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A MONOIDAL APPROACH
TO SPLITTING MORPHISMS OF BIALGEBRAS

A. ARDIZZONI, C. MENINI, AND D. STEFAN

ABSTRACT. The main goal of this paper is to investigate the structure of Hopf
algebras with the property that either its Jacobson radical is a Hopf ideal or
its coradical is a subalgebra. Let us consider a Hopf algebra A such that its
Jacobson radical J is a nilpotent Hopf ideal and H := A/J is a semisimple
algebra. We prove that the canonical projection of A on H has a section which
is an H—colinear algebra map. Furthermore, if H is cosemisimple too, then we
can choose this section to be an (H, H)-bicolinear algebra morphism. This fact
allows us to describe A as a ‘generalized bosonization’ of a certain algebra R in
the category of Yetter—Drinfeld modules over H. As an application we give a
categorical proof of Radford’s result about Hopf algebras with projections. We
also consider the dual situation. Let A be a bialgebra such that its coradical is
a Hopf sub-bialgebra with antipode. Then there is a retraction of the canonical
injection of H into A which is an H-linear coalgebra morphism. Furthermore,
if H is semisimple too, then we can choose this retraction to be an (H, H)—
bilinear coalgebra morphism. Then, also in this case, we can describe A as a
‘generalized bosonization’ of a certain coalgebra R in the category of Yetter—
Drinfeld modules over H.

INTRODUCTION

Let H be a Hopf algebra. The categories YD and ML of Yetter — Drinfeld
modules and respectively Hopf bimodules appeared, in particular, as an attempt
to construct new solutions to the Yang—Baxter equation. Nowadays we can rec-
ognize their most important properties in the definition of braided categories, a
very general and abstract setting useful, not only for providing new solutions to the
Yang — Baxter equation, but also in many other areas of mathematics, such as the
theory of quantum groups and low-dimensional topology.

Partially motivated by these applications, the theory of Hopf algebras was known
in the 80’s as an outstanding development. Besides many striking results obtained
since then, we would like to recall, more or less chronologically, a few of them that
will play a very important role in our paper.
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e The description of the coradical filtration of a pointed coalgebra, due to Taft
and Wilson [TWJ, that is crucial in the classification of finite-dimensional pointed
Hopf algebras.

e The characterization of bialgebras with projection due to Radford [Rall]. Later
Majid [Maj1] showed that this result can be interpreted in terms of bialgebras in a
braided category.

e The equivalence of braided categories YD ~ H9MI (see [Wo], [AD] and
[Schi]), and its relation with the Drinfeld double D(H) [D1].

e The classification of certain classes of pointed Hopf algebras of finite dimension.
One of the used methods is the ‘lifting’ method (see [AS1], [AS2], [AS3], [AS4]).
Let A be a Hopf algebra such that its coradical is a Hopf subalgebra H. Then the
coradical filtration of A is a filtration of Hopf algebras, and hence gr A is a graded
Hopf algebra. One of the main steps of the ‘lifting’ method is to describe gr A, by
using the second-mentioned result, as the ‘bosonization’ of a certain Hopf algebra
Rin YD by H. The next step is to find all Hopf algebras A having a given graded
Hopf algebra gr A.

e Let A be a finite-dimensional Hopf algebra over a field k of characteristic
zero whose coradical, say H, forms a Hopf subalgebra. Then the left H—module
coalgebra A is a cosmash in the sense that there exists an H—linear coalgebra map
v : A — H such that v |,= Idg; see [SvO]. Masuoka showed in [Mas], using a
different method, that the above result still holds true without any assumption on
the dimension of A and char k.

e For a Hopf algebra A a conjectural formula for A;, the first component of the
coradical filtration of A, is proposed in [AS5]. This formula is proved in the same
paper in the case when A is a graded Hopf algebra such that its coradical is a Hopf
subalgebra of A. In [CDMM] the conjecture is proved in the ungraded case.

One of the main aims of this paper is to strengthen some of the results that we
mentioned above. Our approach is based on the following results. Let A be a Hopf
algebra such that its Jacobson radical J is a nilpotent Hopf ideal and H := A/J is
a semisimple algebra. Then the canonical projection of A on H has a section which
is an H—colinear algebra map. Furthermore, if H is cosemisimple too, then we can
choose this section to be an (H, H)—bicolinear algebra morphism. We also consider
the dual situation. Let A be a bialgebra such that its coradical is a sub-bialgebra
with antipode. Then there is a retraction of the canonical injection of H into A
which is an H-linear coalgebra morphism. Furthermore, if H is semisimple too,
then we can choose this retraction to be an (H, H)—bilinear coalgebra morphism.
These results are achieved by applying Theorem 2.12] and Theorem .16 that were
proved in [AMS] in the framework of monoidal categories. Thus we start the first
section by recalling the definition of a monoidal category. Then we present a list of
the monoidal categories we are interested into, motivating why we chose to make
use of this terminology.

Then, in the second section, we relate the concept of semisimple and separable
algebra in the categories of (bi)comodules over H, and cosemisimple and cosepa-
rable coalgebra in the categories of (bi)modules over H by means of some suitable
integrals. This will allow us to apply the above-mentioned theorems.

The main results of this section recall us [Rall, where it is assumed that a Hopf
algebra morphism 7 : A — H has a section o : H — A which is a morphism of Hopf
algebras. In [Ral] it is shown that there is a bialgebra R in £YD such that A is
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the smash product algebra and the smash product coalgebra of R by H. It is then
natural to look for a similar description of a bialgebra A, supposing that 7: A — H
has a section ¢ which is only a morphism of algebras in 9. This will be done
in the second section of the paper. The starting point is the simple observation
that A becomes in a natural way an object in 9. Of course the left and right
comodule structures are induced by 7. Since o is a morphism of algebras, A is a
bimodule over H, and the fact that ¢ is a morphism of bicomodules is enough to
ensure the required compatibility relations. By using the equivalence

oM ~ YD

we have A ~ R ® H (isomorphism in M), where R = A°(H). Moreover, the
multiplication of A is a morphism in gsmg, and the unit of A is in R. Therefore
R becomes an algebra in #YD, and A can be identified as an algebra with the
smash product R#H. We cannot repeat this argument for the coalgebra structure
since A is only (H, H)-bicolinear. Thus, by identifying A and R#H as algebras,
the problem of describing all bialgebras A as above is equivalent to finding all
coalgebras structures on R#H such that the comultiplication is a morphism of
(H, H)-bicomodules. We prove that Agyp is uniquely determined by a pair of
K—linear maps

0:R—R®R and w:H — R®R.

Let € be the restriction of the counit of A to R. The properties of §, w and ¢
necessary to get a bialgebra structure on R#H are listed in Definition The
result that we obtain is stated in Theorem

Then we also prove the dual result, namely that a Hopf algebra A, having the
coradical a semisimple and cosemisimple Hopf subalgebra, is as a Hopf algebra,
not only as a coalgebra, a kind of smash product; see Theorem B.66. We expect
that this last result is strongly connected with the lifting method introduced by N.
Andruskiewitsch and H.J. Schneider. Theorem can probably be used to get
direct information about a Hopf algebra A with the property that its coradical is
a subalgebra, skipping the step when the associated graded Hopf algebra grA is
investigated.

We conclude the paper with Theorem B.7Il There we prove that if H is a
cosemisimple Hopf algebra and (C, A, ¢) is a coalgebra in M such that the coradi-
cal Cy of C'is H, then the first term C of the coradical filtration of C' verifies (89]).
In [AS5, Lemma 4.2] it was shown that (89) holds true for C' := grA, where A is a
Hopf algebra such that Ag, the coradical of A, is a subalgebra, while in [CDMM],,
Remark 3.2] it was pointed out that the proof of (89), given in [ASH] for grA, also
works in the case C' := A is a Hopf algebra such that Ag, the coradical of A, is a
subalgebra.

1. INTEGRAL, SEPARABILITY AND COSEPARABILITY

1.1. A monoidal category means a category M that is endowed with a functor
®: MxM — M, an object 1 € M and functorial isomorphisms: ax,y z :
(XeY)®Z - X (Y®Z),lx:18X — X and rx : X®1 — X. The functorial
morphism a is called the associativity constraint and satisfies the Pentagon Axiom,
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that is, the diagram
W)eX) — U (Ve (W

U®av,w,x
ay, V®V X/W@X

) ® (

ava& Avwx

(UeV) e W)X

is commutative for every U, V, W, X in M. The morphisms [ and r are called the
unit constraints, and they are assumed to satisfy the Triangle Axziom, that is, the
diagram

av,1,w

Vel oW 2 Ve (lew)
M %
VeWw

is commutative. The object 1 is called the unit of M.

For details on monoidal categories we refer to [Ka, Chapter XI] and [Maj2]. A
monoidal category is called strict if the associativity constraint and unit constraints
are the corresponding identity morphisms.

1.2. As it is noted in [Maj2| p. 420], the Pentagon Axiom solves the consistency
problem that appears, because there are two ways to go from (U@ V)@ W) ® X
to U® (V® (W ® X)). The coherence theorem, due to S. Mac Lane, solves the
similar problem for the tensor product of an arbitrary number of objects in M.
Accordingly with this theorem, we can always omit all brackets and simply write
X1 ®- - ® X, for any object obtained from Xj,...,X,, by using ® and brackets.
Also as a consequence of the coherence theorem, the morphisms a, I, r take care
of themselves, so they can be omitted in any computation involving morphisms in

M.

Let (H,mpg,uny, Ng,en,S) be a Hopf algebra over field K. Basically we are
interested in the following examples of monoidal categories.

o The category g = (M, Rk, K) of all left modules over H. The tensor
V@W of two left H-modules is an object in 91 via the diagonal action; the unit
is K regarded as a left H—module via .

e The category gMy = (gMp, @k, K) of all two-sided modules over H. The
tensor V@ W of two (H, H)—bimodules carries, on both sides, the diagonal action;
the unit is K regarded as an (H, H)—bimodule via .

We can dualize all the structures given for modules in order to obtain categories
of comodules.

e The category 9 = (M, @k, K) of all left comodules over H. The tensor
product V ® W of two left H-comodules is an object in 79 via the diagonal
coaction; the unit is K regarded as an left H—comodule via the map k — 1y ® k.

e The category TIMMH = (HMH @, K) of all two-sided comodules over H. The
tensor V ® W of two (H, H)-bicomodules carries, on both sides, the diagonal
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coaction; the unit is K regarded as an H-bicomodule via the maps k& — 1y ® k
and k— k®1g.

o The category BYD = (LYD, @k, K) of left Yetter-Drinfeld modules over H.
Recall that an object V in gyD is a left H—module and a left H—comodule
satisfying, for any h € H,v € V, the compatibility condition

> ("Ov)iyhe © ("Dv)gy = D hayv-ry © "
or, equivalently,
p(hv) = hayoi-1yS(h) @ "@ vy,

where for the module structure on V' we used the notation "v. For Yetter-Drinfeld
modules we shall keep this notation throughout the paper.

The tensor product V @ W of two Yetter-Drinfeld modules is an object in YD
via the diagonal action and the diagonal coaction; the unit in gyD is K regarded
as a left H—comodule via the map x +— 1y ® x and as a left H—module via eg.

Analogously one defines the category yDZ.

In this paper we shall always assume that M is an abelian category and that, for
every M € M, both the functors M ® (=) : M — M and ()@ M : M — M are
right exact. The notions of algebra, module over an algebra, coalgebra and comodule
over a coalgebra can be introduced in the general setting of monoidal categories.
For more details, see [AMS]. Given an algebra A in a monoidal category (M, ®,1),
we can construct the monoidal category of (A, A)—bimodules (4 M4, ®4, A), which
by the above assumptions is an abelian category, too.

e Let us consider the monoidal category M := (9, @, K) of left H—comodules.
Algebras in M are exactly left H-comodule algebras and coalgebras in M are left
H-comodule coalgebras.

Let A be a left H—comodule algebra. The category of all (A, A) —bimodules in
M will be denoted by Z94. An object M in Z9M, is a left H—comodule which
is also an (A, A)-bimodule such that p; : A M — M and p, : M @ A — M are
morphisms of left H—comodules. Here y; and p, define the module structures on
M, and both A ® M and M ® A are left H—comodules via the diagonal coaction.
(594, ®4, A) is a monoidal category with the usual tensor product of two (A4, A)—
bimodules (—) ®4 (=). If V,W € Z90,4, then the left structures on V @4 W are
given by

(1) a(v®4w) = av®4w,
(2) Pronw (V@aw) = Y v pw gy ® (v0) ©a w())-

The right A-module structure is analogous to the left one. The unit in #9M4 is A.

For A = K with trivial H—comodule structures we get the category of left
H-comodules. Also for the trivial Hopf algebra H = K we get that A is just a
K—algebra and QIDJTA = AMa.

e Let us consider the monoidal category M = (¥M7 @, K) of (H,H)-
bicomodules. An algebra in M is an algebra A which is an (H, H)—bicomodule
such that A is a left and a right H—comodule algebra. We shall say that A is an
H— bicomodule algebra.

Let A be an H—bicomodule algebra. The category of all (A, A)—bimodules in M
will be denoted by #9%. An object M in 9% in an (H, H)-bicomodule which
is also an (A4, A)—bimodule such that pu; : A M — M and p, : M ® A — M are
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morphisms of (H, H)-bicomodules. Here y; and pu, define the module structures
on M, and both A ® M and M ® A are (H, H)-bicomodules via the diagonal
coactions. (A9 ®4, A) is a monoidal category with the usual tensor product of
two (A, A)-bimodules (=) ®4 (=). If V,W € T9MHI then the left structures on
V ®4 W are given by ([[l) and [2)). The right structures are defined similarly. The
unit in FMY is A.

For A = K with trivial H-comodule structures we get the category of (H, H)—
bicomodules. Also for the trivial Hopf algebra H = K we get that A is just a
K—algebra and f fmf = 49 4. Another interesting particular case is obtained
by taking A := H. The category of (A, A)—bimodules we get in this case is
(UM @y, H), that is, the category of two-sided Hopf-modules.

All the definitions above can be dualized. Given a coalgebra C' in a monoidal
category (M, ®,1), we can construct the monoidal category of C-bicomodules
(CMC,0¢, C).

e Let us consider the monoidal category M = (M, @k, K) of left H—modules.
Algebras in M are left H-module algebras and coalgebras in M are exactly left
H—module coalgebras.

Let D be a left H—module coalgebra. The category of all (D, D)—bicomodules
in M will be denoted by 9P, An object M in DML is a left H—module which
is also a (D, D)-bicomodule such that p' : M — D® M and p" : M — M ® D
are morphisms of left H-modules. Here p! and p” define the comodule structures
on M and both D ® M and M ® D are left H—modules via the diagonal actions.
(BomP Op, D) is a monoidal category with respect to the tensor product given by
(—)Op (=), the cotensor product of two (D, D)-bicomodules. If V,W € DomP,
then the left structures on VOpW are given by

(3) h(vDDw) = Zh(l)UDDh(Q)w,
(4) Pogw @Opw) = D v 1) ® (vDpw).

The right D-module structure is analogous to the left one. The unit in 5P is D.

For D = K with the trivial H—module structures we get the categories of left
H-bimodules. Also for the trivial Hopf algebra H = K we get that D is just a K
coalgebra and D9nP = PP,

e Let us consider the monoidal category M = (gMy, K, K) of (H,H)-
bimodules. A coalgebra in M is a coalgebra D which is an (H, H)-bimodule such
that D is a left and a right H—module coalgebra. We shall say that D is an
H—bimodule coalgebra.

Let D be an H-bimodule coalgebra. The category of all (D, D)-bicomodules in
M will be denoted by DM, An object M in ML is an (H, H)- bimodule which
is also a (D, D)-bicomodule such that p' : M — D® M and p" : M — M ® D are
morphism of (H, H)-bimodules. Here p! and p" define the comodule structures on
M, and both D ® M and M ® D are (H, H)-bimodules via the diagonal actions.
(bomP Op, D) is a monoidal category with respect to the tensor product given by
(=)Op (=), the cotensor product of two (D, D)-bicomodules. If VW € Dok
then the left structures on VOpW are given by ([Bl) and @l). The right structures
are defined similarly. The unit in DL is D.

For D = K with the trivial H—module structures we get the categories of (H, H)—
bimodules. Also for the trivial Hopf algebra H = K we get that D is just a K
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coalgebra and H9ME = POMP. Note that, for D := H, an object in the category of
(D, D)—bicomodules is (XM Oy, H), the category of two—sided Hopf-modules.

1.3. A monoidal functor between two monoidal categories (M,®,1,a,l,r) and

(M@, 1',a',lI',r") is a triple (F, ¢g, p2), where F : M — M’ is a functor, ¢y :
1’ — F(1) is an isomorphism such that the diagrams

Up () TB(U)

19 FU)——2 L F(U) FU)e't — 2 s F(U)
¢0®F(U)l TF(ZU) F(U)®¢ol TF(TU)
F(1) & F(U) — o F(18 U) F(U)® F(1) ———— F(U ©1)

are commutative, and ¢o(U, V) : F(U)®' F(V) — F(U®V) is a family of functorial
isomorphisms such that the diagram

UV)®' F(W U®'Vv,w
(F) &' Fv)) & Fow) 28T b g0 vy @ powy 2928 pw e vy @ W)

l’llF(U)aF(V)»F(W) F(@U,v,w)l

FUO) & (F(V)® F(W))WF(U)@) F(V®W)W>F(U®(V®W))
is commutative. A monoidal functor (F, ¢o, ¢2) is called strict if both ¢g and ¢
are identities.

Let (F, ¢o, ¢2) and (L, Ao, A2) be two monoidal functors, where F : (M, ®,1) —
M & 1)and L: (M, ®",1) — (M",®",1”). Then the composition T'= LF
again has the structure of a monoidal functor (7,79, 72), where

(U, V) = T() &" (V) *F LYY Lipwy e p(v))

7 =17 2% 11" "% (1),

LWV 7 o 17y

A functorial morphism £ : F' — L between two monoidal functors F, L: (M, ®,1) —
(M',®',1') is said to be monoidal if

13- 3% 31

FU)® F(V) LU)®" L(V) F(1l) ———— L(1)
¢2(U,V)J JAQ(U,V) k %
FU®V) p— LURV) 1

We include the following useful result.

Proposition 1.4. Let M and M’ be monoidal categories. Let (F, ¢, ¢2), be a
monoidal functor between the categories M and M’, and assume that F : M — M’
is an equivalence of categories. Let G : M’ — M be a right adjoint of F' and denote
by € : FG — Idng the counit and by n : Idyg — GF the unit of the adjunction. Let
Yo denote the composition of

G((ji)l)

1% GF®1) G(1)
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and let v2(U, V') be the composition of

Glp3 ' (GU,GV))
—

G(U) ® G(V) "2 GRIG(U) ® G(V))] GIFGU) & FG(V)]

s qu e v).

Then (G,70,7v2) defines on G a structure of a monoidal functor between the cate-
gories M’ and M. Moreover this is the unique monoidal structure on G such that
€ and 1 are monoidal isomorphisms.

Proof. See [SR], Proposition 4.4.2] and [Sch3, Section 2. O

The following proposition states that the image of an algebra (resp. coalgebra)
through a monoidal functor carries a natural algebra (resp. coalgebra) structure.

Proposition 1.5. Let M and M’ be monoidal categories. Let (F,¢o,p2) be a
monoidal functor between the categories M and M’. Then:

1) If (A,m,u) is an algebra in M, then (F'(A),mpcay,upca)) is an algebra in
M, where

¢2(AA F(m
mry = F(4) & F(4) D pas 4) ™™ Fa),
F

up(ay =1 2% P(1) 2 p(a),
2) If (C,A,¢€) is a coalgebra in M, then (F(C),Apc),epc)) is a coalgebra in
M, where

-1
Ape) = F(C) ™ F(ce0) 57 Fo) e F(O),
—1
ere) = F(C) 2 p1) 25 1,
Proof. Follows directly from the definitions. O

Proposition 1.6. Let M and M’ be monoidal categories. Let £ : F — L be a
monoidal morphism between two monoidal functors (F, ¢o, ¢2) and (L, N, A2), where
F,L:(M,®,1) - (M',®",1'). We have that:

1) if A is an algebra in M, then €4 : F(A) — L(A) is an algebra homomorphism
(where F(A) and L(A) carry the algebra structures induced by F and L);

2) if C is a coalgebra in M, then (& @ F(C) — L(C) is a coalgebra homo-
morphism (where F(C) and L(C) carry the coalgebra structures induced by F and
L)

Proof. Follows directly from the definitions. O

Corollary 1.7. Let M and M’ be monoidal categories. Let (F, g, da) be a
monoidal functor between the categories M and M’, and assume that I : M — M’
is an equivalence of categories. Let G : M’ — M be a right adjoint of F, and de-
note by € : FG — Iday the counit and by n : Idapg — GF the unit of the adjunction.
Endow G with the monoidal functor structure (G,~o,v2) as in Proposition [ We
have that:

1) if A’ is an algebra (resp. coalgebra) in M', then ear : FG(A") — A’ is an
algebra (resp. coalgebra) isomorphism, where FG(A') carries the algebra (resp.
coalgebra) structure induced by FG;

2) if A is an algebra (resp. coalgebra) in M, thenny : A — GF(A) is an algebra
(resp. coalgebra) isomorphism, where GF(A) carries the algebra (resp. coalgebra)
structure induced by GF'.
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Proof. Apply Proposition [[.4] and Proposition O

1.8. Let H be a Hopf algebra with antipode S over a field K. The celebrated result
by Sweedler establishes that F : M — IME is an equivalence of categories, where
for every V € Mg

F(V)=V®H.
The right adjoint of F is G : M — My, which is defined by
GM)=M“" ={zecM|pylz)=221g}.

Let € : FG — Idgyu be the counit of the adjunction (F,G) and e~ 1 its inverse.
Then, for every M € MM we have

(5) err: MO @ H — M, ep(v®h) = vh,
(6) et M= MO @ H, e (z) = v Sz @ ).

Let 1 : Idgn,, — GF be the unit of the adjunction (F,G) and ! its inverse. Then,
for V. e My, we have

(7) Vo= (Ve H)UD gy (v) =vely,

(8) vt (Ve )N v gt Qv h) =) vien(h).

1.9. It is well known that this equivalence induces a monoidal category equivalence
(Hma ®7K) i) (nga ®H,H) i) (Hma ®7K)

between (g9, ®, K) and the category (z9ME, @ g, H), where, for M € gL the
left H—module structure of G(M) = MS°) is given by the left adjoint action

(9) hU = Zh(l)vSh(g)

Conversely, if V € g9, then F(V) =V ® H becomes an object in g9 with the
canonical right structures (coming from H) and with diagonal left action

(10) "awl) = Y "0z @hgl, YoeW, Vhl€ H.

The counit € : G — Id, gy, the unit 5 : Id, on — GF" and their inverses are the
same. The monoidal functor structure (F, ¢, o) of F is given by

¢p9o : H—F(K):h—1Qh,
$(U,V) « FU)@uF(V)—=FUV): (u@h)og (val)
=Y u®hay @ heyl,
while their inverses are given by
¢t F(K)— H:k®hw kh,
o (U V) © FURV)=FU)eg F(V):u®@uel— (uelg) g (vel).
We endow G with the monoidal functor structure (G,~9,v2) as in Proposition [[.4t
Yo + K—G(H): ke klg,
(M,N) : GIM)QG(N) - GM g N):z2Qy— xQpyy,
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while their inverses are given by
%' : G(H)— K:hw—eg(h),
w'(UV) + GM®eyN)—GM)@GN):> ;@5 y;

= Z Ti0)STi(1) @ Ty(2)Yi-

1.10. It is also well known that the Sweedler equivalence induces a monoidal cate-
gory equivalence

(Ao, @, K) = (Pom, 0y, H) -5 (190, @, K)

between (A9, ®, K) and the category (H9ME Oy, H), where, for M € HOMIL the
left H-comodule structure of G(M) = M) is given by the restriction of the
left comodule structure of M

(11) P =Pl eoiny -

Conversely if V € 790, then F(V) =V ® H becomes an object in 79N with the
canonical right structures (coming from H) and with diagonal left coaction:

(12) preh) = Yz yha) @z ®he), Yo €W, Vhe H.
The counit € : FG — Ideg, the unit 7 : Idugy — GF and their inverses are the
same. The monoidal functor structure (F, ¢, o) of F is given by
¢po : H—->F(K):h—1®Hh,
$(U, V) « FU)OgF(V)—=FURV): (u@h)0Og(vel) »uea(h)v@l,
while their inverses are given by
bt : F(K)— H:k®hw kh,
o N (U V) : FU®V)— FU)OgFV):u@v®l
=Y (@ vyl Ou(ve) @ L)
We endow G with the monoidal functor structure (G,~o,v2) as in Proposition [
v : K—GH):kw— klg,
V2(M,N) : G(M)®G(N) = GMOgN) 2@y +— Z:cy<,1>DHy<o>,
while their inverses are given by
%' ¢ G(H)— K:hweg(h),
w (U, V) + GMOxN)— GM)®@G(N): Y 2,05y

— Z Zi(0ySTi(1) @ Yi-

1.11. The most remarkable result (see [Schl] and [AD]) is that the Sweedler equiv-
alence gives rise to a monoidal category equivalence

(EyD, @, K) 2 (Bm# op, H) % ($YD,®, K)

between the category of Yetter— Drinfeld modules (XYD,®, K) and the category
(i @p, H). The structures making G(M) = M) a left Yetter— Drinfeld
module are the left adjoint action (@) and the restriction of the left comodule
structure of M (II).
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Conversely, if V € YD, then F(V) =V ® H becomes an object in Z9M with
the canonical right structures (coming from H) and with diagonal left action (I0)
and coaction (I2)).

The counit € : F'G — Idugpn, the unit n : Idnyp — GF and their inverses
are the same as in The functors F' and G carry the same monoidal functor
structures discussed in

1.12. Sweedler equivalence gives rise to another monoidal category equivalence (see
[Schi] and [AD])

(EyD,®, K) = (B, Oy, H) < (HYD, ®, K)

between the category of Yetter—Drinfeld modules (#YD,®, K) and the category
(EomiL Oy, H). As an equivalence this is the same of [LTIl The functors F and G
carry the same monoidal functor structures discussed in [[L.I0l

1.13. In an analogous way the category of Yetter- Drinfeld modules YD can be
introduced, and one has (see [Schl] and [AD]) a monoidal category equivalence
between HOMH and YD,

1.14. Let us remark that H can be regarded as an object in YD in two different
ways, namely:

(13) phy =m, phr(h) =3 hiySh(z) ® ha),
(14) By (h®x) =3 hayzShw),  py(h) = A.

2. INTEGRALS VERSUS (CO)SEPARABILITY IN SOME MONOIDAL CATEGORIES

In this section we relate the concept of semisimple and separable algebra in the
categories of (bi)comodules over H, and cosemisimple and coseparable coalgebra in
the categories of (bi)modules over H by means of some suitable integrals. This will
allow us to apply the results that we obtained in the previous section.

For future reference, let us recall the definition of integrals.

Definition 2.1. Let H be a Hopf algebra.

a) An element t € H is called a left (resp. right) integral in H if ht = ¢(h)t,Vh €
H (resp. th =e(h)t,Vh € H).

b) An element A\ € H* is a left (resp. right) integral in H* if Y hyA(h()) =
)\(h)lH,Vh eH (resp. Z)\(h(l))h@) = )\(h)lH,Vh S H)

Lemma 2.2. Let H be a Hopf algebra. Lett € H and let A € H*. Then:
1) t is a left integral in H if and only if

th(l) ® St(g) = Zt(l) ® St(g)h,Vh € H.
2) t is a right integral in H if and only if
> Sty @th =Y hSty) @t@),Vh e H.
3) X is a left integral in H* if and only if
>z A@@)Sh) =Y M@Sh))he), Yh,z € H.
4) X is a right integral in H* if and only if
> AShza))z@) = Y ha)A(She)z), Yh,z € H.
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Proof. 1) Assume that ht = ¢(h)t,Vh € H. Then
Zhﬁ@Stz Zhltl ®S(h2t2 hg—ZEH hl t1®5(t2)h
= t1®S(t2)h,Vh € H.

Conversely, by applying H ® € to this equality, we get ht = e(h)t,Vh € H.
2) Assume that th = ¢(h)t,Vh € H. Then

> Sty @th =Y hayS(tayhe) @ tayh) = > ha)Sta) @ tee(he)
= hStq) ®t(),Vh € H.

Conversely, by applying ¢ ® H to this equality, we get th = e(h)t,Vh € H.
3) Assume that ) hqyA(h(2)) = A(h)1g,Vh € H. Then

Zm Z‘(Q)Sh = Zm Sh(g))\.’L‘ Sh(l))h(3)

3 2y (Shay) 1Az @) (Sha)2lhe)
= Z/\ (xShay)h@y,Vh,x € H.

Conversely, by applying this equality in the case when h = 1p, we get > 21y A(z(2))
= Xax)ly,Vz € H.
4) Assume that ) A(h(1))he) = A(h)1g,Vh € H. Then

D MShza)zay = D ha)MSherw]Sheae)
D hAl(She)mrm)(She) @@
= Y haA(She)),Vh,x € H.

Conversely, by applying this equality in the case when h = 1, we get >~ A(z(1))z(2)
= Az)ly,Vo € H. ]

Lemma 2.3. Let H be a Hopf algebra. The following are equivalent:

(1) The multiplication m : H® H — H has a section in g, where H @ H
is regarded as a right comodule through the diagonal coaction and as a bimodule
through the canonical left and right structures coming from H.

(2) The counit e : H — K has a section in gIN.

(3) There exists a left integral t in H such that e(t) = 1.

Proof. (1) & (2) By the quoted equivalence between (g9 @p, H) and
(g9, ®, K), using the canonical isomorphisms ny;' : (H @ H)®H — H (see (§))
and 77;(1 : H°H — K the morphism m : H ® H — H corresponds to the counit
e:H— K.

(2) & (3) A K—linear map p : K — H is uniquely determined by ¢ := pu(1).
Since the left H—action on K is defined by ¢, it is easy to see that p is an H —linear
section of € if and only if ¢ satisfies the conditions from (3). g

In an analogous way one gets:

Lemma 2.4. Let H be a Hopf algebra. The following are equivalent:

(1) The comultiplication A : H — H ® H has a retraction in TINE where
H®H is regarded as a right module through the diagonal action and as a bicomodule
through the canonical left and right structures coming from H.
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(2) The unit u : K — H has a retraction in 7M.
(3) There exists a left integral X\ in H* such that \(1g) = 1.

Definition 2.5. Let H be a Hopf algebra with antipode S over any field K and
let t € H.
t will be called an ad-coinvariant integral if it satisfies:
cadl) ht = eg(h)t = th for all h € H (i.e. t is a left and a right integral in H);
cad2) Zt(l)St(3) ®te)y=1lg®t and Zt(g) ® St(l)t(3) =t® 1g;
cad3) eg(t) = 1.

Proposition 2.6. Let H be a Hopf algebra. The following are equivalent:

(1) The multiplication m : H® H — H has a section in EIME where H ® H is
regarded as a bicomodule through the diagonal coactions and as a bimodule through
the canonical left and right structures coming from H.

(2) The counit e : H — K has a section in BYD, where H is regarded as an
object in gyD as in ([I3).

(3) There exists a left integral t in H such that ) t)Stis) @ty = 1g @t and
e(t)y=1.

(4) The counit € : H — K has a section in YD where H is regarded as an
object in J}Dg through the right analogues of the structures (I3)).

(5) There exists a right integral t in H such that )ty ® St(1)tg) =t ® 1y and
e(t)y=1.

(6) There exists an ad— coinvariant integral t € H.

Moreover, if these conditions are satisfied, an element t € H satisfies (3) iff it
satisfies (5) iff it is an ad-coinvariant integral. Such an element is unique.

Proof. (1) < (2) Through the quoted equivalence between (XM @y, H) and
(HYD,®, K), using the canonical isomorphisms 05" : (H ® H)*" — H (see [§)),
where H is regarded as an object in £YD as in (I3) and 77}}1 : HH — K| the
morphism m : H ® H — H corresponds to the counit ¢ : H — K.

(2) & (3) Since the structure of the left H—module of K is the one defined by
g, (2) < (3) follows by a direct computation.
(1) & (4) and (4) < (5) follow in an analogous way.
(6) = (3) is trivial.
(3) = (6) Let t € H be an element as in (3). Since (3) and (5) are equivalent,
there is an | € H as in (5). Since

t=c)t =1t =1e(t) =1,

it follows that t is an ad—coinvariant integral. The uniqueness of ad—coinvariant
integrals is obvious. O

=
54

Definition 2.7. Let H be a Hopf algebra with antipode S over a field K and let
A€ H*. X will be called an ad-invariant integral if it satisfies:

adl) Y hayAlhe)) = 1aA(h) = > Mha))he),Vh € H (i.e. Ais a left and right
integral in H*);

ad2) Z )\(h(l)$5h(2)) = E(h))\(l‘) = Z)\(Sh(l)xh(Q)),Vh,x € H,;
Proposition 2.8. Let H be a Hopf algebra. The following are equivalent:

(1) The comultiplication A : H — H® H has a retraction in LML where H® H

is regarded as a bimodule through the diagonal actions and as a bicomodule through
the canonical left and right structures coming from H.
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(2) The unit w : K — H has a retraction in 1YD, where H is regarded as an
object in EYD as in ([d).

(3) There exists a left integral X in H* such that ) A(h@yzSh)) = e(h)\(z),
Vh,z € H and \(1y) = 1k.

(4) The unit u : K — H has a section in YDE | where H is regarded as an object
mn ypg through the right analogues of the structures (4.

(5) There exists a right integral X in H* such that ) AN(Shyzh(2)) = e(h) (),
Vh,x € H and A\(1g) = 1k.

(6) There exists an ad-invariant integral X € H*.
Moreover, if these conditions are satisfied, an element A\ € H* satisfies (3) iff it
satisfies (5) iff it is an ad-invariant integral. Such an element is unique.

Proof. (1) < (2) Through the quoted equivalence between (EoI Oy, H) and
(HYD,®, K), using the canonical isomorphisms 15" : (H ® H)C"H — H (see @),
where H is regarded as an object in ZYD as in ([4) and nK : H°H ~ K the
morphism A : H — H ® H corresponds to the unit v : K — H.
(2) & (3) Since the structure of the left H—module of K is the one defined by
g, (2) & (3) follows by a direct computation.
(1) & (4) and (4) < (5) follow in an analogous way.
(6) = (3) is trivial.
(3),(5) = (6) Let A€ H* asin (3) and v € H* as in (5). Then we have

A=v1g)A =7y A=7\(1g) =1.

1)
6)
3)

O

Remark 2.9. A complete treatment of the foregoing results regarding integrals can
be found in [Ard].

Definition 2.10. Let (M, ®,1) be a monoidal category.

An algebra (A, m,u) in M is called separable if the multiplication m : AQ A — A
has a section in the category of (A, A)—bimodules 4 M 4.

A coalgebra (C, A, €) in M is called coseparable if the comultiplication A : C' —
C ® C has a retraction in M.

Proposition 2.11. Let H be a Hopf algebra.

a) H is separable as an algebra in MY if and only if H is semisimple.

b) H is separable as an algebra in TMH if and only if there is an ad— coinvariant
integral t € H.

c) H is coseparable as a coalgebra in My if and only if H is cosemisimple.

d) H is coseparable as a coalgebra in gOMy if and only if there is an ad—invariant
integral A € H*.

Proof. To prove a) we remark that the category of (H, H)—bimodules in 9 is
gL Then the conclusion follows by Lemma and by Maschke’s Theorem (see
[NIo)).

To prove b) we remark that the category of (H, H)—bimodules in 790 is Honk.
Then the conclusion follows by Proposition

To prove ¢) we remark that the category of (H, H)—bicomodules in 90y is ZOMI.
Then the conclusion follows by Lemma [24] and by Dual Maschke’s Theorem (see
INIo)).

To prove d) we remark that the category of (H, H)-bicomodules in g9y is
AIL. Then the conclusion follows by Proposition O
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In [AMS], we proved the following theorem.

Theorem 2.12. Let (A, m,u) be a separable algebra in an abelian monoidal cate-
gory (M, ®, 1) such that both the functors A®(—) : M — M and (—)@A: M — M
are additive and right exact. Let m: E — A be an algebra homomorphism and let
I denote the kernel of m. Assume that:

1) m is an epimorphism;

2) there is n € N such that I" = 0;

3) for anyr =1,--- ,n — 1, the canonical projection p, : E/I"*' — E/I" splits
mn M.

Then m has a section which is an algebra homomorphism.

Theorem 2.13. Let H be a Hopf algebra. Let M be either the monoidal category
M or HMH . Suppose that m: A — H is a surjective morphism of algebras in M
such that Ker w is the Jacobson radical J of A and J is nilpotent.

a) Let M = M. Assume that H is a semisimple Hopf algebra. Then 7 : A —
A/J ~ H has a section o in MT which is an algebra map.

b) Let M = HOMH | Assume that H is an ad— coinvariant integral and that every
canonical map A/J"Y — A/J™ splits in TIMH. Then m: A — H has a section o
in HOMH which is an algebra map.

Proof. a) The Jacobson radical J of A is an H—subcomodule of A since 7 is a
morphism of H-comodules. Hence, for every n > 0, J™ is also a subcomodule
of A such that the canonical map A/J"*! — A/J" is H-colinear. Furthermore,
J™/J"*1 has a natural module structure over A/J ~ H, and with respect to this
structure J"/J" 1 is an object in M. Hence J"/J"*! is a cofree right comodule
(ie. J/J"™ ~V @ H). In particular J"/J"*! is an injective comodule. Thus
the canonical map A/J"*! — A/J" has a section in 9. By Proposition 211} we
know that H is separable as an algebra in 9" so that we can apply Theorem 212

b) We first remark that J™ is an (H, H)-subbicomodule of A and that the
canonical maps A/J" 1 — A/J" are morphisms of bicomodules. By Proposition
111 it results that H is separable in #9 | so we conclude by applying Theorem
a

Corollary 2.14. Let A be a Hopf algebra such that J, the Jacobson radical of A,
is a nilpotent coideal in A. Let H := A/J, and let m : A — H be the canonical
projection.

a) If H is semisimple, then there is an algebra morphism in MM that is a section
of m.

b) If H has an ad-coinvariant integral and every canonical map A/J" Tt —
AJJ" splits in TIMH | then there is an algebra morphism in TINH that is a section
of m.

¢) If H has an ad- coinvariant integral and any object in BN is injective as
an (H, H)-bicomodule, then there is a section of ™ as in b).

Proof. The first two assertions follow directly from the previous theorem, since we
can regard A both as an algebra in 9 and as an algebra in 9, 7 being a
morphism of bialgebras.

Let us prove c). In view of b) it is enough to show that the canonical epi-
morphisms A/J"tt — A/J" split in Z9MH. Since A/J™ is an object in Z9MH



1006 A. ARDIZZONI, C. MENINI, AND D. STEFAN

and the canonical epimorphism A/J"+t!1 — A/J" is a morphism in #9MH it fol-
lows that Jm/J"t € B9l 5o it is an injective (H, H)-bicomodule. Therefore
A/J"Tt — A/J™ has a section in A9 O

2.15. Let F be a coalgebra in a monoidal category (M, ®,1). Let us recall (see
[Mol §5.2]) the definition of a wedge product of two subobjects X,Y of F in M :

X ApY :=Ker|(rx ® my) o Ag],
where 7x : E — E/X and 7y : E — E/Y are the canonical quotient maps.
For the following theorem the reader is referred to [AMS].

Theorem 2.16. Let (C,A,e) be a coseparable coalgebra in an abelian monoidal
category (M, ®,1) endowed with denumerable direct sums and such that both the
functors C @ (=) : M — M and (=) @ C : M — M are additive and left exact.
Let o : C — FE be coalgebra homomorphism. Assume that:

1) o is a monomorphism;

2) limC" = E;

3) for any r € N the canonical injection i, : C"e — CNe' cosplits in M.
Then o has a retraction which is a coalgebra homomorphism.

Theorem 2.17. Let H be a Hopf algebra.

a) Let C be a coalgebra in My . If the coradical Cy of C is H, then there is a
coalgebra map 7o : C — H which is a morphism in My such that nc |, = Idy.

b) Let C be a coalgebra in yMy. If Co = H, H has an ad—invariant integral
and every Cy, is a direct summand in Cp11 as an object in gMy, then there is a
coalgebra map e : C — H which is a morphism in gMy such that no |, = Idg.

Proof. Let M be one of the categories My or yMy. Let 0 : Cy — C be the
canonical inclusion. Let us consider the coradical filtration (Cy,)nen:

(15) Cos1={z € C|Alw) € C@Cp+CoaC} = (Co)¢,
for every n > 0. Moreover we have @Cn =yc,=C.

a) Since H = Cj is cosemisimple, by Proposition 211] it is coseparable in My,
so that we can apply Theorem in the case when M = 9 y.

In fact, by [@H), Cy+1/Cy becomes a right H = Cy—comodule with the structure
induced by A. Hence C,41/C,, is an object in 9 so it is free as a right H-
module (by the fundamental theorem for Hopf modules). In conclusion the inclusion
C,, C Cp41 has a retraction in My.

b) By Proposition 2TT] H is coseparable in g9y and moreover by assumption

C, is a direct summand of C,1; as an object in g9y. Hence we can apply
Theorem [2.16]in the case when M = g9y. O

Corollary 2.18. Let C be a Hopf algebra such that Cy, the coradical of C, is a
Hopf subalgebra. Let H := Cy and let o : H — C' be the canonical injection.

a) Since H is cosemisimple there is a coalgebra morphism in My that is a
retraction of o.

b) If H has an ad—invariant integral and every canonical map Cp, — Cpi1
cosplits in gMy, then there is a coalgebra morphism in My that is a retraction
of o.

¢) If H has an ad—invariant integral and any object in EIMIL is projective as an
(H, H)-bimodule, then there is a retraction of o as in b).
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Proof. Since o is a morphism of bialgebras, we can regard C' both as a coalgebra
in MMy and as a coalgebra in g9y so that the first two assertions follow directly
from the previous theorem.

Let us prove c¢). In view of b), it is enough to show that the canonical monomor-
phisms C,, — Cj41 split in g9My. Since C), is an object in g9y and the
canonical monomorphism C,, — Cj41 is a morphism in g9y, it follows that
Cni1/Cy € EME "o it is a projective (H, H)-bimodule. Therefore C,, — Cj,11
has a retraction in gIMy. Il

Remarks 2.19. a) A. Masuoka informed us that the first statement of Theorem [2.17]
follows easily from [Mas, Theorem 4.1].

b) Statement a) in Corollary Z-I8 has already been proved by Masuoka; see [Mas,
Theorem 3.1].

2.20. Let H be a Hopf algebra. By definition, an algebra A in #9# is separable
if and only if the multiplication m : A® A — A has a section o : A - A® A
which is a morphism of (A, A)-bimodules and (H, H)-comodules. Obviously, then
A is separable as an algebra in Mg, but the converse does not hold in general.
Nevertheless, if the forgetful functor U : {9 — 4,94 is separable, then A is
separable as an algebra in M = 79 | Before proving this result, let us recall the
definition and basic properties of separable functors.

2.21. A functor F : € — D is called separable if, for all objects C7,Cy € €, there is
amap Pc, ¢, : Homg (FCy, FC3) — Home (C1, Co) such that:

S1) For all morphisms f € Home (C1,Ca), Pey.c, (F (f)) = f.

S52) We have Pc,.c, (1) o f = g o Pc, ¢, (h) for every commutative diagram in ©
of type:

F(C1) —— F(Cy)

F(f)l JF(H)

F(C3) —— F(C4)

Lemma 2.22. Let F: € — © be a covariant separable functor and let a: X — Y
be a morphism in €. If F(a) has a section h (resp. a retraction 1) in ©, then «
has a section (retraction) in €.

Proof. 1t is sufficient to apply property S2) in the case when g = a,l = Idpy, f =
Idy. Since F(a)oh = Idpy oF(Idy), by S2) we get Py, x (Idpy )oldy = aoPy x (h),
so that, as Idpy = F(Idy), by S1) we conclude the proof. The dual case follows
analogously applying properties S2) and S1) in the case when f = a,h =Idprx, g =
Idy. O

We quote from [Raf] the so-called Rafael Theorem.

Theorem 2.23 (cf. [Raf]). Let (T,U) be an adjunction, where T : € — D and
U:® — ¢ Then we have:

1) T is separable iff the unit n : Ide — UT of the adjunction cosplits, i.e. there
exists a natural transformation p: UT — Ide such that pon = Idyg,, the identity
natural transformation on Ide.

2) U is separable iff the counit € : TU — Ido of the adjunction splits, i.e. there
exists a natural transformation o : Ide — TU such that € o 0 = Ida,, the identity
natural transformation on Idg.

(o]
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2.24. The forgetful functor U : M — 4,9 4 has a right adjoint T : 494 — M.
On objects T is defined by T' (M) = H® M @ H, where T (M) is a bicomodule via
Ag @M ®H and H® M ® Ay, and T (M) is a bimodule with diagonal actions:

Za, h®a<0>m®a<1>k7
(he@mek)a = Zha y @ may ® ka

ah®@m®k)

Here we used the sigma notation: (ply ® H)p"y (a) = a(_1y ® aq) @ ag)-
Let n : Idggpy — TU be the unit of this adjunction. It is easy to see that, for

any M € T we have gy : M — H® M @ H,ny = (phy, @ H)phy
Proposition 2.25. Let H be a Hopf algebra. Let A be an H-bicomodule algebra

and consider the forgetful functor U : HIMI — 494, Assume there exists a left
integral A in H* such that \(1g) = 1. Then, the morphism

pup HOIMOH - M, uy (h@mek)= Z)\ (Shm<,1)) m<0>/\ (m<1>Sk)

is an (H, H)-bicolinear morphism such that pps o ny = Idpy.
Moreover this gives rise to a functorial morphism p: TU — Idggﬁg.

Proof. Since, by Lemma 22, we have > A(Shx 1))z = > hayA(Sh)z), Vh,z €
H, we obtain

phr (s (h@m@ k) = > A(Shm_g))m_1) @ m)A (m)Sk)
= Y A (Sham )®m<0>)\( 1ySk)
= Y hay®pu (b @mek).

Thus we have shown that pys is left H—colinear. Analogously it can be proved that
pas is right H—colinear. It remains to show that pjs is a retraction of 1. In fact,
we have

(aamne) (m) =Y A (Smy_gy m(_1y) meoyA (maySmyz)) = m.

It is easy to check that this gives rise to a functorial morphism p: TU — Idgm’tlz.

Theorem 2.26. Let H be a Hopf algebra. The following assertions are equivalent:
) There exists a left integral A in H* such that A\(1gy) = 1.

) The forgetful functor U : LML — My is separable.

) Any epimorphism (resp. monomorphism) in TN splits (cosplits) in HIMH .
) H s coseparable as a coalgebra in My .

) H s coseparable as a coalgebra in My .

) H is cosemisimple.

) The unit u: K — H has a retraction in M.

(1
(2
(3
(4
(5
(6
(7

Proof. (1) = (2) By Proposition 2:25 the morphism
M HOM®H—->M, puyhemek)= Z)\ (Shm<_1>) m(o))\ (m(l)Sk)

is an (H, H)—Dbicolinear morphism such that uys o nar = Idas, and this gives rise to
a functorial morphism 4 : TU — Idmgns. In view of Theorem 23] the functor U
is separable.
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(2) = (3) Let p be an epimorphism in #9M”. Then U(p) splits. By Lemma
222, we conclude the proof. Analogously any monomorphism in Z9 cosplits in
HopH .

(3) = (4) The comultiplication A : H — H ® H is a monomorphism in #97.

(4) = (1) Let w : H® H — H be an (H, H)-Dbicolinear retraction of the
comultiplication A, and set A, := e w(—®1y) € H*. Then A, fulfills the conditions
of (1).

(5) < (6) follows by Proposition 2111

(5) & (7) and (7) < (1) follow by Lemma 24 O

Theorem 2.27. Let H be a semisimple and cosemisimple Hopf algebra over a field
K. Then:

1) there is an ad—invariant integral A € H*;

2) there is an ad- coinvariant integral t € H;

3) H is separable in HMH;

4) H is coseparable in gMy.

Proof. First let us note that any semisimple Hopf algebra is finite dimensional (see
[Mo).

1) and 2) Since H is semisimple and cosemisimple, by [Ra2, Proposition 7] the
Drinfeld double D(H) is semisimple. By a result essentially due to Majid (see
[Mol, Proposition 10.6.16]) and by [RT], Proposition 6], we get that the category
g)ﬂD ~ D(H)Dﬁ is semisimple. Then the counit € : H — K has a section in yDg
so that, by Proposition 2.6, there is an ad—coinvariant integral. Analogously the
unit u : K — H has a retraction in gyD so that, by Proposition 2.8 there is an
ad—invariant integral.

3) and 4) follow, in view of the foregoing, by Proposition [ZTTl d

Theorem 2.28. Let A be a Hopf algebra such that J, the Jacobson radical of A, is
a nilpotent coideal in A. Let H := A/J, and let m : A — H be the canonical projec-
tion. Assume that H is both semisimple and cosemisimple (e.g. H is semisimple
over a field of characteristic 0). Then there is an algebra morphism in TOMH that
is a section of m.

Proof. In view of Theorem 227, if H is semisimple and cosemisimple, then it has
an ad-coinvariant and an ad—invariant integral. Then, by Theorem 226 every
bicomodule is injective. By c¢) of Corollary 214] we conclude the proof. O

Theorem 2.29. Let H be a Hopf algebra with an ad—invariant integral \ and let
A be an H-bicomodule algebra. Then the forgetful functor U : 9T — 94 is
separable.

Proof. We use the notations of 224l Let 7 : Idggyy — TU be the unit of the
adjunction (U,T). In view of Theorem [223] we have to construct a p : TU —
Idsgps such that pon = Idldfgmg'

By Proposition 2.25] the morphism

up  HOIMH — M, pyh@mek)= Z)\ (Shm<,1>) m<0>)\ (m<1>5k)

is a (H, H)—Dbicolinear morphism such that pps ony = Idys. It is easy to check that
this gives rise to a functorial morphism pu : TU — Idgmg. In order to conclude
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that pps is a morphism in 9% | it remains only to check that s is a morphism
of (A, A)-bimodules. We have

[LM(CL (h Xm k)) = Z A (ShSa<_2> a<_1>m<_1>) a<0>m<0>)\ (a<1>m<1>SkSa<2>) ,

ad2) = A (Shm_1)) agyme(an))A (mySk)

This relation proves that pys is left A-linear. Similarly, using the second equality
of ad2), one can show that uy; is right A-linear. O

Theorem 2.30. Let H be a Hopf algebra over a field K and assume that H has
an ad—invariant integral. An algebra A in the category I is separable iff A is
separable as an algebra in My, @k, K), i.e. as a usual algebra.

Proof. Tt is enough to prove that if A is separable as an algebra in Mg, then it is
separable as an algebra in 97, If m : A® A — A is the multiplication of the
algebra A in the monoidal category 9t then m also defines the multiplication
of A as an algebra in M. By Theorem 229] the functor U : ZIMH — 4,94 is
separable. Since U(m) = m and m has a section in 404 (A is separable in M),
by Lemma 222 it follows that m has a section in Z9M%. O

Corollary 2.31. Let H be a semisimple and cosemisimple Hopf algebra over a field
K. If A is an algebra in the category T | then A is separable as an algebra in
HonH iff A is separable as an algebra in (Mg, R, K).

Proof. By Theorem 2.27] H has a non—zero ad—invariant integral. |

2.32. The forgetful functor U : 29ME — PP has a left adjoint T : PMP —
bomb . T(M) = H® M ® H, where T(M) is a bimodule via my ® M ® H and
H® M ®mpg, and T(M) is a bicomodule with diagonal coactions:

pl(h omek) = Z h(l)m<_1>/€(1) X h(g) ® mygy ® k(2)7
pPr(hemek) = Z h(1y ® moy ® k1) @ hymykz)-

Here we used the sigma notation: (p'y ® A)p"y (a) = Y a(_1y @ a(y @ agy. Let
€ :TU — Idpgyp be the counit of this adjunction.

For any M € DY we have eyy : H@ M @ H — M, epr = (b, @ H)ply,

Proposition 2.33. Let H be a Hopf algebra. Let D be an H-bimodule coalgebra
and consider the forgetful functor U : EMY — PMP . Assume there exists a left
integral t in H such that €(t) = 1. Then, the morphism

oy M—-HM®H, UM(m):ZSt(1)®t(2)mf(1)®Sf(2)

is an (H, H)—-bilinear morphism such that ep; o opr = Idpy.
Moreover this gives rise to a functorial morphism o : Idgmg —TU.

Proof. Since, by Lemma 22l we have ) hSt)®t) = > Sty @tg)h,Vh € H, we
obtain

hJM(m) = Z hSt(l) ®t(2)mf(1) ®St~(2) = Z St(l) ®t(2)hmt~(1) & Sf(g) = oy (hm).
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Thus we have shown that oy is left H—linear. Analogously it can be proved that
o is right H—linear. It remains to show that o is a section of €. In fact, we
have

(GMJM) (m) = ZSt(l)t(g)mf(l)StN(g) =m.
It is easy to check that this gives rise to a functorial morphism o : Idgzmg —
TU. O

Theorem 2.34. Let H be a Hopf algebra. The following assertions are equivalent:
1) There exists a left integral t in H such that e(t) = 1.

) The forgetful functor U : EME — K9NE s separable.

) Any epimorphism (resp. monomorphism) in g9y splits (cosplits) in gIMyr.
) H is separable as an algebra in My .

) H is separable as an algebra in MM .

)

Proof. (1) = (2) By Proposition 2:25] the morphism
oy M —-HQM®®H, opy(m)= ZSt(l) & t(g)mf(l) ® Sf(g)

is an (H, H)—Dbilinear morphism such that ey; o opy = Idps, and this gives rise to a
functorial morphism o : Idpgyp — TU. In view of Theorem 2.23] the functor U is
separable.

(2) = (3) Let p be an epimorphism in g9y. Then U(p) splits. By Lemma
2221 we conclude the proof. Analogously any monomorphism in g9y cosplits in

(3) = (4) The multiplication m : H ® H — H is an epimorphism in z9y.

(4) = (1) Let 0 : H — H®H be an (H, H)-bilinear section of the multiplication
m and set t, := (H ® eg)o(ly) € H. Then t, fulfills the conditions of (1).

(5) < (6) follows by Proposition 2111

(5) & (7) and (7) < (1) follow by Lemma 2.3 O

Theorem 2.35. Let C' be a Hopf algebra such that Cy, the coradical of C, is a Hopf
subalgebra. Let H := Cy and let 0 : H — C be the canonical injection. Assume
that H is semisimple (e.g. H is finite dimensional over a field of characteristic 0).
Then there is a coalgebra morphism m in g9My that is a retraction of o.

Proof. In view of Theorem 227, if H is semisimple and cosemisimple, then it has
an ad-coinvariant and an ad—invariant integral. Then, by Theorem 234 every
bimodule is projective. By ¢) of Corollary B-I8 we conclude the proof. O

Theorem 2.36. Let H be a Hopf algebra with an ad— coinvariant integral t and let
D be an (H, H)-bimodule coalgebra. Then the forgetful functor U : Eomb — PP
is separable.

Proof. We use the notations of 232l Let € : TU — Idpgyp be the counit of the
adjunction (7',U). In view of Theorem 23] we have to construct a o : Idpgyn —
TU such that eo = Idy,,, ,- By Proposition 2:33] the morphism

H™ H

oy M —H®MQ® H, UM(m)ZZSt(l)Q@t(Q)th(l)@Sf(g)

is a (H, H)-bilinear morphism such that ep;s o opy = Idys. It is easy to check that
this gives rise to a functorial morphism o : Idgimg — TU. In order to conclude
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that o is a morphism in 9L, we have only to check that oy is a morphism of
(D, D)-bicomodules. We have

Premen(@ar(m) =Y m1t1)Stu) @ St @ taymote) @ Sts),
cad2) = m 1) @ St(1) @ tymoty) @ Sty = (H @ o) phy(m).

This relation proves that oy is left D—colinear. Similarly, using the second equality
of cad2), one can show that o, is right D—colinear. (]

Theorem 2.37. Let H be a Hopf algebra over a field K and assume that H has
an ad—- coinvariant integral. A coalgebra C in the category g9My is coseparable iff
C' is coseparable as a coalgebra in My, Rk, K), i.e. as a usual coalgebra.

Proof. 1t is enough to prove that if C' is coseparable as a coalgebra in Mk, then it
is coseparable as a coalgebra in §IME. If A: C — C ® C is the comultiplication of
the coalgebra C' in the monoidal category &9, then A also defines the comultipli-
cation of C' as a coalgebra in My Thus U(A) = A has a retraction in “9C. Since,
in view of Theorem 2.36] the functor U : %im% — O9MC is coseparable, in view of
Lemma 222 A has a retraction in §9%. Thus C is coseparable in 9. O

Corollary 2.38. Let H be a semisimple and cosemisimple Hopf algebra over a field
K. If C is a coalgebra in the category g9My, then C is coseparable as a coalgebra
in gy iff C is coseparable as a coalgebra in (Mg, R, K).

Proof. By Theorem 2271 H has a non—zero ad— coinvariant integral. O

Proposition 2.39. Let H be a semisimple and cosemisimple Hopf algebra. Then
we have:

1) If T : A — B is a surjective morphism of algebras in TIMT such that B is
separable (as an algebra in My ) and the kernel of 7 is nilpotent, then there is a
section o : B — A of ® which is a morphism of algebras in TIMMH

2) If 0 : C — D is an injective morphism of coalgebras in g9Mpy such that C is
coseparable (as a coalgebra in My ) and the cokernel of o is conilpotent, then there
is a retraction w: D — C' of o which is a morphism of coalgebras in gIMy.

Proof. 1) By assumption H is semisimple and hence H is separable (see Theorem
234)). Moreover by Corollary 23Tl B is separable as an algebra in the category
HonH | Let n be a natural number such that I™ = 0, where I = Ker 7. By Theorem
226, any epimorphism in the category 9 splits in “9MH . In particular, for
every r = 1,--- ,n — 1 the canonical morphism m, : A/I"t! — A/I" has a section
in the category #9MH. We can now conclude by applying Theorem to the
algebra homomorphism 7 : A — B.

2) By assumption H is cosemisimple, and hence H is coseparable (see Theorem
[2:26). Moreover by Corollary 238 C' is coseparable as a coalgebra in the category
aMy. Let (L,p) := Coker(o). Then, for n > 2, we define L,, to be the coimage
of p®*A,_1 where A,, : D — D®"T! is the n-th iterated comultiplication of D
(A; := Ap), ie. L, = D/ker(p)"> = D/C"b. Then (L,p) is called conilpotent
if there is n > 2 such that L, = 0 or equivalently C> = D. So let n be such
a natural number. By Theorem [234] any monomorphism in the category y9y
cosplits in M y. In particular, for every r = 1,--- ,n — 1 the canonical morphism
i, : C"b — C b has a retraction in the category p9ty. We can now conclude by
applying Theorem to the coalgebra homomorphism ¢ : C' — D. (]
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Since any semisimple Hopf algebra H is separable, in the previous proposition
we can choose B = H. Since any cosemisimple Hopf algebra H is coseparable, in
the previous proposition we can choose C' = H.

3. SPLITTING MORPHISMS OF BIALGEBRAS

3.1. Let H be a Hopf algebra and let (A4, m,u, A, €) be a bialgebra.
By the results that we obtained in Corollary 214l and Theorem 228 we are led
to investigate the following problem.

Problem 1. Characterize those bialgebras A with the property that there is a pair
of K—linear maps,
m:A— H and oc:H — A,

such that 7 is a morphism of bialgebras and ¢ is an (H, H)-bicolinear algebra
section of 7, i.e., mo = Idy.

Motivated by the results that we obtained in Corollary 218 and Theorem [2.35]
we are also interested in studying the problem dual to Problem 1.

Problem 2. Characterize those bialgebras A with the property that there is a pair
of K—linear maps,

c:H— A and m:A— H,
such that o is a morphism of bialgebras and 7 is an (H, H)—bilinear algebra retrac-

tion of o, i.e. mo = Idy.

Our approach to Problem 1 is based on the observation that such a bialgebra
can be viewed in a natural way as an object A € E9IL such that A is an algebra in
(Emi @y, H) and a coalgebra in (79 Oy, H). To explain this we will consider
the following useful wider context.

Definition 3.2. Let R be an H—bicomodule algebra. Let A be an algebra in the
category of vector spaces with multiplication m: A ® A — A and unit v : K — A.
Assume that A is an object in £, We say that (A, m,u) becomes an algebra in
(Bomit ®p, R) if m factorizes to a morphism
m:A®rA— Ain fmi
and u factorizes to a morphism
T:R— Ain Bl

such that (A,7,7) is an algebra in (XM, ©,, R).
Lemma 3.3. With hypothesis and notations of the above definition, we have

u(r)y=r-lg=14-7

Lemma 3.4. Let R be an (H, H)-bicomodule algebra and let (A, T, %) be an algebra
in the monoidal category (X9mH ®ps R). Then A is in a natural way an algebra in
(HmH | @, K) which becomes an algebra in (EME, @4, R).

Proposition 3.5. Let R be an (H, H)-bicomodule algebra. Let (A,m,u) be an
algebra. The following assertions are equivalent:
(a) A is an object in ML and (A, m,u) becomes an algebra in (MY, 4, R).
(b) A is an object in HIME (A, m,u) is an (H, H)-bicomodule algebra and m
factorizes to a morphismm: A®r A — A in LML,
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(¢) (A, m,u) is an H-bicomodule algebra and there exists an algebra map o :
R — A which is a homomorphism in BN . Moreover in (c) = (a) we haveu = o,
while in (a), (b) = (c) the map o induces the (R, R)-bimodule structure of A.

Proof. (a) = (b) is trivial. (b) = (c) Let us set a-b = m(a®b) = M(a®@rb). Then

m is an R-balanced morphism of (R, R)—bimodules, i.e. for a,b € A and r € R, we
have

(16) 1) (ar)-b=a-(rdb); 2) r(a-b)=(ra)-b; 3) (a-b)r=a-(br).

In particular the first relation gives us 147 = (147)- 14 B 1a - (rla) =rly, for all
r € R. Let 0 : R — A be defined by o (r) :=rlg = 147. Let us prove that o is an
algebra map and (H, H)—bicolinear. Since m is (R, R)-bilinear, we get

2
o(rs) = (rs)lg =r(sly) =r(la-(sla)) 2 (rla)(sla) =o(r)o(s).
Moreover, by right H—colinearity of the map defining the left R—module structure
of A and right H—colinearity of u, we get

= o (ro) ®ry

and analogously on the left.

(c) = (a) Clearly o induces an R—bimodule structure over A. Let u! and u”
be the maps defining the module structures. First of all, we have to prove that
these structures make A an object in Z9MI i.e. that they are (H, H)-bicomodule
morphisms. We have

Pa(p! (r @ a))
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> renan @ o(re)a)
= D Tenan O roap)
= (H®p)pprealr @ a).
Relation (x) results by the fact that (A, m,u) is an H—bicomodule algebra, (xx)
holds since o is left H—colinear and (* * x) follows by the definition of module

structures. In a similar way one can prove that u! is right H-linear and that u" is
a morphism of (H, H)—bicomodules. Since

(ar)-b=(a-o(r))-b=a-(o(r)-b) =a- (rb),

the multiplication m : A ® A — A is R—balanced so that it factorizes to a map
m:A®r A— A. The map T is left R—linear as

r(a-b)=0o(r) - (a-b) = (o(r)-a)-b=(ra)-b.

Analogously, one proves that 7 is right R—linear. Obviously m is (H, H)—bicolinear
since m is also (H, H)-bicolinear. Since o is an algebra morphism, we get that o is
a morphism of (R, R)-bimodules and that o o ug = u. Moreover, by assumption,
o is a morphism of (H, H)-bicomodules. Let © = 0. We now prove that (A, m,u)
is an algebra in (I}% Emg ,@p, R). Clearly m is associative. Moreover we have

—~
*
*

~— ~— ~—
I

m(u®pr A)(r®ra) =o(r)a=ra=104(r g a),
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where [4 : R®r A — A is the left unit constraint of the monoidal category
(Bomit ®p, R). Analogously one proves that m(7 ®g A) = ra. O

Our approach to Problem 2 of [3]is based on the observation that such a bial-
gebra can be viewed in a natural way as an object A € gmg such that A is a
coalgebra in (29I Oy, H) and an algebra in (yMpy, ®p, H). To explain this we
will consider the following useful wider context.

Definition 3.6. Let H be a Hopf algebra and let D be an (H, H)—bimodule coal-
gebra. Let C be a coalgebra in the category of vector spaces with comultiplication
A and counit €. Assume that C is an object in 295, We say that (C, A, ¢) becomes
a coalgebra in (B9ME Op, D) if A corestricts to a morphism

A:C — COpC in Hmb
and ¢ factorizes to a morphism

z:C — Din Pomb

such that (C, A,Z) is a coalgebra in (B9ME, Op, D).
Lemma 3.7. With hypothesis and notation of the above definition, we have

E(a) = ZE(G(()))CL(D = ZE(G(()))a(,l).
Proof. Since € is left D—colinear, we get ) c(_1y ®&(cqo)) = >_&(c)1) ®E(c)(2)- By
applying D ® ep on both sides, we obtain the first equality of the statement. The
other one follows analogously. O

Lemma 3.8. Let D be an (H, H)-bimodule coalgebra and let (C, A, %) be a coalge-
bra in the monoidal category (B9ME Op, D). Then C is in a natural way a coalgebra
in (gMpy, ®, K) which becomes a coalgebra in (MY Op, D).

Proposition 3.9. Let D be an (H,H)-bimodule coalgebra. Let (C,Ae) be a
coalgebra. The following assertions are equivalent:

(a) C is an object in DMLY and (C, A, €) becomes a coalgebra in (HME Op, D).

(b) C is an object in MY (C, A, ¢) is an (H, H)-bimodule coalgebra and A
corestricts to a morphism A : C — COpC in HING.

(c) (C,Ae) is an (H, H)-bimodule coalgebra and there exists a coalgebra map
7w : C — D which is a homomorphism in gy .

Moreover in (¢) = (a) we have € = 7, while in (a), (b) = (c) the map 7 induces
the (D, D)-bicomodule structure of C.

Proof. Follows by duality from the proof of Proposition O

Proposition 3.10. Let a: E — L be a coalgebra map, where E and L are bialge-
bras. Then the following assertions are equivalent:

(1) E is an L-bicomodule algebra, i.e. an algebra in (*MY @, K), where the
comodule structure of E is induced by a.

(2) a is a bialgebra map.

Proof. (1) = (2) Since the multiplication of E is (L, L) bicolinear, we get
>_alzw)alyn) @eeve) = o Tnyen S0 Y0
= D (@) @ (zy)
- Za[(xy)(l)] ® (Y)(2),
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so that, by applying L ® eg, we obtain a(z)a(y) = a(zy), for any z,y € E. Also,
plup(k) = 1 ® ug(k) for any k € K, so that by applying a ® g, we obtain
QUE = Uy,.

(2) = (1) Let us prove that the multiplication mpg is left L—colinear. Let
z,y € E. We have

pempE®y) = ) al@nyn) ® Teye
= Z a(z(n))a(ya)) © T2)y)

= Z T(-1)Y(-1) ® T(0)Y(0) = Z(L ®@mg) ° pygp-

Analogously one can check that mpg is right L—colinear. Since a(lg) = 1, we
have plup(k) = 15 @ ug(k) for any k € K, i.e. the unit ug is left L-colinear.
Analogously one can check that ug is right L—colinear. O

Proposition 3.11. Let a: E — L be an algebra map, where E and L are bialge-
bras. Then the following assertions are equivalent:

(1) L is an E-bimodule coalgebra, i.e. a coalgebra in (gMp, ®, K), where the
module structure of L is induced by a.

(2) « is a bialgebra map.

Proof. Follows by duality from the proof of Proposition [3.10l O

Theorem 3.12. Let (A,m,u,A,e4) be a bialgebra and let H be a Hopf algebra.
The following assertions are equivalent:

(a) A is an object in (LM ®yy, H), and A becomes an algebra in (EomiL @y, H)
and a coalgebra in (T Oy, H).

(b) There are a bialgebra map w : A — H and an (H, H)-bicolinear algebra
map o : H — A, where A is a (H, H)-bicomodule via 7.

Furthermore, in this case, the counit € 4 is right H—linear if and only if mo =
Idy .

Moreover, if (a) holds, we can choose © and o such that

(17) 7r(a) = ZE(G(@)G(D = ZE(G(()))a(,D and O'(h) =h- 1A = 1A - h.

Proof. (a) = (b) Since A becomes a coalgebra in (?9" Oy, H), by Proposition
there exists a coalgebra map m : A — H which is a homomorphism in g9y
such that (A4, A, 7 = Z) is a coalgebra in (gMz, Og, H) and 7 induces the (H, H)-
bicomodule structure of A. Note that by Lemma [3.7] and by Lemma [3.3] 7 and o
fulfill relations (7).

Since A becomes an algebra in (49, @,,, H), by Proposition B.Jlit follows that
A is an (H, H)—-bicomodule algebra. Thus, by Proposition 310 we obtain that = is
a bialgebra map.

Since A becomes an algebra in (2 @ 1> H), by Proposition there exists
an algebra map o : H — A which is an homomorphism in #9H.

(b) = (a) By Proposition B0, applied to the bialgebra map o = m, A is
an algebra in (A9 ®, K). By Proposition [3.5] applied in the case where “R”"=
H and using the fact that o : H — A is an (H, H)—Dbicolinear algebra map, A
is an object in 9 and (A, m,u) becomes an algebra in (¥, ®,,H). By
Proposition B9 applied in the case “H” = K, “C” = A and “D” = H and using
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the fact that “7” is a coalgebra map in Mg, we deduce that (A, A,e4) becomes a
coalgebra in (HEDTH, Op, H).

We will now prove that if (a) or (b) holds true, the counit €4 is right H—linear
if and only if 7o = Idy. Since o is right H—colinear and the right coaction on A is
induced by 7, we have

Za(h(l)) X h(g) = Za(h)(l) X T (U(h)(z)) .

By applying e4 ® H to this equation we obtain

(18) > ea(o(hay) hezy = (70)(h).

We point out that, by Proposition B3] o induces the (H, H)-bimodule structure
of A.
Assume that the counit €4 is right H—linear. Then

> ea(o(h@) hiay =Y ea (lac(h)) by = > ea (Lah))) hez)
= ZEA(lA)ﬁH(h(l))h(z) = h.

Conversely, if mo = Idy, then, by applying ey to both sides of [I8]), we get
ea (o(h)) =ep(h). Then

ca(ah) =ca(ao(h)) =ca(a)ea(o(h)) =ecala)ey(h).
O

Theorem 3.13. Let (A,m,u,A,c4) be a bialgebra and let H be a Hopf algebra.
The following assertions are equivalent:

(a) A is an object in (FMP, @, H) and A becomes a coalgebra in (494, O,
H) and an algebra in (gMy, @, H).

(b) There are a bialgebra map o : H — A and an (H, H)-bilinear coalgebra
map 7 : A — H, where A is an (H, H)-bimodule via o.

Furthermore, in this case, the unit u is right H— colinear if and only if mo = Idg.

Moreover, if (a) holds, we can choose m and o so that ({IT) holds true.

Proof. Follows by duality from the proof of Theorem O

Example 3.14. Let H be a Hopf algebra. By[L.9] we know that there is a monoidal
category equivalence

(Hma®aK) L (ng,@)HvH) i (HSUI,@,K)

Now let (R, m,u) be a left H-module algebra, i.e. an algebra in the monoidal
category (g9, ®, K'). Then, by Proposition[L.3] (F(R), mpr), up(r)) is an algebra
in (g9, @y, H). It is easy to check that by lifting the multiplication mp(R) to the
usual tensor product F(R) ® F(R), we obtain the so-called smash product R#H of
R and H, i.e. the associative algebra defined on R ® H by setting

(19) (r#h) (s#k) =Y v ("®s) #h)k

This algebra is unitary, with unit 1z#1g. Here r#h :=r ® h.
By [LI1] the above equivalence induces a monoidal category equivalence

(HYD,®,K) = (Bl @, H) % (YD, @, K).
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Thus, if we assume in addition that R is an algebra in ZYD, then F(R) is an
algebra in the monoidal category (¥9M, @, H) so that, by Lemma 34 R#H
becomes an algebra in (HS.TIH, ®yy, H), with respect to the structures

Prgr (r#h) =3 1>h 1) © (roy#h@),  Pryn (r#h) =3 (r#ha)) @ he),
k(r#h) =32 ’““)r#k (r#h) k = r#hk.

We will now prove that any algebra A that becomes an algebra in (29ME i H)
is of this type, i.e. there is an algebra R in gyD such that A ~ R#H.

Definition 3.15. Let H be a Hopf algebra and let V € Z9nH. The space of right
coinvariant elements of V' will be called the diagram of V| and it will be denoted
by Ry, or by R for short, if there is no danger of confusion.

Proposition 3.16. Let (A,m,u) be an algebra. Suppose that A is an object in
HMHE such that A becomes an algebra in (FME @, H). If R = AU js the
diagram of A, then R is an algebra in gyD with multiplication mp, the restriction
ofmto RRR, and unit 1p =14.

Moreover, the canonical isomorphism e4 : R#H — A is a morphism of algebras
in (M @p, H).

Proof. Since A becomes an algebra in (KM @, H), the multiplication m of A
factors to a map m : A®y A — A and the unit u of A factors toamapw: H — A.
Moreover, by Proposition B8, (A,m,w) is an algebra in the monoidal category
(Emi @y, H). Therefore, by Proposition[L5, G(A) = R, where G is the monoidal

functor (AME @y, H) -5 (BYD,®, K) (see [IT), is an algebra in the monoidal
category (YD, ®, K). The multiplication of R is exactly the one induced by the
multiplication of A, and the unit is the same as A.

Now, by [LTI] the counit of the adjunction (F, G), corresponding to the monoidal
equivalence

(HYD,®, K) == (91, ©n, H) < (F¥D, 8, K),

is given by
e M @ H — M, ep(v® h) = vh.
By Corollary [[L7 €4 is an algebra isomorphism. O
Example 3.17. Let H be a Hopf algebra. By we know that there is a
monoidal category equivalence
(T, @, K) = ("9, On, H) -5 ("9, @, K).

Let (D, A, ¢e) be a left H—comodule coalgebra, i.e. a coalgebra in the monoidal cat-
egory (A9, ®, K). Then, by Proposition [LH, (F(D), Ap(p).crp)) is a coalgebra
in (UM Ogy, H). It is easy to check that embedding DOy D inside D ® D, we
obtain the so-called smash coproduct D#H of D and H, i.e. the the coassociative
and counitary coalgebra defined on D ® H by setting
(20) A(d#h) = Y day#(de) - nha) @ (de) o #he),
(21) e(d#h) = ep(d)eu(h).

By 12 the above equivalence induces a monoidal category equivalence

(HYD, @, K) - (B, On, H) -5 (YD, ®, K).
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Thus, if we assume in addition that D is a coalgebra in £YD, then F(D) is a
coalgebra in (29MH Oy, H) so that, by Lemma 3.8 D#H becomes a coalgebra in
(Eomil Oy, H), with respect to the structures

Prpp (d#h) =Y di_1yha) ® (doy#h(2)):  Phaw (d#h) =3 (d#ha)) © he),
k(d#th) = 3 5 dtoy b, (dh) k = dthk,
We will now prove that any coalgebra C that becomes a coalgebra in (H9E Oy, H)
is of this type, i.e. there is a coalgebra D in ¥ YD such that C' ~ D#H.

Proposition 3.18. Let (C,A,e) be a coalgebra. Suppose that C is an object in
B9 such that C' becomes a coalgebra in (XM Oy H). Let 2 be the counit of C
as a coalgebra in (I Oy, H). If D = C€°1) s the diagram of C, then D is a
coalgebra in £YD, where the comultiplication of D is given by

5:DHD@D:dHZd(l)SEd(g)(@d@)

and the counit is induced by the counit of C.

Moreover, the canonical isomorphism ec : D#H — D is a morphism of coalge-
bras in (oM Oy, H).
Proof. Since C becomes a coalgebra in (29 Oy, H), the comultiplication A of
C corestricts to a map A : C — COgxC and the counit € of C factorizes to a
map € : C — H such that e = egg. Moreover, by Proposition B9 (C,A,2) is a
coalgebra in the monoidal category (29 Oy, H). Therefore, by Proposition [[L5]
G(C) = D, where G is the monoidal functor (29 Oy, H) <, (BEYD,®, K) (see
[L12), is a coalgebra in the monoidal category (YD, ®, K). The comultiplication
of D is

0:D—-D®D:dw— Zd(l)Séd(g) ®d(3),

and the counit is induced by the counit of C.

Now, by [L12] the counit of the adjunction (F, G), corresponding to the monoidal
equivalence

(HYD,®, K) = (9, Oy, H) - (F¥D, @, K),
is given by
e MO @ H — M, ep(v®h) = vh.

By Corollary [T, €4 is a coalgebra isomorphism. O
3.19. Suppose that H is a Hopf algebra. Let V € My and W € H9M. Tt is well
known that we have a functorial isomorphism
(22) (Vo H)OgW ~V @ W,
which is given by Y1 | v;,0gh; @ w; — >, €(hi)v; ®w;. The inverse of this map
isV®pw.

Furthermore, the functor F : Mz — MH | F(V) =V @ H, has as a left adjoint

the functor G : MH — My that “forgets” the comodule structure. The maps that
define this adjunction are

avw MV, W H) - Mg (V,W),  avw(f) =V eef,
Bvw : My (V, W) — M Bvw(g) = (9@ H)py,

where py defines the comodule structure on V.
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Lemma 3.20. Let V, W be two vector spaces and let Z be a left H— comodule. If we
regard Z ® H as a left H— comodule with diagonal coaction and a right comodule via
Z @ Apg, then there is a one—to—one correspondence between My (VQ H W @ Z)
and M (V @ HH(W @ H)\Og(Z ® H)). Ify € Mg(VRHW®Z) and T €
MA(V @ H,(W @ H)Ox(Z @ H)) correspond to each other through this bijective
map, then they are related by the following relations:

(23) T=WReg®Z®@en)T,
(24) Twah) =Y 7' (0@ h1) @7V ha))nhe) @7 @@ ha)) o ® ha),
where Y(v@h) =3 Y (v@h) @2 (v®@h) € W ® Z is a Sweedlerlike notation for
Y(v® h).
Proof. By [22]) we have
WeoHOg(Z@H)~W®ZeH.
Hence
MIVeoH WeH)Oyg(ZoH)~MI(Ve HWeZeH).
By composing this isomorphism with aygm,wez, we obtain a bijective map
MY (Ve H (WeHDOy(Ze H) —Me(VeHW®e Z).

Suppose now that v and I' correspond to each other through the above K- linear
isomorphism. A straightforward but tedious computation shows us that v and I’

verify ([23) and (24). O

3.21. Let R € 9% and let Arypn : (R#H) — (R#H)On(R#H) be a right H-
colinear map. By Lemma [B:20] if

(25) d=(R®epy @ R®ep)Apun,
and for 7 € R, h € H we write §(r#th) = 3. 6" (r#h) ® 02(r#h) € R® R, then
(26) AR#H(T‘#h) = ZSI (T#h(l))#SZ(T#h(l))<,1>h(2) X 52(7‘#}1(1))@)#}13.

Conversely if § : R® H — R® R is a linear map and Agpyy is defined by (28),
then Apyp is a right H—colinear map and Im(Ag4xy) C (R#H)Oy (R#H).

3.22. Let H be a Hopf algebra and let A be a bialgebra with multiplication m, unit
u, comultiplication A and counit 4.

In view of Theorem B.12] Problem 1, as stated in Bl can be reformulated as
follows: characterize all bialgebra A that are objects in 9t such that A becomes
an algebra in (X9 @, H) and a coalgebra in (79" Oy, H), with the further
requirement that ¢4 is right H—linear.

By Proposition BI6, the diagram (R, m,u) of A is an algebra in YD, R#H
is an algebra and the map e4 : R#H — A, es(r ® h) = rh is an isomorphism of
algebras in (B9 @y, H). Obviously, R#H is a bialgebra with comultiplication
Apypg and counit epyp given by

AR#H = (6;‘1 X GZI)AGA and ER#H ‘= EAEA.

Of course, with respect to this bialgebra structure, e4 becomes an isomorphism of
bialgebras.

Furthermore, since A becomes an algebra in (E9M @, H) and a coalgebra in
(2o Oy, H), the smash R#H has the same properties. In particular Im(A gz pr)
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C (R#H)Ou(R#H) and Aggp can be regarded as a right H-colinear map

Hence, by B22I) Agyp is uniquely determined by the K- linear map 6 : R#H —
R® R. In order to obtain the counit er4, we consider the restriction of €4 to R.
For simplifying the notation, we shall denote it by ¢.

Lemma 3.23. The following assertions are equivalent:
(1) €4 is right H-linear;
(2) erpnu(r#h) =e(r)eu(h), for allr € R and h € H;
(3) ea(lah) =ep(h), for allh € H.

Proof. By definition, we have ey m (r#h) = ca(rh).

(1) = (2) By hypothesis we have e4(rh) = (r)eg (h).
(2) = (3) By hypothesis we have egup(1a#h) = (1a)en(h) = eu(h).
(3) = (1) By relation 3) in (I6) of Proposition 3.5l we have

EA(ah) = EA((alA)h) = EA(a(lAh)) = EA(a)E(lAh).
(]

All considerations above still hold if we work with an arbitrary algebra R in
AYD. To be more precise we reformulate our problem of characterizing algebras A
as above in the following way.

Problem 3.24. Let R be an algebra in g)}D. Suppose that 5 R#H — R® R,
€ : R — K are K-linear maps. Let Apgypn be defined by [26) and let egup =
¢ ® eg. Find a necessary and sufficient condition such that (R#H, Apym,cruH)
is a bialgebra that becomes a coalgebra in (XM Oy, H).

Note that R#H always becomes an algebra in (B9 ©y, H), as claimed in
Example B.I4l Of course, by solving the above problem we also get an answer to
our initial question of finding all bialgebras A, where A is an H—Hopf bimodule,
that become an algebra in (29 @, H) and a coalgebra in (#9070, H) such
that €4 is right H—linear. It is enough to take R to be the diagram of A and g, €
as in[B.22] Therefore, we fix the following notation:

e Ris an algebra in £YD;

e §: R#H — R® R and € : R — K are K-linear maps;

o Apsuy is defined by (20);

® cRruH ‘= EQeEqH;

o prup R#EH — H®@ RH#H : r#h — Y r1yha) ® (r<0>#h(2)) denotes the
map that defines the left coaction on R#H (see Example B.14]).

3.25. To simplify the computation we shall sometimes use the method of repre-
senting morphisms in a braided category by diagrams. For details, the reader is
referred to [Kal Chapter XIV.1]. Here we shall only mention that the morphisms
are represented by arrows oriented downwards.

We shall apply this method in the category £YD of Yetter— Drinfeld modules.
Recall that, for every V, W € £YD the braiding is given by

(27) cvw VW -WwWeV, cvw (v @w) = Zv(_l)w®v<0>.

Two examples of diagrams in this category can be found in Figure[Il Note that in
both pictures the crossings represent cg m.
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H
l I
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FIGURE 1. Definitions of pryn and Arzp.

R H R H R H R H
| |
jf' y /A)H y
/ &y /( AH
k R k R HH R H H R
FIGURE 2. Properties of e and Ag.
Lemma 3.26. Let H be a Hopf algebra. Then:
a) (eg ® R)cr,g = crx(R®em).
b) (AH (024 R)CR’H = (H X CR,H)(CR,H X H)(R X AH)
Proof. Straightforward. O

Remark 3.27. The equations from the previous lemma admit the representations
from Figure Pl Note that in both equalities the right-hand side is obtained from
the left-hand side by pulling ep, respectively Ap, under the crossing. This is a
general property that works for arbitrary diagrams related to braided categories:
a morphism can be moved along the string, and it can be pulled under or over
crossings.

Recall that we are seeking conditions such that (R#H, Agyn,eren) becomes
a coalgebra in the monoidal category (F9* Op, H) so that we need Ag4py to be
an (H, H)-bicolinear map. Note that the left H—comodule structure of (R#H) ®
(R#H) is given by prun ® R#H and the right one by R#H ® Pryn- BY B22 we
already know that Apypy is right H—colinear. The following result deals with left
H-colinearity which is expressed by relation (28]).
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FIGURE 4. The proof of 28) = (29).

Lemma 3.28. The following two relations are equivalent:

(28) lprun @ (R#H)|Argn = (H® Apgn)pryn,
(29) (H®8)prun = (crn ®R) (R®crp) (6@ H)(R® Ay).

Proof. Note that the equivalence that we have to prove can be represented as in
Figure Bl We prove that 28)=29) in Figure @ The first equality there was
obtained by composing both sides of [28) with H @ RQ ey ® R® eg. The second
equation holds because ey and Ay can be pulled under the string in a crossing;
see Remark We conclude the proof of this implication by using the fact that
ey 1s the counit of H.

The other implication is proved in Figure Bl By Remark we can drag Ay
under the braiding, so we get the first equality. Since the comultiplication in H is
coassociative, we have the second and last relations. The third one follows since,
by assumption, (29) holds. O
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R H R II‘I R III R II‘I
]
2 2 2
AH AH AH
T I Z
A, Ay
= = = / =

//l

H RHRH HRHRH HRHRH HRHRH HRHRH

FIGURE 5. The proof of 29) = (28]).

R H R II-I R H R H
1
% 9 | |
TS TN A, A,
5 sJ
L = | C = Sl =15
A2 A2 <
M1 =10 51 (s
| TS |
RHR HRH R HRHRH R R R R R R

FIGURE 6. Representation of (30) < (31I).

Lemma 3.29. Assume that Aryp is left H-colinear (i.e. satisfies [28)). Then
the following two relations are equivalent:

(30) [Argn @ (R#H)|Arpn = [(R#H) © Argpn) Ar#H,

(31) (@R(RRcru)0@H)(R®Ay)=(R®8) (6@ H)(R® Ag).

Proof. The diagrammatic representation of the equivalence is given in Figure [l It
is easy to see that ([B0)) implies (BI). Indeed it is enough to add (RRey @ R@epy ®
R ® ep) on the bottom of the diagram representing (B0]), then drag ey under the

crossings and use the fact that ey is a counit. The other implication is proved in
Figure [7 d

3.30. Let R and S be two algebras in the braided category £YD. We can define a
new algebra structure on R ® S by using the braiding (27) and not the usual flip
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R HRHRH R HRHRH RH RHRH R

FIGURE 7. The proof of (1)) = (30).

morphism. The multiplication in this case is defined by the formula
(32) (r@s)(t®v)=> r(*1t) @ squv.

Let us remark that, for any algebra R in g)}D, the smash product R#H is a
particular case of this construction. Just take S = H with the left adjoint action
and usual left H—comodule structure. Another example that we are interested in
is R® R, where R is the diagram of a bialgebra A as in For such an algebra
R in LD we shall always use this algebra structure on R ® R.

Lemma 3.31. Let 6 : RO H — R® R be a K- linear map. Then the following two
relations are equivalent:

(33) Apgrr ((r#h) (s#K)) = Argrr (r#h) Ay (s#k),
(34) 3 ((r#th) (s#k)) = 22 8(r#thy) " 6 (s#k),
where, for every h € H and r,t € R, we have "(r ®t) =Y by @ hort,
Proof. Let r#h and s#k € R#H. Thus we have
A(r#th) = 6" (r#h)) #6° (r#h)) (—nyhi) ® 62 (r#ha)) oy #hs),
A(s#k) = 0" (s#h))#0° (s#hk)) (—1) k2) @ 0 (s#k (1)) (o) #(3)
Arpnr ((r#h)(s#k)) = Z5l(rh(l)8#h(z)k(1))#52(7“h(1)8#h(2)k‘(1))<71>h(3)k’(2)
® 0%(r"® stz k) 0y #hia) Fea)

By substituting in (33) the elements involving Agyp with the right-hand sides of
the above three relations, and then by applying R® eg ® R ® €, it results in

(35) O((r#h)(s#k))
= 33 rthy) T FRO 0D (st) @ 8 (r#thn) ) o) "8 (k)

Since in R ® R the multiplication is defined by ([B2), it follows that the right-hand
sides of (34) and (BH]) are equal, so the equality (34) holds.

Conversely, if (34) holds true, then we have (3H). We can replace the left-
hand side of this relation by > 6% (r h) s#th o k) ® 82(r hw s#hg)k). A very long
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computation, using this equivalent form of (B3], ends the proof of the proposition.
O

3.32. Let 6 : R® H — R® R be a K—linear map. For every 7 € Rand h € H we
introduce the notation

(36) 8(r) =6(r#1),  w(h) = 6(1#h).

Then § : R - R® R and w: H — R® R are K—linear maps. Recall that R® R
is an algebra in YD with the multiplication defined in For example we can
compute the product §(r)w(h) in R ® R. Now, using the notation above, we can
give a new interpretation of (B3)).

Lemma 3.33. Let 6 : R® H — R® R be a K- linear map. Then Arpyp is a
morphism of algebras iff 6(1gr) = 1g @ 1g, w(ly) = 1g ® 1g and 6,6 and w satisfy
the following four relations:

(37) S(r#th) = 8(r)w(h),

(38) d(rs) = 0(r)d(s),

(39) w(hk) = Y w(h)) "@w(k),

(40) Y6 ("or)w(he) = Y whay) "®6(r).

Proof. By Lemma [331] the map Agyp is multiplicative if and only if (34) holds,
ie.

O ((rdth)(s#k)) =D 0(r#th(r)) "®5(s#k).
Now assume that (34) holds. Then setting h = 1y = k we obtain (B8], while for
r =1 = s we obtain ([B9). Also for h =1y and s = 1z we get 1) and for r = 1p
and k = 1y we get ([@0), by means of B7). Conversely assume that B8], {Q), (37)
and (B9) hold true. Then by 37), (38) and (B9) we have

O((r#th) (s#k)) = > 0(r " s)w(hayk) = Y 6(r)d("® s)w(hz)) " w(k).

So, by (@0) and by the fact that R® R is an algebra in ZYD (hence an H—module
algebra), we get

O((r#th) (s#k)) =Y d(r)w(hq)) "@6(s) "@w(k) = > 8(r)w(h)) "@ [§(s)w(k)].
Now we can prove (34) by using (B7) once again. Obviously Ar4p is a morphism
of unitary rings if and only if 6(1g) = 1g ® 1g and w(ly) =1 ® 1g. O

Remark 3.34. By [B7) we can recover Sfromé:R— R®Randw: H— R® R.
Equation ([B8) says that § is multiplicative with the algebra structure on R ® R
introduced in We have already noted that R® R is a left H—module algebra.
For an arbitrary left H—module algebra A, Sweedler, in [Sw2|, defined a non—
commutative 1-cocycle with a coefficient in A to be a K—linear map 6 : H — A

such that
= 0(h)"@0(k).

Hence ([B9) means that w is a 1- cocycle with coefficients in A.

Lemma 3.35. Assume that Arup is multiplicative. Then [29) holds iff § and w
are left H—colinear (where H is a left H—comodule with left adjoint coaction).
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Proof. Assume that (29) holds and let » € R, h € H. By evaluating ([29) at r#1
we get

Prer(d Z r(-1) ®d(r (o)),
so ¢ is H—colinear. Similarly, for l#h we have
Z h(l) X wl(h(g)) X w2(h(2))
=YW (h) (-n@’ (hay)(-nhe © ' () o) @ &2 (b)) o),
i.e. we get
(41) D by @wlhe) =D wlhay)-nhe) @wlha) o)
On the other hand,
> w(h) -1y @ w(h) o) = ZW(hu)) ~1yhyS(ha)) @ wlhy) o)
= Zh 1)S ®w(h(2))

where the last equality holds in view of (II[I) Hence w is left H—colinear.
Conversely, assume that § and w are left H—colinear. Relation (29), that we
have to prove, is equivalent to A;(r, s) = A.(r,s), where

(42)
8) =D 8 (r#th) (-8 (r#h(y) (-0 hea) © 0" (r#h ) 00 (r#h(1) ) (0
(43)
Ap(rys) = ZT(—1)h(1) ® g(r(o)#h(g)).
Then, since Arxy is multiplicative, by (31) we have
Ai(r,s) = Zér@h 2)®5(r®h 1)) (0)

= 0(r) - (1)) i) @ 6(r) w(hay) o)
Since d and w are left colinear it results in
> 6(r) cyw(hy)—1yhe) @ 8(r)oyw(h)) o)
= rnha) ®6(rg))w(hz) = Ar(r, s),
so Ai(r,s) = A.(r,s), and the lemma is proved. O

3.36. To simplify the notation, for every r € R, let §(r) := 3. ) @ r(®). This is a
kind of sigma notation that we shall use for §.

Lemma 3.37. Assume that Agym is a morphism of algebras such that § is left
H - colinear. Then BI) holds iff the following two relations hold true for anyr € R
and h € H:

(2
(44) S W @sr®) =S s(rMwr? ) @),
(45) > wh(ha) @6 (w (h(1)))w(h(2))

=Y 8 (@' (h)) @ (@ (b)) -1yhee) ® @ (hy) o)



1028 A. ARDIZZONI, C. MENINI, AND D. STEFAN

Proof. Since Ap4p is multiplicative it is straightforward to prove that (3I) holds
iff, for every r € R and h € H, we have B(r,h) = B,(r, h), where

(46) => r ( 1! h<1>)) ®5< @) (hu)) w(h()),
(47)

Z5< SRES (h<1>)>W( r® Wb nhe ) @ rEw? (ha) o).

Since Aggp is a morphism of algebras we have §(1g) = 1p®@1gp and w(ly) = 1x®
1g. Hence one can easily see that ([@]) and ([@3]) are equivalent to By(r,1) = B,.(r,1)
and B;(1,h) = B.(1,h), respectively. In particular, (31 implies (4)) and (@H). In
order to prove the converse, let us denote by C;(h) and C,(h) the left- and right-
hand sides of {3]). Since § is left H—colinear, and by using (38, it results in

Bir,h) =Y~ (r® 0 6() ) Ci(h),

where the product is performed in R® R® R, which is an algebra with multiplication
given by

reost)(res ot) = Zr SO @ 50 S @ty

Similarly, by 7)) and (34)), it follows that

B(r,h) =3 (5(r(1))w( @) rgog) . (h).
By multiplying (@4)) and (£5) side by side in R ® R® R, we deduce that B;(r, h) =
B(r,h). O

3.38. We are seeking conditions such that (R#H, Aryn,crun) becomes a coal-
gebra in the monoidal category (Y9 Oy, H). Note that, in this case, ER#H =
€m ©Eppn, where, by Lemma B.7]

(48)

ER#H T#h ZER#H T#h) ](T#h (1) ZER#H T#h(l ) (2) = E(T)h.
Note that €z is a map in the category HopH

Lemma 3.39. Let R be an algebra in 1YD and let e : R — K be a K- linear map.
The map erpn @ R#H — K, erpnu(r ® h) := e(r)eq(h) is an algebra map and
Erpn - R#H — H, defined as in [AR), is a left H—colinear map if and only if € is
an algebra map in g)}D.

Proof. The map €rxp is left H—colinear if and only if

(49) > e(Mhay @ hy =Y ryh@ye(r)) ® h),Vr € R, h € H.
Note that relation ([@9) holds true if and only if

(50) rh=> riyhe(re),Vr € Rh € H,

i.e. if and only if ¢ is left H—colinear. In fact from (B0), (@9) follows easily.
Conversely, by applying H @ ey to [@9), we get (Bl). Now let us prove that epupy
is an algebra map if and only if € is an H—linear algebra map.
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“=” Assume that the map eppy : R#H — K,eppu(r ® h) :=¢e(r)ey(h) is an
algebra map. By the definition of the multiplication in R# H and the definition of
ER#H We get

Y e(r"s)em (heyv) = ergen (r#h) (s#0)) = enpen (r#h)e g (s#v)
=ce(r)em (h)e(s)en(v).
Then egyn(1p ® 1y) =1, ie. e(r) = 1. Thus, from (&), we have

e("s) = 3 e(Up" D s)en (hyln) = e(Um)en (We(s)en(Ln) = cn(h)e(s)

(51)

and
e(rs) = Zs(rs)sH (Igly) =c(r)eg(lg)e(s)en(1y) = e(r)e(s),

i.e. € is an H-linear algebra map.
“«<" Now assume that ¢ is an H-linear algebra map. Thus

ergn ((r#h)(s#k)) = Z6R#H (r"® s#tho)k)
= > e(r"™s)en(hk)
= > eren(hay)e(s)en(hee))en (k)
= Erpn ((r#h)(s#k)).
[l

Lemma 3.40. Assume that € is an algebra map in LYD. Thenepyy : R#H — K
is a counit for Aryn if and only if, for every r € R and h € H, we have

(52) S @ (ron)Pron) =cp(hr=> 8o h)e ( (r®h)).

Proof. Assume that epgp is a counit for Apyp. Then, by the definition of Apyp
(see (20)), it results in

rQ h= ZSI(T (%9 h(l)) ® 52(7" X h(l))<_1>h(2)6 (52(7" X h(l))<0>) EH (h(g)) .

By applying R ® ey to this relation, we get the second equality of (52). The other
one can be proved similarly.

Conversely assume that the equality (E2) holds. Since € is left H—colinear, we
have

(R#H@&R#H AR#H Z(S T®h(1) (52(7"@}1(1))) ®h(2)
= ZT&H h(l)) ® h(g) =7r® h.
We can prove the second relation analogously. (]

Lemma 3.41. Assume that Arpn is multiplicative and that € : R — K is an
algebra map in LYD. Then B2) holds if and only if

(53) (e®R)d = (R®e)d = Idp,
(54) (€®R)w: (R@E)LUZEH].R.
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Proof. First let us observe that e®@ R : ROR — R and R®¢ : RQR — R are algebra
maps (recall that R® R is an algebra with multiplication (mr®mr®@R)(R®cr,Rr),
where c is the braiding in #YD). Clearly (52)) holds if and only if

(e ® R)S (r#h) = ey (h)r = (R®¢e)d (r#h) ,Vr € R, Vh € H.
Assume now that (53) and (G4) hold. Then
(e ® R)d (r#h) = (@ R)5 (1) - (¢ ® R)w (k) = e (h) T

Analogously we can deduce the second equality of (52)). The other implication is
trivial. O

To state the main results of this part more easily, in the next definition we collect
together all the required properties of §, w and ¢.

Definition 3.42. Let H be a Hopf algebra and let R be an algebra in (YD, ®, K).
Assume that e : R > K ,0: R—> R® Rand w: H — R® R are K- linear maps.
The quadruple (R, ¢,d,w) will be called a Yetter—Drinfeld quadruple if and only if,
for all r,s € R and h,k € H, the following relations are satisfied:

e("r)=e(r)en(h) and > ryye(ry) =e(r)lp;
e(rs) =e(r)e(s) and e(lg )
PRQR (5(7“ ZT ®(5(’I‘<0 )

58 pror (W(h) =Y ha)S(hs) @ wh);

(55)
(56)
(57)
(58)
(59) o(rs) = o(r )5() and (R):lR®1R;
(60)
(61)
(62)
(63)

56
o7

60 w(hk) =Y wlhq)) ("@wk)) and  w(lg)i=1p® lg;
61 25 h“)r w (h2)) = Zw(h(l))h(2)5(r)'
@ I S A
63 > wh(h w? (hay))w (h(z))
225 Wl (hy)w (w?(ha)) -nhe) @@ (ha)) o
(64) (e®R)) = (R®¢€)d =Idg;
(65) (€®R)w: (R@E)LUZEH].R.

Remark 3.43. Note that these relations can be interpreted as follows:

(GH) — ¢ is a morphism in £YD;

(E8) — € is a morphism of algebras;

7)) - 0 is left H-colinear;

(B8) — w is left H-colinear, where H is a comodule with the adjoint coaction;

(B9) — ¢ is a morphism of algebras where on R ® R we consider the algebra
structure that uses the braiding c;

@0) — w is a normalized cocycle;

(©T) — w measures how far § is to a morphism of left H—modules (if w is trivial,
i.e. for every h € H we have w(h) = e(h)lgr ® 1R, then § is left H-linear); we shall
say that § is a twisted morphism of left H—modules;
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([@©2) — it was derived from the fact that Agrxp is coassociative, so we shall say
that 0 is w— coassociative (when w is trivial then (G2)) is equivalent to the fact that
0 is coassociative);

([©3) — is the only property that has not an equivalent in the theory of bialgebras;
we shall just say that 6 and w are compatible;

©4)) — 0 is a counitary map with respect to ¢;

©8) — w is a counitary map with respect to e.

Since ¢ satisfies the last two relations, we shall call it the counit of the Yetter—
Drinfeld quadruple R. By analogy § will be called the comultiplication of R. Finally,
we shall say that w is the cocycle of R.

3.44. To every Yetter—Drinfeld quadruple (R,e,d,w), we associate the K—linear
maps Apgp @ R#H — (R#H) ® (R#H) and egpyy : R#H — K, which are
defined by

(66)
Apgu(r@h) =) 6" (r@ha) ® 8 (r @ ha)nhe © 0% (r @ ha))o) ® he),
(67) ER#H (T#h) = E(T)EH(h),

where 0 (r#h) := 6 (r)w (h), and we use the notation
S(r#th) = "8 (r@h) @ *(r@h).

Theorem 3.45. Let R be an algebra in 2YD. Ife :R — K, §: R — R® R and
w:H — R® R are linear maps, then the following assertions are equivalent:

(a) (R,e,0,w) is a Yetter—Drinfeld quadruple.

(b) The smash product algebra R#H is a bialgebra with comultiplication Apym
and counit epppy defined by ([G6) and [@1) such that R#H becomes an algebra in
(EmE, ®,,, H) and a coalgebra in (M7 Og, H).

Proof. (a) = (b) In view of the definition of Aggpy, we have that (B7) holds.
Then, since also (59), @0) and (GI)) hold, by Lemma [B.33] it results that Aggpy is
a unitary algebra morphism.

Since Agrxp is multiplicative, we can apply Lemma and Lemma to
deduce that Agup is left H—colinear by using relations (57) and (58), i.e. that &
and w are left H—colinear. On the other hand, by B2T] we get that Agupy is right
colinear, so Agrxp is a morphism of (H, H)—bicomodules. Also, by B:21] it follows
that the image of Agypy is included in (R#H)Oy (R#H).

Since Agrxp is multiplicative and left H—colinear and since ¢ is also left H—
colinear, by (62) and (G3)) it results that Arxp is coassociative (use Lemma [B.37]
and Lemma [3.29).

To prove that eggpy is a morphism of algebras we use Lemma 339, (B5) and
(B8). Finally, in view of ([@4) and (65), Lemma 41 and Lemma B40] imply that
erpn is a counit for Apypy. All these properties together mean that R#H is a
bialgebra that, in view of (b) = (a) of Proposition [3.9] becomes a coalgebra in
(T Og, H). We conclude by remarking that R#H always becomes an algebra
in (M @y, H); see Example B.141

(b) = (a) Since Aggp is morphism of algebras, by Lemma [3.33] it follows that
E9), @0) and (€I hold true. As Agup is left H—colinear and multiplicative, by
Lemma [3.28 and Lemma [3.38] ¢ and w are H-colinear, so that (57) and (&S] hold.
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Since we have already proved that ¢ is left H— colinear, we can apply Lemma [3.37]
and Lemma[3.29to deduce (62) and (63) from the fact that Ar4 g is coassociative.

Since (R#H, Argm,er4yn) becomes a coalgebra in (F9MH Oy, H) and epppn
is an algebra map, in view of .38 we can apply Lemma to get that ¢ is an
algebra map in £YD, so that (B5) and (G6) hold true.

Since e is a counit for Aryy and since Agypy is multiplicative, by Lemma
340 and Lemma 341l we conclude that (64) and (G3]) hold. Thus (R,e,d,w) is a
Yetter—Drinfeld quadruple. O

Definition 3.46. Let (R, ¢, d,w) be a Yetter-Drinfeld quadruple. The smash prod-
uct algebra R# H , endowed with the bialgebra structure described in Theorem [3.43]
will be called the bosonization of (R, ¢,d,w) and will be denoted by R#,H.

Proposition 3.47. Let R be an H-bicomodule algebra. Let ¢ : (A,ma,uas) —
(B,mp,vg) be an isomorphism of algebras in the category of vector spaces. If
A€ gzmg, then B can be endowed, via ¢, with obvious Hopf bimodule structures
and ¢ : A — B is an isomorphism in gzmg. Moreover, if A becomes an algebra in
(g{)ﬁg,@)R,R), then (B,mp,up) also becomes an algebra in (gﬁﬁg,@)R,R) such
that ¢ : (A,ma,Ua) — (B,Mp,up) is an algebra isomorphism in the category
(AME, @p, R).

Proof. Obvious. O

Proposition 3.48. Let D be an H-bimodule coalgebra. Let ¢ : (A, Ax,e4) —
(B,Ap,ep) be an isomorphism of coalgebras in the category of vector spaces. If
Ae gzmg, then B can be endowed, via ¢, with obvious Hopf bicomodule structures
and ¢ : A — B is an isomorphism in gsmg. Moreover, if A becomes a coalgebra
mn (ESDIQ,DD,D), then (B,Ap,ep) also becomes a coalgebra in (gmg,DD,D)
such that ¢ : (A,A4,E4) — (B,Ap,Zp) is a coalgebra isomorphism in the category
(3.0, D).

Proof. Obvious. O

We have been informed that the dual form of the equivalence (b)< (¢) below, as
stated in Theorem B.64] has already been proved by P. Schauenburg (see 6.1 and
Theorem 5.1 in [Sch2]). Nevertheless, for sake of completeness, we decided to keep
our proof.

Theorem 3.49. Let A be a bialgebra and let H be a Hopf algebra. The following
assertions are equivalent:

(a) A is an object in HOMHE  the counit e4 : A — K is right H-linear and A
becomes an algebra in (EMIL ®y, H) and a coalgebra in (Hom# Oy, H).

(b) There is an algebra R in £YD, and there are mapser : R — k,6 : R — R®R
and w : H — R ® R such that (R,eg,0,w) is a Yetter-Drinfeld quadruple and
A is isomorphic as a bialgebra to the bosonization R#yH of this Yetter Drinfeld
quadruple.

(¢c) There are a bialgebra map © : A — H and an (H, H)- bicolinear algebra
map o : H — A such that 7o = Idg.
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Moreover, if (c) holds, we can choose the Yetter-Drinfeld quadruple (R,er,0,w),
where

R = ACeU), ER = EA|R

8(r) = rayoSm(r@2)) @ ), w(h) = o(h)@yoSw[o(h)2)] @ o(h)@oST[o(h) ]

Proof. (a) = (b) By the canonical map €4 : R#H — A in B9 is an
isomorphism of bialgebras, where the coalgebra structure on R#H is defined by
Appn = (6;11 ® e;ll)AeA and epupy = €a€4. Clearly, by Proposition B.47 and
Proposition B48, R#H becomes an algebra in (9N @y, H) and a coalgebra in
(Tt Oy, H), since A does. Let ¢ be the restriction of £4 to R. As explained in
B2T] if
d=(R®ey ® RO en)Apyn,

and for 7 € R, h € H we write 6(r#th) = 3.6 (r#h) ® 6%(r#h) € R® R, then, as
Apyp is right H—colinear, we have

Appr(r#th) = 6" (r#th))#6° (r#h)) (—1y by @ 8> (r#h) ) o) #hs-

Let us define the K—linear maps § and w as in (B36). Since Arxpy is a morphism
of algebras, by Lemma it follows that & (r#h) := 6 (r)w (h). Thus we can
apply Theorem to conclude that (R,e,d,w) is a Yetter—Drinfeld quadruple.
Note that the bosonization of this Yetter—Drinfeld quadruple is the bialgebra R# H
constructed above.

(b) = (a) By Proposition B47 and Proposition B8, A is an object in 29k
and A becomes an algebra in (E9MM, ®,,, H) and a coalgebra in (¥9M7 Oy, H).

Since ey is defined by (67), it is right H—linear, so that the mape4 : A — K
is right H—linear, too.

(a) & (¢) follows by Theorem

The last statement follows by direct computation, using the canonical isomor-
phism e4 : R#H — A in 29 which turns out to be ea(r#h) = ro(h), the
inverse being defined by €' (a) = a1yoSm(a@2) ® m(ag)). O

Remark 3.50. Let (R,e,d,w) be a Yetter—Drinfeld quadruple such that w is trivial.
Recall that this means that

w(h) =epg(h)lg ® 1k, for all h € H.

Then it is easy to check that relations (BH)—(G5) are equivalent to the fact that
(R,d,¢) is a bialgebra in (YD, ®, K). Conversely, starting with a bialgebra
(R, 6, ) in the monoidal category (YD, ®, K), we can consider the Yetter-Drinfeld
quadruple (R,e,0,w), where w is the trivial cocycle. Furthermore, the bosoniza-
tion of this Yetter—Drinfeld quadruple is the usual bosonization of the bialgebra
R, i.e. as an algebra is the smash product R#H and as a coalgebra is the smash
coproduct. Recall that the comultiplication and counit of the smash coproduct are
respectively defined by

Apgr (rth) = Y rW@r® yhay @r® g @ he),
ergn (r#h) = e(r)e(h),
where, by notation, 4(r) = 3.1 @ ),
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Corollary 3.51 (D. Radford). Let H be a Hopf algebra and let A be a bialgebra.
Then the following statements are equivalent:

(a) A is an object in HIMIE, A becomes an algebra in (EME ®,,,H) and a
coalgebra in (AL Oy, H).

(b) The diagram R of A is a bialgebra in (EYD, ®, K) such that A is isomorphic
as a bialgebra to the usual bosonization of R by H.

(c) There are two bialgebra morphisms m: A — H, 0 : H — A such that 7o =
Tdy;.

Proof. (a) = (¢) Note that the map 4 : A — K is right H-linear, so that, by
Theorem and by Theorem B.13] we conclude the proof.

(¢c) = (b) We apply Theorem Let (R,eR,d,w) be the the Yetter-Drinfeld
quadruple that corresponds to m and o, i.e.

R=AU " cp=cyp,
8(r) = ryoSm(r@z)) @), w(h) = o(h)qyoS[o(h)(2)] @ o(h) @ oS[o(h)w].

Since o is a coalgebra map, then w is trivial.

(b) = (a) follows by Proposition 347 and Proposition[348l In fact, as explained
in Example [B.14] and in Example [3.17, the usual bosonization R#H of R by H is
an object in #9! that becomes an algebra in (494, ®,,, H) and a coalgebra in
( gmg’ Un, H) ]

Lemma 3.52. Let A be a bialgebra over a field K and let I be a nilpotent ideal
and coideal of A. If the quotient bialgebra A/I has an antipode, then A is a Hopf
algebra.

Proof. Let us point out that an element z in a ring R is invertible if it is invertible
modulo a nil ideal L of R. We apply this to the ring R = Homg (A, A) endowed
with the convolution product, to the nil ideal L = Homg (A, ) and to x = Id 4.
The quotient R/L is isomorphic to the algebra Hompg (A, A/I) and, through this
identification, the class of Id 4 corresponds to the canonical projection p: A — A/I.
We conclude by remarking that the inverse of p in Homg (A, A/I) is p o S, where
S is the antipode of A/I. O

Theorem 3.53. Let A be a bialgebra over a field K. If the Jacobson radical J
of A is a nilpotent coideal such that H := A/J is a Hopf algebra which has an
ad- coinvariant integral and that every canonical map A/J" Tt — A/J™ splits in
HonH | then A is isomorphic as a bialgebra to the bosonization R#,H of a certain
Yetter—Drinfeld quadruple (R,e,0,w). In fact A and R#vH are isomorphic Hopf
algebras.

Proof. By Theorem [Z13] there is an (H, H)—Dbicolinear algebra section o : H — A
of the canonical projection 7 : A — H. We conclude by applying Theorem 349
and Lemma [3.52] O

Theorem 3.54. Let A be a bialgebra over a field K. If the Jacobson radical J of A
is a nilpotent coideal such that H := A/J is a Hopf algebra which is both semisimple
and cosemisimple (e.g. when H is semisimple over a field of characteristic 0), then
A is isomorphic as a bialgebra to the bosonization of a certain Yetter—Drinfeld
quadruple (R,e,0,w). In fact A and R#,H are isomorphic Hopf algebras.

Proof. Apply Theorem [2.28, Theorem B.49] and Lemma, O
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3.55. We now go back to Problem 2, as stated in B} i.e. to investigate those
bialgebras A with the property that there is a pair of K—linear maps

c:H— A and Tm:A— H

such that o is a morphism of bialgebras and 7 is an (H, H)—bilinear algebra retrac-
tion of o, i.e. mo = Idy. To this aim, we proceed as follows.

3.56. Let R € g9 and let mpyy : (R#H)Qu(R#H) — (R#H) be a right H-
linear map. In analogy with [3.21], if

(68) m=mprea(R®ug @ R®up),
and for r € R, h € H we write m(r ® s) = > m(r ® s) @ m'(r ® s) € R#H, then

(69)  megul(r#h) ©u (s#)] =Y m’(r @"0 s) @ m! (r "D 5) hy)l.

Conversely if m : R® R — R ® H is a linear map and mpgy is defined by (69),
then mpyp is a right H—linear map.

Futhermore, if (R, d,¢) is a coalgebra in £YD, for every r € R and h € H we
introduce the notation

(70) m=(R®eg)m, &= (e @ H)m.
Thenm: R R — Rand £ : R® R — H are K—linear maps.

3.57. Let H be a Hopf algebra and let A be a bialgebra with multiplication m, unit
u 4, comultiplication A and counit €4.

In view of Theorem [B.I3] Problem 2 can be reformulated as follows: to charac-
terize all bialgebras A that are objects in £ such that A becomes a coalgebra
in (Hoi Oy, H) and an algebra in (yMy, @y, H), with the further requirement
that w4 is right H—colinear.

By Proposition B8] the diagram (R, d,¢) of A is a coalgebra in £V D, the smash
coproduct R#H is a coalgebra and the map e4 : R#H — A, eo(r ® h) = rh is an
isomorphism of coalgebras in (29 Oy, H). Obviously, R#H is a bialgebra with
multiplication mpy g and unit upypy given by

MRyH ‘= eglm(eA®eA) and UR#H ‘= EEIUA.
Of course, with respect to this bialgebra structure, €4 becomes an isomorphism of
bialgebras.

Furthermore, since A becomes a coalgebra in (29 Oy H) and an algebra
in (g9Mpy, @, H), the smash R#H has the same properties. In particular mpryp
factorizes to a morphism of right H—modules Mpryn : (R#H)Qu(R#H) — R#H.

Hence, by B56] mpyp is uniquely determined by a K- linear map m : RQ R —
R#H. In order to obtain the unit ur4m, we consider the corestriction of u4 to R.
For simplifying the notation, we shall denote it by u.

3.58. Let R and S be two coalgebras in the braided category gyD. We can define
a new coalgebra structure on R ® S by using the braiding (27)) and not the usual
flip morphism. The comultiplication in this case is defined by the formula

(2)
(71) Sres (r@s) =Y rM ey s el os@.

Let us remark that, for any coalgebra R in f]yD, the smash coproduct R#H is a
particular case of this construction. Just take S = H with the left adjoint coaction
and the usual left H—module structure. Another example that we are interested in
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is R® R, where R is the diagram of a bialgebra A as in[3.57 For such a coalgebra
R in YD we shall always use this coalgebra structure on R ® R.

Definition 3.59. Let H be a Hopf algebra and let (R,d,¢) be a coalgebra in
the category (HYD,®,K). Set o(r) = S.r) @ r?). Assume that u : K — R,
m:R®R — R,and £ : R® R — H are K—linear maps. The quadruple (R, u,m, &)
will be called a dual Yetter—Drinfeld quadruple if and only if, for all r,s,t € R and
h € H, the following relations are satisfied:

(72) hu(1l) = eg(h)u(l) and pru(l) = 1g ® u(l);
(73) ou(l) = u(l) @ u(l) and eu(l) = 1k;
(74) hm(r @ s) = Z m("or @ hes);

(75) > (M or@h@s) =" ha)é(r @ s)Shey;

(76) om=(m®m)drer and em =mg(e®e);
(77)

Apé=(myp@H)(EQH®E)(R®R® pror)drgr and epé =mg(e ®e);

(78)  cru(M®E)drgr = (mu @ R)({® HR®m)(R® R® pror)reR;

(79) m(R@m)=m(m® R)(R®R® ur)(R®RRER R)(drer ® R);

(80) mu(E@ H)(R®m® &) (R® SreRr)
=my(§®H)(R®cur)(m®E® R)(Orer @ R);

(81) m(R®u) =Idg = m(u® R);

(82) E(ROu) =E(u®R) =ely.

Remark 3.60. Note that these relations can be interpreted as follows:

(@) — u is a morphism in ZYD;

([@3) — w is a coalgebra map;

@) — m is left H—linear;

@) — ¢ is left H-linear, where H is a module with the adjoint action;

(@) — m is a morphism of coalgebras, where on R® R we consider the coalgebra
structure that uses the braiding c;

@) — ¢ is a normalized cocycle; more generally, if C' is a left H—comodule
coalgebra, then a map ¢ : C — H is called a non—commutative 1 cocycle if

Ap((e) =¥ (cy) (c@) 1) @ ¥ ((c@)0) ;

[@8) — £ measures how far m is to be a morphism of left H—comodules (if £ is
trivial, i.e. for every r, s € R we have £(r®s) = e(r)e(s), then m is left H—colinear);
we shall say that m is a twisted morphism of left H—comodules; we shall use the
notation m(r ® s) = rs, so ((8) can be rewritten as follows:

2 @
SO En ) yerl) @ 5@) & (rOTE0 W)
_ rP .2 (@) (2) (2).
- Zg(r(l) ® (-2 ol ))r<71>8<71> ® 7050y

(@) — when ¢ is trivial then ([79) is equivalent to the fact that m is associative;
so, in general, we shall say that m is £&— associative; here ur denotes the H—action
on R;
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Q) — we shall just say that m and £ are compatible; it is equivalent to
(2)
Zg(r & sV S<—1>t(1))§(sgg§ ®1?)
(2 #(2) 2 5(2)
=5 e(r® v W g LCw® ’ ><1>t)5(rgg; ®5®) )

@) — m is a unitary map with respect to u;

@®2) - ¢ is a unitary map with respect to u.
Since u satisfies the last two relations, we shall call it the unit of the dual Yetter—
Drinfeld quadruple R. By analogy m will be called the multiplication of R. Finally,
we shall say that £ is the cocycle of R.

3.61. To every dual Yetter-Drinfeld quadruple (R, u, m,£), we associate the K-
linear maps m : R#H @ (R#H) — (R#H) and urgn : K — R#H, which are
defined by

(83) mpun|(r#h) @u (s#k)] = Y w(re"® s) @@ (re"® s) hok,
(84) UR#H(l) = u(l)#lH,

&)
where m (r ® s) = (m ® £)0pgr(r ® s) = >.m <r(1) ® T<2*1>s(1)> ®¢ (r%) ® 5(2)>
and we use the notation m(r ® s) =Y. m°(r @ s) @ m!'(r @ s).

Theorem 3.62. Let (R,,¢) be a coalgebra in EYD. Ifu: K - R, m: R&R — R
and £ : R® R — H are linear maps, then the following assertions are equivalent:
(a) (R,u,m,&) is a dual Yetter—Drinfeld quadruple.
(b) The smash coproduct coalgebra R#H is a bialgebra with multiplication m g4 g
and unit upgn defined by [B3) and B4) such that R#H becomes a coalgebra in
(Eom Oy, H) and an algebra in (gMy, @, H).

Proof. Dual to Theorem [3.49) O

Definition 3.63. Let (R, u,m,&) be a dual Yetter—Drinfeld quadruple. The smash
product coalgebra R#H, endowed with the bialgebra structure described in The-
orem [B.62] will be called the bosonization of (R,u,m,&) and will be denoted by
R#%H.

As we already remarked before Theorem [B.49] the equivalence (b)< (c) below
has already been proved by P. Schauenburg (see 6.1 and Theorem 5.1 in [Sch2]).

Theorem 3.64. Let A be a bialgebra and let H be a Hopf algebra. The following
assertions are equivalent:

(a) A is an object in HIMIL the unit u : K — A is right H-colinear and A
becomes a coalgebra in (gsmg, Oy, H) and an algebra in (gMy,Qp, H).

(b) There is a coalgebra R in £YD and there are mapsu : K — R,m : RQR — R
and £ : R® R — H such that (R,u,m,§) is a dual Yetter-Drinfeld quadruple and
A is isomorphic, as a bialgebra, to the bosonization R#°H of (R,u,m,¢).

(¢c) There are a bialgebra map o : H — A and an (H, H)-bilinear coalgebra
map 7 : A — H such that 7o = Idg.

Moreover, if (c) holds, we can choose the Yetter-Drinfeld quadruple (R,u,m,§),
where

R = AC°U) u:u‘f,

m(r®s) = Z 7(1)8(1)TST(T(2)5(2)), E(res)=mn(rs).
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Proof. (a) = (b) By B.51 the canonical map €4 : R#H — A in H9MME is an
isomorphism of bialgebras, where the algebra structure on R#H is defined by
MR#H = e:‘lm(eA ®e€a) and uppy = e:‘luA. Clearly, by Proposition 3.47] and
Proposition 48, R#H becomes a coalgebra in (29 Oy, H) and an algebra in
(EMy, @y, H), since A does. Let u be the corestriction of uy to R.

As explained in [3.56] if

m:mR#H(R®UH ®R®UH)7

and for r € R, h € H we write m(r®s) = >. m°(r ® s) @ m'(r ® s) € R#H, then,
as mpyp is right H-linear, we have

Mmepn|(r#h) @ (s#)] =Y m(r @' s) @ m! (r @"® s) hyl.

Let us define the K—linear maps m and & as in ({0). Since mpyp is a morphism
of coalgebras, analogous to Lemma [333] it follows that m = (m ® {)drgr. Thus
we can apply Theorem to conclude that (R, u,m,§) is a dual Yetter—Drinfeld
quadruple. Note that the bosonization of this dual Yetter—Drinfeld quadruple is
the bialgebra R# H constructed above.

(b) = (a) By Proposition B.47 and Proposition 348, A is an object in £
and A becomes a coalgebra in (29ME Oy, H) and an algebra in (gMpy, @, H).
Since ugyp is defined by (84), it is right H—colinear, so that the map us : K — A
is right H-colinear, too.

(a) & (c) follows by Theorem B.I3

The last statement follows by direct computation, using the canonical isomor-
phism €4 : R#H — A in LA which turns out to be ea(r#h) = ro(h), the
inverse being defined by €;'(a) = " a(1y0S7(ag)) ® m(a)). O

Remark 3.65. Let (R,u,m,&) be a dual Yetter—Drinfeld quadruple such that & is
trivial. Recall that this means that

E(r®s) =e(r)e(s)ly, for all r,s € R.

Then it is easy to check that relations ([72)- (82]) are equivalent to the fact that
(R,m,u) is a bialgebra in (YD, ®, K). Conversely, starting with a bialgebra
(R, m,u) in the monoidal category (YD, ®, K), we can consider the dual Yetter—
Drinfeld quadruple (R,u,m,§), where £ is the trivial cocycle. Furthermore, the
bosonization of this dual Yetter—Drinfeld quadruple is the usual bosonization of
the bialgebra R, i.e. as an algebra is the smash product R#H and as a coalgebra
is the smash coproduct. Recall that the multiplication and the unit of the smash
product are respectively defined by

magn((r#h) @ (s#k)] = > r"Ws® bk,
UR#H (1) = u(l)@lH.

Theorem 3.66. Let A be bialgebra over a field K. Suppose that the coradical H
of A is a semisimple sub—bialgebra of A with antipode. Then A is isomorphic as
a bialgebra to the bosonization R#°H of a certain dual Yetter-Drinfeld quadruple
(R,u,m,&). In fact A and R#"H are isomorphic Hopf algebras.

Proof. In view of a famous Takeuchi’s result (see [Mol, Lemma 5.2.10]), A is a Hopf
algebra. Let 0 : H — A be the canonical injection. By Theorem 235 there
is a coalgebra morphism 7 : A — H in g9ty such that wo = Idy. In view of
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Theorem [B.64] there exists a dual Yetter—Drinfeld quadruple (R, u, m, &) such that
A is isomorphic as a bialgebra to the bosonization of this dual Yetter—Drinfeld
quadruple. O

Example 3.67. Let p be an odd prime and let K be an infinite field containing a
primitive p—th root of the unit A. Let C be a cyclic group of order p? with generator
c. For every a € K,a # 0, let A := H (a) be the Hopf algebra constructed by
Beattie, Dascilescu and Griinenfelder in [BDG]. A has dimension p?, with basis

{cix{xg [0<i<p?—1,0<j,r<p— 1}, where ¢, x1, 22 are subject to

=12l = 1,25 =c" -1,
z1e = N Yexy, woc = Aews, ko, = A2 +a(02 — 1),
Ale)=c®c,A(x1)=c@a1+21 @1, A(22) =c®z2 + 22 @ 1.

A is a pointed Hopf algebra with coradical H := KC'. Let 0 : H — A be the canon-
ical injection and let w : A — H be the obvious projection. It is straightforward to
show that A, H,m and o fulfill the requirements of Theorem [B.:64](c). Let

R=a°t = {pe A3 by @ (bp) =b@1}.

We have that R is the K—subspace of A spanned by the products x{xg, where
0 < j,r < p—1.In view of Theorem B.64] one gets a dual Yetter—Drinfeld quadruple
(R,u,m, &) such that A is isomorphic as a bialgebra to the bosonization R#"H of
R by H. Moreover £(r ® s) = m(rs). We point out that £ is not trivial. In fact we
have

(@ x1) = m(aoxy) = T[AT122 + @ (02 —1)]=a (02 -1).
Clearly, the dual Hopf algebra A* fulfills the requirements of Theorem with
respect to H*,0* and 7*. Let ¢ : R — A be the canonical injection. Then we have
that the restriction A of .* to (A*)“H"

A (A*)COH* N R*,

is an isomorphism. Let o : R* ® R* — (R® R)" be the usual isomorphism. Then
we have the following commutative diagram:

H* —2— (A*)coH" @ (A*)eoH”
5{ lA®A
(R®R)" +—*—— R* @ R*
In fact we have
[((A®@A)w) (0] (r® s) = (er#x) mrgn (r#l @ s#1)
=Y e |m (Tu) ® r@ns(l))} X [5 (ng@ 8(2)”
= er (Tu)) cr (TE"‘JUS@)) X [5 (Tg;@ 8(2))}
= en (r®) en (12 ) er (s0) x [ (rZo 5@)]

=x[E(ros)] = )] (res).
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It follows that we can identify the Yetter—Drinfeld quadruple ((A*)COH* ,E,0,w)
with the Yetter—Drinfeld quadruple (R*, (ugr)” ,m*,é*) , where (ug)" : R* — K
is the evaluation at 1 € R. In particular we observe that we get a non—trivial
bosonization since w is not trivial.

The remaining part of this section is devoted to the proof of Theorem B.711

Proposition 3.68. Let H be a cosemisimple Hopf algebra. Suppose that C is a
coalgebra in My such that the coradical Cy of C is H. Then C is an object in
Honl such that R, the space of right coinvariant elements of C, is an H—comodule
coalgebra and C' is isomorphic as a coalgebra, via a morphism in Himg, with the
smash coproduct coalgebra R#H of R by H.

Moreover there is a right H—-linear coalgebra morphism mr : C — R such that
TR |,= IdRr, where R is regarded as a right module with trivial action.

Proof. Let H be a cosemisimple Hopf algebra. Suppose that (C, A, ¢) is a coalgebra
in (Mpy,®, K) such that the coradical of C' is H. Then, by Theorem 2TI7 there
is a coalgebra map 7o : C — H which is right H-linear and w¢(h) = h, for any
h € H. Since 7¢ is a morphism of coalgebras in (My,®, K), then C is an object
in #9MH and A corestricts to a morphism

A:C — COyC in “0k
such that (C, A, 7¢) is a coalgebra in (HOM Oy, H).
Let G be the monoidal functor (A2 Oy, H) -5 (19N, @, K) (see[[I0). Then,

by Proposition [[5 G(C) = R is a coalgebra in the monoidal category (¥, ®, K)
and the comultiplication of R is

(85) 5IR—>R®RITHZ’I‘(l)SWc(T‘(Q))@T(?))

while the counit is induced by the counit of C.
Now, by [LT0, the counit of the adjunction (F, G), corresponding to the monoidal
equivalence

("o, @, K) - (Tomlt, Oy, H) - (90, @, ),
is given by
ea s M) o [ M, epn(v® h)=wvh.

By Corollary [T} ec is a coalgebra isomorphism in 9. Note that the coalgebra
structure of FG(C) = C°°") @ H = R® H is exactly the one defining the smash
coproduct of R by H (see Example BI7). It is easy to check that the map 7 :
R#H — R, given by w(r#h) = eg(h)r, is a morphism of coalgebras, it is right
H-linear and 7|,= Idg. As the canonical map ec : R#H — C' is an isomorphism
of coalgebras in M and ec(r#1) = r, for every r € R we get that 7p = weal
has the same properties. (I

Lemma 3.69. Let C' be a coalgebra. Suppose that there is a group —like element
co € C such that Cy = Kcg, i.e. C is connected. Let (C!)nen be a coalgebra
filtration in C such that Cly = Cy. Then, for every c € C},, we have

(86) Alc)—c®@cg—co®ceCl_1@C_,.
In particular, if ¢ € Cf, then A(c) = c® co+ ¢o @ ¢ — (¢)ep @ co.
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Proof. Since (Cj,)nen is a coalgebra filtration, we have A(C,) € 3, C; @ Cf.
Hence there are ¢/, ¢ € C}, and = € C],_; ® C},_; such that

(87) Ale)=c ®@co+co®c” + .
By applying ¢ ® C' and C ® € to this relation, we deduce that

c = eld)eg+ "+ ="+,
¢ = e()eo+ +ar=¢ 4y,

where 1 = (e ® C)(z), 2 = (C®¢)(x) are in C),_,, since z € C],_; ®C!,_;. Then
y1 =e()eo+ a1 €Cl,_ and ya = e(c’)co + 22 € CJ_;.

We conclude the first part of the lemma by substituting ¢’ and ¢” in ([81). Now,
if c € C}, then A(c) = ¢c® o+ co ® ¢+ acg ® ¢p, for a certain « in K. By applying
e ® € we deduce that a = —e(c). O

3.70. Let H be a cosemisimple Hopf algebra. We shall denote by H the set of
isomorphism classes of simple left H—comodules. It is well known that, for every
T € H, there is a simple subcoalgebra C(7) of H such that py (V) C C(1) @ V,

where (V, py) is an arbitrary comodule in 7. Moreover, we have H = __7 C(7).

Theorem 3.71. Let H be a cosemisimple Hopf algebra. Suppose that (C, A, ¢€) is a
coalgebra in My such that the coradical Cy of C is H. Let (Cy)nen be the coradical
filtration of C.

a) For every natural number n, we have C,, ~ R,#H (an isomorphism in
Hopll). In particular C,, is freely generated as an H-module by elements r € C
satisfying the relation

(88) A(r)=> 11y ®@rg +r®1g + Cp1 ® Cr1.
b) C; wverifies the following equation:

(89) C1=Co+ Y (C(r)AKly)H.

TEf-I\

Proof. a) By Proposition B.68, C,, is the smash coproduct coalgebra RI,#H. By
the construction of R/, we have R/, = RN C,,. Since C,, is isomorphic in ZMI to
R #H, it results that C,, is free as a right H—module.

Note that (R )nen is not a priori a coalgebra filtration in R, since R is not
a subcoalgebra of C' (its comultiplication is d; see (BO) for its definition). Let
5(r)y = rM @r@),

Let us prove that (R )nen is indeed a coalgebra filtration. Let mx be the coalge-
bra morphism from PropositionB.68 Then R), = wr(C},), so (R} )nen is a coalgebra
filtration of R, as g is surjective. By [Mol, Corollary 5.3.5], the coradical of R is
included in 7r(H) = K1p, hence R is connected and R = Ryg. By Lemma
applied to the filtration (R],),en we deduce that

d(ryer®ly+1ly®r+ R, @R,
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for any » € R}, ,,. By induction it results that R;, C R, for every n. On the other
hand, for r € R, +1 we have

dryer®lp+lg®r+ R, ®R,.

Since C' is isomorphic to the smash coproduct coalgebra via e, we get A(r) =
(ec ® €c)Arun(r#1p), so that

(90) A(r) = Zr(l)r(2)<_1> ®T(2)(0) € ZT(_D Qroy+r®lg+ R,H®R,H.

If we assume, by induction, that R, = R,,, then A(r) € C ® C, + H ® C, that is,
r € Cpyr. Thus r € Ch,y 1 N R = Ry, ;. In conclusion, the filtrations (R;,),en and
(Rp)nen are equal, and C,, ~ R,#H. Note also that, by ([@0), every element in R,
satisfies (B8], and hence a) is proved.

b) By the proof of the first part, it follows that every R,, is a subobject in 790t
of R. Let us decompose R; as a direct sum of left H—comodules

(91) R =Kly®R, =Kl & (@ v;—) :
i=1
where each V; is simple. Let 7; be the isomorphism class of V;. Take ¢ € {1,...,n}

and r € V;. As in the proof of ([@0), by using the second equality in Lemma [3.69]
one can show that

A(r) = ZT<,1>®T<O>—|—7‘®1H—E(T‘)1H®1H = ZT<,1>®’I‘<O>—|—(T‘ — E(T‘)lH)(X)lH.

Hence A(r) € C(1;) ® C + C ® K1g which proves that » € C(r;) A K1g. Thus,
in view of the decomposition ([@I]), we have proved the inclusion “C” of ([8d), as C
is generated as a right H—module by R. The other inclusion is trivial since, for
7€ H and ce C(r) A Kly, we have

Ale) e C(1)@C+C@Kly CH®C+C® H.

Thus ¢ € HA H = Cq, so we deduce (C(7) A Klg)H C (4, as C; is a right
submodule of C. (]

Remark 3.72. Let A be a Hopf algebra such that Ay, the coradical of A, is a
subalgebra. In [AS5, Lemma 4.2] it is shown that (89) holds true for C := grA. In
[CDMM| Remark 3.2] it is pointed out that the proof of ([89), given in [ASH] for
grA, also works in the case C := A, since A is a cosmash by [Mas, Theorem 3.1].
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