as a
‘generalized bosonization’ of a certain coalgebra R in the category of Yetter–
Drinfeld modules over H.

Introduction

Let H be a Hopf algebra. The categories H
HYD and H

HMH
H , of Yetter – Drinfeld

modules and respectively Hopf bimodules appeared, in particular, as an attempt
to construct new solutions to the Yang – Baxter equation. Nowadays we can rec-
ognize their most important properties in the definition of braided categories, a
very general and abstract setting useful, not only for providing new solutions to the
Yang – Baxter equation, but also in many other areas of mathematics, such as the
theory of quantum groups and low-dimensional topology.

Partially motivated by these applications, the theory of Hopf algebras was known
in the 80’s as an outstanding development. Besides many striking results obtained
since then, we would like to recall, more or less chronologically, a few of them that
will play a very important role in our paper.
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• The description of the coradical filtration of a pointed coalgebra, due to Taft
and Wilson [TW], that is crucial in the classification of finite-dimensional pointed
Hopf algebras.

• The characterization of bialgebras with projection due to Radford [Ra1]. Later
Majid [Maj1] showed that this result can be interpreted in terms of bialgebras in a
braided category.

• The equivalence of braided categories H
HYD � H

HMH
H (see [Wo], [AD] and

[Sch1]), and its relation with the Drinfeld double D(H) [Dr].
• The classification of certain classes of pointed Hopf algebras of finite dimension.

One of the used methods is the ‘lifting’ method (see [AS1], [AS2], [AS3], [AS4]).
Let A be a Hopf algebra such that its coradical is a Hopf subalgebra H. Then the
coradical filtration of A is a filtration of Hopf algebras, and hence grA is a graded
Hopf algebra. One of the main steps of the ‘lifting’ method is to describe grA, by
using the second-mentioned result, as the ‘bosonization’ of a certain Hopf algebra
R in H

HYD by H. The next step is to find all Hopf algebras A having a given graded
Hopf algebra grA.

• Let A be a finite-dimensional Hopf algebra over a field k of characteristic
zero whose coradical, say H, forms a Hopf subalgebra. Then the left H– module
coalgebra A is a cosmash in the sense that there exists an H– linear coalgebra map
γ : A → H such that γ |

H
= IdH; see [SvO]. Masuoka showed in [Mas], using a

different method, that the above result still holds true without any assumption on
the dimension of A and char k.

• For a Hopf algebra A a conjectural formula for A1, the first component of the
coradical filtration of A, is proposed in [AS5]. This formula is proved in the same
paper in the case when A is a graded Hopf algebra such that its coradical is a Hopf
subalgebra of A. In [CDMM] the conjecture is proved in the ungraded case.

One of the main aims of this paper is to strengthen some of the results that we
mentioned above. Our approach is based on the following results. Let A be a Hopf
algebra such that its Jacobson radical J is a nilpotent Hopf ideal and H := A/J is
a semisimple algebra. Then the canonical projection of A on H has a section which
is an H– colinear algebra map. Furthermore, if H is cosemisimple too, then we can
choose this section to be an (H, H)– bicolinear algebra morphism. We also consider
the dual situation. Let A be a bialgebra such that its coradical is a sub-bialgebra
with antipode. Then there is a retraction of the canonical injection of H into A
which is an H– linear coalgebra morphism. Furthermore, if H is semisimple too,
then we can choose this retraction to be an (H, H)– bilinear coalgebra morphism.
These results are achieved by applying Theorem 2.12 and Theorem 2.16, that were
proved in [AMS] in the framework of monoidal categories. Thus we start the first
section by recalling the definition of a monoidal category. Then we present a list of
the monoidal categories we are interested into, motivating why we chose to make
use of this terminology.

Then, in the second section, we relate the concept of semisimple and separable
algebra in the categories of (bi)comodules over H, and cosemisimple and cosepa-
rable coalgebra in the categories of (bi)modules over H by means of some suitable
integrals. This will allow us to apply the above-mentioned theorems.

The main results of this section recall us [Ra1], where it is assumed that a Hopf
algebra morphism π : A → H has a section σ : H → A which is a morphism of Hopf
algebras. In [Ra1] it is shown that there is a bialgebra R in H

HYD such that A is
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the smash product algebra and the smash product coalgebra of R by H. It is then
natural to look for a similar description of a bialgebra A, supposing that π : A → H
has a section σ which is only a morphism of algebras in HMH . This will be done
in the second section of the paper. The starting point is the simple observation
that A becomes in a natural way an object in H

HMH
H . Of course the left and right

comodule structures are induced by π. Since σ is a morphism of algebras, A is a
bimodule over H, and the fact that σ is a morphism of bicomodules is enough to
ensure the required compatibility relations. By using the equivalence

H
HM

H
H � H

HYD

we have A � R ⊗ H (isomorphism in H
HMH

H), where R = Aco(H). Moreover, the
multiplication of A is a morphism in H

HMH
H , and the unit of A is in R. Therefore

R becomes an algebra in H
HYD, and A can be identified as an algebra with the

smash product R#H. We cannot repeat this argument for the coalgebra structure
since ∆ is only (H, H)– bicolinear. Thus, by identifying A and R#H as algebras,
the problem of describing all bialgebras A as above is equivalent to finding all
coalgebras structures on R#H such that the comultiplication is a morphism of
(H, H)– bicomodules. We prove that ∆R#H is uniquely determined by a pair of
K– linear maps

δ : R → R ⊗ R and ω : H → R ⊗ R.

Let ε be the restriction of the counit of A to R. The properties of δ, ω and ε
necessary to get a bialgebra structure on R#H are listed in Definition 3.42. The
result that we obtain is stated in Theorem 3.49.

Then we also prove the dual result, namely that a Hopf algebra A, having the
coradical a semisimple and cosemisimple Hopf subalgebra, is as a Hopf algebra,
not only as a coalgebra, a kind of smash product; see Theorem 3.66. We expect
that this last result is strongly connected with the lifting method introduced by N.
Andruskiewitsch and H.J. Schneider. Theorem 3.66 can probably be used to get
direct information about a Hopf algebra A with the property that its coradical is
a subalgebra, skipping the step when the associated graded Hopf algebra grA is
investigated.

We conclude the paper with Theorem 3.71. There we prove that if H is a
cosemisimple Hopf algebra and (C, ∆, ε) is a coalgebra in MH such that the coradi-
cal C0 of C is H, then the first term C1 of the coradical filtration of C verifies (89).
In [AS5, Lemma 4.2] it was shown that (89) holds true for C := grA, where A is a
Hopf algebra such that A0, the coradical of A, is a subalgebra, while in [CDMM,
Remark 3.2] it was pointed out that the proof of (89), given in [AS5] for grA, also
works in the case C := A is a Hopf algebra such that A0, the coradical of A, is a
subalgebra.

1. Integral, separability and coseparability

1.1. A monoidal category means a category M that is endowed with a functor
⊗ : M × M → M, an object 1 ∈ M and functorial isomorphisms: aX,Y,Z :
(X ⊗Y )⊗Z → X ⊗ (Y ⊗Z), lX : 1⊗X → X and rX : X ⊗1 → X. The functorial
morphism a is called the associativity constraint and satisfies the Pentagon Axiom,
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that is, the diagram

U ⊗ ((V ⊗ W )⊗X)
U⊗aV,W,X

�� U⊗ (V ⊗ (W ⊗ X))

(U⊗

aU,V ⊗W,X

�������������
(V ⊗ W )) ⊗ X (U ⊗ V ) ⊗ (W ⊗X)

aU,V,W⊗X

�������������

((U ⊗ V )

aU,V,W ⊗X

�������������

⊗ W ) ⊗ X

aU⊗V,W,X

�������������

is commutative for every U, V, W, X in M. The morphisms l and r are called the
unit constraints, and they are assumed to satisfy the Triangle Axiom, that is, the
diagram

(V ⊗ 1) ⊗ W
aV,1,W

��

rV ⊗W
�������������

V ⊗ (1⊗ W )

V ⊗lW
�������������

V ⊗ W

is commutative. The object 1 is called the unit of M.
For details on monoidal categories we refer to [Ka, Chapter XI] and [Maj2]. A

monoidal category is called strict if the associativity constraint and unit constraints
are the corresponding identity morphisms.

1.2. As it is noted in [Maj2, p. 420], the Pentagon Axiom solves the consistency
problem that appears, because there are two ways to go from ((U ⊗ V ) ⊗ W ) ⊗ X
to U ⊗ (V ⊗ (W ⊗ X)). The coherence theorem, due to S. Mac Lane, solves the
similar problem for the tensor product of an arbitrary number of objects in M.
Accordingly with this theorem, we can always omit all brackets and simply write
X1 ⊗ · · · ⊗ Xn for any object obtained from X1, . . . , Xn by using ⊗ and brackets.
Also as a consequence of the coherence theorem, the morphisms a, l, r take care
of themselves, so they can be omitted in any computation involving morphisms in
M.

Let (H, mH , uH ,�H , εH , S) be a Hopf algebra over field K. Basically we are
interested in the following examples of monoidal categories.

• The category HM = (HM,⊗K , K) of all left modules over H. The tensor
V ⊗W of two left H– modules is an object in HM via the diagonal action; the unit
is K regarded as a left H– module via εH .

• The category HMH = (HMH ,⊗K , K) of all two-sided modules over H. The
tensor V ⊗W of two (H, H)– bimodules carries, on both sides, the diagonal action;
the unit is K regarded as an (H, H)– bimodule via εH .

We can dualize all the structures given for modules in order to obtain categories
of comodules.

• The category HM = (HM,⊗K , K) of all left comodules over H. The tensor
product V ⊗ W of two left H– comodules is an object in HM via the diagonal
coaction; the unit is K regarded as an left H– comodule via the map k �→ 1H ⊗ k.

• The category HMH = (HMH ,⊗K , K) of all two-sided comodules over H. The
tensor V ⊗ W of two (H, H)– bicomodules carries, on both sides, the diagonal
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coaction; the unit is K regarded as an H– bicomodule via the maps k �→ 1H ⊗ k
and k �→ k ⊗ 1H .

• The category H
HYD = (H

HYD,⊗K , K) of left Yetter-Drinfeld modules over H.
Recall that an object V in H

HYD is a left H−module and a left H−comodule
satisfying, for any h ∈ H, v ∈ V , the compatibility condition∑

(h(1)v)〈−1〉h(2) ⊗ (h(1)v)〈0〉 =
∑

h(1)v〈−1〉 ⊗ h(2)v〈0〉

or, equivalently,
ρ(hv) =

∑
h(1)v〈−1〉S(h(3)) ⊗ h(2)v〈0〉,

where for the module structure on V we used the notation hv. For Yetter–Drinfeld
modules we shall keep this notation throughout the paper.

The tensor product V ⊗W of two Yetter–Drinfeld modules is an object in H
HYD

via the diagonal action and the diagonal coaction; the unit in H
HYD is K regarded

as a left H– comodule via the map x �→ 1H ⊗ x and as a left H– module via εH .
Analogously one defines the category YDH

H .
In this paper we shall always assume that M is an abelian category and that, for

every M ∈ M, both the functors M ⊗ (−) : M → M and (−) ⊗ M : M → M are
right exact. The notions of algebra, module over an algebra, coalgebra and comodule
over a coalgebra can be introduced in the general setting of monoidal categories.
For more details, see [AMS]. Given an algebra A in a monoidal category (M,⊗,1),
we can construct the monoidal category of (A, A)– bimodules (AMA,⊗A, A), which
by the above assumptions is an abelian category, too.

• Let us consider the monoidal category M :=(HM,⊗K , K) of left H– comodules.
Algebras in M are exactly left H– comodule algebras and coalgebras in M are left
H– comodule coalgebras.

Let A be a left H– comodule algebra. The category of all (A, A) – bimodules in
M will be denoted by H

A MA. An object M in H
A MA is a left H– comodule which

is also an (A, A)– bimodule such that µl : A ⊗ M → M and µr : M ⊗ A → M are
morphisms of left H– comodules. Here µl and µr define the module structures on
M , and both A ⊗ M and M ⊗ A are left H– comodules via the diagonal coaction.
(H
A MA,⊗A, A) is a monoidal category with the usual tensor product of two (A, A)–

bimodules (−) ⊗A (−). If V, W ∈ H
A MA, then the left structures on V ⊗A W are

given by

a (v ⊗A w) = av ⊗A w,(1)

ρl
V ⊗HW (v ⊗A w) =

∑
v〈−1〉w〈−1〉 ⊗ (v〈0〉 ⊗A w〈0〉).(2)

The right A-module structure is analogous to the left one. The unit in H
A MA is A.

For A = K with trivial H– comodule structures we get the category of left
H– comodules. Also for the trivial Hopf algebra H = K we get that A is just a
K– algebra and H

A MA = AMA.
• Let us consider the monoidal category M := (HMH ,⊗K , K) of (H, H)–

bicomodules. An algebra in M is an algebra A which is an (H, H)– bicomodule
such that A is a left and a right H– comodule algebra. We shall say that A is an
H– bicomodule algebra.

Let A be an H– bicomodule algebra. The category of all (A, A)– bimodules in M
will be denoted by H

A MH
A . An object M in H

A MH
A in an (H, H)– bicomodule which

is also an (A, A)– bimodule such that µl : A ⊗ M → M and µr : M ⊗ A → M are
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morphisms of (H, H)– bicomodules. Here µl and µr define the module structures
on M , and both A ⊗ M and M ⊗ A are (H, H)– bicomodules via the diagonal
coactions. (H

A MH
A ,⊗A, A) is a monoidal category with the usual tensor product of

two (A, A)– bimodules (−) ⊗A (−). If V, W ∈ H
A MH

A , then the left structures on
V ⊗A W are given by (1) and (2). The right structures are defined similarly. The
unit in H

A MH
A is A.

For A = K with trivial H– comodule structures we get the category of (H, H)–
bicomodules. Also for the trivial Hopf algebra H = K we get that A is just a
K– algebra and H

A MH
A = AMA. Another interesting particular case is obtained

by taking A := H. The category of (A, A)– bimodules we get in this case is
(H
HMH

H ,⊗H , H), that is, the category of two–sided Hopf–modules.
All the definitions above can be dualized. Given a coalgebra C in a monoidal

category (M,⊗,1), we can construct the monoidal category of C-bicomodules
(CMC , �C , C).

• Let us consider the monoidal category M = (HM,⊗K , K) of left H– modules.
Algebras in M are left H– module algebras and coalgebras in M are exactly left
H–module coalgebras.

Let D be a left H– module coalgebra. The category of all (D, D)– bicomodules
in M will be denoted by D

HMD. An object M in D
HMD is a left H– module which

is also a (D, D)– bicomodule such that ρl : M → D ⊗ M and ρr : M → M ⊗ D
are morphisms of left H– modules. Here ρl and ρr define the comodule structures
on M and both D ⊗ M and M ⊗ D are left H– modules via the diagonal actions.
(D
HMD, �D, D) is a monoidal category with respect to the tensor product given by

(−)�D (−) , the cotensor product of two (D, D)– bicomodules. If V, W ∈ D
HMD,

then the left structures on V �DW are given by

h (v�Dw) =
∑

h(1)v�Dh(2)w,(3)

ρl
V ⊗HW (v�Dw) =

∑
v〈−1〉 ⊗ (v〈0〉�Dw).(4)

The right D-module structure is analogous to the left one. The unit in D
HMD is D.

For D = K with the trivial H– module structures we get the categories of left
H– bimodules. Also for the trivial Hopf algebra H = K we get that D is just a K
coalgebra and D

HMD = DMD.
• Let us consider the monoidal category M = (HMH ,⊗K , K) of (H, H)–

bimodules. A coalgebra in M is a coalgebra D which is an (H, H)-bimodule such
that D is a left and a right H– module coalgebra. We shall say that D is an
H– bimodule coalgebra.

Let D be an H– bimodule coalgebra. The category of all (D, D)– bicomodules in
M will be denoted by D

HMD
H . An object M in D

HMD
H is an (H, H)– bimodule which

is also a (D, D)– bicomodule such that ρl : M → D ⊗M and ρr : M → M ⊗D are
morphism of (H, H)– bimodules. Here ρl and ρr define the comodule structures on
M , and both D ⊗ M and M ⊗ D are (H, H)– bimodules via the diagonal actions.
(D
HMD

H , �D, D) is a monoidal category with respect to the tensor product given by
(−)�D (−) , the cotensor product of two (D, D)– bicomodules. If V, W ∈ D

HMD
H ,

then the left structures on V �DW are given by (3) and (4). The right structures
are defined similarly. The unit in D

HMD
H is D.

For D = K with the trivial H– module structures we get the categories of (H, H)–
bimodules. Also for the trivial Hopf algebra H = K we get that D is just a K
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coalgebra and D
HMD

H = DMD. Note that, for D := H, an object in the category of
(D, D)−bicomodules is (H

HMH
H , �H , H), the category of two–sided Hopf–modules.

1.3. A monoidal functor between two monoidal categories (M,⊗,1, a, l, r) and
(M′,⊗′,1′, a′, l′, r′) is a triple (F, φ0, φ2), where F : M → M′ is a functor, φ0 :
1′ → F(1) is an isomorphism such that the diagrams

1′ ⊗′ F (U)

φ0⊗F (U)

��

l′F (U)
�� F (U)

F (1) ⊗ F (U)
φ2(1,U)

�� F (1 ⊗ U)

F (lU )

��
F (U) ⊗′ 1′

F (U)⊗φ0

��

r′
F (U)

�� F (U)

F (U) ⊗ F (1)
φ2(U,1)

�� F (U ⊗ 1)

F (rU )

��

are commutative, and φ2(U, V ) : F (U)⊗′F (V ) → F (U⊗V ) is a family of functorial
isomorphisms such that the diagram

(F (U) ⊗′ F (V )) ⊗′ F (W )
φ2(U,V )⊗′F (W )

��

a′
F (U),F (V ),F (W )

��

F (U ⊗′ V ) ⊗′ F (W )
φ2(U⊗′V,W )

�� F ((U ⊗′ V ) ⊗ W )

F (aU,V,W )

��

F (U) ⊗′ (F (V ) ⊗′ F (W ))
F (U)⊗′φ2(V,W )

�� F (U) ⊗′ F (V ⊗ W )
φ2(U,V ⊗W )

�� F (U ⊗ (V ⊗ W ))

is commutative. A monoidal functor (F, φ0, φ2) is called strict if both φ0 and φ2

are identities.
Let (F, φ0, φ2) and (L, λ0, λ2) be two monoidal functors, where F : (M,⊗,1) →

(M′,⊗′,1′) and L : (M′,⊗′,1′) → (M′′,⊗′′,1′′). Then the composition T = LF
again has the structure of a monoidal functor (T, τ0, τ2), where

τ2(U, V ) := T (U) ⊗′′ T (V )
λ2(F (U),F (V ))−→ L[F (U) ⊗′ F (V )]

L[φ2(U,V )]−→ T (U ⊗ V ),

τ0 := 1′′ λ0−→ L(1′)
L(φ0)−→ T (1).

A functorial morphism ξ : F → L between two monoidal functors F, L : (M,⊗,1) →
(M′,⊗′,1′) is said to be monoidal if

F (U) ⊗′ F (V )
ξU⊗′ξV ��

φ2(U,V )

��

L(U) ⊗′ L(V )

λ2(U,V )

��

F (U ⊗ V )
ξU⊗V

�� L(U ⊗ V )

F (1)
ξ1 �� L(1)

1′
φ0

���������� λ0

		��������

We include the following useful result.

Proposition 1.4. Let M and M′ be monoidal categories. Let (F, φ0, φ2), be a
monoidal functor between the categories M and M′, and assume that F : M → M′

is an equivalence of categories. Let G : M′ → M be a right adjoint of F and denote
by ε : FG → IdM′ the counit and by η : IdM → GF the unit of the adjunction. Let
γ0 denote the composition of

1
η1−→ GF (1)

G(φ−1
0 )−→ G(1′)
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and let γ2(U, V ) be the composition of

G(U) ⊗ G(V )
ηG(U)⊗G(V )−→ GF [G(U) ⊗ G(V )]

G[φ−1
2 (GU,GV )]−→ G[FG(U) ⊗′ FG(V )]

G(εU⊗′εV )−→ G(U ⊗′ V ).

Then (G, γ0, γ2) defines on G a structure of a monoidal functor between the cate-
gories M′ and M. Moreover this is the unique monoidal structure on G such that
ε and η are monoidal isomorphisms.

Proof. See [SR, Proposition 4.4.2] and [Sch3, Section 2]. �
The following proposition states that the image of an algebra (resp. coalgebra)

through a monoidal functor carries a natural algebra (resp. coalgebra) structure.

Proposition 1.5. Let M and M′ be monoidal categories. Let (F, φ0, φ2) be a
monoidal functor between the categories M and M′. Then:

1) If (A, m, u) is an algebra in M, then (F (A), mF (A), uF (A)) is an algebra in
M′, where

mF (A) := F (A) ⊗′ F (A)
φ2(A,A)−→ F (A ⊗ A)

F (m)−→ F (A),

uF (A) := 1′ φ0−→ F (1)
F (u)−→ F (A).

2) If (C, ∆, ε) is a coalgebra in M, then (F (C), ∆F (C), εF (C)) is a coalgebra in
M′, where

∆F (C) := F (C)
F (∆)−→ F (C ⊗ C)

φ−1
2 (C,C)−→ F (C) ⊗′ F (C),

εF (C) := F (C)
F (ε)−→ F (1)

φ−1
0−→ 1′.

Proof. Follows directly from the definitions. �
Proposition 1.6. Let M and M′ be monoidal categories. Let ξ : F → L be a
monoidal morphism between two monoidal functors (F, φ0, φ2) and (L, λ0, λ2), where
F, L : (M,⊗,1) → (M′,⊗′,1′). We have that:

1) if A is an algebra in M, then ξA : F (A) → L(A) is an algebra homomorphism
(where F (A) and L(A) carry the algebra structures induced by F and L);

2) if C is a coalgebra in M, then ξC : F (C) → L(C) is a coalgebra homo-
morphism (where F (C) and L(C) carry the coalgebra structures induced by F and
L).

Proof. Follows directly from the definitions. �
Corollary 1.7. Let M and M′ be monoidal categories. Let (F, φ0, φ2) be a
monoidal functor between the categories M and M′, and assume that F : M → M′

is an equivalence of categories. Let G : M′ → M be a right adjoint of F , and de-
note by ε : FG → IdM′ the counit and by η : IdM → GF the unit of the adjunction.
Endow G with the monoidal functor structure (G, γ0, γ2) as in Proposition 1.4. We
have that:

1) if A′ is an algebra (resp. coalgebra) in M′, then εA′ : FG(A′) → A′ is an
algebra (resp. coalgebra) isomorphism, where FG(A′) carries the algebra (resp.
coalgebra) structure induced by FG;

2) if A is an algebra (resp. coalgebra) in M, then ηA : A → GF (A) is an algebra
(resp. coalgebra) isomorphism, where GF (A) carries the algebra (resp. coalgebra)
structure induced by GF .
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Proof. Apply Proposition 1.4 and Proposition 1.6. �

1.8. Let H be a Hopf algebra with antipode S over a field K. The celebrated result
by Sweedler establishes that F : MK −→ MH

H is an equivalence of categories, where
for every V ∈ MK

F (V ) = V ⊗ H.

The right adjoint of F is G : MH
H −→ MK , which is defined by

G(M) = M coH := {x ∈ M | ρM (x) = x ⊗ 1H} .

Let ε : FG → IdMH
H

be the counit of the adjunction (F, G) and ε−1 its inverse.
Then, for every M ∈ MH

H , we have

εM : MCo(H) ⊗ H → M, εM (v ⊗ h) = vh,(5)

ε−1
M : M → MCo(H) ⊗ H, ε−1

M (x) =
∑

x〈0〉Sx〈1〉 ⊗ x〈2〉.(6)

Let η : IdMK
→ GF be the unit of the adjunction (F, G) and η−1 its inverse. Then,

for V ∈ MK , we have

ηV : V → (V ⊗ H)Co(H), ηV (v) = v ⊗ 1H ,(7)

η−1
V : (V ⊗ H)Co(H) → V, η−1

V (
∑

vi ⊗ hi) =
∑

viεH(hi).(8)

1.9. It is well known that this equivalence induces a monoidal category equivalence

(HM,⊗, K) F−→ (HM
H
H ,⊗H , H) G−→ (HM,⊗, K)

between (HM,⊗, K) and the category (HMH
H ,⊗H , H), where, for M ∈ HMH

H , the
left H– module structure of G(M) = MCo(H) is given by the left adjoint action

(9) hv =
∑

h(1)vSh(2).

Conversely, if V ∈ HM, then F (V ) = V ⊗ H becomes an object in HMH
H with the

canonical right structures (coming from H) and with diagonal left action

h (x ⊗ l) =
∑

h(1)x ⊗ h(2)l, ∀x ∈ W, ∀h, l ∈ H.(10)

The counit ε : FG → Id
HMH

H
, the unit η : Id

HM → GF and their inverses are the
same. The monoidal functor structure (F, φ0, φ2) of F is given by

φ0 : H → F (K) : h �→ 1 ⊗ h,

φ2(U, V ) : F (U) ⊗H F (V ) → F (U ⊗ V ) : (u ⊗ h) ⊗H (v ⊗ l)

�→
∑

u ⊗ h(1)v ⊗ h(2)l,

while their inverses are given by

φ−1
0 : F (K) → H : k ⊗ h �→ kh,

φ−1
2 (U, V ) : F (U ⊗ V ) → F (U) ⊗H F (V ) : u ⊗ v ⊗ l �→ (u ⊗ 1H) ⊗H (v ⊗ l).

We endow G with the monoidal functor structure (G, γ0, γ2) as in Proposition 1.4:

γ0 : K → G(H) : k �→ k1H ,

γ2(M, N) : G(M) ⊗ G(N) → G(M ⊗H N) : x ⊗ y �→ x ⊗H y,
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while their inverses are given by

γ−1
0 : G(H) → K : h �→ εH(h),

γ−1
2 (U, V ) : G(M ⊗H N) → G(M) ⊗ G(N) :

∑
xi ⊗H yi

�→
∑

xi〈0〉Sxi〈1〉 ⊗ xi〈2〉yi.

1.10. It is also well known that the Sweedler equivalence induces a monoidal cate-
gory equivalence

(H
M,⊗, K) F−→ (H

M
H
H , �H , H) G−→ (H

M,⊗, K)

between (HM,⊗, K) and the category (HMH
H , �H , H), where, for M ∈ HMH

H , the
left H– comodule structure of G(M) = MCo(H) is given by the restriction of the
left comodule structure of M

(11) ρ = ρl
M |

Mco(H) .

Conversely if V ∈ HM, then F (V ) = V ⊗ H becomes an object in HMH
H with the

canonical right structures (coming from H) and with diagonal left coaction:

ρl (x ⊗ h) =
∑

x〈−1〉h(1) ⊗ x〈0〉 ⊗ h(2), ∀x ∈ W, ∀h ∈ H.(12)

The counit ε : FG → IdHMH
H

, the unit η : IdHM → GF and their inverses are the
same. The monoidal functor structure (F, φ0, φ2) of F is given by

φ0 : H → F (K) : h �→ 1 ⊗ h,

φ2(U, V ) : F (U)�HF (V ) → F (U ⊗ V ) : (u ⊗ h)�H(v ⊗ l) �→ u ⊗ εH(h)v ⊗ l,

while their inverses are given by

φ−1
0 : F (K) → H : k ⊗ h �→ kh,

φ−1
2 (U, V ) : F (U ⊗ V ) → F (U)�HF (V ) : u ⊗ v ⊗ l

�→
∑

(u ⊗ v〈−1〉l(1))�H(v〈0〉 ⊗ l(2)).

We endow G with the monoidal functor structure (G, γ0, γ2) as in Proposition 1.4:

γ0 : K → G(H) : k �→ k1H ,

γ2(M, N) : G(M) ⊗ G(N) → G(M�HN) : x ⊗ y �→
∑

xy〈−1〉�Hy〈0〉,

while their inverses are given by

γ−1
0 : G(H) → K : h �→ εH(h),

γ−1
2 (U, V ) : G(M�HN) → G(M) ⊗ G(N) :

∑
xi�Hyi

�→
∑

xi〈0〉Sxi〈1〉 ⊗ yi.

1.11. The most remarkable result (see [Sch1] and [AD]) is that the Sweedler equiv-
alence gives rise to a monoidal category equivalence

(H
HYD,⊗, K) F−→ (H

HM
H
H ,⊗H , H) G−→ (H

HYD,⊗, K)

between the category of Yetter– Drinfeld modules (H
HYD,⊗, K) and the category

(H
HMH

H ,⊗H , H). The structures making G(M) = M co(H) a left Yetter– Drinfeld
module are the left adjoint action (9) and the restriction of the left comodule
structure of M (11).
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Conversely, if V ∈ H
HYD, then F (V ) = V ⊗ H becomes an object in H

HMH
H with

the canonical right structures (coming from H) and with diagonal left action (10)
and coaction (12).

The counit ε : FG → IdH
HMH

H
, the unit η : IdH

HYD → GF and their inverses
are the same as in 1.10. The functors F and G carry the same monoidal functor
structures discussed in 1.9.

1.12. Sweedler equivalence gives rise to another monoidal category equivalence (see
[Sch1] and [AD])

(H
HYD,⊗, K) F−→ (H

HM
H
H , �H , H) G−→ (H

HYD,⊗, K)

between the category of Yetter– Drinfeld modules (H
HYD,⊗, K) and the category

(H
HMH

H , �H , H). As an equivalence this is the same of 1.11. The functors F and G
carry the same monoidal functor structures discussed in 1.10.

1.13. In an analogous way the category of Yetter– Drinfeld modules YDH
H can be

introduced, and one has (see [Sch1] and [AD]) a monoidal category equivalence
between H

HMH
H and YDH

H .

1.14. Let us remark that H can be regarded as an object in H
HYD in two different

ways, namely:

µl
H = m, ρl

H(h) =
∑

h(1)Sh(3) ⊗ h(2),(13)

µl
H(h ⊗ x) =

∑
h(1)xSh(2), ρl

H(h) = ∆.(14)

2. Integrals versus (co)separability in some monoidal categories

In this section we relate the concept of semisimple and separable algebra in the
categories of (bi)comodules over H, and cosemisimple and coseparable coalgebra in
the categories of (bi)modules over H by means of some suitable integrals. This will
allow us to apply the results that we obtained in the previous section.

For future reference, let us recall the definition of integrals.

Definition 2.1. Let H be a Hopf algebra.
a) An element t ∈ H is called a left (resp. right) integral in H if ht = ε(h)t, ∀h ∈

H (resp. th = ε(h)t, ∀h ∈ H).
b) An element λ ∈ H∗ is a left (resp. right) integral in H∗ if

∑
h(1)λ(h(2)) =

λ(h)1H , ∀h ∈ H (resp.
∑

λ(h(1))h(2) = λ(h)1H , ∀h ∈ H).

Lemma 2.2. Let H be a Hopf algebra. Let t ∈ H and let λ ∈ H∗. Then:
1) t is a left integral in H if and only if∑

ht(1) ⊗ St(2) =
∑

t(1) ⊗ St(2)h, ∀h ∈ H.

2) t is a right integral in H if and only if∑
St(1) ⊗ t(2)h =

∑
hSt(1) ⊗ t(2), ∀h ∈ H.

3) λ is a left integral in H∗ if and only if∑
x(1)λ(x(2)Sh) =

∑
λ(xSh(1))h(2), ∀h, x ∈ H.

4) λ is a right integral in H∗ if and only if∑
λ(Shx(1))x(2) =

∑
h(1)λ(Sh(2)x), ∀h, x ∈ H.
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Proof. 1) Assume that ht = ε(h)t, ∀h ∈ H. Then∑
ht1 ⊗ S(t2) =

∑
h1t1 ⊗ S(h2t2)h3 =

∑
εH(h1)t1 ⊗ S(t2)h2

=
∑

t1 ⊗ S(t2)h, ∀h ∈ H.

Conversely, by applying H ⊗ ε to this equality, we get ht = ε(h)t, ∀h ∈ H.
2) Assume that th = ε(h)t, ∀h ∈ H. Then∑

St(1) ⊗ t(2)h =
∑

h(1)S(t(1)h(2)) ⊗ t(2)h(3) =
∑

h(1)St(1) ⊗ t(2)ε(h(2))

=
∑

hSt(1) ⊗ t(2), ∀h ∈ H.

Conversely, by applying ε ⊗ H to this equality, we get th = ε(h)t, ∀h ∈ H.
3) Assume that

∑
h(1)λ(h(2)) = λ(h)1H , ∀h ∈ H. Then∑

x(1)λ(x(2)Sh) =
∑

x(1)Sh(2)λ(x(2)Sh(1))h(3)

=
∑

x(1)(Sh(1))1λ[x(2)(Sh(1))2]h(2)

=
∑

λ(xSh(1))h(2), ∀h, x ∈ H.

Conversely, by applying this equality in the case when h = 1H , we get
∑

x(1)λ(x(2))
= λ(x)1H , ∀x ∈ H.

4) Assume that
∑

λ(h(1))h(2) = λ(h)1H , ∀h ∈ H. Then∑
λ(Shx(1))x(2) =

∑
h(1)λ[Sh(3)x(1)]Sh(2)x(2)

=
∑

h(1)λ[(Sh(2))(1)x(1)](Sh(2))(2)x(2)

=
∑

h(1)λ(Sh(2)x), ∀h, x ∈ H.

Conversely, by applying this equality in the case when h = 1H , we get
∑

λ(x(1))x(2)

= λ(x)1H , ∀x ∈ H. �

Lemma 2.3. Let H be a Hopf algebra. The following are equivalent:
(1) The multiplication m : H ⊗ H → H has a section in HMH

H , where H ⊗ H
is regarded as a right comodule through the diagonal coaction and as a bimodule
through the canonical left and right structures coming from H.

(2) The counit ε : H → K has a section in HM.
(3) There exists a left integral t in H such that ε(t) = 1.

Proof. (1) ⇔ (2) By the quoted equivalence between (HMH
H ,⊗H , H) and

(HM,⊗, K), using the canonical isomorphisms η−1
H : (H ⊗ H)coH → H (see (8))

and η−1
K : HcoH → K, the morphism m : H ⊗ H → H corresponds to the counit

ε : H → K.
(2) ⇔ (3) A K−linear map µ : K −→ H is uniquely determined by t := µ(1).

Since the left H−action on K is defined by ε, it is easy to see that µ is an H−linear
section of ε if and only if t satisfies the conditions from (3). �

In an analogous way one gets:

Lemma 2.4. Let H be a Hopf algebra. The following are equivalent:
(1) The comultiplication ∆ : H → H ⊗ H has a retraction in HMH

H , where
H⊗H is regarded as a right module through the diagonal action and as a bicomodule
through the canonical left and right structures coming from H.
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(2) The unit u : K → H has a retraction in HM.
(3) There exists a left integral λ in H∗ such that λ(1H) = 1.

Definition 2.5. Let H be a Hopf algebra with antipode S over any field K and
let t ∈ H.

t will be called an ad-coinvariant integral if it satisfies:
cad1) ht = εH(h)t = th for all h ∈ H (i.e. t is a left and a right integral in H);
cad2)

∑
t(1)St(3) ⊗ t(2) = 1H ⊗ t and

∑
t(2) ⊗ St(1)t(3) = t ⊗ 1H ;

cad3) εH(t) = 1K .

Proposition 2.6. Let H be a Hopf algebra. The following are equivalent:
(1) The multiplication m : H ⊗ H → H has a section in H

HMH
H , where H ⊗H is

regarded as a bicomodule through the diagonal coactions and as a bimodule through
the canonical left and right structures coming from H.

(2) The counit ε : H → K has a section in H
HYD, where H is regarded as an

object in H
HYD as in (13).

(3) There exists a left integral t in H such that
∑

t(1)St(3) ⊗ t(2) = 1H ⊗ t and
ε(t) = 1.

(4) The counit ε : H → K has a section in YDH
H , where H is regarded as an

object in YDH
H through the right analogues of the structures (13).

(5) There exists a right integral t in H such that
∑

t(2) ⊗ St(1)t(3) = t⊗ 1H and
ε(t) = 1.

(6) There exists an ad– coinvariant integral t ∈ H.
Moreover, if these conditions are satisfied, an element t ∈ H satisfies (3) iff it
satisfies (5) iff it is an ad-coinvariant integral. Such an element is unique.

Proof. (1) ⇔ (2) Through the quoted equivalence between (H
HMH

H ,⊗H , H) and
(H
HYD,⊗, K), using the canonical isomorphisms η−1

H : (H ⊗ H)coH → H (see (8)),
where H is regarded as an object in H

HYD as in (13) and η−1
K : HcoH → K, the

morphism m : H ⊗ H → H corresponds to the counit ε : H → K.
(2) ⇔ (3) Since the structure of the left H– module of K is the one defined by

ε, (2) ⇔ (3) follows by a direct computation.
(1) ⇔ (4) and (4) ⇔ (5) follow in an analogous way.
(6) ⇒ (3) is trivial.
(3) ⇒ (6) Let t ∈ H be an element as in (3). Since (3) and (5) are equivalent,

there is an l ∈ H as in (5). Since

t = ε(l)t = lt = lε(t) = l,

it follows that t is an ad−coinvariant integral. The uniqueness of ad−coinvariant
integrals is obvious. �
Definition 2.7. Let H be a Hopf algebra with antipode S over a field K and let
λ ∈ H∗. λ will be called an ad– invariant integral if it satisfies:

ad1)
∑

h(1)λ(h(2)) = 1Hλ(h) =
∑

λ(h(1))h(2), ∀h ∈ H (i.e. λ is a left and right
integral in H∗);

ad2)
∑

λ(h(1)xSh(2)) = ε(h)λ(x) =
∑

λ(Sh(1)xh(2)), ∀h, x ∈ H;
ad3) λ(1H) = 1K .

Proposition 2.8. Let H be a Hopf algebra. The following are equivalent:
(1) The comultiplication ∆ : H → H⊗H has a retraction in H

HMH
H , where H⊗H

is regarded as a bimodule through the diagonal actions and as a bicomodule through
the canonical left and right structures coming from H.
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(2) The unit u : K → H has a retraction in H
HYD, where H is regarded as an

object in H
HYD as in (14).

(3) There exists a left integral λ in H∗ such that
∑

λ(h(1)xSh(2)) = ε(h)λ(x),
∀h, x ∈ H and λ(1H) = 1K .

(4) The unit u : K → H has a section in YDH
H , where H is regarded as an object

in YDH
H through the right analogues of the structures (14).

(5) There exists a right integral λ in H∗ such that
∑

λ(Sh(1)xh(2)) = ε(h)λ(x),
∀h, x ∈ H and λ(1H) = 1K .

(6) There exists an ad-invariant integral λ ∈ H∗.
Moreover, if these conditions are satisfied, an element λ ∈ H∗ satisfies (3) iff it
satisfies (5) iff it is an ad-invariant integral. Such an element is unique.

Proof. (1) ⇔ (2) Through the quoted equivalence between (H
HMH

H , �H , H) and
(H
HYD,⊗, K), using the canonical isomorphisms η−1

H : (H ⊗ H)coH → H (see (8)),
where H is regarded as an object in H

HYD as in (14) and η−1
K : HcoH � K, the

morphism ∆ : H → H ⊗ H corresponds to the unit u : K → H.
(2) ⇔ (3) Since the structure of the left H– module of K is the one defined by

ε, (2) ⇔ (3) follows by a direct computation.
(1) ⇔ (4) and (4) ⇔ (5) follow in an analogous way.
(6) ⇒ (3) is trivial.
(3), (5) ⇒ (6) Let λ ∈ H∗ as in (3) and γ ∈ H∗ as in (5). Then we have

λ = γ(1H)λ = γ ∗ λ = γλ(1H) = γ.

�
Remark 2.9. A complete treatment of the foregoing results regarding integrals can
be found in [Ar1].

Definition 2.10. Let (M,⊗,1) be a monoidal category.
An algebra (A, m, u) in M is called separable if the multiplication m : A⊗A → A

has a section in the category of (A, A)– bimodules AMA.
A coalgebra (C, ∆, ε) in M is called coseparable if the comultiplication ∆ : C →

C ⊗ C has a retraction in CMC .

Proposition 2.11. Let H be a Hopf algebra.
a) H is separable as an algebra in MH if and only if H is semisimple.
b) H is separable as an algebra in HMH if and only if there is an ad– coinvariant

integral t ∈ H.
c) H is coseparable as a coalgebra in MH if and only if H is cosemisimple.
d) H is coseparable as a coalgebra in HMH if and only if there is an ad– invariant

integral λ ∈ H∗.

Proof. To prove a) we remark that the category of (H, H)– bimodules in MH is
HMH

H . Then the conclusion follows by Lemma 2.3 and by Maschke’s Theorem (see
[Mo]).

To prove b) we remark that the category of (H, H)– bimodules in HMH is H
HMH

H .
Then the conclusion follows by Proposition 2.6.

To prove c) we remark that the category of (H, H)– bicomodules in MH is HMH
H .

Then the conclusion follows by Lemma 2.4 and by Dual Maschke’s Theorem (see
[Mo]).

To prove d) we remark that the category of (H, H)– bicomodules in HMH is
H
HMH

H . Then the conclusion follows by Proposition 2.8. �
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In [AMS], we proved the following theorem.

Theorem 2.12. Let (A, m, u) be a separable algebra in an abelian monoidal cate-
gory (M,⊗,1) such that both the functors A⊗(−) : M → M and (−)⊗A : M → M
are additive and right exact. Let π : E → A be an algebra homomorphism and let
I denote the kernel of π. Assume that:

1) π is an epimorphism;
2) there is n ∈ N such that In = 0;
3) for any r = 1, · · · , n − 1, the canonical projection pr : E/Ir+1 → E/Ir splits

in M.
Then π has a section which is an algebra homomorphism.

Theorem 2.13. Let H be a Hopf algebra. Let M be either the monoidal category
MH or HMH . Suppose that π : A → H is a surjective morphism of algebras in M
such that Ker π is the Jacobson radical J of A and J is nilpotent.

a) Let M = MH . Assume that H is a semisimple Hopf algebra. Then π : A →
A/J � H has a section σ in MH which is an algebra map.

b) Let M = HMH . Assume that H is an ad– coinvariant integral and that every
canonical map A/Jn+1 → A/Jn splits in HMH . Then π : A → H has a section σ
in HMH which is an algebra map.

Proof. a) The Jacobson radical J of A is an H– subcomodule of A since π is a
morphism of H– comodules. Hence, for every n > 0, Jn is also a subcomodule
of A such that the canonical map A/Jn+1 → A/Jn is H– colinear. Furthermore,
Jn/Jn+1 has a natural module structure over A/J � H, and with respect to this
structure Jn/Jn+1 is an object in MH

H . Hence Jn/Jn+1 is a cofree right comodule
(i.e. Jn/Jn+1 � V ⊗ H). In particular Jn/Jn+1 is an injective comodule. Thus
the canonical map A/Jn+1 → A/Jn has a section in MH . By Proposition 2.11, we
know that H is separable as an algebra in MH so that we can apply Theorem 2.12.

b) We first remark that Jn is an (H, H)– subbicomodule of A and that the
canonical maps A/Jn+1 → A/Jn are morphisms of bicomodules. By Proposition
2.11, it results that H is separable in HMH , so we conclude by applying Theorem
2.12. �

Corollary 2.14. Let A be a Hopf algebra such that J , the Jacobson radical of A,
is a nilpotent coideal in A. Let H := A/J , and let π : A → H be the canonical
projection.

a) If H is semisimple, then there is an algebra morphism in MH that is a section
of π.

b) If H has an ad– coinvariant integral and every canonical map A/Jn+1 →
A/Jn splits in HMH , then there is an algebra morphism in HMH that is a section
of π.

c) If H has an ad– coinvariant integral and any object in H
HMH

H is injective as
an (H, H)– bicomodule, then there is a section of π as in b).

Proof. The first two assertions follow directly from the previous theorem, since we
can regard A both as an algebra in MH and as an algebra in HMH , π being a
morphism of bialgebras.

Let us prove c). In view of b) it is enough to show that the canonical epi-
morphisms A/Jn+1 → A/Jn split in HMH . Since A/Jn is an object in HMH
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and the canonical epimorphism A/Jn+1 → A/Jn is a morphism in HMH , it fol-
lows that Jn/Jn+1 ∈ H

HMH
H , so it is an injective (H, H)– bicomodule. Therefore

A/Jn+1 → A/Jn has a section in HMH . �
2.15. Let E be a coalgebra in a monoidal category (M,⊗,1). Let us recall (see
[Mo, §5.2]) the definition of a wedge product of two subobjects X, Y of E in M :

X ∧E Y := Ker[(πX ⊗ πY ) ◦ �E],

where πX : E → E/X and πY : E → E/Y are the canonical quotient maps.

For the following theorem the reader is referred to [AMS].

Theorem 2.16. Let (C, ∆, ε) be a coseparable coalgebra in an abelian monoidal
category (M,⊗,1) endowed with denumerable direct sums and such that both the
functors C ⊗ (−) : M → M and (−) ⊗ C : M → M are additive and left exact.
Let σ : C → E be coalgebra homomorphism. Assume that:

1) σ is a monomorphism;
2) lim−→C∧n

E = E;

3) for any r ∈ N the canonical injection ir : C∧r
E → C∧r+1

E cosplits in M.
Then σ has a retraction which is a coalgebra homomorphism.

Theorem 2.17. Let H be a Hopf algebra.
a) Let C be a coalgebra in MH . If the coradical C0 of C is H, then there is a

coalgebra map πC : C → H which is a morphism in MH such that πC |
H

= IdH .
b) Let C be a coalgebra in HMH . If C0 = H, H has an ad– invariant integral

and every Cn is a direct summand in Cn+1 as an object in HMH , then there is a
coalgebra map πC : C → H which is a morphism in HMH such that πC |H = IdH .

Proof. Let M be one of the categories MH or HMH . Let σ : C0 → C be the
canonical inclusion. Let us consider the coradical filtration (Cn)n∈N:

(15) Cn+1 = {x ∈ C | ∆(x) ∈ C ⊗ Cn + C0 ⊗ C} = (C0)∧
n+1
C ,

for every n ≥ 0. Moreover we have lim−→Cn =
⋃

Cn = C.
a) Since H = C0 is cosemisimple, by Proposition 2.11 it is coseparable in MH ,

so that we can apply Theorem 2.16 in the case when M = MH .
In fact, by (15), Cn+1/Cn becomes a right H = C0– comodule with the structure

induced by ∆. Hence Cn+1/Cn is an object in MH
H , so it is free as a right H–

module (by the fundamental theorem for Hopf modules). In conclusion the inclusion
Cn ⊆ Cn+1 has a retraction in MH .

b) By Proposition 2.11, H is coseparable in HMH and moreover by assumption
Cn is a direct summand of Cn+1 as an object in HMH . Hence we can apply
Theorem 2.16 in the case when M = HMH . �
Corollary 2.18. Let C be a Hopf algebra such that C0, the coradical of C, is a
Hopf subalgebra. Let H := C0 and let σ : H → C be the canonical injection.

a) Since H is cosemisimple there is a coalgebra morphism in MH that is a
retraction of σ.

b) If H has an ad– invariant integral and every canonical map Cn → Cn+1

cosplits in HMH , then there is a coalgebra morphism in HMH that is a retraction
of σ.

c) If H has an ad– invariant integral and any object in H
HMH

H is projective as an
(H, H)– bimodule, then there is a retraction of σ as in b).
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Proof. Since σ is a morphism of bialgebras, we can regard C both as a coalgebra
in MH and as a coalgebra in HMH so that the first two assertions follow directly
from the previous theorem.

Let us prove c). In view of b), it is enough to show that the canonical monomor-
phisms Cn → Cn+1 split in HMH . Since Cn is an object in HMH and the
canonical monomorphism Cn → Cn+1 is a morphism in HMH , it follows that
Cn+1/Cn ∈ H

HMH
H , so it is a projective (H, H)– bimodule. Therefore Cn → Cn+1

has a retraction in HMH . �
Remarks 2.19. a) A. Masuoka informed us that the first statement of Theorem 2.17
follows easily from [Mas, Theorem 4.1].

b) Statement a) in Corollary 2.18 has already been proved by Masuoka; see [Mas,
Theorem 3.1].

2.20. Let H be a Hopf algebra. By definition, an algebra A in HMH is separable
if and only if the multiplication m : A ⊗ A → A has a section σ : A → A ⊗ A
which is a morphism of (A, A)– bimodules and (H, H)– comodules. Obviously, then
A is separable as an algebra in MK , but the converse does not hold in general.
Nevertheless, if the forgetful functor U : H

A MH
A →AMA is separable, then A is

separable as an algebra in M = HMH . Before proving this result, let us recall the
definition and basic properties of separable functors.

2.21. A functor F : C → D is called separable if, for all objects C1, C2 ∈ C, there is
a map PC1,C2 : HomD (FC1, FC2) → HomC (C1, C2) such that:

S1) For all morphisms f ∈ HomC (C1, C2) , PC1,C2 (F (f)) = f.
S2) We have PC1,C2(l) ◦ f = g ◦ PC1,C2(h) for every commutative diagram in D

of type:

F (C1)
h ��

F (f)

��

F (C2)

F (g)

��

F (C3)
l

�� F (C4)

Lemma 2.22. Let F : C → D be a covariant separable functor and let α : X → Y
be a morphism in C. If F (α) has a section h (resp. a retraction l) in D, then α
has a section (retraction) in C.

Proof. It is sufficient to apply property S2) in the case when g = α, l = IdFY , f =
IdY . Since F (α)◦h = IdFY ◦F (IdY ), by S2) we get PY,X(IdFY )◦IdY = α◦PY,X(h),
so that, as IdFY = F (IdY ), by S1) we conclude the proof. The dual case follows
analogously applying properties S2) and S1) in the case when f = α, h = IdFX , g =
IdX . �

We quote from [Raf] the so-called Rafael Theorem.

Theorem 2.23 (cf. [Raf]). Let (T, U) be an adjunction, where T : C → D and
U : D → C. Then we have:

1) T is separable iff the unit η : IdC → UT of the adjunction cosplits, i.e. there
exists a natural transformation µ : UT → IdC such that µ ◦ η = IdIdC

, the identity
natural transformation on IdC.

2) U is separable iff the counit ε : TU → IdD of the adjunction splits, i.e. there
exists a natural transformation σ : IdD → TU such that ε ◦ σ = IdIdD

, the identity
natural transformation on IdD.
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2.24. The forgetful functor U : H
A MH

A →AMA has a right adjoint T : AMA→H
A MH

A .
On objects T is defined by T (M) = H ⊗M ⊗H, where T (M) is a bicomodule via
∆H ⊗ M ⊗ H and H ⊗ M ⊗ ∆H , and T (M) is a bimodule with diagonal actions:

a (h ⊗ m ⊗ k) =
∑

a〈−1〉h ⊗ a〈0〉m ⊗ a〈1〉k,

(h ⊗ m ⊗ k) a =
∑

ha〈−1〉 ⊗ ma〈0〉 ⊗ ka〈1〉.

Here we used the sigma notation: (ρl
A ⊗ H)ρr

A (a) =
∑

a〈−1〉 ⊗ a〈0〉 ⊗ a〈1〉.
Let η : IdH

A MH
A

→ TU be the unit of this adjunction. It is easy to see that, for
any M ∈ H

A MH
A , we have ηM : M → H ⊗ M ⊗ H, ηM = (ρl

M ⊗ H)ρr
M .

Proposition 2.25. Let H be a Hopf algebra. Let A be an H– bicomodule algebra
and consider the forgetful functor U : H

A MH
A → AMA. Assume there exists a left

integral λ in H∗ such that λ(1H) = 1. Then, the morphism

µM : H ⊗ M ⊗ H → M, µM (h ⊗ m ⊗ k) =
∑

λ
(
Sh m〈−1〉

)
m〈0〉λ

(
m〈1〉Sk

)
is an (H, H)– bicolinear morphism such that µM ◦ ηM = IdM .

Moreover this gives rise to a functorial morphism µ : TU → IdH
A MH

A
.

Proof. Since, by Lemma 2.2, we have
∑

λ(Shx(1))x(2) =
∑

h(1)λ(Sh(2)x), ∀h, x ∈
H, we obtain

ρl
M (µM (h ⊗ m ⊗ k)) =

∑
λ

(
Sh m〈−2〉

)
m〈−1〉 ⊗ m〈0〉λ

(
m〈1〉Sk

)
=

∑
h1λ

(
Sh2 m〈−1〉

)
⊗ m〈0〉λ

(
m〈1〉Sk

)
=

∑
h(1) ⊗ µM

(
h(2) ⊗ m ⊗ k

)
.

Thus we have shown that µM is left H– colinear. Analogously it can be proved that
µM is right H– colinear. It remains to show that µM is a retraction of ηM . In fact,
we have

(µMηM ) (m) =
∑

λ
(
Sm〈−2〉 m〈−1〉

)
m〈0〉λ

(
m〈1〉Sm〈2〉

)
= m.

It is easy to check that this gives rise to a functorial morphism µ : TU → IdH
A MH

A
.

�

Theorem 2.26. Let H be a Hopf algebra. The following assertions are equivalent:
(1) There exists a left integral λ in H∗ such that λ(1H) = 1.
(2) The forgetful functor U : H

KMH
K → KMK is separable.

(3) Any epimorphism (resp. monomorphism) in HMH splits (cosplits) in HMH .
(4) H is coseparable as a coalgebra in MK .
(5) H is coseparable as a coalgebra in MH .
(6) H is cosemisimple.
(7) The unit u : K → H has a retraction in HM.

Proof. (1) ⇒ (2) By Proposition 2.25, the morphism

µM : H ⊗ M ⊗ H → M, µM (h ⊗ m ⊗ k) =
∑

λ
(
Sh m〈−1〉

)
m〈0〉λ

(
m〈1〉Sk

)
is an (H, H)– bicolinear morphism such that µM ◦ ηM = IdM , and this gives rise to
a functorial morphism µ : TU → IdH

A MH
A

. In view of Theorem 2.23, the functor U
is separable.
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(2) ⇒ (3) Let p be an epimorphism in HMH . Then U(p) splits. By Lemma
2.22, we conclude the proof. Analogously any monomorphism in HMH cosplits in
HMH .

(3) ⇒ (4) The comultiplication ∆ : H → H ⊗ H is a monomorphism in HMH .
(4) ⇒ (1) Let µ : H ⊗ H → H be an (H, H)– bicolinear retraction of the

comultiplication ∆, and set λµ := εHµ(−⊗1H) ∈ H∗. Then λµ fulfills the conditions
of (1).

(5) ⇔ (6) follows by Proposition 2.11.
(5) ⇔ (7) and (7) ⇔ (1) follow by Lemma 2.4. �

Theorem 2.27. Let H be a semisimple and cosemisimple Hopf algebra over a field
K. Then:

1) there is an ad– invariant integral λ ∈ H∗;
2) there is an ad– coinvariant integral t ∈ H;
3) H is separable in HMH ;
4) H is coseparable in HMH .

Proof. First let us note that any semisimple Hopf algebra is finite dimensional (see
[Mo]).

1) and 2) Since H is semisimple and cosemisimple, by [Ra2, Proposition 7] the
Drinfeld double D(H) is semisimple. By a result essentially due to Majid (see
[Mo, Proposition 10.6.16]) and by [RT, Proposition 6], we get that the category
H
HYD � D(H)M is semisimple. Then the counit ε : H → K has a section in YDH

H

so that, by Proposition 2.6, there is an ad– coinvariant integral. Analogously the
unit u : K → H has a retraction in H

HYD so that, by Proposition 2.8, there is an
ad– invariant integral.

3) and 4) follow, in view of the foregoing, by Proposition 2.11. �

Theorem 2.28. Let A be a Hopf algebra such that J , the Jacobson radical of A, is
a nilpotent coideal in A. Let H := A/J , and let π : A → H be the canonical projec-
tion. Assume that H is both semisimple and cosemisimple (e.g. H is semisimple
over a field of characteristic 0). Then there is an algebra morphism in HMH that
is a section of π.

Proof. In view of Theorem 2.27, if H is semisimple and cosemisimple, then it has
an ad– coinvariant and an ad– invariant integral. Then, by Theorem 2.26, every
bicomodule is injective. By c) of Corollary 2.14, we conclude the proof. �

Theorem 2.29. Let H be a Hopf algebra with an ad– invariant integral λ and let
A be an H– bicomodule algebra. Then the forgetful functor U : H

A MH
A →AMA is

separable.

Proof. We use the notations of 2.24. Let η : IdH
A MH

A
→ TU be the unit of the

adjunction (U, T ). In view of Theorem 2.23, we have to construct a µ : TU →
IdH

A MH
A

such that µ ◦ η = IdIdH
A MH

A

.
By Proposition 2.25, the morphism

µM : H ⊗ M ⊗ H → M, µM (h ⊗ m ⊗ k) =
∑

λ
(
Sh m〈−1〉

)
m〈0〉λ

(
m〈1〉Sk

)
is a (H, H)– bicolinear morphism such that µM ◦ηM = IdM . It is easy to check that
this gives rise to a functorial morphism µ : TU → IdH

A MH
A

. In order to conclude
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that µM is a morphism in H
A MH

A , it remains only to check that µM is a morphism
of (A, A)– bimodules. We have

µM (a (h ⊗ m ⊗ k)) =
∑

λ
(
ShSa〈−2〉 a〈−1〉m〈−1〉

)
a〈0〉m〈0〉λ

(
a〈1〉m〈1〉SkSa〈2〉

)
,

ad2) =
∑

λ
(
Shm〈−1〉

)
a〈0〉m〈0〉ε(a〈1〉)λ

(
m〈1〉Sk

)
= aµM (h ⊗ m ⊗ k).

This relation proves that µM is left A-linear. Similarly, using the second equality
of ad2), one can show that µM is right A– linear. �

Theorem 2.30. Let H be a Hopf algebra over a field K and assume that H has
an ad– invariant integral. An algebra A in the category HMH is separable iff A is
separable as an algebra in (MK ,⊗K , K), i.e. as a usual algebra.

Proof. It is enough to prove that if A is separable as an algebra in MK , then it is
separable as an algebra in HMH . If m : A ⊗ A → A is the multiplication of the
algebra A in the monoidal category HMH , then m also defines the multiplication
of A as an algebra in MK . By Theorem 2.29, the functor U : H

A MH
A →AMA is

separable. Since U(m) = m and m has a section in AMA (A is separable in MK),
by Lemma 2.22 it follows that m has a section in H

A MH
A . �

Corollary 2.31. Let H be a semisimple and cosemisimple Hopf algebra over a field
K. If A is an algebra in the category HMH , then A is separable as an algebra in
HMH iff A is separable as an algebra in (MK ,⊗K , K).

Proof. By Theorem 2.27, H has a non– zero ad– invariant integral. �

2.32. The forgetful functor U : D
HMD

H → DMD has a left adjoint T : DMD →
D
HMD

H , T (M) = H ⊗ M ⊗ H, where T (M) is a bimodule via mH ⊗ M ⊗ H and
H ⊗ M ⊗ mH , and T (M) is a bicomodule with diagonal coactions:

ρl(h ⊗ m ⊗ k) =
∑

h(1)m〈−1〉k(1) ⊗ h(2) ⊗ m〈0〉 ⊗ k(2),

ρr(h ⊗ m ⊗ k) =
∑

h(1) ⊗ m〈0〉 ⊗ k(1) ⊗ h(2)m〈1〉k(2).

Here we used the sigma notation: (ρl
A ⊗ A)ρr

A (a) =
∑

a〈−1〉 ⊗ a〈0〉 ⊗ a〈1〉. Let
ε : TU → IdD

HMD
H

be the counit of this adjunction.
For any M ∈ D

HMD
H , we have εM : H ⊗ M ⊗ H → M, εM = (µl

M ⊗ H)µr
M .

Proposition 2.33. Let H be a Hopf algebra. Let D be an H– bimodule coalgebra
and consider the forgetful functor U : D

HMD
H → DMD. Assume there exists a left

integral t in H such that ε(t) = 1. Then, the morphism

σM : M → H ⊗ M ⊗ H, σM (m) =
∑

St(1) ⊗ t(2)mt̃(1) ⊗ St̃(2)

is an (H, H)– bilinear morphism such that εM ◦ σM = IdM .
Moreover this gives rise to a functorial morphism σ : IdD

HMD
H
→ TU .

Proof. Since, by Lemma 2.2, we have
∑

hSt(1) ⊗ t(2) =
∑

St(1) ⊗ t(2)h, ∀h ∈ H, we
obtain

hσM (m) =
∑

hSt(1)⊗ t(2)mt̃(1)⊗St̃(2) =
∑

St(1)⊗ t(2)hmt̃(1)⊗St̃(2) = σM (hm).
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Thus we have shown that σM is left H– linear. Analogously it can be proved that
σM is right H– linear. It remains to show that σM is a section of εM . In fact, we
have

(εMσM ) (m) =
∑

St(1)t(2)mt̃(1)St̃(2) = m.

It is easy to check that this gives rise to a functorial morphism σ : IdD
HMD

H
→

TU . �
Theorem 2.34. Let H be a Hopf algebra. The following assertions are equivalent:

(1) There exists a left integral t in H such that ε(t) = 1.
(2) The forgetful functor U : K

HMK
H → KMK is separable.

(3) Any epimorphism (resp. monomorphism) in HMH splits (cosplits) in HMH .
(4) H is separable as an algebra in MK .
(5) H is separable as an algebra in MH .
(6) H is semisimple.
(7) The counit ε : H → K has a section in HM.

Proof. (1) ⇒ (2) By Proposition 2.25, the morphism

σM : M → H ⊗ M ⊗ H, σM (m) =
∑

St(1) ⊗ t(2)mt̃(1) ⊗ St̃(2)

is an (H, H)– bilinear morphism such that εM ◦ σM = IdM , and this gives rise to a
functorial morphism σ : IdD

HMD
H
→ TU . In view of Theorem 2.23, the functor U is

separable.
(2) ⇒ (3) Let p be an epimorphism in HMH . Then U(p) splits. By Lemma

2.22, we conclude the proof. Analogously any monomorphism in HMH cosplits in
HMH .

(3) ⇒ (4) The multiplication m : H ⊗ H → H is an epimorphism in HMH .
(4) ⇒ (1) Let σ : H → H⊗H be an (H, H)– bilinear section of the multiplication

m and set tσ := (H ⊗ εH)σ(1H) ∈ H. Then tσ fulfills the conditions of (1).
(5) ⇔ (6) follows by Proposition 2.11.
(5) ⇔ (7) and (7) ⇔ (1) follow by Lemma 2.3. �

Theorem 2.35. Let C be a Hopf algebra such that C0, the coradical of C, is a Hopf
subalgebra. Let H := C0 and let σ : H → C be the canonical injection. Assume
that H is semisimple (e.g. H is finite dimensional over a field of characteristic 0).
Then there is a coalgebra morphism π in HMH that is a retraction of σ.

Proof. In view of Theorem 2.27, if H is semisimple and cosemisimple, then it has
an ad– coinvariant and an ad– invariant integral. Then, by Theorem 2.34, every
bimodule is projective. By c) of Corollary 2.18, we conclude the proof. �
Theorem 2.36. Let H be a Hopf algebra with an ad– coinvariant integral t and let
D be an (H, H)– bimodule coalgebra. Then the forgetful functor U : D

HMD
H → DMD

is separable.

Proof. We use the notations of 2.32. Let ε : TU → IdD
HMD

H
be the counit of the

adjunction (T, U). In view of Theorem 2.23, we have to construct a σ : IdD
HMD

H
→

TU such that εσ = IdIdD
H

MD
H

. By Proposition 2.33, the morphism

σM : M → H ⊗ M ⊗ H, σM (m) =
∑

St(1) ⊗ t(2)mt̃(1) ⊗ St̃(2)

is a (H, H)– bilinear morphism such that εM ◦ σM = IdM . It is easy to check that
this gives rise to a functorial morphism σ : IdD

HMD
H

→ TU . In order to conclude
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that σM is a morphism in D
HMD

H , we have only to check that σM is a morphism of
(D, D)– bicomodules. We have

ρl
H⊗M⊗H(σM (m)) =

∑
m〈−1〉t̃(1)St̃(4) ⊗ St(1) ⊗ t(2)m0t̃(2) ⊗ St̃(3),

cad2) =
∑

m〈−1〉 ⊗ St(1) ⊗ t(2)m0t̃(1) ⊗ St̃(2) = (H ⊗ σM )ρl
M (m).

This relation proves that σM is left D– colinear. Similarly, using the second equality
of cad2), one can show that σM is right D– colinear. �
Theorem 2.37. Let H be a Hopf algebra over a field K and assume that H has
an ad– coinvariant integral. A coalgebra C in the category HMH is coseparable iff
C is coseparable as a coalgebra in (MK ,⊗K , K), i.e. as a usual coalgebra.

Proof. It is enough to prove that if C is coseparable as a coalgebra in MK , then it
is coseparable as a coalgebra in C

HMC
H . If ∆ : C → C ⊗C is the comultiplication of

the coalgebra C in the monoidal category C
HMC

H , then ∆ also defines the comultipli-
cation of C as a coalgebra in MK . Thus U(∆) = ∆ has a retraction in CMC . Since,
in view of Theorem 2.36, the functor U : C

HMC
H → CMC is coseparable, in view of

Lemma 2.22, ∆ has a retraction in C
HMC

H . Thus C is coseparable in HMH . �
Corollary 2.38. Let H be a semisimple and cosemisimple Hopf algebra over a field
K. If C is a coalgebra in the category HMH , then C is coseparable as a coalgebra
in HMH iff C is coseparable as a coalgebra in (MK ,⊗K , K).

Proof. By Theorem 2.27, H has a non– zero ad– coinvariant integral. �
Proposition 2.39. Let H be a semisimple and cosemisimple Hopf algebra. Then
we have:

1) If π : A → B is a surjective morphism of algebras in HMH such that B is
separable (as an algebra in MK) and the kernel of π is nilpotent, then there is a
section σ : B → A of π which is a morphism of algebras in HMH .

2) If σ : C → D is an injective morphism of coalgebras in HMH such that C is
coseparable (as a coalgebra in MK) and the cokernel of σ is conilpotent, then there
is a retraction π : D → C of σ which is a morphism of coalgebras in HMH .

Proof. 1) By assumption H is semisimple and hence H is separable (see Theorem
2.34). Moreover by Corollary 2.31, B is separable as an algebra in the category
HMH . Let n be a natural number such that In = 0, where I = Ker π. By Theorem
2.26, any epimorphism in the category HMH splits in HMH . In particular, for
every r = 1, · · · , n − 1 the canonical morphism πr : A/Ir+1 → A/Ir has a section
in the category HMH . We can now conclude by applying Theorem 2.12 to the
algebra homomorphism π : A → B.

2) By assumption H is cosemisimple, and hence H is coseparable (see Theorem
2.26). Moreover by Corollary 2.38, C is coseparable as a coalgebra in the category
HMH . Let (L, p) := Coker(σ). Then, for n ≥ 2, we define Ln to be the coimage
of p⊗n∆n−1 where ∆n : D → D⊗n+1 is the n-th iterated comultiplication of D
(∆1 := ∆D), i.e. Ln = D/ker(p)∧

n
D = D/C∧n

D . Then (L, p) is called conilpotent
if there is n ≥ 2 such that Ln = 0 or equivalently C∧n

D = D. So let n be such
a natural number. By Theorem 2.34, any monomorphism in the category HMH

cosplits in HMH . In particular, for every r = 1, · · · , n− 1 the canonical morphism
ir : C∧r

D → C∧r+1
D has a retraction in the category HMH . We can now conclude by

applying Theorem 2.16 to the coalgebra homomorphism σ : C → D. �
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Since any semisimple Hopf algebra H is separable, in the previous proposition
we can choose B = H. Since any cosemisimple Hopf algebra H is coseparable, in
the previous proposition we can choose C = H.

3. Splitting morphisms of bialgebras

3.1. Let H be a Hopf algebra and let (A, m, u, ∆, ε) be a bialgebra.
By the results that we obtained in Corollary 2.14 and Theorem 2.28, we are led

to investigate the following problem.

Problem 1. Characterize those bialgebras A with the property that there is a pair
of K– linear maps,

π : A → H and σ : H → A,

such that π is a morphism of bialgebras and σ is an (H, H)– bicolinear algebra
section of π, i.e., πσ = IdH .

Motivated by the results that we obtained in Corollary 2.18 and Theorem 2.35,
we are also interested in studying the problem dual to Problem 1.

Problem 2. Characterize those bialgebras A with the property that there is a pair
of K– linear maps,

σ : H → A and π : A → H,

such that σ is a morphism of bialgebras and π is an (H, H)– bilinear algebra retrac-
tion of σ, i.e. πσ = IdH .

Our approach to Problem 1 is based on the observation that such a bialgebra
can be viewed in a natural way as an object A ∈ H

HMH
H such that A is an algebra in

(H
HMH

H ,⊗H , H) and a coalgebra in (HMH , �H , H). To explain this we will consider
the following useful wider context.

Definition 3.2. Let R be an H– bicomodule algebra. Let A be an algebra in the
category of vector spaces with multiplication m : A ⊗ A → A and unit u : K → A.
Assume that A is an object in H

R MH
R . We say that (A, m, u) becomes an algebra in

(H
R MH

R ,⊗R, R) if m factorizes to a morphism

m : A ⊗R A → A in H
R M

H
R

and u factorizes to a morphism

u : R → A in H
R M

H
R

such that (A, m, u) is an algebra in (H
R MH

R ,⊗R, R).

Lemma 3.3. With hypothesis and notations of the above definition, we have

u(r) = r · 1A = 1A · r.

Lemma 3.4. Let R be an (H, H)– bicomodule algebra and let (A, m, u) be an algebra
in the monoidal category (H

R MH
R ,⊗R, R). Then A is in a natural way an algebra in

(HMH ,⊗, K) which becomes an algebra in (H
R MH

R ,⊗R, R).

Proposition 3.5. Let R be an (H, H)– bicomodule algebra. Let (A, m, u) be an
algebra. The following assertions are equivalent:

(a) A is an object in H
R MH

R and (A, m, u) becomes an algebra in (H
R MH

R ,⊗R, R).
(b) A is an object in H

R MH
R , (A, m, u) is an (H, H)– bicomodule algebra and m

factorizes to a morphism m : A ⊗R A → A in H
R MH

R .
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(c) (A, m, u) is an H– bicomodule algebra and there exists an algebra map σ :
R → A which is a homomorphism in HMH . Moreover in (c) ⇒ (a) we have u = σ,
while in (a), (b) ⇒ (c) the map σ induces the (R, R)– bimodule structure of A.

Proof. (a) ⇒ (b) is trivial. (b) ⇒ (c) Let us set a · b = m(a⊗ b) = m(a⊗R b). Then
m is an R-balanced morphism of (R, R)– bimodules, i.e. for a, b ∈ A and r ∈ R, we
have

(16) 1) (ar) · b = a · (rb); 2) r(a · b) = (ra) · b; 3) (a · b)r = a · (br).

In particular the first relation gives us 1Ar = (1Ar) · 1A
1)
= 1A · (r1A) = r1A, for all

r ∈ R. Let σ : R → A be defined by σ (r) := r1A = 1Ar. Let us prove that σ is an
algebra map and (H, H)– bicolinear. Since m is (R, R)-bilinear, we get

σ(rs) = (rs)1A = r(s1A) = r(1A · (s1A))
2)
= (r1A)(s1A) = σ(r)σ(s).

Moreover, by right H– colinearity of the map defining the left R– module structure
of A and right H– colinearity of u, we get∑

σ (r)〈0〉 ⊗ σ (r)〈1〉 =
∑

(r1A)〈0〉 ⊗ (r1A)〈1〉 =
∑

r〈0〉1A ⊗ r〈1〉1H

=
∑

σ
(
r〈0〉

)
⊗ r〈1〉

and analogously on the left.
(c) ⇒ (a) Clearly σ induces an R– bimodule structure over A. Let µl and µr

be the maps defining the module structures. First of all, we have to prove that
these structures make A an object in H

R MH
R , i.e. that they are (H, H)– bicomodule

morphisms. We have

ρl
A(µl(r ⊗ a)) = ρl(r.a) = ρl(σ(r).a) =

∑
(σ(r)a)〈−1〉 ⊗ (σ(r)a)〈0〉

(∗) =
∑

σ(r)〈−1〉a〈−1〉 ⊗ σ(r)〈0〉a〈0〉

(∗∗) =
∑

r〈−1〉a〈−1〉 ⊗ σ(r〈0〉)a〈0〉

(∗ ∗ ∗) =
∑

r〈−1〉a〈−1〉 ⊗ r〈0〉a〈0〉

= (H ⊗ µl)ρl
R⊗A(r ⊗ a).

Relation (∗) results by the fact that (A, m, u) is an H– bicomodule algebra, (∗∗)
holds since σ is left H– colinear and (∗ ∗ ∗) follows by the definition of module
structures. In a similar way one can prove that µl is right H– linear and that µr is
a morphism of (H, H)– bicomodules. Since

(ar) · b = (a · σ(r)) · b = a · (σ(r) · b) = a · (rb),
the multiplication m : A ⊗ A → A is R– balanced so that it factorizes to a map
m : A ⊗R A → A. The map m is left R– linear as

r(a · b) = σ(r) · (a · b) = (σ(r) · a) · b = (ra) · b.
Analogously, one proves that m is right R– linear. Obviously m is (H, H)– bicolinear
since m is also (H, H)-bicolinear. Since σ is an algebra morphism, we get that σ is
a morphism of (R, R)– bimodules and that σ ◦ uR = u. Moreover, by assumption,
σ is a morphism of (H, H)– bicomodules. Let u = σ. We now prove that (A, m, u)
is an algebra in (H

R MH
R ,⊗R, R). Clearly m is associative. Moreover we have

m(u ⊗R A)(r ⊗R a) = σ(r)a = ra = lA(r ⊗R a),
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where lA : R ⊗R A → A is the left unit constraint of the monoidal category
(H
R MH

R ,⊗R, R). Analogously one proves that m(u ⊗R A) = rA. �
Our approach to Problem 2 of 3.1 is based on the observation that such a bial-

gebra can be viewed in a natural way as an object A ∈ H
HMH

H such that A is a
coalgebra in (H

HMH
H , �H , H) and an algebra in (HMH ,⊗H , H). To explain this we

will consider the following useful wider context.

Definition 3.6. Let H be a Hopf algebra and let D be an (H, H)– bimodule coal-
gebra. Let C be a coalgebra in the category of vector spaces with comultiplication
∆ and counit ε. Assume that C is an object in D

HMD
H . We say that (C, ∆, ε) becomes

a coalgebra in (D
HMD

H , �D, D) if ∆ corestricts to a morphism

∆ : C → C�DC in D
HM

D
H

and ε factorizes to a morphism

ε : C → D in D
HM

D
H

such that (C, ∆, ε) is a coalgebra in (D
HMD

H , �D, D).

Lemma 3.7. With hypothesis and notation of the above definition, we have

ε(a) =
∑

ε(a〈0〉)a〈1〉 =
∑

ε(a〈0〉)a〈−1〉.

Proof. Since ε is left D– colinear, we get
∑

c〈−1〉 ⊗ ε(c〈0〉) =
∑

ε(c)(1) ⊗ ε(c)(2). By
applying D ⊗ εD on both sides, we obtain the first equality of the statement. The
other one follows analogously. �
Lemma 3.8. Let D be an (H, H)– bimodule coalgebra and let (C, ∆, ε) be a coalge-
bra in the monoidal category (D

HMD
H , �D, D). Then C is in a natural way a coalgebra

in (HMH ,⊗, K) which becomes a coalgebra in (D
HMD

H , �D, D).

Proposition 3.9. Let D be an (H, H)– bimodule coalgebra. Let (C, ∆, ε) be a
coalgebra. The following assertions are equivalent:

(a) C is an object in D
HMD

H and (C, ∆, ε) becomes a coalgebra in (D
HMD

H , �D, D).
(b) C is an object in D

HMD
H , (C, ∆, ε) is an (H, H)– bimodule coalgebra and ∆

corestricts to a morphism ∆ : C → C�DC in D
HMD

H .
(c) (C, ∆, ε) is an (H, H)– bimodule coalgebra and there exists a coalgebra map

π : C → D which is a homomorphism in HMH .
Moreover in (c) ⇒ (a) we have ε = π, while in (a), (b) ⇒ (c) the map π induces

the (D, D)– bicomodule structure of C.

Proof. Follows by duality from the proof of Proposition 3.5. �
Proposition 3.10. Let α : E → L be a coalgebra map, where E and L are bialge-
bras. Then the following assertions are equivalent:

(1) E is an L– bicomodule algebra, i.e. an algebra in (LML,⊗, K), where the
comodule structure of E is induced by α.

(2) α is a bialgebra map.

Proof. (1) ⇒ (2) Since the multiplication of E is (L, L)– bicolinear, we get∑
α(x(1))α(y(1)) ⊗ x(2)y(2) =

∑
x〈−1〉y〈−1〉 ⊗ x〈0〉y〈0〉

=
∑

(xy)〈−1〉 ⊗ (xy)〈0〉

=
∑

α[(xy)(1)] ⊗ (xy)(2),
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so that, by applying L ⊗ εE , we obtain α(x)α(y) = α(xy), for any x, y ∈ E. Also,
ρluE(k) = 1L ⊗ uE(k) for any k ∈ K, so that by applying α ⊗ εE , we obtain
αuE = uL.

(2) ⇒ (1) Let us prove that the multiplication mE is left L– colinear. Let
x, y ∈ E. We have

ρl
EmE(x ⊗ y) =

∑
α(x(1)y(1)) ⊗ x(2)y(2)

=
∑

α(x(1))α(y(1)) ⊗ x(2)y(2)

=
∑

x〈−1〉y〈−1〉 ⊗ x〈0〉y〈0〉 =
∑

(L ⊗ mE) ◦ ρl
E⊗E .

Analogously one can check that mE is right L– colinear. Since α(1E) = 1L we
have ρluE(k) = 1L ⊗ uE(k) for any k ∈ K, i.e. the unit uE is left L– colinear.
Analogously one can check that uE is right L– colinear. �

Proposition 3.11. Let α : E → L be an algebra map, where E and L are bialge-
bras. Then the following assertions are equivalent:

(1) L is an E– bimodule coalgebra, i.e. a coalgebra in (EME ,⊗, K), where the
module structure of L is induced by α.

(2) α is a bialgebra map.

Proof. Follows by duality from the proof of Proposition 3.10. �

Theorem 3.12. Let (A, m, u, ∆, εA) be a bialgebra and let H be a Hopf algebra.
The following assertions are equivalent:

(a) A is an object in (H
HMH

H ,⊗H , H), and A becomes an algebra in (H
HMH

H ,⊗H , H)
and a coalgebra in (HMH , �H , H).

(b) There are a bialgebra map π : A → H and an (H, H)– bicolinear algebra
map σ : H → A, where A is a (H, H)– bicomodule via π.

Furthermore, in this case, the counit εA is right H– linear if and only if πσ =
IdH .

Moreover, if (a) holds, we can choose π and σ such that

(17) π(a) =
∑

ε(a〈0〉)a〈1〉 =
∑

ε(a〈0〉)a〈−1〉 and σ(h) = h · 1A = 1A · h.

Proof. (a) ⇒ (b) Since A becomes a coalgebra in (HMH , �H , H), by Proposition
3.9 there exists a coalgebra map π : A → H which is a homomorphism in HMH

such that (A, ∆, π = ε) is a coalgebra in (HMH , �H , H) and π induces the (H, H)–
bicomodule structure of A. Note that by Lemma 3.7 and by Lemma 3.3, π and σ
fulfill relations (17).

Since A becomes an algebra in (H
HMH

H ,⊗H , H), by Proposition 3.5 it follows that
A is an (H, H)– bicomodule algebra. Thus, by Proposition 3.10 we obtain that π is
a bialgebra map.

Since A becomes an algebra in (H
HMH

H ,⊗H , H), by Proposition 3.5 there exists
an algebra map σ : H → A which is an homomorphism in HMH .

(b) ⇒ (a) By Proposition 3.10, applied to the bialgebra map α = π, A is
an algebra in (HMH ,⊗, K). By Proposition 3.5, applied in the case where “R”=
H and using the fact that σ : H → A is an (H, H)– bicolinear algebra map, A
is an object in H

HMH
H and (A, m, u) becomes an algebra in (H

HMH
H ,⊗H , H). By

Proposition 3.9 applied in the case “H” = K, “C” = A and “D” = H and using
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the fact that “π” is a coalgebra map in MK , we deduce that (A, ∆, εA) becomes a
coalgebra in (HMH , �H , H).

We will now prove that if (a) or (b) holds true, the counit εA is right H– linear
if and only if πσ = IdH . Since σ is right H– colinear and the right coaction on A is
induced by π, we have∑

σ(h(1)) ⊗ h(2) =
∑

σ(h)(1) ⊗ π
(
σ(h)(2)

)
.

By applying εA ⊗ H to this equation we obtain

(18)
∑

εA

(
σ(h(1))

)
h(2) = (πσ)(h).

We point out that, by Proposition 3.5, σ induces the (H, H)– bimodule structure
of A.

Assume that the counit εA is right H– linear. Then∑
εA

(
σ(h(1))

)
h(2) =

∑
εA

(
1Aσ(h(1))

)
h(2) =

∑
εA

(
1Ah(1))

)
h(2)

=
∑

εA(1A)εH(h(1))h(2) = h.

Conversely, if πσ = IdH , then, by applying εH to both sides of (18), we get
εA (σ(h)) = εH(h). Then

εA(ah) = εA(aσ(h)) = εA(a)εA(σ(h)) = εA(a)εH(h).

�

Theorem 3.13. Let (A, m, u, ∆, εA) be a bialgebra and let H be a Hopf algebra.
The following assertions are equivalent:

(a) A is an object in (H
HMH

H ,⊗H , H) and A becomes a coalgebra in (H
HMH

H , �H ,
H) and an algebra in (HMH ,⊗H , H).

(b) There are a bialgebra map σ : H → A and an (H, H)– bilinear coalgebra
map π : A → H, where A is an (H, H)– bimodule via σ.

Furthermore, in this case, the unit u is right H– colinear if and only if πσ = IdH .
Moreover, if (a) holds, we can choose π and σ so that (17) holds true.

Proof. Follows by duality from the proof of Theorem 3.12. �

Example 3.14. Let H be a Hopf algebra. By 1.9, we know that there is a monoidal
category equivalence

(HM,⊗, K) F−→ (HM
H
H ,⊗H , H) G−→ (HM,⊗, K).

Now let (R, m, u) be a left H– module algebra, i.e. an algebra in the monoidal
category (HM,⊗, K). Then, by Proposition 1.5, (F (R), mF (R), uF (R)) is an algebra
in (HMH

H ,⊗H , H). It is easy to check that by lifting the multiplication mF (R) to the
usual tensor product F (R)⊗F (R), we obtain the so-called smash product R#H of
R and H, i.e. the associative algebra defined on R ⊗ H by setting

(19) (r#h) (s#k) =
∑

r
(
h(1)s

)
#h(2)k.

This algebra is unitary, with unit 1R#1H . Here r#h := r ⊗ h.
By 1.11, the above equivalence induces a monoidal category equivalence

(H
HYD,⊗, K) F−→ (H

HM
H
H ,⊗H , H) G−→ (H

HYD,⊗, K).



1018 A. ARDIZZONI, C. MENINI, AND D. ŞTEFAN

Thus, if we assume in addition that R is an algebra in H
HYD, then F (R) is an

algebra in the monoidal category (H
HMH

H ,⊗H , H) so that, by Lemma 3.4, R#H

becomes an algebra in (H
HMH

H ,⊗H , H), with respect to the structures

ρl
R#H (r#h) =

∑
r〈−1〉h(1) ⊗

(
r〈0〉#h(2)

)
, ρr

R#H (r#h) =
∑ (

r#h(1)

)
⊗ h(2),

k (r#h) =
∑

k(1)r#k(2)h, (r#h) k = r#hk.

We will now prove that any algebra A that becomes an algebra in (H
HMH

H ,⊗H , H)
is of this type, i.e. there is an algebra R in H

HYD such that A � R#H.

Definition 3.15. Let H be a Hopf algebra and let V ∈ H
HMH

H . The space of right
coinvariant elements of V will be called the diagram of V , and it will be denoted
by RV , or by R for short, if there is no danger of confusion.

Proposition 3.16. Let (A, m, u) be an algebra. Suppose that A is an object in
H
HMH

H such that A becomes an algebra in (H
HMH

H ,⊗H , H). If R = ACo(H) is the
diagram of A, then R is an algebra in H

HYD with multiplication mR, the restriction
of m to R ⊗ R, and unit 1R = 1A.

Moreover, the canonical isomorphism εA : R#H → A is a morphism of algebras
in (H

HMH
H ,⊗H , H).

Proof. Since A becomes an algebra in (H
HMH

H ,⊗H , H), the multiplication m of A
factors to a map m : A⊗H A → A and the unit u of A factors to a map u : H → A.
Moreover, by Proposition 3.5, (A, m, u) is an algebra in the monoidal category
(H
HMH

H ,⊗H , H). Therefore, by Proposition 1.5, G(A) = R, where G is the monoidal
functor (H

HMH
H ,⊗H , H) G−→ (H

HYD,⊗, K) (see 1.11), is an algebra in the monoidal
category (H

HYD,⊗, K). The multiplication of R is exactly the one induced by the
multiplication of A, and the unit is the same as A.

Now, by 1.11, the counit of the adjunction (F, G), corresponding to the monoidal
equivalence

(H
HYD,⊗, K) F−→ (H

HM
H
H ,⊗H , H) G−→ (H

HYD,⊗, K),

is given by
εM : MCo(H) ⊗ H → M, εM (v ⊗ h) = vh.

By Corollary 1.7, εA is an algebra isomorphism. �

Example 3.17. Let H be a Hopf algebra. By 1.10, we know that there is a
monoidal category equivalence

(H
M,⊗, K) F−→ (H

M
H
H , �H , H) G−→ (H

M,⊗, K).

Let (D, ∆, ε) be a left H– comodule coalgebra, i.e. a coalgebra in the monoidal cat-
egory (HM,⊗, K). Then, by Proposition 1.5, (F (D), ∆F (D), εF (D)) is a coalgebra
in (HMH

H , �H , H). It is easy to check that embedding D�HD inside D ⊗ D, we
obtain the so-called smash coproduct D#H of D and H, i.e. the the coassociative
and counitary coalgebra defined on D ⊗ H by setting

∆(d#h) =
∑

d(1)#(d(2))〈−1〉h(1) ⊗ (d(2))〈0〉#h(2),(20)

ε(d#h) = εD(d)εH(h).(21)

By 1.12, the above equivalence induces a monoidal category equivalence

(H
HYD,⊗, K) F−→ (H

HM
H
H , �H , H) G−→ (H

HYD,⊗, K).
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Thus, if we assume in addition that D is a coalgebra in H
HYD, then F (D) is a

coalgebra in (H
HMH

H , �H , H) so that, by Lemma 3.8, D#H becomes a coalgebra in
(H
HMH

H , �H , H), with respect to the structures

ρl
R#H (d#h) =

∑
d〈−1〉h(1) ⊗

(
d〈0〉#h(2)

)
, ρd

R#H (d#h) =
∑ (

d#h(1)

)
⊗ h(2),

k (d#h) =
∑

k(1)d#k(2)h, (d#h) k = d#hk.

We will now prove that any coalgebra C that becomes a coalgebra in (H
HMH

H , �H , H)
is of this type, i.e. there is a coalgebra D in H

HYD such that C � D#H.

Proposition 3.18. Let (C, ∆, ε) be a coalgebra. Suppose that C is an object in
H
HMH

H such that C becomes a coalgebra in (H
HMH

H , �H , H). Let ε be the counit of C

as a coalgebra in (H
HMH

H , �H , H). If D = CCo(H) is the diagram of C, then D is a
coalgebra in H

HYD, where the comultiplication of D is given by

δ : D → D ⊗ D : d �→
∑

d(1)Sεd(2) ⊗ d(3)

and the counit is induced by the counit of C.
Moreover, the canonical isomorphism εC : D#H → D is a morphism of coalge-

bras in (H
HMH

H , �H , H).

Proof. Since C becomes a coalgebra in (H
HMH

H , �H , H), the comultiplication ∆ of
C corestricts to a map ∆ : C → C�HC and the counit ε of C factorizes to a
map ε : C → H such that ε = εHε. Moreover, by Proposition 3.9, (C, ∆, ε) is a
coalgebra in the monoidal category (H

HMH
H , �H , H). Therefore, by Proposition 1.5,

G(C) = D, where G is the monoidal functor (H
HMH

H , �H , H) G−→ (H
HYD,⊗, K) (see

1.12), is a coalgebra in the monoidal category (H
HYD,⊗, K). The comultiplication

of D is
δ : D → D ⊗ D : d �→

∑
d(1)Sεd(2) ⊗ d(3),

and the counit is induced by the counit of C.
Now, by 1.12, the counit of the adjunction (F, G), corresponding to the monoidal

equivalence

(H
HYD,⊗, K) F−→ (H

HM
H
H , �H , H) G−→ (H

HYD,⊗, K),

is given by
εM : MCo(H) ⊗ H → M, εM (v ⊗ h) = vh.

By Corollary 1.7, εA is a coalgebra isomorphism. �

3.19. Suppose that H is a Hopf algebra. Let V ∈ MK and W ∈ HM. It is well
known that we have a functorial isomorphism

(22) (V ⊗ H)�HW � V ⊗ W,

which is given by
∑n

i=1 vi�Hhi ⊗wi �→
∑n

i=1 ε(hi)vi ⊗w1. The inverse of this map
is V ⊗ ρW .

Furthermore, the functor F : MK → MH , F (V ) = V ⊗ H, has as a left adjoint
the functor G : MH → MK that “forgets” the comodule structure. The maps that
define this adjunction are

αV,W : M
H(V, W ⊗ H) → MK(V, W ), αV,W (f) = (V ⊗ ε)f,

βV,W : MK(V, W ) → M
H , βV,W (g) = (g ⊗ H)ρV ,

where ρV defines the comodule structure on V .
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Lemma 3.20. Let V , W be two vector spaces and let Z be a left H– comodule. If we
regard Z⊗H as a left H– comodule with diagonal coaction and a right comodule via
Z ⊗∆H , then there is a one – to – one correspondence between MK(V ⊗H, W ⊗Z)
and MH(V ⊗ H, (W ⊗ H)�H(Z ⊗ H)). If γ ∈ MK(V ⊗ H, W ⊗ Z) and Γ ∈
MH(V ⊗ H, (W ⊗ H)�H(Z ⊗ H)) correspond to each other through this bijective
map, then they are related by the following relations:

γ = (W ⊗ εH ⊗ Z ⊗ εH)Γ,(23)

Γ(v ⊗ h) =
∑

γ1(v ⊗ h(1)) ⊗ γ2(v ⊗ h(1))〈−1〉h(2) ⊗ γ2(v ⊗ h(1))〈0〉 ⊗ h(3),(24)

where γ(v⊗ h) =
∑

γ1(v⊗ h)⊗ γ2(v⊗ h) ∈ W ⊗Z is a Sweedler– like notation for
γ(v ⊗ h).

Proof. By (22) we have

(W ⊗ H)�H(Z ⊗ H) � W ⊗ Z ⊗ H.

Hence

M
H(V ⊗ H, (W ⊗ H)�H(Z ⊗ H)) � M

H(V ⊗ H, W ⊗ Z ⊗ H).

By composing this isomorphism with αV ⊗H,W⊗Z , we obtain a bijective map

M
H(V ⊗ H, (W ⊗ H)�H(Z ⊗ H)) → MK(V ⊗ H, W ⊗ Z).

Suppose now that γ and Γ correspond to each other through the above K– linear
isomorphism. A straightforward but tedious computation shows us that γ and Γ
verify (23) and (24). �
3.21. Let R ∈ HM and let ∆R#H : (R#H) → (R#H)�H(R#H) be a right H–
colinear map. By Lemma 3.20, if

(25) δ̃ = (R ⊗ εH ⊗ R ⊗ εH)∆R#H ,

and for r ∈ R, h ∈ H we write δ̃(r#h) =
∑

δ̃1(r#h) ⊗ δ̃2(r#h) ∈ R ⊗ R, then

(26) ∆R#H(r#h) =
∑

δ̃1(r#h(1))#δ̃2(r#h(1))〈−1〉h(2) ⊗ δ̃2(r#h(1))〈0〉#h3.

Conversely if δ̃ : R ⊗ H → R ⊗ R is a linear map and ∆R#H is defined by (26),
then ∆R#H is a right H– colinear map and Im(∆R#H) ⊆ (R#H)�H(R#H).

3.22. Let H be a Hopf algebra and let A be a bialgebra with multiplication m, unit
u, comultiplication ∆ and counit εA.

In view of Theorem 3.12, Problem 1, as stated in 3.1, can be reformulated as
follows: characterize all bialgebra A that are objects in H

HMH
H such that A becomes

an algebra in (H
HMH

H ,⊗H , H) and a coalgebra in (HMH , �H , H), with the further
requirement that εA is right H– linear.

By Proposition 3.16, the diagram (R, m, u) of A is an algebra in H
HYD, R#H

is an algebra and the map εA : R#H → A, εA(r ⊗ h) = rh is an isomorphism of
algebras in (H

HMH
H ,⊗H , H). Obviously, R#H is a bialgebra with comultiplication

∆R#H and counit εR#H given by

∆R#H := (ε−1
A ⊗ ε−1

A )∆εA and εR#H := εAεA.

Of course, with respect to this bialgebra structure, εA becomes an isomorphism of
bialgebras.

Furthermore, since A becomes an algebra in (H
HMH

H ,⊗H , H) and a coalgebra in
(HMH , �H , H), the smash R#H has the same properties. In particular Im(∆R#H)
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⊆ (R#H)�H(R#H) and ∆R#H can be regarded as a right H– colinear map
∆R#H : R#H → (R#H) �H(R#H).

Hence, by 3.21, ∆R#H is uniquely determined by the K– linear map δ̃ : R#H →
R⊗R. In order to obtain the counit εR#H , we consider the restriction of εA to R.
For simplifying the notation, we shall denote it by ε.

Lemma 3.23. The following assertions are equivalent:
(1) εA is right H– linear;
(2) εR#H(r#h) = ε(r)εH(h), for all r ∈ R and h ∈ H;
(3) εA(1Ah) = εH(h), for all h ∈ H.

Proof. By definition, we have εR#H(r#h) = εA(rh).
(1) ⇒ (2) By hypothesis we have εA(rh) = ε(r)εH(h).
(2) ⇒ (3) By hypothesis we have εR#H(1A#h) = ε(1A)εH(h) = εH(h).
(3) ⇒ (1) By relation 3) in (16) of Proposition 3.5, we have

εA(ah) = εA((a1A)h) = εA(a(1Ah)) = εA(a)ε(1Ah).

�

All considerations above still hold if we work with an arbitrary algebra R in
H
HYD. To be more precise we reformulate our problem of characterizing algebras A
as above in the following way.

Problem 3.24. Let R be an algebra in H
HYD. Suppose that δ̃ : R#H → R ⊗ R,

ε : R → K are K– linear maps. Let ∆R#H be defined by (26) and let εR#H :=
ε ⊗ εH . Find a necessary and sufficient condition such that (R#H, ∆R#H , εR#H)
is a bialgebra that becomes a coalgebra in (HMH , �H , H).

Note that R#H always becomes an algebra in (H
HMH

H ,⊗H , H), as claimed in
Example 3.14. Of course, by solving the above problem we also get an answer to
our initial question of finding all bialgebras A, where A is an H– Hopf bimodule,
that become an algebra in (H

HMH
H ,⊗H , H) and a coalgebra in (HMH , �H , H) such

that εA is right H– linear. It is enough to take R to be the diagram of A and δ̃, ε
as in 3.22. Therefore, we fix the following notation:

• R is an algebra in H
HYD;

• δ̃ : R#H → R ⊗ R and ε : R → K are K– linear maps;
• ∆R#H is defined by (26);
• εR#H := ε ⊗ εH ;
• ρR#H : R#H → H ⊗ R#H : r#h �→

∑
r〈−1〉h(1) ⊗

(
r〈0〉#h(2)

)
denotes the

map that defines the left coaction on R#H (see Example 3.14).

3.25. To simplify the computation we shall sometimes use the method of repre-
senting morphisms in a braided category by diagrams. For details, the reader is
referred to [Ka, Chapter XIV.1]. Here we shall only mention that the morphisms
are represented by arrows oriented downwards.

We shall apply this method in the category H
HYD of Yetter– Drinfeld modules.

Recall that, for every V, W ∈ H
HYD the braiding is given by

(27) cV,W : V ⊗ W → W ⊗ V, cV,W (v ⊗ w) =
∑

v〈−1〉w ⊗ v〈0〉.

Two examples of diagrams in this category can be found in Figure 1. Note that in
both pictures the crossings represent cR,H .
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Figure 1. Definitions of ρR#H and ∆R#H .
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Figure 2. Properties of εH and ∆H .

Lemma 3.26. Let H be a Hopf algebra. Then:
a) (εH ⊗ R)cR,H = cR,K(R ⊗ εH).
b) (∆H ⊗ R)cR,H = (H ⊗ cR,H)(cR,H ⊗ H)(R ⊗ ∆H).

Proof. Straightforward. �

Remark 3.27. The equations from the previous lemma admit the representations
from Figure 2. Note that in both equalities the right-hand side is obtained from
the left-hand side by pulling εH , respectively ∆H , under the crossing. This is a
general property that works for arbitrary diagrams related to braided categories:
a morphism can be moved along the string, and it can be pulled under or over
crossings.

Recall that we are seeking conditions such that (R#H, ∆R#H , εR#H) becomes
a coalgebra in the monoidal category (HMH , �H , H) so that we need ∆R#H to be
an (H, H)– bicolinear map. Note that the left H– comodule structure of (R#H) ⊗
(R#H) is given by ρR#H ⊗R#H and the right one by R#H ⊗ ρr

R#H . By 3.22, we
already know that ∆R#H is right H– colinear. The following result deals with left
H– colinearity which is expressed by relation (28).
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Figure 3. Representation of (28) ⇐⇒ (29).
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Figure 4. The proof of (28) =⇒ (29).

Lemma 3.28. The following two relations are equivalent:

[ρR#H ⊗ (R#H)]∆R#H = (H ⊗ ∆R#H)ρR#H ,(28)

(H ⊗ δ̃)ρR#H = (cR,H ⊗ R) (R ⊗ cR,H) (δ̃ ⊗ H)(R ⊗ ∆H).(29)

Proof. Note that the equivalence that we have to prove can be represented as in
Figure 3. We prove that (28)⇒(29) in Figure 4. The first equality there was
obtained by composing both sides of (28) with H ⊗R ⊗ εH ⊗ R ⊗ εH . The second
equation holds because εH and ∆H can be pulled under the string in a crossing;
see Remark 3.27. We conclude the proof of this implication by using the fact that
εH is the counit of H.

The other implication is proved in Figure 5. By Remark 3.27 we can drag ∆H

under the braiding, so we get the first equality. Since the comultiplication in H is
coassociative, we have the second and last relations. The third one follows since,
by assumption, (29) holds. �
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Figure 5. The proof of (29) =⇒ (28).
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Figure 6. Representation of (30) ⇐⇒ (31).

Lemma 3.29. Assume that ∆R#H is left H– colinear (i.e. satisfies (28)). Then
the following two relations are equivalent:

[∆R#H ⊗ (R#H)]∆R#H = [(R#H) ⊗ ∆R#H)∆R#H ,(30)

(δ̃ ⊗ R)(R ⊗ cR,H)(δ̃ ⊗ H)(R ⊗ ∆H) = (R ⊗ δ̃)(δ̃ ⊗ H)(R ⊗ ∆H).(31)

Proof. The diagrammatic representation of the equivalence is given in Figure 6. It
is easy to see that (30) implies (31). Indeed it is enough to add (R⊗εH ⊗R⊗εH ⊗
R ⊗ εH) on the bottom of the diagram representing (30), then drag εH under the
crossings and use the fact that εH is a counit. The other implication is proved in
Figure 7. �
3.30. Let R and S be two algebras in the braided category H

HYD. We can define a
new algebra structure on R ⊗ S by using the braiding (27) and not the usual flip
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Figure 7. The proof of (31) =⇒ (30).

morphism. The multiplication in this case is defined by the formula

(32) (r ⊗ s) (t ⊗ v) =
∑

r(s〈−1〉t) ⊗ s〈0〉v.

Let us remark that, for any algebra R in H
HYD, the smash product R#H is a

particular case of this construction. Just take S = H with the left adjoint action
and usual left H– comodule structure. Another example that we are interested in
is R ⊗ R, where R is the diagram of a bialgebra A as in 3.22. For such an algebra
R in H

HYD we shall always use this algebra structure on R ⊗ R.

Lemma 3.31. Let δ̃ : R⊗H → R⊗R be a K– linear map. Then the following two
relations are equivalent:

∆R#H ((r#h)(s#k)) = ∆R#H(r#h)∆R#H(s#k),(33)

δ̃ ((r#h)(s#k)) =
∑

δ̃(r#h(1)) h(2) δ̃(s#k),(34)

where, for every h ∈ H and r, t ∈ R, we have h(r ⊗ t) =
∑

h(1)r ⊗ h(2)t.

Proof. Let r#h and s#k ∈ R#H. Thus we have

∆(r#h) =
∑

δ̃1(r#h(1))#δ̃2(r#h(1))〈−1〉h(2) ⊗ δ̃2(r#h(1))〈0〉#h(3),

∆(s#k) =
∑

δ̃1(s#k(1))#δ̃2(s#k(1))〈−1〉k(2) ⊗ δ̃2(s#k(1))〈0〉#k(3),

∆R#H ((r#h)(s#k)) =
∑

δ̃1(rh(1)s#h(2)k(1))#δ̃2(rh(1)s#h(2)k(1))〈−1〉h(3)k(2)

⊗ δ̃2(rh(1)s#h(2)k(1))〈0〉#h(4)k(3).

By substituting in (33) the elements involving ∆R#H with the right-hand sides of
the above three relations, and then by applying R ⊗ εH ⊗ R ⊗ εH , it results in

δ̃((r#h)(s#k))(35)

=
∑

δ̃1(r#h(1)) δ̃2(r#h(1))〈−1〉h(2) δ̃1(s#k) ⊗ δ̃2(r#h(1))〈0〉 h(3) δ̃2(s#k)

Since in R ⊗ R the multiplication is defined by (32), it follows that the right-hand
sides of (34) and (35) are equal, so the equality (34) holds.

Conversely, if (34) holds true, then we have (35). We can replace the left-
hand side of this relation by

∑
δ̃1(r h(1)s#h(2)k) ⊗ δ̃2(r h(1)s#h(2)k). A very long
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computation, using this equivalent form of (35), ends the proof of the proposition.
�

3.32. Let δ̃ : R ⊗ H → R ⊗ R be a K– linear map. For every r ∈ R and h ∈ H we
introduce the notation

(36) δ(r) = δ̃(r#1), ω(h) = δ̃(1#h).

Then δ : R → R ⊗ R and ω : H → R ⊗ R are K– linear maps. Recall that R ⊗ R
is an algebra in H

HYD with the multiplication defined in 3.30. For example we can
compute the product δ(r)ω(h) in R ⊗ R. Now, using the notation above, we can
give a new interpretation of (33).

Lemma 3.33. Let δ̃ : R ⊗ H → R ⊗ R be a K– linear map. Then ∆R#H is a
morphism of algebras iff δ(1R) = 1R ⊗ 1R, ω(1H) = 1R ⊗ 1R and δ, δ̃ and ω satisfy
the following four relations:

δ̃(r#h) = δ(r)ω(h),(37)
δ(rs) = δ(r)δ(s),(38)

ω(hk) =
∑

ω(h(1)) h(2)ω(k),(39) ∑
δ
(
h(1)r

)
ω(h(2)) =

∑
ω(h(1)) h(2)δ(r).(40)

Proof. By Lemma 3.31, the map ∆R#H is multiplicative if and only if (34) holds,
i.e.

δ̃ ((r#h)(s#k)) =
∑

δ̃(r#h(1)) h(2) δ̃(s#k).

Now assume that (34) holds. Then setting h = 1H = k we obtain (38), while for
r = 1R = s we obtain (39). Also for h = 1H and s = 1R we get (37) and for r = 1R

and k = 1H we get (40), by means of (37). Conversely assume that (38), (40), (37)
and (39) hold true. Then by (37), (38) and (39) we have

δ̃((r#h)(s#k)) =
∑

δ(r h(1)s)ω(h(2)k) =
∑

δ(r)δ(h(1)s)ω(h(2)) h(3)ω(k).

So, by (40) and by the fact that R⊗R is an algebra in H
HYD (hence an H– module

algebra), we get

δ̃((r#h)(s#k)) =
∑

δ(r)ω(h(1)) h(2)δ(s) h(3)ω(k) =
∑

δ(r)ω(h(1)) h(2) [δ(s)ω(k)].

Now we can prove (34) by using (37) once again. Obviously ∆R#H is a morphism
of unitary rings if and only if δ(1R) = 1R ⊗ 1R and ω(1H) = 1R ⊗ 1R. �

Remark 3.34. By (37) we can recover δ̃ from δ : R → R ⊗ R and ω : H → R ⊗ R.
Equation (38) says that δ is multiplicative with the algebra structure on R ⊗ R
introduced in 3.30. We have already noted that R⊗R is a left H– module algebra.
For an arbitrary left H– module algebra A, Sweedler, in [Sw2], defined a non–
commutative 1– cocycle with a coefficient in A to be a K– linear map θ : H → A
such that

θ(hk) =
∑

θ(h(1))h(2)θ(k).

Hence (39) means that ω is a 1– cocycle with coefficients in A.

Lemma 3.35. Assume that ∆R#H is multiplicative. Then (29) holds iff δ and ω
are left H– colinear (where H is a left H– comodule with left adjoint coaction).
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Proof. Assume that (29) holds and let r ∈ R, h ∈ H. By evaluating (29) at r#1
we get

ρl
R⊗R(δ(r)) =

∑
r〈−1〉 ⊗ δ(r〈0〉),

so δ is H– colinear. Similarly, for 1#h we have∑
h(1) ⊗ ω1(h(2)) ⊗ ω2(h(2))

=
∑

ω1(h(1))〈−1〉ω
2(h(1))〈−1〉h(2) ⊗ ω1(h(1))〈0〉 ⊗ ω2(h(1))〈0〉,

i.e. we get

(41)
∑

h(1) ⊗ ω(h(2)) =
∑

ω(h(1))〈−1〉h(2) ⊗ ω(h(1))〈0〉.

On the other hand,∑
ω(h)〈−1〉 ⊗ ω(h)〈0〉 =

∑
ω(h(1))〈−1〉h(2)S(h(3)) ⊗ ω(h(1))〈0〉

=
∑

h(1)S(h(3)) ⊗ ω(h(2)),

where the last equality holds in view of (41). Hence ω is left H– colinear.
Conversely, assume that δ and ω are left H– colinear. Relation (29), that we

have to prove, is equivalent to Al(r, s) = Ar(r, s), where

Al(r, s) =
∑

δ̃1(r#h(1))〈−1〉δ̃
2(r#h(1))〈−1〉h(2) ⊗ δ̃1(r#h(1))〈0〉δ̃2(r#h(1))〈0〉,

(42)

Ar(r, s) =
∑

r〈−1〉h(1) ⊗ δ̃(r(0)#h(2)).

(43)

Then, since ∆R#H is multiplicative, by (37) we have

Al(r, s) =
∑

δ̃(r ⊗ h(1))〈−1〉h(2) ⊗ δ̃(r ⊗ h(1))〈0〉

=
∑

δ(r)〈−1〉ω(h(1))〈−1〉h(2) ⊗ δ(r)〈0〉ω(h(1))〈0〉.

Since δ and ω are left colinear it results in∑
δ(r)〈−1〉ω(h(1))〈−1〉h(2) ⊗ δ(r)〈0〉ω(h(1))〈0〉

=
∑

r〈−1〉h(1) ⊗ δ(r〈0〉)ω(h(2)) = Ar(r, s),

so Al(r, s) = Ar(r, s), and the lemma is proved. �

3.36. To simplify the notation, for every r ∈ R, let δ(r) :=
∑

r(1) ⊗ r(2). This is a
kind of sigma notation that we shall use for δ.

Lemma 3.37. Assume that ∆R#H is a morphism of algebras such that δ is left
H– colinear. Then (31) holds iff the following two relations hold true for any r ∈ R
and h ∈ H: ∑

r(1) ⊗ δ(r(2)) =
∑

δ(r(1))ω(r(2)
〈−1〉) ⊗ r

(2)
〈0〉,(44) ∑

ω1(h(1)) ⊗ δ
(
ω2(h(1))

)
ω(h(2))(45)

=
∑

δ
(
ω1(h(1))

)
ω

(
ω2(h(1))〈−1〉h(2)

)
⊗ ω2(h(1))〈0〉.
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Proof. Since ∆R#H is multiplicative it is straightforward to prove that (31) holds
iff, for every r ∈ R and h ∈ H, we have Bl(r, h) = Br(r, h), where

Bl(r, h) =
∑

r(1)

(
r(2)
〈−1〉ω1(h(1))

)
⊗ δ

(
r(2)
〈0〉

ω2(h(1)

)
ω(h(2)),(46)

Br(r, h) =
∑

δ

(
r(1) r(2)

〈−2〉ω1(h(1))
)

ω
(
r(2)
〈−1〉

ω2(h(1))〈−1〉h(2)

)
⊗ r(2)

〈0〉
ω2(h(1))〈0〉.

(47)

Since ∆R#H is a morphism of algebras we have δ(1R) = 1R⊗1R and ω(1H) = 1R⊗
1R. Hence one can easily see that (44) and (45) are equivalent to Bl(r, 1) = Br(r, 1)
and Bl(1, h) = Br(1, h), respectively. In particular, (31) implies (44) and (45). In
order to prove the converse, let us denote by Cl(h) and Cr(h) the left- and right-
hand sides of (45). Since δ is left H– colinear, and by using (38), it results in

Bl(r, h) =
∑(

r(1) ⊗ δ(r(2))
)

Cl(h),

where the product is performed in R⊗R⊗R, which is an algebra with multiplication
given by

(r ⊗ s ⊗ t)(r′ ⊗ s′ ⊗ t′) =
∑

r s〈−1〉t〈−2〉r′ ⊗ s〈0〉
t〈−1〉s′ ⊗ t〈0〉t

′.

Similarly, by (37) and (34), it follows that

Br(r, h) =
∑(

δ(r(1))ω(r(2)
〈−1〉

) ⊗ r(2)
〈0〉

)
Cr(h).

By multiplying (44) and (45) side by side in R⊗R⊗R, we deduce that Bl(r, h) =
Br(r, h). �

3.38. We are seeking conditions such that (R#H, ∆R#H , εR#H) becomes a coal-
gebra in the monoidal category (HMH , �H , H). Note that, in this case, εR#H =
εH ◦ εR#H , where, by Lemma 3.7,
(48)

εR#H(r#h) =
∑

εR#H [(r#h)〈0〉](r#h)〈1〉 =
∑

εR#H(r#h(1))h(2) = ε(r)h.

Note that εR#H is a map in the category HMH .

Lemma 3.39. Let R be an algebra in H
HYD and let ε : R → K be a K– linear map.

The map εR#H : R#H → K, εR#H(r ⊗ h) := ε(r)εH(h) is an algebra map and
εR#H : R#H → H, defined as in (48), is a left H– colinear map if and only if ε is
an algebra map in H

HYD.

Proof. The map εR#H is left H– colinear if and only if

(49)
∑

ε(r)h(1) ⊗ h(2) =
∑

r〈−1〉h(1)ε(r〈0〉) ⊗ h(2), ∀r ∈ R, h ∈ H.

Note that relation (49) holds true if and only if

(50) ε(r)h =
∑

r〈−1〉hε(r〈0〉), ∀r ∈ R, h ∈ H,

i.e. if and only if ε is left H– colinear. In fact from (50), (49) follows easily.
Conversely, by applying H ⊗ εH to (49), we get (50). Now let us prove that εR#H

is an algebra map if and only if ε is an H– linear algebra map.
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“⇒” Assume that the map εR#H : R#H → K, εR#H(r ⊗ h) := ε(r)εH(h) is an
algebra map. By the definition of the multiplication in R#H and the definition of
εR#H we get∑

ε(rh(1)s)εH

(
h(2)v

)
= εR#H ((r#h)(s#v)) = εR#H(r#h)εR#H(s#v)

= ε(r)εH (h) ε(s)εH(v).
(51)

Then εR#H(1R ⊗ 1H) = 1, i.e. ε(r) = 1. Thus, from (51), we have

ε(hs) =
∑

ε(1R
h(1)s)εH

(
h(2)1H

)
= ε(1R)εH(h)ε(s)εH(1H) = εH(h)ε(s)

and
ε(rs) =

∑
ε(rs)εH (1H1H) = ε(r)εH(1H)ε(s)εH(1H) = ε(r)ε(s),

i.e. ε is an H– linear algebra map.
“⇐” Now assume that ε is an H– linear algebra map. Thus

εR#H ((r#h)(s#k)) =
∑

εR#H

(
rh(1)s#h(2)k

)
=

∑
ε(rh(1)s)εH(h(2)k)

=
∑

ε(r)εH(h(1))ε(s)εH(h(2))εH(k)

= εR#H ((r#h)(s#k)) .

�

Lemma 3.40. Assume that ε is an algebra map in H
HYD. Then εR#H : R#H → K

is a counit for ∆R#H if and only if, for every r ∈ R and h ∈ H, we have

(52)
∑

ε(δ̃1(r ⊗ h))δ̃2(r ⊗ h) = εH(h)r =
∑

δ̃1(r ⊗ h)ε
(
δ̃2(r ⊗ h)

)
.

Proof. Assume that εR#H is a counit for ∆R#H . Then, by the definition of ∆R#H

(see (26)), it results in

r ⊗ h =
∑

δ̃1(r ⊗ h(1)) ⊗ δ̃2(r ⊗ h(1))〈−1〉h(2)ε
(
δ̃2(r ⊗ h(1))〈0〉

)
εH

(
h(3)

)
.

By applying R ⊗ εH to this relation, we get the second equality of (52). The other
one can be proved similarly.

Conversely assume that the equality (52) holds. Since ε is left H– colinear, we
have

(R#H ⊗ εR#H)∆R#H =
∑

δ̃1(r ⊗ h(1))ε
(
δ̃2(r ⊗ h(1))

)
⊗ h(2)

=
∑

rεH

(
h(1)

)
⊗ h(2) = r ⊗ h.

We can prove the second relation analogously. �

Lemma 3.41. Assume that ∆R#H is multiplicative and that ε : R → K is an
algebra map in H

HYD. Then (52) holds if and only if

(ε ⊗ R)δ = (R ⊗ ε)δ = IdR,(53)
(ε ⊗ R)ω = (R ⊗ ε)ω = εH1R.(54)
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Proof. First let us observe that ε⊗R : R⊗R → R and R⊗ε : R⊗R → R are algebra
maps (recall that R⊗R is an algebra with multiplication (mR⊗mR⊗R)(R⊗cR,R),
where c is the braiding in H

HYD). Clearly (52) holds if and only if

(ε ⊗ R)δ̃ (r#h) = εH (h) r = (R ⊗ ε)δ̃ (r#h) , ∀r ∈ R, ∀h ∈ H.

Assume now that (53) and (54) hold. Then

(ε ⊗ R)δ̃ (r#h) = (ε ⊗ R)δ (r) · (ε ⊗ R)ω (h) = εH (h) r.

Analogously we can deduce the second equality of (52). The other implication is
trivial. �

To state the main results of this part more easily, in the next definition we collect
together all the required properties of δ, ω and ε.

Definition 3.42. Let H be a Hopf algebra and let R be an algebra in (H
HYD,⊗, K).

Assume that ε : R → K , δ : R → R ⊗ R and ω : H → R ⊗ R are K– linear maps.
The quadruple (R, ε, δ, ω) will be called a Yetter–Drinfeld quadruple if and only if,
for all r, s ∈ R and h, k ∈ H, the following relations are satisfied:

ε(hr) = ε(r)εH(h) and
∑

r〈−1〉ε(r〈0〉) = ε(r)1H ;(55)

ε(rs) = ε(r)ε(s) and ε(1R) = 1;(56)

ρR⊗R (δ(r)) =
∑

r〈−1〉 ⊗ δ(r〈0〉);(57)

ρR⊗R (ω(h)) =
∑

h(1)S(h(3)) ⊗ ω(h(2));(58)

δ(rs) = δ(r)δ(s) and δ (1R) = 1R ⊗ 1R;(59)

ω(hk) =
∑

ω(h(1))
(
h(2)ω(k)

)
and ω (1H); = 1R ⊗ 1R;(60) ∑

δ
(
h(1)r

)
ω(h(2)) =

∑
ω(h(1)) h(2)δ(r);(61) ∑

r(1) ⊗ δ(r(2)) =
∑

δ(r(1))ω(r(2)
〈−1〉) ⊗ r

(2)
〈0〉;(62) ∑

ω1(h(1)) ⊗ δ(ω2(h(1)))ω(h(2))(63)

=
∑

δ(ω1(h(1)))ω
(
ω2(h(1))〈−1〉h(2)

)
⊗ ω2(h(1))〈0〉;

(ε ⊗ R)δ = (R ⊗ ε)δ = IdR;(64)

(ε ⊗ R)ω = (R ⊗ ε)ω = εH1R.(65)

Remark 3.43. Note that these relations can be interpreted as follows:
(55) – ε is a morphism in H

HYD;
(56) – ε is a morphism of algebras;
(57) – δ is left H– colinear;
(58) – ω is left H– colinear, where H is a comodule with the adjoint coaction;
(59) – δ is a morphism of algebras where on R ⊗ R we consider the algebra

structure that uses the braiding c;
(60) – ω is a normalized cocycle;
(61) – ω measures how far δ is to a morphism of left H– modules (if ω is trivial,

i.e. for every h ∈ H we have ω(h) = ε(h)1R ⊗ 1R, then δ is left H– linear); we shall
say that δ is a twisted morphism of left H– modules;
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(62) – it was derived from the fact that ∆R#H is coassociative, so we shall say
that δ is ω– coassociative (when ω is trivial then (62) is equivalent to the fact that
δ is coassociative);

(63) – is the only property that has not an equivalent in the theory of bialgebras;
we shall just say that δ and ω are compatible;

(64) – δ is a counitary map with respect to ε;
(65) – ω is a counitary map with respect to ε.
Since ε satisfies the last two relations, we shall call it the counit of the Yetter–

Drinfeld quadruple R. By analogy δ will be called the comultiplication of R. Finally,
we shall say that ω is the cocycle of R.

3.44. To every Yetter–Drinfeld quadruple (R, ε, δ, ω), we associate the K– linear
maps ∆R#H : R#H → (R#H) ⊗ (R#H) and εR#H : R#H → K, which are
defined by

∆R#H(r ⊗ h) =
∑

δ̃1(r ⊗ h(1)) ⊗ δ̃2(r ⊗ h(1))〈−1〉h(2) ⊗ δ̃2(r ⊗ h(1))〈0〉 ⊗ h(3),

(66)

εR#H(r#h) = ε(r)εH(h),(67)

where δ̃ (r#h) := δ (r)ω (h), and we use the notation

δ̃(r#h) =
∑

δ̃1(r ⊗ h) ⊗ δ̃2(r ⊗ h).

Theorem 3.45. Let R be an algebra in H
HYD. If ε : R → K, δ : R → R ⊗ R and

ω : H → R ⊗ R are linear maps, then the following assertions are equivalent:
(a) (R, ε, δ, ω) is a Yetter–Drinfeld quadruple.
(b) The smash product algebra R#H is a bialgebra with comultiplication ∆R#H

and counit εR#H defined by (66) and (67) such that R#H becomes an algebra in
(H
HMH

H ,⊗H , H) and a coalgebra in (HMH , �H , H).

Proof. (a) ⇒ (b) In view of the definition of ∆R#H , we have that (37) holds.
Then, since also (59), (60) and (61) hold, by Lemma 3.33 it results that ∆R#H is
a unitary algebra morphism.

Since ∆R#H is multiplicative, we can apply Lemma 3.28 and Lemma 3.35 to
deduce that ∆R#H is left H– colinear by using relations (57) and (58), i.e. that δ
and ω are left H– colinear. On the other hand, by 3.21, we get that ∆R#H is right
colinear, so ∆R#H is a morphism of (H, H)– bicomodules. Also, by 3.21, it follows
that the image of ∆R#H is included in (R#H)�H(R#H).

Since ∆R#H is multiplicative and left H– colinear and since δ is also left H–
colinear, by (62) and (63) it results that ∆R#H is coassociative (use Lemma 3.37
and Lemma 3.29).

To prove that εR#H is a morphism of algebras we use Lemma 3.39, (55) and
(56). Finally, in view of (64) and (65), Lemma 3.41 and Lemma 3.40 imply that
εR#H is a counit for ∆R#H . All these properties together mean that R#H is a
bialgebra that, in view of (b) ⇒ (a) of Proposition 3.9, becomes a coalgebra in
(HMH , �H , H). We conclude by remarking that R#H always becomes an algebra
in (H

HMH
H ,⊗H , H); see Example 3.14.

(b) ⇒ (a) Since ∆R#H is morphism of algebras, by Lemma 3.33 it follows that
(59), (60) and (61) hold true. As ∆R#H is left H– colinear and multiplicative, by
Lemma 3.28 and Lemma 3.35, δ and ω are H– colinear, so that (57) and (58) hold.
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Since we have already proved that δ is left H– colinear, we can apply Lemma 3.37
and Lemma 3.29 to deduce (62) and (63) from the fact that ∆R#H is coassociative.

Since (R#H, ∆R#H , εR#H) becomes a coalgebra in (HMH , �H , H) and εR#H

is an algebra map, in view of 3.38 we can apply Lemma 3.39 to get that ε is an
algebra map in H

HYD, so that (55) and (56) hold true.
Since εR#H is a counit for ∆R#H and since ∆R#H is multiplicative, by Lemma

3.40 and Lemma 3.41, we conclude that (64) and (65) hold. Thus (R, ε, δ, ω) is a
Yetter–Drinfeld quadruple. �

Definition 3.46. Let (R, ε, δ, ω) be a Yetter–Drinfeld quadruple. The smash prod-
uct algebra R#H, endowed with the bialgebra structure described in Theorem 3.45,
will be called the bosonization of (R, ε, δ, ω) and will be denoted by R#bH.

Proposition 3.47. Let R be an H– bicomodule algebra. Let φ : (A, mA, uA) →
(B, mB, vB) be an isomorphism of algebras in the category of vector spaces. If
A ∈ H

R MH
R , then B can be endowed, via φ, with obvious Hopf bimodule structures

and φ : A → B is an isomorphism in H
R MH

R . Moreover, if A becomes an algebra in
(H
R MH

R ,⊗R, R), then (B, mB, uB) also becomes an algebra in (H
R MH

R ,⊗R, R) such
that φ : (A, mA, uA) → (B, mB, uB) is an algebra isomorphism in the category
(H
R MH

R ,⊗R, R).

Proof. Obvious. �

Proposition 3.48. Let D be an H– bimodule coalgebra. Let φ : (A, ∆A, εA) →
(B, ∆B , εB) be an isomorphism of coalgebras in the category of vector spaces. If
A ∈ D

HMD
H , then B can be endowed, via φ, with obvious Hopf bicomodule structures

and φ : A → B is an isomorphism in D
HMD

H . Moreover, if A becomes a coalgebra
in (D

HMD
H , �D, D), then (B, ∆B, εB) also becomes a coalgebra in (D

HMD
H , �D, D)

such that φ : (A, ∆A, εA) → (B, ∆B, εB) is a coalgebra isomorphism in the category
(D
HMD

H , �D, D).

Proof. Obvious. �

We have been informed that the dual form of the equivalence (b)⇔ (c) below, as
stated in Theorem 3.64, has already been proved by P. Schauenburg (see 6.1 and
Theorem 5.1 in [Sch2]). Nevertheless, for sake of completeness, we decided to keep
our proof.

Theorem 3.49. Let A be a bialgebra and let H be a Hopf algebra. The following
assertions are equivalent:

(a) A is an object in H
HMH

H , the counit εA : A → K is right H– linear and A
becomes an algebra in (H

HMH
H ,⊗H , H) and a coalgebra in (HMH , �H , H).

(b) There is an algebra R in H
HYD, and there are maps εR : R → k, δ : R → R⊗R

and ω : H → R ⊗ R such that (R, εR, δ, ω) is a Yetter-Drinfeld quadruple and
A is isomorphic as a bialgebra to the bosonization R#bH of this Yetter Drinfeld
quadruple.

(c) There are a bialgebra map π : A → H and an (H, H)– bicolinear algebra
map σ : H → A such that πσ = IdH .
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Moreover, if (c) holds, we can choose the Yetter-Drinfeld quadruple (R, εR, δ, ω),
where

R = ACo(H), εR = εA|R,

δ(r) = r(1)σSπ(r(2)) ⊗ r(3), ω(h) = σ(h)(1)σSπ[σ(h)(2)] ⊗ σ(h)(3)σSπ[σ(h)(4)].

Proof. (a) ⇒ (b) By 3.22 the canonical map εA : R#H → A in H
HMH

H is an
isomorphism of bialgebras, where the coalgebra structure on R#H is defined by
∆R#H := (ε−1

A ⊗ ε−1
A )∆εA and εR#H := εAεA. Clearly, by Proposition 3.47 and

Proposition 3.48, R#H becomes an algebra in (H
HMH

H ,⊗H , H) and a coalgebra in
(HMH , �H , H), since A does. Let ε be the restriction of εA to R. As explained in
3.21, if

δ̃ = (R ⊗ εH ⊗ R ⊗ εH)∆R#H ,

and for r ∈ R, h ∈ H we write δ̃(r#h) =
∑

δ̃1(r#h) ⊗ δ̃2(r#h) ∈ R ⊗ R, then, as
∆R#H is right H– colinear, we have

∆R#H(r#h) =
∑

δ̃1(r#h(1))#δ̃2(r#h(1))〈−1〉h(2) ⊗ δ̃2(r#h(1))〈0〉#h3.

Let us define the K– linear maps δ and ω as in (36). Since ∆R#H is a morphism
of algebras, by Lemma 3.33 it follows that δ̃ (r#h) := δ (r)ω (h). Thus we can
apply Theorem 3.45 to conclude that (R, ε, δ, ω) is a Yetter–Drinfeld quadruple.
Note that the bosonization of this Yetter–Drinfeld quadruple is the bialgebra R#H
constructed above.

(b) ⇒ (a) By Proposition 3.47 and Proposition 3.48, A is an object in H
HMH

H

and A becomes an algebra in (H
HMH

H ,⊗H , H) and a coalgebra in (HMH , �H , H).
Since εR#H is defined by (67), it is right H– linear, so that the map εA : A → K

is right H– linear, too.
(a) ⇔ (c) follows by Theorem 3.12.
The last statement follows by direct computation, using the canonical isomor-

phism εA : R#H → A in H
HMH

H , which turns out to be εA(r#h) = rσ(h), the
inverse being defined by ε−1

A (a) = a(1)σSπ(a(2)) ⊗ π(a(3)). �

Remark 3.50. Let (R, ε, δ, ω) be a Yetter–Drinfeld quadruple such that ω is trivial.
Recall that this means that

ω(h) = εH(h)1R ⊗ 1R, for all h ∈ H.

Then it is easy to check that relations (55)– (65) are equivalent to the fact that
(R, δ, ε) is a bialgebra in (H

HYD,⊗, K). Conversely, starting with a bialgebra
(R, δ, ε) in the monoidal category (H

HYD,⊗, K), we can consider the Yetter–Drinfeld
quadruple (R, ε, δ, ω), where ω is the trivial cocycle. Furthermore, the bosoniza-
tion of this Yetter–Drinfeld quadruple is the usual bosonization of the bialgebra
R, i.e. as an algebra is the smash product R#H and as a coalgebra is the smash
coproduct. Recall that the comultiplication and counit of the smash coproduct are
respectively defined by

∆R#H (r#h) =
∑

r(1) ⊗ r(2)
〈−1〉h(1) ⊗ r(2)

〈0〉 ⊗ h(2),

εR#H (r#h) = ε (r) ε (h) ,

where, by notation, δ(r) =
∑

r(1) ⊗ r(2).
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Corollary 3.51 (D. Radford). Let H be a Hopf algebra and let A be a bialgebra.
Then the following statements are equivalent:

(a) A is an object in H
HMH

H , A becomes an algebra in (H
HMH

H ,⊗H , H) and a
coalgebra in (H

HMH
H , �H , H).

(b) The diagram R of A is a bialgebra in (H
HYD,⊗, K) such that A is isomorphic

as a bialgebra to the usual bosonization of R by H.
(c) There are two bialgebra morphisms π : A → H, σ : H → A such that πσ =

IdH .

Proof. (a) ⇒ (c) Note that the map εA : A → K is right H– linear, so that, by
Theorem 3.12 and by Theorem 3.13, we conclude the proof.

(c) ⇒ (b) We apply Theorem 3.49. Let (R, εR, δ, ω) be the the Yetter-Drinfeld
quadruple that corresponds to π and σ, i.e.

R = ACo(H), εR = εA|R,

δ(r) = r(1)σSπ(r(2)) ⊗ r(3), ω(h) = σ(h)(1)σSπ[σ(h)(2)] ⊗ σ(h)(3)σSπ[σ(h)(4)].

Since σ is a coalgebra map, then ω is trivial.
(b) ⇒ (a) follows by Proposition 3.47 and Proposition 3.48. In fact, as explained

in Example 3.14 and in Example 3.17, the usual bosonization R#H of R by H is
an object in H

HMH
H that becomes an algebra in (H

HMH
H ,⊗H , H) and a coalgebra in

( H
HMH

H , �H , H). �
Lemma 3.52. Let A be a bialgebra over a field K and let I be a nilpotent ideal
and coideal of A. If the quotient bialgebra A/I has an antipode, then A is a Hopf
algebra.

Proof. Let us point out that an element x in a ring R is invertible if it is invertible
modulo a nil ideal L of R. We apply this to the ring R = HomK(A, A) endowed
with the convolution product, to the nil ideal L = HomK(A, I) and to x = IdA.
The quotient R/L is isomorphic to the algebra HomK(A, A/I) and, through this
identification, the class of IdA corresponds to the canonical projection p : A → A/I.
We conclude by remarking that the inverse of p in HomK(A, A/I) is p ◦ S, where
S is the antipode of A/I. �
Theorem 3.53. Let A be a bialgebra over a field K. If the Jacobson radical J
of A is a nilpotent coideal such that H := A/J is a Hopf algebra which has an
ad– coinvariant integral and that every canonical map A/Jn+1 → A/Jn splits in
HMH , then A is isomorphic as a bialgebra to the bosonization R#bH of a certain
Yetter–Drinfeld quadruple (R, ε, δ, ω). In fact A and R#bH are isomorphic Hopf
algebras.

Proof. By Theorem 2.13 there is an (H, H)– bicolinear algebra section σ : H → A
of the canonical projection π : A → H. We conclude by applying Theorem 3.49
and Lemma 3.52. �
Theorem 3.54. Let A be a bialgebra over a field K. If the Jacobson radical J of A
is a nilpotent coideal such that H := A/J is a Hopf algebra which is both semisimple
and cosemisimple (e.g. when H is semisimple over a field of characteristic 0), then
A is isomorphic as a bialgebra to the bosonization of a certain Yetter–Drinfeld
quadruple (R, ε, δ, ω). In fact A and R#bH are isomorphic Hopf algebras.

Proof. Apply Theorem 2.28, Theorem 3.49 and Lemma 3.52. �



MONOIDAL APPROACH TO SPLITTING MORPHISMS OF BIALGEBRAS 1035

3.55. We now go back to Problem 2, as stated in 3.1, i.e. to investigate those
bialgebras A with the property that there is a pair of K– linear maps

σ : H → A and π : A → H

such that σ is a morphism of bialgebras and π is an (H, H)– bilinear algebra retrac-
tion of σ, i.e. πσ = IdH . To this aim, we proceed as follows.

3.56. Let R ∈ HM and let mR#H : (R#H)⊗H(R#H) → (R#H) be a right H–
linear map. In analogy with 3.21, if

(68) m̃ = mR#H(R ⊗ uH ⊗ R ⊗ uH),

and for r ∈ R, h ∈ H we write m̃(r ⊗ s) =
∑

m̃0(r ⊗ s) ⊗ m̃1(r ⊗ s) ∈ R#H, then

(69) mR#H [(r#h) ⊗H (s#l)] =
∑

m̃0(r ⊗h(1) s) ⊗ m̃1(r ⊗h(1) s) h(2)l.

Conversely if m̃ : R ⊗ R → R ⊗ H is a linear map and mR#H is defined by (69),
then mR#H is a right H– linear map.

Futhermore, if (R, δ, ε) is a coalgebra in H
HYD, for every r ∈ R and h ∈ H we

introduce the notation

(70) m = (R ⊗ εH)m̃, ξ = (ε ⊗ H)m̃.

Then m : R ⊗ R → R and ξ : R ⊗ R → H are K– linear maps.

3.57. Let H be a Hopf algebra and let A be a bialgebra with multiplication m, unit
uA, comultiplication ∆ and counit εA.

In view of Theorem 3.13, Problem 2 can be reformulated as follows: to charac-
terize all bialgebras A that are objects in H

HMH
H such that A becomes a coalgebra

in (H
HMH

H , �H , H) and an algebra in (HMH ,⊗H , H), with the further requirement
that uA is right H– colinear.

By Proposition 3.18, the diagram (R, δ, ε) of A is a coalgebra in H
HYD, the smash

coproduct R#H is a coalgebra and the map εA : R#H → A, εA(r ⊗ h) = rh is an
isomorphism of coalgebras in (H

HMH
H , �H , H). Obviously, R#H is a bialgebra with

multiplication mR#H and unit uR#H given by

mR#H := ε−1
A m(εA ⊗ εA) and uR#H := ε−1

A uA.

Of course, with respect to this bialgebra structure, εA becomes an isomorphism of
bialgebras.

Furthermore, since A becomes a coalgebra in (H
HMH

H , �H , H) and an algebra
in (HMH ,⊗H , H), the smash R#H has the same properties. In particular mR#H

factorizes to a morphism of right H– modules mR#H : (R#H)⊗H(R#H) → R#H.
Hence, by 3.56, mR#H is uniquely determined by a K– linear map m̃ : R⊗R →

R#H. In order to obtain the unit uR#H , we consider the corestriction of uA to R.
For simplifying the notation, we shall denote it by u.

3.58. Let R and S be two coalgebras in the braided category H
HYD. We can define

a new coalgebra structure on R ⊗ S by using the braiding (27) and not the usual
flip morphism. The comultiplication in this case is defined by the formula

(71) δR⊗S (r ⊗ s) =
∑

r(1) ⊗r
(2)
〈−1〉 s(1) ⊗ r

(2)
〈0〉 ⊗ s(2).

Let us remark that, for any coalgebra R in H
HYD, the smash coproduct R#H is a

particular case of this construction. Just take S = H with the left adjoint coaction
and the usual left H– module structure. Another example that we are interested in
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is R⊗R, where R is the diagram of a bialgebra A as in 3.57. For such a coalgebra
R in H

HYD we shall always use this coalgebra structure on R ⊗ R.

Definition 3.59. Let H be a Hopf algebra and let (R, δ, ε) be a coalgebra in
the category (H

HYD,⊗, K). Set δ(r) =
∑

r(1) ⊗ r(2). Assume that u : K → R,
m : R⊗R → R, and ξ : R⊗R → H are K– linear maps. The quadruple (R, u, m, ξ)
will be called a dual Yetter–Drinfeld quadruple if and only if, for all r, s, t ∈ R and
h ∈ H, the following relations are satisfied:

hu(1) = εH(h)u(1) and ρRu(1) = 1H ⊗ u(1);(72)

δu(1) = u(1) ⊗ u(1) and εu(1) = 1K ;(73)
hm(r ⊗ s) =

∑
m( h(1)r ⊗ h(2)s);(74) ∑

ξ(h(1)r ⊗ h(2)s) =
∑

h(1)ξ(r ⊗ s)Sh(2);(75)

δm = (m ⊗ m)δR⊗R and εm = mK(ε ⊗ ε);(76)

∆Hξ = (mH ⊗ H)(ξ ⊗ H ⊗ ξ)(R ⊗ R ⊗ ρR⊗R)δR⊗R and εHξ = mK(ε ⊗ ε);
(77)

cR,H(m ⊗ ξ)δR⊗R = (mH ⊗ R)(ξ ⊗ H ⊗ m)(R ⊗ R ⊗ ρR⊗R)δR⊗R;(78)

m(R ⊗ m) = m(m ⊗ R)(R ⊗ R ⊗ µR)(R ⊗ R ⊗ ξ ⊗ R)(δR⊗R ⊗ R);(79)

mH(ξ ⊗ H)(R ⊗ m ⊗ ξ)(R ⊗ δR⊗R)(80)

= mH(ξ ⊗ H)(R ⊗ cH,R)(m ⊗ ξ ⊗ R)(δR⊗R ⊗ R);

m(R ⊗ u) = IdR = m(u ⊗ R);(81)

ξ(R ⊗ u) = ξ(u ⊗ R) = ε1H .(82)

Remark 3.60. Note that these relations can be interpreted as follows:
(72) – u is a morphism in H

HYD;
(73) – u is a coalgebra map;
(74) – m is left H– linear;
(75) – ξ is left H– linear, where H is a module with the adjoint action;
(76) – m is a morphism of coalgebras, where on R⊗R we consider the coalgebra

structure that uses the braiding c;
(77) – ξ is a normalized cocycle; more generally, if C is a left H– comodule

coalgebra, then a map ψ : C → H is called a non– commutative 1 cocycle if

∆H(ψ(c)) =
∑

ψ
(
c(1)

)
(c(2))〈−1〉 ⊗ ψ

(
(c(2))〈0〉

)
;

(78) – ξ measures how far m is to be a morphism of left H– comodules (if ξ is
trivial, i.e. for every r, s ∈ R we have ξ(r⊗s) = ε(r)ε(s), then m is left H– colinear);
we shall say that m is a twisted morphism of left H– comodules; we shall use the
notation m(r ⊗ s) = rs, so (78) can be rewritten as follows:∑

(r(1)r
(2)
〈−1〉s(1))〈−1〉ξ(r

(2)
〈0〉 ⊗ s(2)) ⊗ (r(1)r

(2)
〈−1〉s(1))〈0〉

=
∑

ξ(r(1) ⊗ r
(2)
〈−2〉s(1))r(2)

〈−1〉s
(2)
〈−1〉 ⊗ r

(2)
〈0〉s

(2)
〈0〉;

(79) – when ξ is trivial then (79) is equivalent to the fact that m is associative;
so, in general, we shall say that m is ξ– associative; here µR denotes the H– action
on R;
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(80) – we shall just say that m and ξ are compatible; it is equivalent to∑
ξ(r ⊗ s(1) s

(2)
〈−1〉t(1))ξ(s(2)

〈0〉 ⊗ t(2))

=
∑

ξ(r(1) r
(2)
〈−1〉s(1) ⊗ ξ(r

(2)
〈0〉⊗s(2))(1)t)ξ(r(2)

〈0〉 ⊗ s(2))(2);

(81) – m is a unitary map with respect to u;
(82) – ξ is a unitary map with respect to u.

Since u satisfies the last two relations, we shall call it the unit of the dual Yetter–
Drinfeld quadruple R. By analogy m will be called the multiplication of R. Finally,
we shall say that ξ is the cocycle of R.

3.61. To every dual Yetter–Drinfeld quadruple (R, u, m, ξ), we associate the K–
linear maps m : R#H ⊗ (R#H) → (R#H) and uR#H : K → R#H, which are
defined by

mR#H [(r#h) ⊗H (s#k)] =
∑

m̃0(r ⊗h(1) s) ⊗ m̃1(r ⊗h(1) s) h(2)k,(83)

uR#H(1) = u(1)#1H ,(84)

where m̃ (r ⊗ s) = (m ⊗ ξ)δR⊗R(r ⊗ s) =
∑

m
(
r(1) ⊗ r

(2)
〈−1〉s(1)

)
⊗ ξ

(
r
(2)
〈0〉 ⊗ s(2)

)
and we use the notation m̃(r ⊗ s) =

∑
m̃0(r ⊗ s) ⊗ m̃1(r ⊗ s).

Theorem 3.62. Let (R, δ, ε) be a coalgebra in H
HYD. If u : K → R, m : R⊗R → R

and ξ : R ⊗ R → H are linear maps, then the following assertions are equivalent:
(a) (R, u, m, ξ) is a dual Yetter–Drinfeld quadruple.
(b) The smash coproduct coalgebra R#H is a bialgebra with multiplication mR#H

and unit uR#H defined by (83) and (84) such that R#H becomes a coalgebra in
(H
HMH

H , �H , H) and an algebra in (HMH ,⊗H , H).

Proof. Dual to Theorem 3.49. �
Definition 3.63. Let (R, u, m, ξ) be a dual Yetter–Drinfeld quadruple. The smash
product coalgebra R#H, endowed with the bialgebra structure described in The-
orem 3.62, will be called the bosonization of (R, u, m, ξ) and will be denoted by
R# bH.

As we already remarked before Theorem 3.49, the equivalence (b)⇔ (c) below
has already been proved by P. Schauenburg (see 6.1 and Theorem 5.1 in [Sch2]).

Theorem 3.64. Let A be a bialgebra and let H be a Hopf algebra. The following
assertions are equivalent:

(a) A is an object in H
HMH

H , the unit u : K → A is right H– colinear and A
becomes a coalgebra in (H

HMH
H , �H , H) and an algebra in (HMH ,⊗H , H).

(b) There is a coalgebra R in H
HYD and there are maps u : K → R, m : R⊗R → R

and ξ : R ⊗ R → H such that (R, u, m, ξ) is a dual Yetter-Drinfeld quadruple and
A is isomorphic, as a bialgebra, to the bosonization R# bH of (R, u, m, ξ).

(c) There are a bialgebra map σ : H → A and an (H, H)– bilinear coalgebra
map π : A → H such that πσ = IdH .

Moreover, if (c) holds, we can choose the Yetter-Drinfeld quadruple (R, u, m, ξ),
where

R = ACo(H), u = u
|R
A ,

m(r ⊗ s) =
∑

r(1)s(1)σSπ(r(2)s(2)), ξ(r ⊗ s) = π(rs).
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Proof. (a) ⇒ (b) By 3.57 the canonical map εA : R#H → A in H
HMH

H is an
isomorphism of bialgebras, where the algebra structure on R#H is defined by
mR#H := ε−1

A m(εA ⊗ εA) and uR#H := ε−1
A uA. Clearly, by Proposition 3.47 and

Proposition 3.48, R#H becomes a coalgebra in (H
HMH

H , �H , H) and an algebra in
(HMH ,⊗H , H), since A does. Let u be the corestriction of uA to R.

As explained in 3.56, if

m̃ = mR#H(R ⊗ uH ⊗ R ⊗ uH),

and for r ∈ R, h ∈ H we write m̃(r ⊗ s) =
∑

m̃0(r ⊗ s)⊗ m̃1(r ⊗ s) ∈ R#H, then,
as mR#H is right H– linear, we have

mR#H [(r#h) ⊗H (s#l)] =
∑

m̃0(r ⊗h(1) s) ⊗ m̃1(r ⊗h(1) s) h(2)l.

Let us define the K– linear maps m and ξ as in (70). Since mR#H is a morphism
of coalgebras, analogous to Lemma 3.33, it follows that m̃ = (m ⊗ ξ)δR⊗R. Thus
we can apply Theorem 3.62 to conclude that (R, u, m, ξ) is a dual Yetter–Drinfeld
quadruple. Note that the bosonization of this dual Yetter–Drinfeld quadruple is
the bialgebra R#H constructed above.

(b) ⇒ (a) By Proposition 3.47 and Proposition 3.48, A is an object in H
HMH

H

and A becomes a coalgebra in (H
HMH

H , �H , H) and an algebra in (HMH ,⊗H , H).
Since uR#H is defined by (84), it is right H– colinear, so that the map uA : K → A
is right H– colinear, too.

(a) ⇔ (c) follows by Theorem 3.13.
The last statement follows by direct computation, using the canonical isomor-

phism εA : R#H → A in H
HMH

H , which turns out to be εA(r#h) = rσ(h), the
inverse being defined by ε−1

A (a) =
∑

a(1)σSπ(a(2)) ⊗ π(a(3)). �

Remark 3.65. Let (R, u, m, ξ) be a dual Yetter–Drinfeld quadruple such that ξ is
trivial. Recall that this means that

ξ(r ⊗ s) = ε(r)ε(s)1H , for all r, s ∈ R.

Then it is easy to check that relations (72)– (82) are equivalent to the fact that
(R, m, u) is a bialgebra in (H

HYD,⊗, K). Conversely, starting with a bialgebra
(R, m, u) in the monoidal category (H

HYD,⊗, K), we can consider the dual Yetter–
Drinfeld quadruple (R, u, m, ξ), where ξ is the trivial cocycle. Furthermore, the
bosonization of this dual Yetter–Drinfeld quadruple is the usual bosonization of
the bialgebra R, i.e. as an algebra is the smash product R#H and as a coalgebra
is the smash coproduct. Recall that the multiplication and the unit of the smash
product are respectively defined by

mR#H [(r#h) ⊗ (s#k)] =
∑

r h(1)s ⊗ h(2)k,

uR#H (1) = u(1) ⊗ 1H .

Theorem 3.66. Let A be bialgebra over a field K. Suppose that the coradical H
of A is a semisimple sub– bialgebra of A with antipode. Then A is isomorphic as
a bialgebra to the bosonization R# bH of a certain dual Yetter–Drinfeld quadruple
(R, u, m, ξ). In fact A and R# bH are isomorphic Hopf algebras.

Proof. In view of a famous Takeuchi’s result (see [Mo, Lemma 5.2.10]), A is a Hopf
algebra. Let σ : H → A be the canonical injection. By Theorem 2.35, there
is a coalgebra morphism π : A → H in HMH such that πσ = IdH . In view of
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Theorem 3.64, there exists a dual Yetter–Drinfeld quadruple (R, u, m, ξ) such that
A is isomorphic as a bialgebra to the bosonization of this dual Yetter–Drinfeld
quadruple. �

Example 3.67. Let p be an odd prime and let K be an infinite field containing a
primitive p– th root of the unit λ. Let C be a cyclic group of order p2 with generator
c. For every a ∈ K, a �= 0, let A := H (a) be the Hopf algebra constructed by
Beattie, Dăscălescu and Grünenfelder in [BDG]. A has dimension p4, with basis{

cixj
1x

r
2 | 0 ≤ i ≤ p2 − 1, 0 ≤ j, r ≤ p − 1

}
, where c, x1, x2 are subject to

cp2
= 1, xp

1 = cp − 1, xp
2 = cp − 1,

x1c = λ−1cx1, x2c = λcx2, x2x1 = λx1x2 + a
(
c2 − 1

)
,

∆ (c) = c ⊗ c, ∆ (x1) = c ⊗ x1 + x1 ⊗ 1, ∆ (x2) = c ⊗ x2 + x2 ⊗ 1.

A is a pointed Hopf algebra with coradical H := KC. Let σ : H → A be the canon-
ical injection and let π : A → H be the obvious projection. It is straightforward to
show that A, H, π and σ fulfill the requirements of Theorem 3.64(c). Let

R = AcoH =
{

b ∈ A |
∑

b(1) ⊗ π
(
b(2)

)
= b ⊗ 1

}
.

We have that R is the K– subspace of A spanned by the products xj
1x

r
2, where

0 ≤ j, r ≤ p−1. In view of Theorem 3.64, one gets a dual Yetter–Drinfeld quadruple
(R, u, m, ξ) such that A is isomorphic as a bialgebra to the bosonization R# bH of
R by H. Moreover ξ(r ⊗ s) = π(rs). We point out that ξ is not trivial. In fact we
have

ξ (x2 ⊗ x1) = π(x2x1) = π[λx1x2 + a
(
c2 − 1

)
] = a

(
c2 − 1

)
.

Clearly, the dual Hopf algebra A∗ fulfills the requirements of Theorem 3.49 with
respect to H∗, σ∗ and π∗. Let ι : R → A be the canonical injection. Then we have
that the restriction Λ of ι∗ to (A∗)coH∗

,

Λ : (A∗)coH∗
→ R∗,

is an isomorphism. Let α : R∗ ⊗ R∗ → (R ⊗ R)∗ be the usual isomorphism. Then
we have the following commutative diagram:

H∗ ω ��

ξ∗

��

(A∗)coH∗ ⊗ (A∗)coH∗

Λ⊗Λ

��

(R ⊗ R)∗ R∗ ⊗ R∗α



In fact we have

[(α (Λ ⊗ Λ) ω) (χ)] (r ⊗ s) = (εR#χ) mR#H (r#1 ⊗ s#1)

=
∑

εR

[
m

(
r(1) ⊗ r

(2)
〈−1〉s(1)

)]
χ

[
ξ
(
r
(2)
〈0〉⊗ s(2)

)]
=

∑
εR

(
r(1)

)
εR

(
r
(2)
〈−1〉s(1)

)
χ

[
ξ
(
r
(2)
〈0〉⊗ s(2)

)]
=

∑
εR

(
r(1)

)
εH

(
r
(2)
〈−1〉

)
εR

(
s(1)

)
χ

[
ξ
(
r
(2)
〈0〉⊗ s(2)

)]
= χ [ξ (r⊗ s)] = [ξ∗ (χ)] (r ⊗ s) .
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It follows that we can identify the Yetter–Drinfeld quadruple ((A∗)coH∗
, ε, δ, ω)

with the Yetter–Drinfeld quadruple
(
R∗, (uR)∗ , m∗, ξ∗

)
, where (uR)∗ : R∗ → K

is the evaluation at 1 ∈ R. In particular we observe that we get a non– trivial
bosonization since ω is not trivial.

The remaining part of this section is devoted to the proof of Theorem 3.71.

Proposition 3.68. Let H be a cosemisimple Hopf algebra. Suppose that C is a
coalgebra in MH such that the coradical C0 of C is H. Then C is an object in
HMH

H such that R, the space of right coinvariant elements of C, is an H– comodule
coalgebra and C is isomorphic as a coalgebra, via a morphism in HMH

H , with the
smash coproduct coalgebra R#H of R by H.

Moreover there is a right H– linear coalgebra morphism πR : C → R such that
πR |R= IdR, where R is regarded as a right module with trivial action.

Proof. Let H be a cosemisimple Hopf algebra. Suppose that (C, ∆, ε) is a coalgebra
in (MH ,⊗, K) such that the coradical of C is H. Then, by Theorem 2.17, there
is a coalgebra map πC : C → H which is right H– linear and πC(h) = h, for any
h ∈ H. Since πC is a morphism of coalgebras in (MH ,⊗, K), then C is an object
in HMH

H and ∆ corestricts to a morphism

∆ : C → C�HC in H
M

H
H

such that (C, ∆, πC) is a coalgebra in (HMH
H , �H , H).

Let G be the monoidal functor (HMH
H , �H , H) G−→ (HM,⊗, K) (see 1.10). Then,

by Proposition 1.5, G(C) = R is a coalgebra in the monoidal category (HM,⊗, K)
and the comultiplication of R is

(85) δ : R → R ⊗ R : r �→
∑

r(1)SπC(r(2)) ⊗ r(3)

while the counit is induced by the counit of C.
Now, by 1.10, the counit of the adjunction (F, G), corresponding to the monoidal

equivalence

(H
M,⊗, K) F−→ (H

M
H
H , �H , H) G−→ (H

M,⊗, K),

is given by
εM : MCo(H) ⊗ H → M, εM (v ⊗ h) = vh.

By Corollary 1.7, εC is a coalgebra isomorphism in HMH
H . Note that the coalgebra

structure of FG(C) = CCo(H) ⊗ H = R ⊗ H is exactly the one defining the smash
coproduct of R by H (see Example 3.17). It is easy to check that the map π :
R#H → R, given by π(r#h) = εH(h)r, is a morphism of coalgebras, it is right
H– linear and π |

R
= IdR. As the canonical map εC : R#H → C is an isomorphism

of coalgebras in HMH
H and εC(r#1) = r, for every r ∈ R we get that πR := πε−1

C

has the same properties. �

Lemma 3.69. Let C be a coalgebra. Suppose that there is a group – like element
c0 ∈ C such that C0 = Kc0, i.e. C is connected. Let (C ′

n)n∈N be a coalgebra
filtration in C such that C ′

0 = C0. Then, for every c ∈ C ′
n, we have

(86) ∆(c) − c ⊗ c0 − c0 ⊗ c ∈ C ′
n−1 ⊗ C ′

n−1.

In particular, if c ∈ C ′
1, then ∆(c) = c ⊗ c0 + c0 ⊗ c − ε(c)c0 ⊗ c0.
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Proof. Since (C ′
n)n∈N is a coalgebra filtration, we have ∆(C ′

n) ⊆
∑

i+j=n C ′
i ⊗ C ′

j .

Hence there are c′, c′′ ∈ C ′
n and x ∈ C ′

n−1 ⊗ C ′
n−1 such that

(87) ∆(c) = c′ ⊗ c0 + c0 ⊗ c′′ + x.

By applying ε ⊗ C and C ⊗ ε to this relation, we deduce that

c = ε(c′)c0 + c′′ + x1 = c′′ + y1,

c = ε(c′′)c0 + c′ + x2 = c′ + y2,

where x1 = (ε⊗C)(x), x2 = (C ⊗ ε)(x) are in C ′
n−1, since x ∈ C ′

n−1 ⊗C ′
n−1. Then

y1 = ε(c′)c0 + x1 ∈ C ′
n−1 and y2 = ε(c′′)c0 + x2 ∈ C ′

n−1.
We conclude the first part of the lemma by substituting c′ and c′′ in (87). Now,

if c ∈ C ′
1, then ∆(c) = c⊗ c0 + c0 ⊗ c + αc0 ⊗ c0, for a certain α in K. By applying

ε ⊗ ε we deduce that α = −ε(c). �

3.70. Let H be a cosemisimple Hopf algebra. We shall denote by Ĥ the set of
isomorphism classes of simple left H– comodules. It is well known that, for every
τ ∈ Ĥ, there is a simple subcoalgebra C(τ ) of H such that ρV (V ) ⊆ C(τ ) ⊗ V ,
where (V, ρV ) is an arbitrary comodule in τ . Moreover, we have H =

⊕
τ∈Ĥ

C(τ ).

Theorem 3.71. Let H be a cosemisimple Hopf algebra. Suppose that (C, ∆, ε) is a
coalgebra in MH such that the coradical C0 of C is H. Let (Cn)n∈N be the coradical
filtration of C.

a) For every natural number n, we have Cn � Rn#H (an isomorphism in
HMH

H). In particular Cn is freely generated as an H–module by elements r ∈ C
satisfying the relation

(88) ∆(r) =
∑

r〈−1〉 ⊗ r〈0〉 + r ⊗ 1H + Cn−1 ⊗ Cn−1.

b) C1 verifies the following equation:

(89) C1 = C0 +
∑
τ∈Ĥ

(C(τ ) ∧ K1H)H.

Proof. a) By Proposition 3.68, Cn is the smash coproduct coalgebra R′
n#H. By

the construction of R′
n we have R′

n = R ∩ Cn. Since Cn is isomorphic in HMH
H to

R′
n#H, it results that Cn is free as a right H– module.
Note that (R′

n)n∈N is not a priori a coalgebra filtration in R, since R is not
a subcoalgebra of C (its comultiplication is δ; see (85) for its definition). Let
δ(r) =

∑
r(1) ⊗ r(2).

Let us prove that (R′
n)n∈N is indeed a coalgebra filtration. Let πR be the coalge-

bra morphism from Proposition 3.68. Then R′
n = πR(Cn), so (R′

n)n∈N is a coalgebra
filtration of R, as πR is surjective. By [Mo, Corollary 5.3.5], the coradical of R is
included in πR(H) = K1H , hence R is connected and R′

0 = R0. By Lemma 3.69
applied to the filtration (R′

n)n∈N we deduce that

δ(r) ∈ r ⊗ 1H + 1H ⊗ r + R′
n ⊗ R′

n,
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for any r ∈ R′
n+1. By induction it results that R′

n ⊆ Rn, for every n. On the other
hand, for r ∈ Rn+1 we have

δ(r) ∈ r ⊗ 1H + 1H ⊗ r + Rn ⊗ Rn.

Since C is isomorphic to the smash coproduct coalgebra via εC , we get ∆(r) =
(εC ⊗ εC)∆R#H(r#1H), so that

(90) ∆(r) =
∑

r(1)r(2)
〈−1〉 ⊗ r(2)

〈0〉 ∈
∑

r〈−1〉 ⊗ r〈0〉 + r ⊗ 1H + RnH ⊗ RnH.

If we assume, by induction, that Rn = R′
n, then ∆(r) ∈ C ⊗ Cn + H ⊗ C, that is,

r ∈ Cn+1. Thus r ∈ Cn+1 ∩ R = R′
n+1. In conclusion, the filtrations (R′

n)n∈N and
(Rn)n∈N are equal, and Cn � Rn#H. Note also that, by (90), every element in Rn

satisfies (88), and hence a) is proved.
b) By the proof of the first part, it follows that every Rn is a subobject in HMH

H

of R. Let us decompose R1 as a direct sum of left H– comodules

(91) R1 = K1H ⊕ R′
1 = K1H ⊕

(
n⊕

i=1

Vi

)
,

where each Vi is simple. Let τi be the isomorphism class of Vi. Take i ∈ {1, . . . , n}
and r ∈ Vi. As in the proof of (90), by using the second equality in Lemma 3.69,
one can show that

∆(r) =
∑

r〈−1〉⊗r〈0〉+r⊗1H−ε(r)1H⊗1H =
∑

r〈−1〉⊗r〈0〉+(r − ε(r)1H)⊗1H .

Hence ∆(r) ∈ C(τi) ⊗ C + C ⊗ K1H which proves that r ∈ C(τi) ∧ K1H . Thus,
in view of the decomposition (91), we have proved the inclusion “⊆” of (89), as C
is generated as a right H– module by R. The other inclusion is trivial since, for
τ ∈ Ĥ and c ∈ C(τ ) ∧ K1H , we have

∆(c) ∈ C(τ ) ⊗ C + C ⊗ K1H ⊆ H ⊗ C + C ⊗ H.

Thus c ∈ H ∧ H = C1, so we deduce (C(τ ) ∧ K1H)H ⊆ C1, as C1 is a right
submodule of C. �

Remark 3.72. Let A be a Hopf algebra such that A0, the coradical of A, is a
subalgebra. In [AS5, Lemma 4.2] it is shown that (89) holds true for C := grA. In
[CDMM, Remark 3.2] it is pointed out that the proof of (89), given in [AS5] for
grA, also works in the case C := A, since A is a cosmash by [Mas, Theorem 3.1].
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