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TORIC HYPERSYMPLECTIC QUOTIENTS

ANDREW DANCER AND ANDREW SWANN

Abstract. We study the hypersymplectic spaces obtained as quotients of
flat hypersymplectic space R4d by the action of a compact Abelian group.
These 4n-dimensional quotients carry a multi-Hamilitonian action of an n-
torus. The image of the hypersymplectic moment map for this torus action
may be described by a configuration of solid cones in R3n. We give precise
conditions for smoothness and non-degeneracy of such quotients and show how
some properties of the quotient geometry and topology are constrained by the
combinatorics of the cone configurations. Examples are studied, including
non-trivial structures on R4n and metrics on complements of hypersurfaces in
compact manifolds.

1. Introduction

An important construction in symplectic geometry is the symplectic quotient of
Marsden and Weinstein. Given a symplectic action of a Lie group G on a symplectic
manifold M , this produces, under fairly mild hypotheses, a new symplectic manifold
of dimension dim M − 2 dim G.

One particularly nice class of symplectic examples is that of toric varieties.
Delzant [De] and Guillemin [Gu], have shown that a large class of toric varieties
may be produced as symplectic quotients of Cd with its flat Kähler structure by a
subtorus N of Td. Their work also shows that the symplectic and Kähler geome-
try of these 2n-dimensional examples is determined by concrete descriptions of the
moment polytope as an intersection of closed half-spaces in R

n.
In the present paper we shall investigate an analogous construction in a situ-

ation where there are multiple symplectic structures, namely for hypersymplectic
manifolds. We consider the geometries arising from a hypersymplectic quotient
construction for compact Abelian subgroups N of T

d acting on C
d,d = C

d × C
d.

We determine conditions for the quotients to be smooth manifolds and to admit
non-degenerate geometric structures in two ways: firstly by direct considerations,
and then by using the (hypersymplectic) moment map for the action of a torus on
the quotient. The closed half-spaces of Delzant and Guillemin are now replaced
by solid cones in R3n, and we demonstrate how properties of the quotient may be
deduced from particular descriptions of such cone configurations.

Hypersymplectic structures were defined in a paper of Hitchin [H] and have ap-
peared in recent works such as [Hu, Ka, FPPW, AD]. Hitchin’s work is motivated
by the geometry of the moduli space of harmonic maps into a compact Lie group;
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the paper of Hull [Hu] and the references therein show the role played by these
structures in string theory; Mason and Sparling encountered such structures whilst
studying the non-linear Schrödinger and the Korteweg-de Vries equations [MS].
On a hypersymplectic manifold one has an indefinite Kähler metric g of signature
(2n, 2n), together with a covariant constant endomorphism S of the tangent bun-
dle, such that S2 equals the identity, S anti-commutes with the complex structure
I, and g(SX, SY ) = −g(X, Y ). Now I, S and T = IS generate an action of the Lie
algebra sl(2, R) on each tangent space. Moreover, I, S, T , together with the metric
g, define three symplectic forms by

ωI(X, Y ) = g(X, IY ), ωS(X, Y ) = g(X, SY ),

ωT (X, Y ) = g(X, TY ),

hence the name “hypersymplectic”. Every hypersymplectic manifold is neutral
Calabi-Yau, that is, Ricci-flat Kähler with signature (2n, 2n). Hypersymplectic
manifolds are split-quaternion analogues of hyperkähler manifolds and are some-
times referred to as “neutral hyperkähler manifolds”.

Hitchin described a quotient construction for hypersymplectic manifolds in [H],
analogous to the hyperkähler quotient of [HKLR]. If G acts preserving a hypersym-
plectic structure, then under mild conditions, we have, for each X ∈ g, a moment
map µX taking values in R3. This map satisfies the defining equation

(1.1) dµX(Y ) = (ωI(X, Y ), ωS(X, Y ), ωT (X, Y )),

where we identify X with the vector field it induces via the group action. Of
course, (1.1) only gives µX up to an additive constant; these constants are par-
tially restricted by the additional assumption that the maps µX combine to define
a G-equivariant map µ taking values in g∗ ⊗R

3. If G is Abelian, then any choice
of µX gives an equivariant map. The hypersymplectic quotient is now defined to
be µ−1(0)/G. When µ has maximal rank and the action of G is free, the quo-
tient has dimension 4 dimG less than the original hypersymplectic manifold. It
inherits closed two-forms from ωI , ωS and ωT , and one expects these to define a
hypersymplectic structure; however degeneracies may occur on a certain locus in
the quotient.

In this paper we shall concentrate on hypersymplectic quotients of flat space
C

d,d by compact Abelian groups, although we prove some general results control-
ling smoothness and non-degeneracy of arbitrary hypersymplectic quotients. In
some ways, the picture is intermediate between that of Kähler quotients and of
hyperkähler quotients as studied in [BD]. In the hyperkähler case the quotients
are necessarily non-compact, whereas in the Kähler case many quotients are com-
pact. For the hypersymplectic situation, we show how to produce non-compact
non-singular structures on R4n that are not flat. It is also easy to produce com-
pact quotient sets, and with a little more work smooth examples may be found,
but on the other hand these always have singularities of the hypersymplectic struc-
ture. We show that these compact quotients produce non-degenerate structures
on hypersurface complements in real analytic subvarieties of compact toric vari-
eties. All the quotients we produce carry a natural involution. We discuss in detail
some particular examples, such as the hypersymplectic analogues of the Calabi and
Gibbons-Hawking multi-instanton spaces, and all examples obtainable as quotients
of C2,2 by a one-dimensional group.
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2. The flat hypersymplectic structure

Our examples will be hypersymplectic quotients of the following flat hypersym-
plectic structure. Let Cd,d be Cd × Cd with the complex structure

I(z, w) = (zi,−wi),

where i =
√
−1, and with the indefinite Kähler metric

g = Re
( d∑

k=1

dzkdz̄k − dwkdw̄k

)
.

Note that I is not the standard complex structure I0 on this space, which is instead
defined by I0 : (z, w) �→ (zi, wi). To distinguish I from I0, we shall refer to this
space with complex structure I0 as C2d.

If we define S(z, w) = (w, z), then

IS(z, w) = I(w, z) = (wi,−zi),

SI(z, w) = S(zi,−wi) = (−wi, zi),

so IS = −SI. We define T = IS, so that

I2 = −1, S2 = T 2 = 1, IS = T = −SI.

We have the following symplectic forms:

ωI =
1
2i

d∑
k=1

(dzk ∧ dz̄k + dwk ∧ dw̄k) ,

ωS =
1
2

d∑
k=1

(dzk ∧ dw̄k − dwk ∧ dz̄k) ,

ωT =
1
2i

d∑
k=1

(dzk ∧ dw̄k + dwk ∧ dz̄k) .

Note that ωS + iωT =
∑d

k=1 dzk ∧ dw̄k, which is a holomorphic (2, 0)-form with
respect to I, but is of type (1, 1) for I0.

3. Moment maps

The torus Td acts on Cd,d by

(zk, wk) �−→ (eiθkzk, eiθkwk).

This action commutes with I and S and hence with T , and preserves g.
The moment maps from (1.1) are

µI : (z, w) �−→
d∑

k=1

1
2 (|zk|2 + |wk|2)ek + c̃1,

µS + iµT : (z, w) �−→
d∑

k=1

izkw̄kek + c̃2 + ic̃3,

where dµX
I (Y ) = ωI(X, Y ), etc., e1, . . . , ed are the standard basis vectors for Rd,

and c̃1, c̃2, c̃3 are arbitrary constant vectors in Rd.
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The form of this differs from the hyperkähler moment map [BD] for the Td action
on H

d, in that we have + |wk|2 rather than − |wk|2 in the formula for µI . We also
recall, for comparison, that the Kähler moment map for the action of Td on Cd is
µ : z �→

∑d
k=1

1
2 |zk|2 ek + c.

As in [Gu, BD] one considers a compact Abelian subgroup N of Td with Lie
algebra n. We shall take n to be the kernel of a surjective linear map β : Rd → Rn

given by
β : ek �−→ uk,

with ui ∈ Zn. In particular, Rn is spanned by u1, . . . , ud. Then we have an exact
sequence

(3.1) 0 −→ n
ι−→ R

d β−→ R
n −→ 0

and N is defined to be the kernel of the map exp ◦β ◦ exp−1 : Td → Tn. (The
requirement that ui be integral exactly guarantees that this composition is well
defined.) For a given N , the map β is unique up to composition with an element
of Aut(Zn), or in matrix terms up to multiplication by an element of GL(n, Z) =
{A ∈ Mn(Z) : det A �= 0 and A−1 ∈ Mn(Z)}.

We let 〈·, ·〉 denote the standard inner product with respect to which e1, . . . , ed

are orthonormal. For each choice of scalars λ1, . . . , λd, the set of vectors {u1, . . . , ud}
defines a convex polyhedron in Rn by the equations

(3.2) 〈s, uk〉 � λk, for k = 1, . . . , d.

In general, this polyhedron may be non-compact.
There is an exact sequence dual to (3.1)

0 −→ R
n∗ β∗

−→ R
d∗ ι∗−→ n

∗ −→ 0.

We shall identify R
d∗ with R

d using 〈·, ·〉. Now β∗ is given by

(3.3) β∗(a) =
d∑

k=1

〈a, uk〉 ek,

and the moment map for N becomes

µI : (z, w) �−→
d∑

k=1

1
2 (|zk|2 + |wk|2)αk + c1,

µS + iµT : (z, w) �−→
d∑

k=1

izkw̄kαk + c2 + ic3,

where αk = ι∗ek. We write cj =
∑d

k=1 λ
(j)
k αk for some scalars λ

(j)
k .

A point (z, w) lies in µ−1
I (0) if and only if

(3.4) ι∗
( d∑

k=1

(
1
2 (|zk|2 + |wk|2) + λ

(1)
k

)
ek

)
= 0.

However ker ι∗ = im β∗, so using (3.3), we see that (3.4) is equivalent to the exis-
tence of a ∈ Rn such that

(3.5) 〈a, uk〉 = 1
2 (|zk|2 + |wk|2) + λ

(1)
k , for k = 1, . . . , d.
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Similarly, (z, w) ∈ (µS + iµT )−1(0) if and only if

(3.6) 〈b, uk〉 = izkw̄k + λ
(2)
k + iλ(3)

k , for k = 1, . . . , d,

for some b ∈ Cn.
Equations (3.5) and (3.6) give a description of the level set µ−1(0). The hyper-

symplectic quotient M of C
d,d by N is defined to be

M = µ−1(0)/N.

This is a Hausdorff topological space; as we will see it may or may not be a smooth
manifold.

4. Non-degeneracy of the quotient geometry

In this section we shall consider when hypersymplectic quotients are smooth,
and at which points the hypersymplectic structure on the quotient can degenerate.
We will begin with the general case and then specialise to torus quotients of flat
space.

Let us consider an action of a Lie group G on a manifold of dimension 4d pre-
serving a hypersymplectic structure and admitting a G-equivariant moment map
µ : M → g∗ ⊗R

3. Thus, for each element X of g, the associated component µX of µ
satisfies (1.1). Write G for the distribution on M generated by tangent vectors to
the group action.

Definition 4.1. The action satisfies condition (F) if G acts properly and freely
on µ−1(0).

Definition 4.2. The action satisfies condition (S) if at each point p ∈ µ−1(0) there
is no non-zero solution to the equation

(4.1) (IX1 + SX2 + TX3)p = 0,

with X1, X2, X3 ∈ g.

Theorem 4.3. If the G-action satisfies conditions (F) and (S), then the hyper-
symplectic quotient µ−1(0)/G is smooth.

Proof. It is sufficient, by (F), to show that µ−1(0) is a smooth manifold. By (1.1),
the kernel ker dµ is just the orthogonal complement with respect to g of the space U
spanned by IG, SG and TG.

As g is non-degenerate we have

rank dµ = 4d − dim ker dµ = 4d − dim U⊥ = dimU.

Condition (S) implies that dim U is 3 dimG, which is 3 dimG by (F). We deduce
that dµ has maximal rank, and the result follows. �

Remark 4.4. As the moment map µ is equivariant, G lies in ker dµ on µ−1(0). This
implies that G is orthogonal to IG, SG and TG. It follows that these spaces are
mutually orthogonal.

In the hyperkähler case, where g is positive definite, this of course means that
condition (S) and the conclusion of the theorem follow automatically from the
freeness of the action of G, as in [HKLR].
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It is proved in [H] that the kernels of the symplectic forms on µ−1(0) are given
by

(4.2) ker i∗ωI = G + S(G ∩ G⊥) + T (G ∩ G⊥)

and cyclically, where i : µ−1(0) → M is inclusion.

Definition 4.5. The action satisfies condition (D) if G ∩ G⊥ = {0} on µ−1(0).

Theorem 4.6. If the G-action satisfies conditions (F) and (D), then the quo-
tient µ−1(0)/G inherits a smooth, non-degenerate hypersymplectic structure.

On the other hand, if the G-action fulfils conditions (F) and (S), then the smooth
manifold µ−1(0)/G inherits a non-degenerate hypersymplectic structure only if con-
dition (D) is satisfied.

Proof. Hitchin’s results provide a non-degenerate hypersymplectic structure pro-
vided µ−1(0)/G is a smooth manifold and (D) holds: the symplectic form ω′

I on
the quotient is defined by the equation π∗ω′

I = i∗ωI , where π is projection from
µ−1(0) to the quotient. Thus for the first part of the theorem we only need to
consider condition (S) of Definition 4.2.

Suppose IX1 + SX2 + TX3 = 0 at p ∈ µ−1(0). Then, for each Y ∈ Gp we have

g(X1, Y ) = g(IX1, IY ) = g(IX1 + SX2 + TX3, IY ) = 0

at p. Thus by condition (D), X1 = 0. Similarly, X2 = 0 = X3, and condition (S)
holds.

For the second part, if condition (D) fails, then there is a p ∈ µ−1(0) such
that V := (G ∩ G⊥)p is non-zero. Suppose ω′

I is non-degenerate. Then ker i∗ωI =
ker π∗ω

′
I = G. Equation (4.2) gives that SV and TV are subspaces of G. However,

SV is contained in SG which is orthogonal to G. Hence, V is invariant under S and
T and hence under I = ST . Taking X1 = IX, X2 = SX, X3 = 0 for some non-
zero X in V , we see that condition (S) is violated. Thus if the quotient geometry
is non-degenerate and (S) holds, then (D) must hold too. �

A simple case of the above result is:

Corollary 4.7. A hypersymplectic quotient by a free circle action with Killing field
X is a smooth hypersymplectic manifold except at points where g(X, X) = 0. �

It will be useful, in light of Corollary 4.7, to have a formula for the length of the
Killing field of a circle action on C

d,d. If the action is given by

(zk, wk) �−→ (eiθktzk, eiθktwk),

then the associated vector field is

X =
d∑

k=1

iθkzk
∂

∂zk
+ iθkwk

∂

∂wk
− iθkz̄k

∂

∂z̄k
− iθkw̄k

∂

∂w̄k
,

giving

(4.3) g(X, X) =
d∑

k=1

θ2
k(|zk|2 − |wk|2).

We next investigate when condition (S) of Definition 4.2 holds for general toric
reductions of flat space. For three vector fields X1, X2, X3 with coefficients θ

(i)
k ,
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i = 1, 2, 3, (4.1) becomes

(4.4)
θ
(1)
k zk = (iθ(2)

k − θ
(3)
k )wk, for k = 1, . . . , d,

θ
(1)
k wk = −(iθ(2)

k + θ
(3)
k )zk, for k = 1, . . . , d.

For each k, these equations have the form

az = bw, aw = b̄z,

with a ∈ R and b ∈ C. We deduce that a2z = abw = |b|2 z, and similarly a2w =
|b|2 w. So the system (4.4) has a solution if only if for each k,

(4.5)

either (zk, wk) = 0,

or θ
(1)
k = 0 = θ

(2)
k = θ

(3)
k ,

or zk = ξkwk and ξkθ
(1)
k = i(θ(2)

k + iθ(3)
k ),

for some ξk with |ξk| = 1.

We also discuss the question of degeneracy of the hypersymplectic structure.
We know from Theorem 4.6 and the discussion leading up to (4.3) that degeneracy
occurs if and only if the inner product

(4.6) q = diag(|zk|2 − |wk|2)d
k=1

is degenerate on n � Rd at some point (z, w) ∈ µ−1(0). Equivalently, in the notation
of §3, at some point of µ−1(0) there is ζ ∈ n \{0} such that q(ζ, ·) ∈ ker ι∗ = im β∗.
From (3.3), this condition is equivalent to the existence of ζ ∈ n \{0} and s ∈ Rn

such that

(4.7) ζk(|zk|2 − |wk|2) = 〈s, uk〉 , for k = 1, . . . , d.

In §5 we shall refine both of these criteria.

5. Toric geometry of the quotient

We shall now study some properties of the hypersymplectic quotient M of Cd,d

by a compact Abelian group N ⊂ Td. This quotient carries an action of the torus
T

n = T
d/N , and we may consider the map φ : M → R

3n given by

(5.1) φ : (z, w) �−→ (a, b),

where a and b are as in (3.5) and (3.6). When M is smooth and hypersymplectic
this is the moment map for the action of Tn on M .

A similar map is considered in the Kähler and hyperkähler cases [Gu, BD]. In the
first case, the analogue of φ is a map M → Rn with image the polyhedron defined
by (3.2). The map induces a homeomorphism of M/T

n onto the polyhedron.
In the hyperkähler case, one has a map onto the whole of R3n, and again a

homeomorphism M/Tn ∼= R3n. Essentially, this follows from the N = {1} case,
i.e., the fact that the moment map (zk, wk) �−→

(
1
2 (|zk|2 − |wk|2), izkwk

)
for the

hyperkähler action of T
d on H

d induces a homeomorphism from H
d/T

d onto R
3d.

In our case, the image of φ is an interesting subset of R3n, but we no longer
obtain a homeomorphism. Indeed the fibres of φ may be disconnected.
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We introduce the following notation:

(5.2)
ak := 〈a, uk〉 − λ

(1)
k ,

bk := 〈b, uk〉 − λ
(c)
k ,

for a ∈ R
n, b ∈ C

n, k = 1, . . . , d, and where

λ
(c)
k := λ

(2)
k + iλ(3)

k .

Proposition 5.1. The image of the moment map φ, (5.1), is the set

K =
{

(a, b) ∈ R
n × C

n : ak � |bk| , for k = 1, . . . , d
}
.

Moreover φ induces a finite-to-one map φ̃ from M/Tn onto K. The fibre of φ̃ over
(a, b) has 2m points, where m is the number of the inequalities in the definition of
K which are strict for (a, b).

Proof. By (3.5) and (3.6), (z, w) is in µ−1(0) ⊂ Cd,d and satisfies φ(z, w) = (a, b) if
and only if

|zk|2 + |wk|2 = 2ak and zkw̄k = −ibk,

for k = 1, . . . , d. The torus Td acts by (zk, wk) �→ (eiθkzk, eiθkwk). On µ−1(0)
we have that |wk| uniquely determines (zk, wk) up to the action of T

d. Taking the
absolute value of the second equation and using the first equation to eliminate |zk|2,
we get

|wk|2 = ak ±
√

ak
2 − |bk|2.

Thus there is a solution for |wk|2 only if ak � |bk|. There are two solutions if the
inequality is strict, otherwise there is only one solution. The result follows. �

Remark 5.2. Taking d = 1 and N = {1} in the proof of the proposition, φ is
the hypersymplectic moment map for the action of T1 on C1,1. One can see that
the corresponding hypersymplectic quotient may be two points, a single point, or
empty depending on the choice of level set. So we may get smooth quotient sets of
different topology for different choices of level set, contrasting with the hyperkähler
case.

Proposition 5.3. The set K = φ(M) is convex in R3n.

Proof. Using (5.2), the set K is the intersection of sets

Kk = { (a, b) ∈ R
n × C

n : ak � |bk| }, k = 1, . . . , d.

However, Kk is the preimage of the solid cone { (x, z) ∈ R×C : x � |z| } under the
affine map (a, b) �→ (ak, bk). Thus Kk is convex, and it follows that K is convex,
too. �

Convexity implies in particular that K is connected, and Proposition 5.1 now
gives:

Corollary 5.4. M is connected if and only if each inequality in the definition of K
is an equality at some point of K. �

Theorem 5.5. The hypersymplectic quotient M = µ−1(0)/N is compact if and
only if the vectors u1, . . . , ud define a bounded polyhedron in Rn.
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Figure 5.1. The solid cone Kk when n = 1.

Proof. Suppose u1, . . . , ud define a bounded polyhedron. As

M = (µ−1
I (0) ∩ (µS + iµT )−1(0))/N,

it is enough to show compactness of µ−1
I (0).

If (z, w) ∈ µ−1
I (0), then the vector a of (3.5) must live in the polyhedron { a :

〈a, uk〉 � λ
(1)
k }, which is compact by hypothesis. Now (3.5) gives us a bound on

the |zk| and |wk| in terms of the uk and λk.
Conversely, note that M is compact if and only if M/Tn is compact, and hence

if and only if K is compact. We may define a projection p : K → Cn by p(a, b) = b.
The fibres of p are the polyhedra

Fb =
{

a ∈ R
n : 〈a, uk〉 � λ

(1)
k + |bk|

}
.

If M is compact, then Fb is compact for each b ∈ p(K). As Fb is non-empty, this
implies that u1, . . . , ud define a bounded polyhedron as in (3.2). �

As promised in §4, we now refine the criteria for smoothness and non-degeneracy
of the hypersymplectic quotient M , in terms of the map φ and the vectors uk.

In order to consider smoothness of M , we need to discuss the orbit types of the
actions of N on µ−1(0) and the smoothness of µ−1(0) itself. Let us begin with the
orbit types. In the notation (5.2), put

(5.3) Vk := { (a, b) ∈ R
n × C

n : ak = 0 = bk };
see Figure 5.1. Note that (3.5) and (3.6) show that for (z, w) ∈ µ−1(0)

zk = wk = 0 if and only if (a, b) = φ(z, w) ∈ Vk.

Following [Gu], if A is a subset of {1, . . . , d} we denote by TA the torus whose Lie
algebra is

tA = span
R
{ ek : k ∈ A }.

We deduce that the stabiliser of (z, w), for the T
d action, is TJ , where

(5.4) J := { k : φ(z, w) ∈ Vk }.

Proposition 5.6. For (z, w) ∈ µ−1(0):
(i) StabN (z, w) equals TJ ∩ N , where TJ is the torus whose Lie algebra is

spanned by the vectors ek for which φ(z, w) ∈ Vk;
(ii) on M , StabTn(z, w) is the torus whose Lie algebra is spanned by the vectors

uk such that φ(z, w) ∈ Vk.
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Moreover, putting Bx = (uk : x ∈ Vk),
(iii) StabN (z, w) is finite for all (z, w) ∈ µ−1(0) if and only if for each x ∈ φ(M),

the collection of vectors Bx is linearly independent;
(iv) StabN (z, w) = 1 for all (z, w) ∈ µ−1(0) if and only if for each x ∈ φ(M),

the collection of vectors Bx is contained in a Z-basis for Zn.

Proof. Statements (i) and (ii) follow from the above discussion, while (iii) and (iv)
follow from (i), (ii) and results of Delzant [De] and Guillemin [Gu], as cited in the
proof of Theorems 3.2 and 3.3 in [BD]. To see this, note that Vk is the affine flat
Hk introduced in [BD]. �
Remark 5.7. The argument of Theorems 3.2 and 3.3 of [BD] shows that if every
n + 1 of the Vk have empty intersection, then the condition of (iii) holds and hence
N acts locally freely on µ−1(0). In particular, for any given collection of vectors
uk, the action will be locally free for generic choice of λ. Hence, by Sard’s theorem,
M = µ−1(0)/N will have at worst orbifold singularities for generic choice of λ.

Similarly, we see that if for each A ⊂ {1, . . . , d} of size n, the collection (uk : k ∈
A) is a Z-basis for Z

n, then M = µ−1(0)/N is a manifold for generic λ.

To determine precise conditions for the smoothness of µ−1(0), let

Wk := { (a, b) ∈ R
n × C

n : ak = |bk| }.
A point (z, w) ∈ µ−1(0) has φ(z, w) ∈ Wk if and only if |zk| = |wk|. Note that
Vk ⊂ Wk and that both sets may be empty for a given k. Let J be as in (5.4) above
and put

L := { � : φ(z, w) ∈ W� }.
Note that L contains J .

Consider the equations (4.5) at (z, w) ∈ µ−1(0). For k ∈ J , there is no restriction
on θ

(i)
k . For k ∈ L′, the complement of L in {1, . . . , d}, we require θ

(i)
k = 0, for

i = 1, 2, 3. For k ∈ L \ J , we have ξkθ
(1)
k = i(θ(2)

k + iθ(3)
k ). For such k, we have

|zk| = |wk| �= 0, so ξk is uniquely determined by

ξk =
zk

wk
=

zkw̄k

|wk|2
= −i

bk

ak
.

Consider the map

(5.5)
Λ(a,b) : nL,J ⊗(R × C) → CL\J ,

Λ(a,b)(θ
(1)
k , θ

(c)
k ) = (bkθ

(1)
k + akθ

(c)
k ),

where nL,J is the projection to tJ′ of nL := n∩ tL. Alternatively, nL,J is the kernel
of the map βL,J : tL\J → Rn/ im(β|tJ ) induced by β.

Proposition 5.8. For a locally free action of N on µ−1(0), condition (S) of Def-
inition 4.2 for smoothness of the level set µ−1(0) holds if and only if the linear
map Λ(a,b) of (5.5) is injective at each point (a, b) of K. �
Remark 5.9. Over the combinatorial interior of K,

CInt(K) = K \
d⋃

k=1

Wk,

the set L is empty, so φ−1(CIntK) ⊂ M is always a smooth manifold. The combi-
natorial interior is equal to the topological interior if Kk �= Wk, for all k.
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Remark 5.10. By Proposition 5.6, if the action of N is locally free, then nL is
transverse to tJ and hence the orthogonal projection nL → nL,J is injective. Thus
the smoothness condition will necessarily fail if 3 dim nL > 2 |L \ J |. Since dim nL �
|L| − n, we conclude that smoothness requires |L| � 3n, i.e., no more than 3n of
the Wk’s may meet in K.

Finally, let us consider non-degeneracy of the hypersymplectic structure.

Proposition 5.11. The non-degeneracy condition (D) of Definition 4.5 fails at
some point (z, w) ∈ µ−1(0) with φ(z, w) = (a, b) if and only if there exist scalars
ζ1, . . . , ζd, not all zero, and s ∈ Rn such that

(5.6) 4ζk
2
(
ak

2 − |bk|2
)

= 〈s, uk〉2, for k = 1, . . . , d

and

(5.7)
d∑

k=1

ζkuk = 0.

Proof. This is immediate from the the discussion at the end of §4, equation (4.7),
the definition of n as ker β, and the proof of Proposition 5.1 which expresses |zk|
and |wk| in terms of a and b. �

Remark 5.12. Consider the special case when s = 0. The expression ak
2 − |bk|2

is zero on Wk. Suppose A ⊂ {1, . . . , d} has n + 1 elements. Then (uk : k ∈ A) is
linearly dependent, so we may find (ζ1, . . . , ζd) ∈ tA \{0} satisfying (5.7). If

K ∩
⋂

k∈A

Wk �= ∅

we then obtain a solution to the remaining equations (5.6). Thus if n + 1 of the
Wk’s meet in K, then condition (D) necessarily fails. This is a considerably stronger
restriction than that obtained for smoothness in Remark 5.10, and as we will see
in §7, one may easily obtain smooth quotients with hypersymplectic structures that
degenerate on some hypersurface.

Theorem 5.13. Let φ be the moment map for the action of Tn on the hyper-
symplectic quotient M = µ−1(0)/N . Suppose the combinatorial interior CInt(K)
of the image K of φ is non-empty. Then an open subset of M carries a smooth
non-degenerate hypersymplectic structure.

When M is compact, the degeneracy locus is non-empty of codimension at least
one.

Non-trivial examples of quotients with empty degeneracy locus will be given
in §7.

Proof. We have already noted that M is smooth over CInt(K). For (a, b) ∈
CInt(K), we have a2

k �= |bk|2 for all k. Equations (5.6) may thus be solved for
ζk and (5.7) becomes

H(s, w) :=
d∑

k=1

wk 〈s, uk〉uk = 0,
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with w = (w1, . . . , wd), wk = 1/(2εk

√
ak

2 − |bk|2), εk = ±1 and s �= 0. Now
H : R1 × R2 → Rn, where R1 = Rn \ {0} and R2 is an n-dimensional mani-
fold contained in the complement of the coordinate axes in Rd, has differential
DH(s,w)(ς, υ) =

∑d
k=1 〈wkς + υks, uk〉uk which has rank n when wk �= 0 for all k.

Thus H−1(0) is a submanifold of R1 ×R2 ⊂ Rn ×Rd of dimension n. But if (s, w)
lies in H−1(0), then so does (λs, w) for λ ∈ R \ 0. So the projection of H−1(0) to
the second factor R2, has dimension at most n − 1, i.e., the degeneracy locus is at
least codimension one.

Now suppose that M is compact. Consider the map p : K → Cn of Theorem 5.5
and its fibres Fb. Note that when the interior Int Fb is non-empty we have Int Fb =
{ a ∈ Rn : ak > |bk| }. As this is an open condition on b, we see that p(IntFb) ⊂
Int(p(K)). Fix b on the boundary of p(K). Then Fb is a compact polytope in
Rn with empty interior. Let v be a vertex of that polytope. Then v is at the
intersection of at least n hyperplanes ak = |bk|. However, if only n hyperplanes
meet, then we can find interior points of Fb close to v. Thus n+1 hyperplanes meet
in v. This is the same as saying that (v, b) lies on n+1 of the Wk. By Remark 5.12,
this implies that the hypersymplectic structure is degenerate at (v, b). �

We shall next relate our quotients to toric varieties. We first prove a lemma.

Lemma 5.14. Let δ : T
d → T

d × T
d = T

2d be the diagonal map, and let N be a
compact Abelian subgroup of Td.

If N � Td is defined by a collection of vectors in Rn defining a bounded poly-
hedron, then δ(N) � T2d is defined by a collection of vectors in Rn+d defining a
bounded polyhedron.

Proof. We have an exact sequence

0 −→ δ∗(n) ι̃−→ R
d ⊕ R

d = R
2d β̃−→ R

n+d −→ 0,

for some map β̃. It is straightforward to check that δ∗(n) = { (v, v) : v ∈ n } is the
kernel of the map defined by

ek �−→ ũk :=

{
uk + ek+d, if k � d,
−ek, if k > d.

So we can take this map to be β̃, and hence δ∗(n) is defined by vectors ũ1, . . . , ũ2d.
Consider the polyhedron { s ∈ Rn+d : 〈s, ũk〉 � ck, k = 1, . . . , 2d }. The defining

inequalities may be written as

〈s1, uk〉 + 〈s2, ek+d〉 � ck, for k = 1, . . . , d,

〈s2,−ek+d〉 � ck+d, for k = 1, . . . , d,

where s = s1+s2, s1 ∈ Rn and s2 ∈ span{ed+1, . . . , e2d}. We see that 〈s1, uk〉 � ck+
ck+d, for k = 1, . . . , d. As u1, . . . , ud define a bounded polyhedron by hypothesis,
we get a bound on s1, and hence, from

ck − 〈s1, uk〉 � 〈s2, ek+d〉 � −ck+d

a bound on s2. �
Now, observe that µI is just the moment map m for the Kähler action of δ(N)

on C2d. (Here C2d has the standard complex structure I0, not the hypersymplectic
complex structure I, as remarked in §2.)
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The construction of Guillemin and Delzant now gives:

Theorem 5.15. M is the sub-variety

µS + iµT = 0

in the toric variety m−1(0)/δ(N). If the vectors uk define a bounded polyhedron,
then by Lemma 5.14 this toric variety is compact. �
Remark 5.16. Note that µS + iµT , although I-holomorphic, is not holomorphic
with respect to the complex structure on this toric variety, which is induced from
I0.

We conclude by discussing two actions that can occur on M for special choices
of λ.

Remark 5.17. If we take λ
(j)
k = 0 for all j, k, then (0, 0) ∈ µ−1(0) and is a fixed

point of N , giving a singular point in the quotient M = µ−1(0)/N . In fact it follows
from (3.5), (3.6) with λ

(k)
j = 0 that we have a scaling action (z, w) �→ (t.z, t.w), for

t ∈ R∗ on µ−1(0) which descends to the quotient, so that M is a cone with vertex
at (0, 0).

Remark 5.18. Harada and Proudfoot [HP] have observed that in the hyperkähler
case, if we take λ

(2)
k + iλ(3)

k = 0 for all k, then the quotient M admits a circle action

(z, w) �→ (z, eiψw).

This action is holomorphic with respect to I but not with respect to J or K.
This action does not occur for the Kähler quotients of [Gu, De]. However we

observe that it does exist for our hypersymplectic quotients, provided we take λ
(2)
k +

iλ(3)
k = 0 as above. The action is compatible with I but not with S or T .
Note also that under this condition on λ, the hypersymplectic quotient contains

two distinguished subvarieties, defined by the vanishing of z and w, respectively.
Each of these may be identified with a Kähler quotient of Cd by N , and hence with
a toric variety.

The locus w = 0 lies in the fixed point set of the circle action. As M is a quotient,
we may in addition have other components of the fixed point set. We find, as in
the hyperkähler case [HP], that the fixed point set in general is a union of toric
varieties which may be enumerated in terms of conditions on the vectors uk.

To make this precise, for A, B ⊂ {1, . . . , d}, let

MA,B =
{

[z, w] ∈ M : zk = 0 for all k ∈ A

and w� = 0 for all � ∈ B
}
.

Note that MA,A′ is a toric variety. The fixed point condition

(z, eiψw) = (g(ψ)z, g(ψ)w)

for g(ψ) ∈ N implies immediately that wk = 0 whenever zk �= 0. Further examina-
tion of this condition leads to:

Proposition 5.19. When λ
(2)
k + iλ(3)

k = 0, the hypersymplectic quotient M admits
a circle action with fixed point set the union of the toric varieties MA,B where
A ∪ B = {1, . . . , d} and ∑

k∈A

uk ∈ span{u� : � ∈ A ∩ B}.
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6. Involutions

In the Kähler case studied by Guillemin and Delzant, the moment map µ : Cd �→
n∗ is invariant under the involution of Cd given by complex conjugation. In fact,
conjugation induces an involution γ of the quotient M = µ−1(0)/N . Moreover the
fixed point set of complex conjugation in µ−1(0) is a cover of the fixed point set of
γ in M . The group of deck transformations is the finite group Γ of involutions in
N .

In the hyperkähler situation there appears to be no such involution in general.
In our hypersymplectic case, however, we do have an involution. Explicitly, the

map σ : Cd,d �→ Cd,d given by

σ : (zk, wk) �→ (w̄k, z̄k)

preserves µ−1(0) and sends N -orbits to N -orbits. (It does not commute with the
action, but we have σ(g · (z, w)) = g−1 · σ(z, w), which suffices.)

It follows that σ induces an involution σ̂ on the hypersymplectic quotient M =
µ−1(0)/N . Let us denote by µ−1(0)σ and Mσ̂ the fixed point sets of the involutions
in µ−1(0) and M , respectively.

Theorem 6.1. The natural projection π : µ−1(0) → M induces a surjection

µ−1(0)σ → Mσ̂.

If N acts freely on µ−1(0) this map is a cover whose group of deck transformations
is the finite group

Γ = {h ∈ N : h2 = 1 }.

Proof. Observe first that (z, w) ∈ µ−1(0) represents a point in Mσ̂ if and only if
there exists g ∈ N with w = g−1z̄ = gz. Now if h ∈ N satisfies h2 = g, then

h · (z, w) = h · (z, gz) = (hz, h−1gz) = (hz, hz),

so (z, w) represents the same point in M as does (hz, hz) ∈ µ−1(0)σ. This proves
the surjectivity assertion.

Next, suppose that two points (z, z̄) and (u, ū) in µ−1(0)σ are related by the
action of g ∈ N . We need, for each k,

zk = eiθkvk and z̄k = eiθk v̄k

for some eiθk ∈ T1. Hence either eiθk is an order two element in T1 or zk = vk = 0.
We deduce that g2 ∈ TJ ∩ N , where J is the set of indices for which zk = 0.

If N acts freely on µ−1(0), then TJ ∩ N is trivial by Proposition 5.6. The
remaining assertions now follow easily. �

Proposition 6.2. The symplectic forms ωI , ωS and ωT all vanish when restricted
to Mσ̂.

Proof. The involution σ̂ pulls back ωI , ωS and ωT to their negatives. �

Remark 6.3. Non-degenerate hypersymplectic manifolds with multi-Lagrangian sub-
sets have recently appeared in [FPPW]. There hypersymplectic structures arise on
T2n-fibrations over a T2n base, and the fibres are multi-Lagrangian.
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In contrast, we have:

Proposition 6.4. The fixed point set Mσ̂ is non-empty only if
d⋂

k=1

Wk �= ∅.

The non-degeneracy statement (D), Definition 4.5, is not satisfied on TM |Mσ̂
. In

particular, if the action satisfies conditions (F) and (S) of Definitions 4.1 and 4.2,
then M is smooth but the hypersymplectic structure is degenerate over Mσ̂.

Proof. If (z, w) ∈ µ−1(0) is a fixed point for σ, then |zk| = |wk| for k = 1, . . . , d.
This is the condition that φ(z, w) ∈ Wk for k = 1, . . . , d, and the assertion follows.

When |zk| = |wk| for all k, the quadratic form (4.6) is identically zero. Thus
condition (D) fails. The final statement follows from Theorems 4.3 and 4.6. �

7. Examples

7.1. The diagonal circle action. Let us take d = n + 1, and take

uk = ek, for k = 1, . . . , n,

un+1 = −(e1 + · · · + en),

so the vectors uk define the standard simplex in R
n. Now N is the standard

diagonal circle in Tn+1. The corresponding toric hyperkähler manifold is the Calabi
space T ∗CP (n).

In the hypersymplectic case M = µ−1(0)/N is the quotient of the subset of
C

n+1,n+1 cut out by the equations
n+1∑
k=1

|zk|2 + |wk|2 = −2
n+1∑
k=1

λ
(1)
k ,

n+1∑
k=1

zkw̄k = −i
n+1∑
k=1

(λ(2)
k + iλ(3)

k ),

by the action
zk �−→ eiθzk, wk �−→ eiθwk.

Using Theorem 5.15, this may be identified with a hypersurface in µ−1
I (0)/N =

CP2n+1.
Note that the action

(z, w) �−→ (Az, Aw), for A ∈ U(n + 1)

preserves the level set of µ−1(0) and commutes with the action of N , so defines an
effective PU(n + 1) action on M .

The stabiliser of (z, w) is P (U(1) × U(n)) if z, w are linearly dependent, and
P (U(1)×U(n−1)) otherwise: the PU(n+1) action on M is therefore cohomogeneity
one.

Let us write

P = −2
n+1∑
k=1

λ
(1)
k , Q = −i

n+1∑
k=1

(λ(2)
k + iλ(3)

k ).

A necessary condition for M to be non-empty is |Q| � 1
2P .
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The vector field X for the action of N takes the value (iz, iw) at the point
(z, w). From §4 we see that IX, SX, TX are linearly independent unless w = λz
for a complex number λ of unit modulus. It is easy to check that such a point (z, w)
cannot lie in µ−1(0) except in the special case |Q| = 1

2P . We deduce that M is a
smooth manifold unless |Q| = 1

2P .
The hypersymplectic structure on M will degenerate at some points, however.

Observe that the point (z, w), where

z = (
√

1
2P , 0, . . . , 0), w = (

Q̄√
1
2P

, w2, . . . , wn+1)

and
n+1∑
k=2

|wk|2 = 1
2P − |Q|2

1
2P

lies in µ−1(0) when this set is non-empty. Moreover, from (4.3), we have that the
Killing field for the circle N is null at (z, w). Hence the hypersymplectic structure
degenerates at this point.

If we take Q = 0, then we have a circle action

(z, w) �→ (z, eiψw)

as discussed in Remark 5.18. The fixed point set of this action in M = µ−1(0)/N
is the union of the loci z = 0 and w = 0, since in Proposition 5.19 we have A = ∅

or {1, . . . , n + 1}. These fixed point sets are both diffeomorphic to CPn, and are
the special orbits of the PU(n + 1) action in this case.

7.2. Codimension-one subgroups. Take n = 1, and first consider

uk = e1, for k = 1, . . . , d,

so

n =
{ d∑

k=1

akek :
d∑

k=1

ak = 0
}

and N is the torus Td−1 = {(t1, . . . , td) : t1t2 . . . td = 1} in Td. The Gibbons-
Hawking multi-instanton metrics are obtained as hyperkähler quotients of Hd by N .

We obtain, analogously, 4-dimensional hypersymplectic quotients of C
d,d by N ,

with an action of the circle group Td/N . Like the multi-instanton spaces, these
hypersymplectic spaces are non-compact, as can be seen from Theorem 5.5.

Note that the sets Vk of (5.3) are now just the d points

Vk = {(λ(1)
k , λ

(2)
k , λ

(3)
k )}, for k = 1, . . . , d.

Proposition 5.6(iv) shows that N acts freely on µ−1(0) provided that these d points
are distinct (as in the hyperkähler case).

The set K = φ(M) in Proposition 5.1 is the intersection of the d cones

{(a, b) ∈ R × C : a − λ
(1)
k � |b − (λ(2)

k + iλ(3)
k )|}

with vertices at (λ(1)
k , λ

(2)
k , λ

(3)
k ), for k = 1, . . . , d. All these cones have the same

angle and parallel axes.
The fixed points of the circle action correspond, from Proposition 5.6(ii), to the

preimages under φ of those points (λ(1)
k , λ

(2)
k , λ

(3)
k ) which lie in the intersection of

the cones.
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We deduce that different configurations of the cones may give a zero or non-zero
number of fixed points. This gives an example of different choices of level set giving
quotient sets which are inequivalent as T

n-manifolds.
By contrast, in the hyperkähler case, φ(M) is the whole of R3, and we always get

d fixed points for the circle action (provided that the points Hk = Vk are distinct).
Let us now consider what may happen for arbitrary choices of uk when n = 1

and d is small.

Example 7.1. Consider n = d = 1. This case is relatively trivial as the group N
is discrete. However, it illustrates a number of features of our constructions.

The map β is defined by a single u1 ∈ Z\{0}, which we may take to be positive.
The image of the moment map φ is the solid cone K = K1 consisting of (a, b) ∈ R×C

such that a − λ
(1)
1 /u1 �

∣∣∣b − λ
(c)
1 /u1

∣∣∣, as in Figure 5.1. The vertex Vk is the point

(λ(1)
1 /u1, λ

(c)
1 /u1). The N -action is free only if u1 = 1, in which case N = {1}. As

n = {0}, the maps Λ(a,b) (5.5) are injective, so the quotient is indeed smooth when
u1 = 1. The equation (5.7) implies ζ1 = 0, confirming that the quotient geometry
is non-degenerate.

In the case u1 = 1, the induced map φ̃ : C1,1/T1 → K = K1 is 2-to-1, branched
over ∂K = W1. Each disc D(r) = {(a, b) ∈ K : a = r + λ

(1)
1 } is the image of a

two-sphere S2(r) in C1,1/T1 ∼= R3, and this sphere in turn is the quotient of the
three-sphere S3(2r) = {|z|2 + |w|2 = 2r} in C

1,1. The map S2(r) → D(r) may be
thought of as an orthogonal projection to the equatorial plane, whereas the map
S3(2r) → S2(r) is the Hopf fibration.

Example 7.2. If n = 1 and d = 2 we are considering hypersymplectic quotients
of C2,2 by a one-dimensional Abelian group, and the result is a four-dimensional
hypersymplectic manifold M with S1-symmetry. The map β defining N is deter-
mined by u1, u2 ∈ Z not both zero. Without loss of generality we may take u1 > 0.
Let us restrict to the non-degenerate case where u2 is also non-zero. The moment
map φ on M has image K = K1 ∩ K2, where Kk are solid cones in R × C with
vertices Vk = (λ̃(1)

k , λ̃
(c)
k ) := (λ(1)

k /uk, λ
(c)
k /uk). The quotient M is compact if and

only if u1 > 0 > u2.
Let us successively consider the conditions (F), (S) and (D) of §4 for these quo-

tients.
For the freeness condition (F) of Definition 4.1, Proposition 5.6 forces V1 �= V2

and imposes the restriction that uk = ±1 if the vertex Vk lies in K. Allowable cone
configurations include the three given in Figure 7.1: 7.1(a) has u1 > 0, u2 = 1 and
N = S1; 7.1(b), u1, u2 > 0 and N = S1 × Z/ gcd(u1, u2); 7.1(c), u1 = 1, u2 = −1.
Other allowable configurations have V2 ∈ W1 \ V1.

Turning to the smoothness condition (S) of Definition 4.2, assume that the N -
action is free. By Remark 5.10, smoothness fails if V2 lies in W1, since at V2 we then
have L = {1, 2}, J = {2} and nL = n has dimension 1. Thus the configurations of
Figure 7.1 are the only candidates for smooth quotients. For Figure 7.1(a), there
is no more to check as nL = {0} at all points of K. For Figures 7.1(b) and 7.1(c)
we need to consider points (a, b) ∈ W1 ∩ W2. Here L = {1, 2} and J = ∅, so
nL,J = nL = n ∼= R and the map Λ(a,b) : n⊗(R × C) → C2 in (5.5) is

Λ(a,b)

((
x1

x2

)
⊗ (θ(1), θ(c))

)
=

(
x1(b1θ

(1) + a1θ
(c))

x2(b2θ
(1) + a2θ

(c))

)
,
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(a) u1 � u2 = 1, V2 ∈ IntK1 (b) u1, u2 > 0, V2 �∈ K1

(c) u1 = 1 = −u2, V2 ∈ Int K1

Figure 7.1. Configurations giving smooth quotients from non-
degenerate S1- and S1 × Z/m-actions on C2,2.

(a) u1, u2 > 0 (b) u1 > 0 > u2

Figure 7.2. Level sets a constant through K1 and K2 showing
the angles ϕk for a point p = (a, b) ∈ W1 ∩ W2. The points Ṽk are
the orthogonal projections to this plane of the vertices Vk.

where x1u1 + x2u2 = 0. This is not injective if and only if b1/a1 = −θ(c)/θ(1) =
b2/a2 for some (θ(1), θ(c)). On Wk, ak = |bk|, so bk/ak = eiϕk . Looking from above,
we have Figures 7.2(a) and 7.2(b).

One sees that the quotient is smooth when we have Vk /∈ Wj for k �= j. Thus
the three configurations of Figure 7.1 give smooth four-dimensional manifolds.

Finally, we turn to the non-degeneracy of the hypersymplectic structure as guar-
anteed by condition (D) of Definition 4.5, when the quotient is smooth satisfying
conditions (F) and (S). Remark 5.12 shows that for (D) to hold we must have
W1 ∩ W2 = ∅. This only occurs when u2 = 1 and V2 ∈ Int K1, as in Figure 7.1(a).
Thus the other two configurations give smooth manifolds with a hypersymplectic
structure that degenerates along some hypersurface. Indeed in these two cases the
fixed point set of the involution σ̂ of §6 is non-empty and Proposition 6.4 applies.

For u2 = 1 and V2 ∈ Int K1 we need to consider Proposition 5.11 in detail. Put
ãk = ak/uk = a − λ̃

(1)
k , b̃k = bk/uk = b − λ̃

(c)
k and

fk(a, b) = ã2
k − |b̃k|2 .
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Then fk � 0 on Kk with equality on Wk. Equations (5.6) and (5.7) are now

ζ2
1f1 = 1

4s2 = ζ2
2f2,(7.1)

ζ1u1 + ζ2u2 = 0,(7.2)

for some s ∈ R. In K = K2, we have f1 > f2, since this holds on W2 and f1 − f2

is an increasing linear function of a. Fixing b, we have lima→∞(f2/f1)(a, b) = 1,
so f2/f1 takes all values in [0, 1) in K. Now (7.1) implies ζ2

1/ζ2
2 = f2/f1, whereas

(7.2) gives ζ1/ζ2 = −1/u1, since u2 = 1. We conclude that the hypersymplectic
structure on this quotient is non-degenerate if and only if u1 = 1.

Topologically, the quotient M from u1 = u2 = 1 and V2 ∈ Int K1, is non-
compact with two connected components interchanged by the involution σ̂ of §6.
On each component, a is a Morse function with a single critical point of index 0.
Topologically and smoothly each component of M is R4. The hypersymplectic
structure is not in general flat.

To see this, consider the case where λ
(c)
1 = 0 = λ

(c)
2 , so the quotient carries the

Harada-Proudfoot circle action of Remark 5.18. The fixed-point set has, as one
component, the image of w1 = 0 = w2. This is totally geodesic in M with metric h

obtained from the quotient of the set { |z1|2 − |z2|2 = c1 = λ
(1)
1 + λ

(2)
2 } in C2 by

the isometric circle action (z1, z2) �→ (eiθz1, e
−iθz2). For the case c1 = 1, writing

z1 =
√

1 + r2eiθ and z2 = rei(ψ−θ), we get h = 2r2+1
r2+1 dr2 + r2(r2+1)

2r2+1 dψ2, which has
curvature −1/(2r2 + 1)3.

7.3. Another circle action. Let us modify the action of §7.1, so d = n + 1 and

uk = ek, for k = 1, . . . , n,
un+1 = e1 + · · · + en.

Take λ
(i)
k = 0 for i = 1, 2, 3 and k = 1, . . . , n. Put λ

(1)
n+1 = −λ < 0 and λ

(c)
n+1 = 0.

Then if a = (a(1), . . . , a(n)) ∈ R
n, etc., we have

Kk = { (a, b) ∈ R
n × C

n : a(k) �
∣∣b(k)

∣∣ }, for k = 1, . . . , n,

Kn+1 =

{
(a, b) ∈ R

n × C
n : λ +

n∑
k=1

a(k) �
∣∣∣∣

n∑
k=1

b(k)

∣∣∣∣
}

.

We see immediately that K is the intersection of just K1, . . . , Kn and that Wn+1

does not meet K. As V1 ∩ . . . ∩ Vn lies in K and {e1, . . . , en} is a Z-basis for Zn,
Proposition 5.6 implies that the action of the circle N is free on µ−1(0). For smooth-
ness, note that the index sets L and J are both subsets of {1, . . . , n}. However,
n{1,...,n} = {0} since the restriction of β to t{1,...,n} = R

n → R
n is just the identity

map. Proposition 5.8 implies that the hypersymplectic quotient M = µ−1(0)/N is
thus smooth. Topologically and smoothly it has two connected components which
are copies of R4n. These components are interchanged by the involution σ̂.

That the quotient has a non-degenerate hypersymplectic structure may be seen
as follows. Using (5.7), we have ζ1 = · · · = ζn = ζ and ζn+1 = −ζ. Putting
s̃ = s/2ζ the system (5.6) becomes

a2
(k) =

∣∣b(k)

∣∣2 + s̃2
k, for k = 1, . . . , n,

(a(1) + · · · + a(n) + λ)2 =
∣∣b(1) + · · · + b(n)

∣∣2 + (s̃(1) + · · · + s̃(n))2.



1284 ANDREW DANCER AND ANDREW SWANN

Using the triangle inequality, the first n-equations imply that the left-hand side of
the last equation is strictly greater than the right-hand side for λ > 0. So there is
no solution to the degeneracy equations, and we obtain a smooth non-degenerate
hypersymplectic structure on two copies of R4n. The computations of the previous
section show that this metric is not flat.
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