
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 359, Number 3, March 2007, Pages 1161–1189
S 0002-9947(06)03994-8
Article electronically published on September 12, 2006

CLOSED FORM SUMMATION OF C-FINITE SEQUENCES

CURTIS GREENE AND HERBERT S. WILF

To David Robbins

Abstract. We consider sums of the form
n−1∑
j=0

F1(a1n + b1j + c1)F2(a2n + b2j + c2) . . . Fk(akn + bkj + ck),

in which each {Fi(n)} is a sequence that satisfies a linear recurrence of degree

D(i) < ∞, with constant coefficients. We assume further that the ai’s and the
ai + bi’s are all nonnegative integers. We prove that such a sum always has a
closed form, in the sense that it evaluates to a linear combination of a finite
set of monomials in the values of the sequences {Fi(n)} with coefficients that
are polynomials in n. We explicitly describe two different sets of monomials
that will form such a linear combination, and give an algorithm for finding
these closed forms, thereby completely automating the solution of this class
of summation problems. We exhibit tools for determining when these explicit
evaluations are unique of their type, and prove that in a number of interesting
cases they are indeed unique. We also discuss some special features of the case
of “indefinite summation”, in which a1 = a2 = · · · = ak = 0.

1. Introduction

In Section 1.6 of [7] the following assertion is made:
All Fibonacci number identities such as Cassini’s Fn+1Fn−1 − F 2

n =
(−1)n (and much more complicated ones), are routinely provable using
Binet’s formula:

Fn :=
1√
5

((
1 +

√
5

2

)n

−
(

1 −
√

5

2

)n)
.

This is followed by a brief Maple program that proves Cassini’s identity by substi-
tuting Binet’s formula on the left side and showing that it then reduces to (−1)n.
Another method of proving these identities is given in [10], in which it is observed
that one can find the recurrence relations that are satisfied by each of the two sides
of the identity in question, show that they are the same and that the initial values
agree, and the identity will then be proved.

The purpose of this note is to elaborate on these ideas by showing how to derive,
instead of only to verify, summation identities for a certain class of sequence sums,
and to show that this class of sums always has closed form in a certain sense, and
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that these closed forms can be found entirely algorithmically. Indeed, a Mathemat-
ica program that carries out the procedures that we develop in this paper can be
downloaded from the web sites of the authors [4].

We deal with the class of C-finite sequences (see [10]). These are the sequences
{F (n)}n≥0 that satisfy linear recurrences of fixed span with constant coefficients.
The Fibonacci numbers, e.g., will do nicely for a prototype sequence of this kind.
The kind of sum that we will consider first will be of the form (2) below. We will
say that such a sum has an F -closed form if there is a linear combination of a fixed
(i.e., independent of n) number of monomials in values of the F ’s such that for all
n the sum f(n) is equal to that linear combination.

For example, consider the sum

f(n) =
n−1∑
j=0

F (j)2F (2n − j)

where the F ’s are Fibonacci numbers. In Section 3.1 we will see how to use our
method to show that f(n) can be expressed in the form (11), which is a linear
combination of five monomials in the F ’s. Hence the sum f(n) has an F -closed
form.

More generally, we will consider functions F (n) satisfying a recurrence of min-
imal order D with constant coefficients, whose associated polynomial has roots
r1, r2, . . . , rd, of multiplicities e1, e2, . . . , ed, where

∑
i ei = D. Such a function may

be expressed in the form

(1) F (n) =
d∑

m=1

em−1∑
h=0

λm,h nh (rm)n,

where the ri are distinct and nonzero, and λm,em−1 �= 0 for all m.
We will begin by evaluating sums of the form

(2) f(n) =
n−1∑
j=0

F (a1n + b1j + c1) · · ·F (akn + bkj + ck)

in which the a’s, b’s, and c’s are given integers. We assume further that, for all i,
ai ≥ 0 and ai + bi ≥ 0 and at least one of these is positive. Later we will generalize
this result to allow the F ’s in the summand to be different C-finite functions. The
principal result of this paper is perhaps Theorem 17 below, which proves in full
generality, i.e., with arbitrary root multiplicities and with the F ’s in the summand
all being different, the existence of closed forms, and exhibits an explicit finite basis
for the solution space.

It is elementary and well known that f(n) is C-finite, and one can readily obtain
explicit expressions for f(n) in terms of the roots rm. Our first results show how to
obtain formulæ for sums f(n) of the form (2) as a polynomial in the F ’s, based on
two different explicit sets of “target” monomials in the F ’s. Using the first target
set, we obtain the following result.

Theorem 1. The sum f(n) in (2) has an F -closed form. It is equal to a linear
combination of monomials in the F ’s, of the form

F ((a1 + b1)n + i1) . . . F ((ak + bk)n + ik), 0 ≤ iν ≤ D − 1,

ψi1,...,ik
(n)F (a1n + i1)F (a2n + i2) . . . F (akn + ik), 0 ≤ iν ≤ D − 1,(3)
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where ψi1,...,ik
(n) denotes a polynomial of degree at most β = 1 + ∆µ, where ∆ =

maxm{em − 1} and µ = |{i : ai = 0}|. If F is rational-valued, then there are
solutions in which all coefficients to be determined are rational.

We note that, if the roots ri are distinct, then β = 1 and the polynomials
ψi1,...,ik

(n) are linear. The next theorem gives a closed form in terms of an alternate
target set of monomials.

Theorem 2. The sum f(n) in (2) can be expressed in F -closed form as a linear
combination of monomials of the form

F (n + i1)F (n + i2) . . . F (n + iP ), 0 ≤ iν ≤ D − 1,

ψi1,...,ik
(n)F (n + i1)F (n + i2) . . . F (n + iQ), 0 ≤ iν ≤ D − 1,(4)

where P = (a1+b1)+(a2+b2)+· · ·+(ak+bk), Q = a1+a2+· · ·+ak, and ψi1,...,ik
(n)

denotes a polynomial of degree γ = max{0, 1 + ∆(k −
∑

{ai|ai > 0})}. If F is
rational-valued, then there are solutions in which all coefficients to be determined
are rational.

For example, when F (n) is the nth Fibonacci number, Theorem 2 states that any
sum of the form (2) can be expressed as a linear combination of monomials in F (n)
and F (n + 1), with rational linear polynomial coefficients, where those monomials
have at most two distinct degrees. Again, we note that, if the roots ri are distinct,
then γ = 1 and the polynomials ψi1,...,ik

(n) are linear.
The natural domain for these questions is the vector space V∞ of complex-

valued functions on {0, 1, 2, . . . }. However, to obtain our expansions it is only
necessary to work in the vector space VM of functions on {1, . . . , M}, where M
is the number of unknown coefficients to be determined. More precisely, we define
M to be equal to the number of “algebraically distinct” monomials of the form
nh

∏
ν F ((aν + bν)n + iν) or nh

∏
ν F (aνn + iν) generated by (3) or (4). Here

we consider two monomials to be equivalent if they differ by a rearrangement of
factors, or by a constant factor arising from cases where aν + bν = 0 or aν = 0.
(For examples, see Section 3.) Then we have the following result.

Theorem 3. Let WM ⊆ VM be the vector space of complex-valued functions on
{1, 2, . . . , M} spanned by the monomials in (3), where M is the number of alge-
braically distinct monomials generated by (3), as defined in the previous paragraph.
Let W∞ ⊆ V∞ be the vector space of functions on {0, 1, . . . } spanned by the same
monomials. If two linear combinations of monomials of type (3) agree in WM ,
then they agree in W∞. A similar statement holds for monomials of type (4).

As a consequence, we can obtain expressions of type (3) or (4) by equating M
values of f(n) to the values of the assumed linear combinations, and solving for the
coefficients. We note that M ≤ (β + 2)dk in case (3) and M ≤ dP + (γ + 1)dQ in
case (4).

In general, F -closed expressions are not unique. For example, we may add terms
of the form Ψ(F )(F (n + 2) − F (n + 1) − F (n)), where Ψ(F ) is any polynomial in
the F (an + i), to an expression involving Fibonacci numbers and get another valid
F -closed form. However, the formats described by (3) and (4) are highly restrictive,
and the resulting expressions can be shown to be unique in a surprising number
of cases. We will return to the question of uniqueness and, more generally, to the
problem of computing dim(W∞), in Sections 4-6.
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The structure of this paper is as follows. In Sections 2-6 we consider the case
where the roots ri all have multiplicity one. In this case, both the statements and
proofs of our results are considerably simpler, and will serve as models for the more
general case to be presented later. Section 2 gives proofs of Theorems 1, 2 and 3 in
this special case. Section 3 illustrates these results with several examples. Sections
4-6 consider the issue of uniqueness and dimension, again for the distinct root case.
Section 7 drops the assumption of distinct roots, and gives a proof of Theorems
1 and 2 in a more general form (Theorem 17) where the factors in the summand
of (2) may involve different F ’s. Section 8 considers some issues that arise when
a1 = a2 = · · · = ak = 0, i.e., when the problem of computing f(n) is an indefinite
summation problem. Section 9 contains more examples.

2. Proofs in the case of distinct roots

In this section, we will assume that F (n) satisfies a recurrence of minimal order
d, with distinct roots, and hence can be expressed in the form

(5) F (n) =
d∑

m=1

λmrn
m

with the rm distinct and the λm nonzero. Expanding the right side of (2) above
and using (5), we find that

f(n) =
n−1∑
j=0

k∏
�=1

{
d∑

m=1

λmra�n+b�j+c�
m

}
.

A typical term in the expansion of the product will look like

(6) Kra1n+b1j+c1
m1

ra2n+b2j+c2
m2

. . . rakn+bkj+ck
mk

,

in which K is a constant, i.e., is independent of n and j, which may be different at
different places in the exposition below. Since we are about to sum the above over
j = 0, . . . , n − 1, put

Θ = rb1
m1

rb2
m2

, . . . , rbk
mk

,

because this is the quantity that is raised to the jth power in the expression (6).
Now there are two cases, namely Θ = 1 and Θ �= 1.

Suppose Θ = 1. Then the sum of our typical term (6) over j = 0, . . . , n − 1 is

(7) Kn
(
ra1
m1

ra2
m2

. . . rak
mk

)n
.

On the other hand, if Θ �= 1, then the sum of our typical term (6) over j =
0, . . . , n − 1 is

(8) K
{(

ra1+b1
m1

. . . rak+bk
mk

)n −
(
ra1
m1

. . . rak
mk

)n
}

.

The next task will be to express these results in terms of various members of the
sequence {F (n)} instead of in terms of various powers of the ri’s. To do that we
write out (5) for d consecutive values of n, getting

F (n + i) =
d∑

m=1

λmrn+i
m (i = 0, 1, . . . , d − 1)

=
d∑

m=1

(λmri
m)rn

m (i = 0, 1, . . . , d − 1).
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We regard these as d simultaneous linear equations in the unknowns {rn
1 , . . . , rn

d },
with a coefficient matrix that is a nonsingular diagonal matrix times a Vandermonde
based on distinct points, and is therefore nonsingular. Hence for each m = 1, . . . , d,
rn
m is a linear combination of F (n), F (n + 1), . . . , F (n + d − 1), with coefficients

that are independent of n. Thus in (7), (8) we can replace each rnai
mi

by a linear
combination of F (ain), F (ain + 1), . . . , F (ain + d − 1), and we can replace each
r

n(ai+bi)
mi by a linear combination of

F ((ai + bi)n), F ((ai + bi)n + 1), . . . , F ((ai + bi)n + d − 1).

After making these replacements, we see that the two possible expressions (7),
(8) contribute monomials that are all of the form (3), with the polynomials ψi1,...,ik

all linear. This establishes the existence of expansions in monomials of type (3), as
claimed in Theorem 1.

To prove the corresponding claim made in Theorem 2, it suffices to observe that,
in the above argument, we could have written rnai

mi
= (rn

mi
)ai and replaced it by a

homogeneous polynomial of degree ai in F (n), F (n + 1), . . . , F (n + d − 1). Similar
reasoning applies to r

n(ai+bi)
mi . Thus all of the resulting monomials are of type (4).

We continue now with the proof of Theorem 3. The arguments are identical for
cases (3) and (4), so we will consider only case (3). We have observed that for
each i = 0, . . . , d− 1, F (n+ i) is a linear combination of rn

1 , . . . , rn
d , and conversely.

Hence, in both VM and V∞, the linear span of the set

F (a1n + i1)F (a2n + i2) . . . F (akn + ik), 0 ≤ iν ≤ d − 1,

is equal to the linear span of the set {θn
1 , θn

2 , . . . , θn
dk}, where the θj range over all

monomials of the form
ra1
m1

ra2
m2

· · · rak
mk

.

Arguing similarly for the other cases, we see that the linear span of all monomials
of type (3) is equal to the linear span of the set of 3dk functions

θn
1 , θn

2 , . . . , θn
dk ,

ψn
1 , ψn

2 , . . . , ψn
dk ,(9)

nψn
1 , nψn

2 , . . . , nψn
dk ,

where the θi are as defined above and the ψj range over all monomials of the form

ra1+b1
m1

ra2+b2
m2

· · · rak+bk
mk

.

We claim that the number of distinct functions appearing in (9) is less than or equal
to M . Indeed, it is straightforward to check that the map F (θn + i) �→ (rθ

i+1)
n

extends to a well-defined, surjective map from the set of equivalence classes of
monomials of type (3) to the set of functions appearing in (9).

Now suppose that Φ(n) and Ψ(n) are linear combinations of monomials of type
(3), with Φ(n) = Ψ(n) for n = 1, 2, . . . , M . We know that Φ(n) and Ψ(n) can both
be expressed in the form∑

i

ci θn
i +

∑
j

dj ψn
j +

∑
k

ek nψn
k

for some constants ci, dj , ek, where the sum is over distinct elements of (9) and
hence there are at most M terms in the sum. It follows from standard results in the
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theory of difference equations (e.g., see [3], Chapter 11) that Φ(n) and Ψ(n) satisfy
the same linear recurrence of order at most M with constant coefficients, e.g., the
recurrence with characteristic polynomial

∏
i(t− θi)

∏
j(t−ψj)2. Hence the values

of Φ(n) and Ψ(n) are completely determined by their values for n = 1, 2, . . . , M ,
and since they agree for these values, they must agree for all n. This completes the
proof of Theorem 3. �

The proof also shows that the C-finite degree of f(n) is bounded by 3dk. Sharper
bounds appear in Corollaries 19 and 20 below.

3. Examples

3.1. A Fibonacci sum. This work was started when a colleague asked about the
sum

(10) f(n) =
n−1∑
j=0

F (j)2F (2n − j),

in which the F ’s are the Fibonacci numbers. If we refer to the general form (2) of
the question, we see that in this case

k = 3; d = 2; (a1, b1, c1) = (a2, b2, c2) = (0, 1, 0); (a3, b3, c3) = (2,−1, 0).

If we now refer to the general form (3) of the answer we see that the sum f(n) is a
linear combination of monomials

nF (2n), F (2n), nF (2n + 1), F (2n + 1), F (n)3,

F (n)2F (n + 1), F (n)F (n + 1)2, F (n + 1)3.

Hence we assume a linear combination of these monomials and equate its values to
those of f(n) for n = 0, 1, . . . , 7 to determine the constants of the linear combina-
tion. The result is that
(11)

f(n) =
1
2

(
F (2n) + F (n)2F (n + 1) − F (n)F (n + 1)2 + F (n + 1)3 − F (2n + 1)

)
.

This formula is expressed in terms of monomials of type (3). Using monomials of
type (4), we obtain the alternate expression

(12) f(n) =
1
2

(
2F (n)F (n + 1) − 2F (n)2 − F (n + 1)2 + F (n)2F (n + 1)

−F (n)F (n + 1)2 + F (n + 1)3
)
.

In Section 5 we will show that both of these expression are unique, i.e., (11) is
the unique F -closed formula for f(n) of type (3) and (12) is the unique F -closed
formula of type (4).

3.2. An example involving subword avoidance. Given an alphabet of A ≥ 2
letters, let W be some fixed word of three letters such that no proper suffix of W is
also a proper prefix of W . For example, W = aab will do nicely. Let G(n) be the
number of n-letter words over A that do not contain W as a subword. It is well



CLOSED FORM SUMMATION OF C-FINITE SEQUENCES 1167

known, and obvious, that

(13) G(n) = AG(n − 1) − G(n − 3),

with G(0) = 1, G(1) = A, G(2) = A2, so this is a C-finite sequence. It is easy to
check that the roots of its associated polynomial equation are distinct for all A ≥ 2.
Suppose we want to evaluate the sum g(n) =

∑n−1
j=0 G(j)2. Then

k = 2; d = 3; (a1, b1, c1) = (a2, b2, c2) = (0, 1, 0).

Using either Theorem 1 or Theorem 2, we see that g(n) is a linear combination of
the monomials

1, n, G(n)2, G(n)G(n+1), G(n)G(n+2), G(n+1)G(n+2), G(n+1)2, G(n+2)2.

As before, we assume a linear combination of these monomials with constants to be
determined, and we equate the result to computed values of g(n), for n = 0, 1, . . . , 7,
to solve for the constants. The end result is that

(14) g(n) =
1

A(A − 2)

(
1 − (A − 1)2G(n)2 − 2G(n)G(n + 1) + 2G(n)G(n + 2)

+ 2(A − 1)G(n + 1)G(n + 2) − (A − 1)2G(n + 1)2 − G(n + 2)2
)

if A > 2, and

(15) g(n) = n + 2G(n)2 + 7G(n)G(n + 1) − 5G(n)G(n + 2)

− 5G(n + 1)G(n + 2) + 3G(n + 1)2 + 2G(n + 2)2

if A = 2.
In the case A = 2, it is easy to show that G(n) = F (n + 3) − 1 for all n, where

F (n) is the nth Fibonacci number. Consequently, G(n+ 2)−G(n+ 1)−G(n) = 1,
and adding any multiple of the relation

(16) (G(n + 2) − G(n + 1) − G(n) − 1)2 = 0

to the right side of (15) gives another degree 2 expression of type (3) or (4). Thus
formula (15) is not unique within the class of formulæ of type (3) or (4). However,
in Section 5 we will show that, when A > 2, formula (14) is unique within this
class. When A = 2, we show that all relations are constant multiples of (16).

3.3. Fibonacci power sums. Theorems 1 and 2 imply that if the F (j)’s are the
Fibonacci numbers, then for each integer p = 1, 2, . . . there is a formula

f(n) =
n−1∑
j=0

F (j)p =
p∑

j=0

Λp,jF (n)jF (n + 1)p−j + cpn + dp.
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Here is a brief table of values of these coefficients.
p Λp,0 Λp,1 Λp,2 Λp,3 Λp,4 Λp,5 Λp,6 Λp,7 cp dp

1 1 0 0 0 0 0 0 0 0 −1

2 0 1 −1 0 0 0 0 0 0 0

3 −1
2

3
2 0 −3

2 0 0 0 0 0 1
2

4 0 2
25 − 3

25
14
25 −19

25 0 0 0 6
25 0

5 7
22 − 5

22 −15
11

10
11

15
11 −15

22 0 0 0 − 7
22

6 0 1
2 −5

4 0 5
4

1
2 −1 0 0 0

7 −139
638

763
638 −945

638 −350
319

105
58

357
319 −105

319 −777
638 0 139

638

The resulting expressions for f(n) turn out to be unique within the class of type
(3) or (4) formulæ when p �≡ 0 mod 4. When p is a multiple of 4 (for example, in
the fourth line of the table above) the formulæ are not unique, but are subject to
a one-parameter family of relations generated by powers of the degree-4 relation

(F (n + 1)2 − F (n)2 − F (n)F (n + 1))2 = 1.

We will establish these facts in Section 5.

3.4. Generic power sums. Consider the power sum

f(n) =
n−1∑
k=0

F (k)2,

where F (n) solves a linear recurrence

F (n) = AF (n − 1) + BF (n − 2)

with initial values F (0) and F (1), where A and B are sufficiently general to insure
that, if r1 and r2 are the associated roots, then r1 and r2 are distinct and none of
the monomials r2

1, r1r2, and r2
2 equals 1. This is equivalent to assuming simply that

A2 + 4B �= 0, A �= ±(B − 1), and B �= −1.
Using techniques introduced earlier, we can express f(n) as a linear combination

of F (n)2, F (n)F (n+1), F (n+1)2, and 1. The solution may be computed explicitly
in terms of A, B, F (0), and F (1), and we find that f(n) equals
(17)

(1 − B − A2(1 + B))F (n)2 + (2AB)F (n)F (n + 1) + (1 − B)F (n + 1)2 − K

(A2 − (B − 1)2)(B + 1)
,

where

K = (1 − B − A2(B + 1))F (0)2 + (2AB)F (0)F (1) + (1 − B)F (1)2.

In (17), we observe a curious phenomenon: since F (n) depends on F (0) and F (1),
we might expect that our linear equations would have led to a solution in which each
of the coefficients depends on F (0) and F (1). However, this dependence appears
only in the constant term. The next theorem demonstrates that such behavior is
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typical for power sums of C-finite functions in which the terms in (3) containing n
are not present, i.e., in cases where no monomial in the roots equals 1.

Theorem 4. Suppose that {F (n)}n≥0 is a C-finite sequence determined by a recur-
rence of order d together with initial conditions F (0), F (1), . . . , F (d − 1). Suppose
that the recurrence polynomial has distinct roots r1, . . . , rd, and suppose that no
monomial of degree p in the ri equals 1. Let f(n) =

∑n−1
j=0 F (j)p, where p is a

positive integer, and let

(18) f(n) =
∑

0≤i1,i2,...,id≤d−1

Λi1,i2,...,id
F (n + i1)F (n + i2) · · ·F (n + id) + K

be the expansion of f(n) obtained according to the method given in Section 2. Then
the coefficients Λi1,i2,...,id

in (18) do not depend on F (0), F (1), . . . , F (d − 1).

Proof. Suppose that F (n) =
∑d

m=1 λmrn
m. Define

X(n) =

⎛
⎜⎜⎜⎝

λ1r
n
1

λ2r
n
2

...
λdr

n
d

⎞
⎟⎟⎟⎠ and Y(n) =

⎛
⎜⎜⎜⎝

F (n)
F (n + 1)

...
F (n + d − 1)

⎞
⎟⎟⎟⎠ .

Then we have

(19) Y(n) = VX(n) and X(n) = V−1Y(n),

where V is a Vandermonde matrix in the ri. It follows from (19) that the terms
λmrn

m, 1 ≤ m ≤ d, can be expressed as linear combinations of the functions F (n+i),
with coefficients that do not depend on F (0), F (1), . . . , F (d−1). Using the method
of Section 2, we can compute

f(n) =
n−1∑
j=0

F (j)p =
n−1∑
j=0

( d∑
m=0

λmrj
m

)p

=
n−1∑
j=0

( ∑
0≤i1,i2,...,ip≤d

λi1λi2 · · ·λip
(ri1ri2 · · · rip

)j

)

=
∑

0≤i1,i2,...,ip≤d

λi1λi2 · · ·λip

(ri1ri2 · · · rip
)n − 1

(ri1ri2 · · · rip
) − 1

=
∑

0≤i1,i2,...,ip≤d

(λi1r
n
i1

)(λi2r
n
i2

) · · · (λip
rn
ip

)

(ri1ri2 · · · rip
) − 1

− K,(20)

where K is a constant. Using (19), we can express all of the terms in (20) except
K as a linear combination of monomials in the F (n + i) with coefficients that do
not depend on F (0), F (1), . . . , F (d − 1), as claimed. �

We will return to this subject in Section 8, where we prove that a more general
version of Theorem 4 holds even when the roots ri are not distinct.
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3.5. Computational issues. We have seen in the above theorems and corollaries
that we can decide the uniqueness of representations of certain sums in closed form
if we can decide whether or not the N =

(
p+d−1

p

)
formally distinct monomials

of degree p in the roots r1, . . . , rd are actually all different, when evaluated as
complex numbers. We note here that there are various ways in which this can be
done without computing the roots.

For example, the elementary symmetric functions of these N monomials in the
ri’s are symmetric functions in the ri’s themselves. Since any symmetric function
of the roots of a polynomial can be computed rationally in terms of its coefficients,
the same applies to these. Once the elementary symmetric functions of the N
monomials of degree p have been computed, the discriminant of the polynomial
whose coefficients they are can be computed in the usual way. Thus, our condition
on the roots of F can be tested without finding the roots. It would be interesting
to investigate in general this “hyperdiscriminant” of degree p that is attached to a
polynomial f , particularly with regard to how it factors when expressed in terms
of the coefficients of f .

4. Uniqueness and dimension: Fibonacci power sums

In the next two sections, we investigate the uniqueness of the expansions guar-
anteed by Theorems 1 and 2. Motivated by the example in 3.3, we first consider
this question for expansions of the form

p∑
j=0

Λp,jF (n)jF (n + 1)p−j

and, more generally,
p∑

j=0

Λp,jF (n)jF (n + 1)p−j + cpn + dp,

where F (n) denotes the nth Fibonacci number. In Section 5 we develop tools
to help answer these questions for more general linear recurrences, and for other
summations such as those arising in the examples in 3.1 and 3.2. The techniques
in these two sections can be viewed as refinements and extensions of the ideas
introduced in Section 2 to prove Theorems 1, 2, and 3.

Theorem 5. Let V = V∞ denote the vector space of complex-valued functions
on {0, 1, 2, . . . }, and let Wp denote the subspace of V spanned by functions of the
form F (n)iF (n + 1)p−i for i = 0, . . . , p, and let W++

p denote the subspace spanned
by the same monomial expressions together with with the functions g(n) = n and
h(n) = 1. Then

(1) dim(Wp) = p + 1, and

(2) dim(W++
p ) =

{
p + 2, if p is divisible by 4,
p + 3, otherwise.

Corollary 6. The functions F (n)iF (n+1)p−i, 1 ≤ i ≤ p, are linearly independent,
and the set

{F (n)iF (n + 1)p−i}1≤i≤p ∪ {n, 1}
is linearly independent unless p is divisible by 4, in which case there is a single
relation among its elements.
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Proof. Let r1 = (1 +
√

5)/2 and r2 = (1−
√

5)/2 denote the roots of the Fibonacci
recurrence polynomial. As noted earlier in the proof of Theorem 1, rn

1 and rn
2 may be

expressed as linear combinations of F (n) and F (n+1) and vice versa. Consequently,
Wp is the linear span of rni

1 r
n(p−i)
2 , i = 0, . . . , p, and to prove statement (1) it

suffices to show that these functions are linearly independent. But this follows
immediately from the fact that the numbers ri

1r
(p−i)
2 are distinct, for i = 0, . . . , p.

To prove part (2), consider the (p + 3)× (p + 3) matrix Mp whose ith column is
equal to the vector (1, θi, θ

2
i , . . . , θ

p+2
i ), where θi = ri

1r
(p−i)
2 , i = 0, . . . , p, and whose

last two columns are the vectors (1, 1, . . . , 1) and (0, 1, . . . , p + 2). For example,
when p = 2 we have

M2 =

⎛
⎜⎜⎜⎜⎝

1 1 1 1 0
r2
2 r1r2 r2

1 1 1
r4
2 r2

1r
2
2 r4

1 1 2
r6
2 r3

1r
3
2 r6

1 1 3
r8
2 r4

1r
4
2 r8

1 1 4

⎞
⎟⎟⎟⎟⎠ .

Note that det Mp is the derivative at t = 1 of the (p + 3) × (p + 3) Vandermonde
determinant detMp(t), where Mp(t) is the matrix whose first p+2 columns are the
same as those of Mp, and whose last column is (1, t, t2, . . . , tp+2). We have

detMp =
d

dt
detMp(t)

∣∣∣∣
t=1

=
d

dt

( ∏
0≤i<j≤p

(θj − θi)
∏

0≤i≤p

(1 − θi)
∏

0≤i≤p

(t − θi) (t − 1)
) ∣∣∣∣

t=1

=
∏

0≤i<j≤p

(θj − θi)
∏

0≤i≤p

(1 − θi)2.

It follows that det Mp = 0 only when t = 1 is a multiple root of detMp(t), i.e.,
ri
1r

p−i
2 = 1 for some i. Using the fact that r1r2 = −1, it is easy to show that this

property holds if and only if p is a multiple of 4. Thus, when p is not a multiple of
4, the columns of Mp are linearly independent and we have dim(W++

p ) = p + 3.
If p is a multiple of 4, then Mp contains exactly two columns of 1s. If one of these

columns is suppressed, the argument just given shows that the remaining columns
are linearly independent. Hence rank(Mp) = p + 2 and dim(W++

p ) ≥ p + 2. Since
the dimension is clearly at most p + 2 in this case, the theorem is proved. �

5. Uniqueness and dimension: Other recurrences with distinct roots

Analogs of Theorem 5 hold for more general recurrences with distinct roots, but
the exact statements depend on properties of the associated roots. The follow-
ing theorem concerns relations among monomials of type (4), and allows precise
dimension computations in many cases.

Theorem 7. Let F (n) be a solution to a linear recurrence of order d whose asso-
ciated roots r1, r2, . . . , rd are distinct, and let p and q be distinct positive integers.
Let Wp denote the subspace of V = V∞ spanned by all degree p monomials of the
form

F (n)i1F (n + 1)i2 · · ·F (n + d − 1)id ,
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where i1 + i2 + · · · + id = p and ij ≥ 0 for all j. Let W+
q denote the subspace

spanned by all degree q monomials

F (n)i1F (n + 1)i2 · · ·F (n + d − 1)id and

nF (n)i1F (n + 1)i2 · · ·F (n + d − 1)id ,

where i1 + i2 + · · · id = q and ij ≥ 0 for all j. And, finally, let W++
p,q = Wp + W+

q

denote the subspace spanned by all of the above monomials. Then

dim(Wp) = |Sp| , dim(W+
q ) = 2|Sq| , and dim(W++

p,q)= |Sp|+2|Sq|−|Sp∩Sq|,

where Sp = {ri1
1 ri2

2 · · · rid

d | i1 + i2 + · · ·+ id = p} and Sq = {ri1
1 ri2

2 · · · rid

d | i1 + i2 +
· · · + id = q} are the sets of monomials in the ri of degrees p and q, respectively,
both viewed as subsets of the complex numbers.

Corollary 8. The sets of monomials generating Wp, W+
q , and W++

p,q, respectively,
are linearly independent if and only if evaluations of formally distinct monomials
in the sets Sp, Sq and Sp ∪ Sq yield distinct complex numbers.

The proof of Theorem 7 is analogous to that given for Theorem 5, but more
careful analysis is required. First consider the case of Wp. As noted in Section
2, each of the functions F (n), F (n + 1), . . . , F (n + d − 1) lies in the linear span of
rn
1 , rn

2 , . . . , rn
d , and conversely. Hence Wp is spanned by the set {θn

1 , θn
2 , . . . , θn

m(p,d)},
where m(p, d) =

(
p+d−1

p

)
and the θj range over the m(p, d) formally distinct mono-

mials of degree p in r1, r2, . . . , rd. Similar reasoning shows that W+
q is spanned by

the 2m(q, d) functions

ψn
1 , ψn

2 , . . . , ψn
m(q,d),(21)

nψn
1 , nψn

2 , . . . , nψn
m(q,d),

where the ψj range over all formally distinct monomials of degree q in r1, . . . , rd,
and finally, W++

p,q is spanned by the m(p, d) + 2m(q, d) functions

θn
1 , θn

2 , . . . , θn
m(p,d),

ψn
1 , ψn

2 , . . . , ψn
m(q,d),(22)

nψn
1 , nψn

2 , . . . , nψn
m(q,d),

where θi and ψj are defined as above. Theorem 7 is now an immediate consequence
of the following lemma.

Lemma 9. Let ω1, ω2, . . . , ωm be complex numbers, and let a1, a2, . . . , am be positive
integers. Then the functions

njωn
i , 1 ≤ i ≤ m, 0 ≤ j ≤ ai − 1,

are linearly independent if and only if the ωi are distinct.

Lemma 9 is a standard component of the classical theory of finite difference
equations (e.g., [3], Chapter 11), indeed it is the justification for the usual method of
solution of such equations. It is easy to give a direct proof via generating functions,
or, alternatively, one can give a Vandermonde-type proof based on the following
elegant determinant formula ([2], but also see [6] for an extensive history of this
formula).
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Theorem 10. Let x1, x2, . . . , xn be indeterminates, and let a1, a2, . . . , an be positive
integers with

∑
i ai = N . For all t, and for any integer k ≥ 1, let

ρN (t, k) =
dk

dtk
(1, t, t2, . . . , tN−1).

Let M(a1, a2, . . . , an) be the N × N matrix whose first a1 rows are ρN (x1, 0), . . . ,
ρN (x1, a1 − 1), and whose next a2 rows are ρN (x2, 0), . . . , ρN (x2, a2 − 1), and so
forth. Then

det M(a1, . . . , an) =
n∏

i=1

(ai − 1)!!!
∏

1≤i<j≤n

(xj − xi)aiaj ,

where k!!! denotes 1!2! · · · k! and 0!!! = 1.

For example,

M(1, 2, 3) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 x1 x2
1 x3

1 x4
1 x5

1

1 x2 x2
2 x3

2 x4
2 x5

2

0 1 2x2 3x2
2 4x3

2 5x4
2

1 x3 x2
3 x3

3 x4
3 x5

3

0 1 2x3 3x2
3 4x3

3 5x4
3

0 0 2 6x3 12x2
3 20x3

3

⎞
⎟⎟⎟⎟⎟⎟⎠

and
detM(1, 2, 3) = 2(x2 − x1)2(x3 − x1)3(x3 − x2)6.

Theorem 7 describes relations among closed form expressions of type (4), but
the proof also yields similar results for expressions of type (3).

Corollary 11. Let F (n) be a solution to a linear recurrence of order d whose asso-
ciated roots are distinct. Let W∗

d denote the space spanned by monomial functions
of type (3). Then dimW∗

d = |S| + 2|T |, where S is the set of all monomials of the
form ta1

1 ta2
2 · · · tak

k and T is the set of monomials of the form ta1+b1
1 ta2+b2

2 · · · tak+bk

k

and, for each i, ti is one of the roots r1, r2, . . . , rd. The monomial functions of type
(3) are linearly independent if and only if formally distinct monomials in S ∪ T
correspond to distinct complex numbers.

We omit the proof, which is analogous to that of the proof of Theorem 7. We
note that the set S ∪ T in Corollary 11 is a subset of the set Sp ∪ Sq appearing in
Corollary 8, and thus we obtain the following result.

Corollary 12. Under the assumptions of Corollary 11, if the monomial functions
of type (4) are linearly independent, then so are the monomial functions of type
(3).

We will now apply these results to some of the formulæ in Sections 3.1 and 3.2.

Corollary 13. For the Fibonacci sum f(n) appearing in (10), equation (11) gives
the unique F -closed formula of type (3) and (12) gives the unique F -closed formula
of type (4).

Proof. By Theorem 7 and Corollary 12, we need only check that if r1 and r2 denote
the roots of the Fibonacci recurrence, then

r2
1, r1r2, r

2
2, r

3
1, r

2
1r2, r1r

2
2, and r3

2

are distinct real numbers. This is an elementary calculation.
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Corollary 14. For the sum g(n) =
∑n−1

j=0 G(j)2 arising in the subword avoidance
problem with A = 2, solutions g(n) of type (4) are all given by (15) plus constant
multiples of relation (16).

Proof. The roots of the recurrence equation t3 − 2t2 + 1 = 0 are r1, r2, r3, where
r1 and r2 are roots of the Fibonacci recurrence and r3 = 1. By Theorem 7, the
dimension of the space W++

2,0 spanned by the six degree-2 monomials in G(n),
G(n + 1) and G(n + 2) together with 1 and n is equal to |S2| + 2|S0| − |S2 ∩ S0|,
where S2 = {r2

1, r
2
2, 1, r1r2, r1, r2}, and S0 = {1}. Elementary calculation shows

that this dimension is equal to 7, hence the monomials generating W++
2,0 are linearly

independent apart from a one-parameter family of relations.

Next we consider the case A = 3, as a warmup for the general case A > 2.

Corollary 15. For the sum g(n) =
∑n−1

j=0 G(j)2 arising in the subword avoidance
problem with A = 3, formula (14) gives the unique G-closed formula of type (3).

Proof. Here the recurrence equation is t3 − 3t2 + 1 = 0, which has roots r1 =
1+ η + η17, r2 = 1+ η7 + η11, r3 = 1+ η5 + η13, where η = e2πi/18 is an 18th root of
unity. Again, by Theorem 7, the dimension of the space of monomials W++

2,0 is equal
to |S2| + 2|S0| − |S2 ∩ S0|, where S2 = {r2

1, r
2
2, r

2
3, r1r2, r1r3, r2r3}, and S0 = {1}.

A slightly less elementary calculation shows that the formal monomials in S2 ∪ S0

are distinct, so that dim(W++
2,0 ) = 8 and the monomial functions generating W++

2,0

are linearly independent.

Corollary 16. For the more general power sum g(n) =
∑n−1

j=0 G(j)p arising in the
subword avoidance problem, with p > 0 and any A > 2, solutions of type (3) are
unique if and only if p �≡ 0 mod 6.

Proof. An argument analogous to the calculation in Section 3.2 shows that formulæ
of type (3) exist expressing g(n) as linear combinations of monomials in G(n),
G(n + 1), and G(n + 2) of degree p, together with 1 and n. We need to compute
the dimension of W++

p,0 , which by Theorem 7 is equal to |Sp| + 2|S0| − |Sp ∩ S0|,
where S0 = {1} and Sp is the set of all degree-p monomials in r1, r2, and r3, where
r1, r2, and r3 are roots of the recurrence equation t3 − At2 + 1 = 0.

If p is not divisible by 6, the proof will be complete if we can show that formally
distinct monomials in Sp evaluate to distinct complex (actually real) numbers, and
none of them equals 1. Suppose that re1

1 re2
2 re3

3 = rf1
1 rf2

2 rf3
3 , where

∑
ei =

∑
fi = p

and ei �= fi for some i. Then by cancellation we obtain the relation rui
i = r

uj

j ruk

k

for some rearrangement of the indices, with ui, uj , uk ≥ 0 and at least one of these
exponents positive. Using the relation r1r2r3 = −1, if necessary, to eliminate one
of the roots, we obtain (after possibly reindexing) rvi

i = ±r
vj

j with vi, vj ≥ 0, and
at least one of these exponents positive.

It is a straightforward exercise to show that the roots r1, r2 and r3 are all real,
and that, if they are arranged in decreasing order, then r1 > 1, 0 < r2 < 1,
and −1 < r3 < 0. From elementary Galois theory we know that there exists an
automorphism Φ of the field K = Q(r1, r2, r3) such that Φ : r1 �→ r2 �→ r3 �→ r1,
i.e., it permutes the roots cyclically. Hence the equation rvi

i = ±r
vj

j holds for all
three cyclic permutations of the roots. At least one of these equations leads to a
contradiction, since |r1| > 1 and |r2|, |r3| < 1. This proves that formally distinct
monomials are distinct, and it remains to show that none can equal 1.
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Suppose that re1
1 re2

2 re3
3 = 1, and that the exponents ei are not all equal. Applying

the identity r1r2r3 = −1 we obtain a relation of the form rui
i r

uj

j = ±1 for some pair
of distinct i, j, with ui, uj ≥ 0 and at least one positive. Again, this relation holds
for all cyclic permutations of the indices, and consideration of absolute values leads
to a contradiction in at least one case. Consequently, we must have e1 = e2 = e3 = e
for some e. From the relations r1r2r3 = −1 and (r1r2r3)e = 1 we conclude that
e is even, which implies that p is a multiple of 6. This completes the proof that
monomials in the G are linearly independent when p �≡ 0 mod 6. When p = 6m
the relation (r1r2r3)2m = 1 gives relations in the G of degree 6, and so the proof of
Corollary 16 is complete. �

6. The general case of multiple roots

In this section we show the result of dropping the assumption of distinct roots.
We also consider a somewhat more general summation problem, viz.

(23) f(n) =
n−1∑
j=0

F1(a1n + b1j + c1)F2(a2n + b2j + c2) · · ·Fk(akn + bkj + ck),

in which the factors of the summand may be different C-finite functions. The
analysis in this general case is similar to that in the case of distinct roots, but
some additional machinery is required. The main result is the following, which is a
generalization and also a strengthening of Theorem 1.

Theorem 17. Let F1, F2, . . . , Fk be given C-finite sequences. Suppose that, for
each i = 1, . . . , k, Fi(n) satisfies a recurrence of minimal degree D(i) whose poly-
nomial equation has d(i) distinct roots. Denote these roots by r

(i)
1 , . . . , r

(i)
d(i), and let

e
(i)
1 , . . . , e

(i)
d(i) be their respective multiplicities, so that D(i) =

∑
j e

(i)
j . Finally, let

∆(i) = max1≤j≤d(i)(e
(i)
j − 1). Then the sum f(n), of (23), can be expressed as a

linear combination of the monomials

F1((a1 + b1)n + i1) . . . Fk((ak + bk)n + ik) (0 ≤ iν ≤ D(ν) − 1; 1 ≤ ν ≤ k),(24)

and

ψi1,...,ik
(n)F1(a1n + i1) . . . Fk(akn + ik) (0 ≤ iν ≤ D(ν) − 1; 1 ≤ ν ≤ k),(25)

in which ψi1,...,ik
(n) is a polynomial whose degree is bounded above by

• zero, i.e., the factor ψ can be omitted, if for all sequences (m1, m2, . . . , mk)
with 1 ≤ mi ≤ d(i), we have

∏k
i=1(r

(i)
mi)bi �= 1, and

• 1 +
∑

i{∆(i) : ai = 0} otherwise.

Proof. We have, for the sum f(n) of (23),

(26) f(n) =
n−1∑
j=0

k∏
�=1

d(�)∑
m=1

e(�)
m −1∑
h=0

λ
(�)
m,h(a�n + b�j + c�)h(r(�)

m )a�n+b�j+c� ,

where the coefficients λ
(�)
m,h are defined by the form of the Fi’s, namely

Fi(n) =
d(i)∑
m=1

e(i)
m −1∑
h=0

λ
(i)
m,hnh(r(i)

m )n.
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If we expand the product and the two inner sums in (26), we find that a typical
term is of the form

K(a1n + b1j + c1)h1(r(1)
m1

)a1n+b1j+c1 . . . (akn + bkj + ck)hk(r(k)
mk

)akn+bkj+ck ,

where 0 ≤ hi ≤ e
(i)
mi − 1 for 1 ≤ i ≤ k. If we write

(ain + bij + ci)hi = (ai(n − j) + (ai + bi)j + ci)hi

and further expand each of these factors, we find that our typical term can now be
expressed as

(27) Kjq(n − j)r
(
(r(1)

m1
)b1 . . . (r(k)

mk
)bk

)j (
(r(1)

m1
)a1 . . . (r(k)

mk
)ak

)n

,

in which
(28)
q ≤

∑
{hi : ai +bi �= 0}, r ≤

∑
{hi : ai �= 0}, and q+r ≤

∑
i

hi ≤
∑

i

(e(i)
mi

−1).

At this point we need the following result.

Lemma 18. We have

n−1∑
j=0

ja(n − j)bxj =

{
Pa(n)xn + Pb(n), if x �= 1,
Pa+b+1(n), if x = 1,

where Ps(n) denotes a generic polynomial of degree s, whose coefficients may depend
on x.

Proof. Suppose that x �= 1. If b = 0, we have

n−1∑
j=0

jaxj =
(

x
d

dx

)a n−1∑
j=0

xj =
(

x
d

dx

)a (
xn − 1
x − 1

)
,

which is of the form stated when b = 0. For b > 0 we have

n−1∑
j=0

ja(n − j)bxj

=
(

x
d

dx

)a n−1∑
j=0

(n − j)bxj =
(

x
d

dx

)a n∑
j=1

jbxn−j =
(

x
d

dx

)a

xn
n∑

j=1

jbx−j

=
(

x
d

dx

)a

xn
(
(Pb(n) + nb)x−n + K

)
=

(
x

d

dx

)a (
Pb(n) + nb + Kxn

)

which is evidently of the desired form. The case x = 1 is elementary. �
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If we sum the typical term (27) over j = 0, ..., n− 1 and use the lemma, we find
that the overall sum f(n) is a sum of expressions of the form

n−1∑
j=0

Kjq(n − j)r
(
(r(1)

m1
)b1 . . . (r(k)

mk
)bk

)j (
(r(1)

m1
)a1 . . . (r(k)

mk
)ak

)n

= K
(
(r(1)

m1
)a1 . . . (r(k)

mk
)ak

)n

×
{

Pq(n)
(
(r(1)

m1)b1 . . . (r(k)
mk)bk

)n

+ Pr(n), if Θ �= 1,

Pq+r+1(n), if Θ = 1.

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

KPq(n)
(
(r(1)

m1)a1+b1 . . . (r(k)
mk)ak+bk

)n

+KPr(n)
(
(r(1)

m1)a1 . . . (r(k)
mk)ak

)n

, if Θ �= 1,

KPq+r+1(n)
(
(r(1)

m1)a1 . . . (r(k)
mk)ak

)n

, if Θ = 1,

(29)

where Θ = (r(1)
m1)b1 . . . (r(k)

mk)bk , q and r satisfy the bounds given in (28), and Ps(n)
denotes a generic polynomial of degree s.

Considering each of the three terms appearing in the last member of (29), we
first have

KPq(n)
(
(r(1)

m1
)a1+b1 . . . (r(k)

mk
)ak+bk

)n

= KPq(n)
∏

{i:ai+bi �=0}
(r(i)

mi
)(ai+bi)n

=

⎛
⎝ q∑

j=0

βjn
j

⎞
⎠ ∏

{i:ai+bi �=0}
(r(i)

mi
)(ai+bi)n,

say. Since q ≤
∑

i{hi : ai + bi �= 0} ≤
∑

i{e
(i)
mi − 1 : ai + bi �= 0}, each exponent j in

the range 0 ≤ j ≤ q can be written (in many ways) as j = j1 + j2 + · · ·+ jk, where
0 ≤ ji ≤ e

(i)
mi − 1 and ji = 0 if ai + bi = 0. Hence the last member above may be

expressed as

(30)
q∑

j=0

βj

∏
{i:ai+bi �=0}

nji(r(i)
mi

)n(ai+bi) (0 ≤ ji ≤ e(i)
mi

).

Now we observe that the solution space of the recurrence satisfied by Fi(n) has
dimension D(i), and that the D(i) shifted sequences

{Fi(n)}, {Fi(n + 1)}, . . . , {Fi(n + D(i) − 1)}

are linearly independent, since in the contrary case the function Fi would satisfy
a recurrence of degree < D(i). Consequently these D(i) sequences are a basis for
the solution space, and therefore each of the functions nj(r(i)

m )n, j = 0, 1, . . . , e
(i)
m −

1, m = 1, . . . , d(i) can be written as a linear combination of Fi(n), Fi(n + 1), . . . ,
Fi(n + D(i) − 1).

Thus we return to our general term (30), and we replace each of the monomials
of the form njr

n(a+b)
m by such a linear combination of functions of the form

F ((a + b)n), F ((a + b)n + 1), . . . , F ((a + b)n + D(i) − 1),
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and expand everything again. Now our general term is of the form (24) in the
statement of the theorem, which concludes the treatment of the first term in the
final display of (29). The second term,

KPr(n)
(
(r(1)

m1
)a1 . . . (r(k)

mk
)ak

)n

,

may be handled similarly. In the third case, which occurs when Θ = 1, powers of n
in Pq+r+1(n) can be redistributed as in (30) provided that each corresponding ai is
nonzero. If all ai �= 0, a term of degree at most 1 remains, since q +r ≤

∑
i e

(i)
mi −1;

more generally, the residual exponent is at most equal to 1+
∑

i{∆(i) : ai = 0}. �
By keeping track of the number of terms of the form nj

∏
ran
m and nj

∏
r
(a+b)n
m

being summed in (29) we can give a bound on the C-finite degree of f(n), general-
izing Theorem 3 to the case of multiple roots and different Fi.

Corollary 19. Suppose that F1, F2, . . . , Fk are as defined in Theorem 17. Let M
denote the number of algebraically distinct monomials generated by (24) and (25),
as defined in the paragraph preceding Theorem 3. Then the sum f(n) in (23) is C-
finite, of degree at most M . The coefficients of the monomials expressing f(n) as a
linear combination of those monomials can be found by solving equations involving
at most M values of f(n). If a solution is valid for the first M values of n, then it
is valid for all values of n.

Proof. Assume first that no expression of the form Θ =
∏k

�=1(r
(�)
m�)b� equals 1.

Define Q = {
 | a� + b� �= 0} and R = {
 | a� �= 0}. The proof of Theorem 17 shows
that f(n) is in the linear span of the set UQ ∪UR, where UQ is the set of functions
of the form

(31)
∏
�∈Q

nj�(r(�)
m�

)(a�+b�)n

where 1 ≤ m� ≤ d(
) and 0 ≤ j� ≤ e
(�)
m� − 1, and UR is the set of functions of the

form

(32)
∏
�∈R

nj�(r(�)
m�

)a�n

where 1 ≤ m� ≤ d(
) and 0 ≤ j� ≤ e
(�)
m� − 1. We claim that |UQ ∪ UR| ≤ M . The

argument is similar to the one used in Section 2 to prove Theorem 3 in the distinct
root case: if θ �= 0, we define a map F�(θn + i) �→ nj(r(�)

m )θn, where i �→ (j, m) is
some enumeration of the D(
) pairs with 1 ≤ m ≤ d(
), 0 ≤ j ≤ e

(�)
m� − 1. This

map extends to a well-defined surjective map from the set of equivalence classes of
monomials of type (24) and (25) to the set UQ∪UR. The maximum C-finite degree
of any function in 〈UQ ∪UR〉 is equal to the dimension of that space, and hence the
C-finite degree of f(n) is less than or equal to M .

Next suppose that there exist expressions of the form Θ =
∏k

�=1(r
(�)
m�)b� equal

to 1. The proof of Theorem 17 shows that f(n) is in the linear span of the set
UQ ∪WR, where UQ is as defined above, and WR is the set of functions of the form

(33) nh
∏
�∈R

(r(�)
m�

)a�n
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where 1 ≤ m� ≤ d(
) and 0 ≤ h ≤ H, where

(34) H = 1 +
∑
�∈R

(e(�)
m�

− 1) +
∑
� �∈R

(e(�)
m∗

�
− 1)

and, for a given sequence m� with 
 ∈ R, the m∗
� are chosen to maximize H over

all sequences (m1, . . . , mk) such that
∏

�∈R(r(�)
m�)b�

∏
� �∈R(r(�)

m∗
�
)b� = 1.

As in the first case, the map F�(θn + i) �→ nj(r�
m)θn, θ �= 0, extends to a well-

defined surjective map from the set of equivalence classes of type (24) and (25) to
the set UQ ∪ WR, proving that |UQ ∪ WR| ≤ M . Hence the C-finite degree of f(n)
is at most M in all cases, and the remaining assertions follow immmediately. �

It is possible to give another bound on the C-finite degree that is sometimes
sharper than the one in Corollary 19.

Corollary 20. Suppose that F1, F2, . . . , Fk are as in Theorem 17, where each Fi

is C-finite of degree D(i), with d(i) distinct roots. Then the C-finite degree of f(n)
is bounded by

(35)

⎛
⎝∏

�∈Q

d(
)

⎞
⎠

⎛
⎝1 +

∑
�∈Q

(
D(
)
d(
)

− 1
)⎞

⎠ +

(∏
�∈R

d(
)

)(
1 +

∑
�∈R

(
D(
)
d(
)

− 1
))

,

where Q = {
 | a� + b� �= 0} and R = {
 | a� �= 0}. This last expression is in turn
bounded by

(36)
∏
�∈Q

D(
) +
∏
�∈R

D(
).

In all of these expressions, the empty product is taken to be equal to 1.

Proof. Again, we first consider the case where no product of the form Θ =∏k
�=1(r

(�)
m�)b� equals 1. To establish the bound in (35), note that

|UQ| ≤
∑

(m�)�∈Q

⎛
⎝1 +

∑
�∈Q

(e(�)
m�

− 1)

⎞
⎠

=

⎛
⎝∏

�∈Q

d(
)

⎞
⎠ +

⎛
⎝∑

�∈Q

(
D(
)

∏
j �=�,j∈Q

d(j) −
∏
�∈Q

d(
)
)⎞

⎠

=

⎛
⎝∏

�∈Q

d(
)

⎞
⎠

⎛
⎝1 +

∑
�∈Q

(
D(
)
d(
)

− 1
)⎞

⎠ ,

(37)

where the first summation is over all sequences (m�)�∈Q, satisfying 1 ≤ m� ≤ d(
)
for 
 ∈ Q. The second term in (35) is handled similarly, and the result follows. To
obtain the bound in (36), it suffices to show that⎛

⎝∏
�∈Q

d(
)

⎞
⎠

⎛
⎝1 +

∑
�∈Q

(
D(
)
d(
)

− 1
)⎞

⎠ ≤
∏
�∈Q

D(
).

To see this, divide both sides by
∏

�∈Q d(
), and write D(
)/d(
) = 1 + t�, where
t� ≥ 0. It remains to show that 1 +

∑
�∈Q t� ≤

∏
�∈Q(1 + t�) for nonnegative t�,

which is obvious. This completes the proof of Corollary 19 in the first case.



1180 CURTIS GREENE AND HERBERT S. WILF

Next suppose that there are products of the form Θ =
∏k

�=1(r
(�)
m�)b� equal to 1.

Let WR be defined as in the proof of Corollary 19. We will show that |UQ ∪ WR|
is bounded by (35). Arguing as in the first case, we obtain that |UQ| is less than
or equal to the first summand in (35). Before computing the WR contribution, it
is convenient to define

W 0
R = {nh

∏
�∈R

(r(�)
m�

)a�n | H0 < h ≤ H},

where H0 = 1 +
∑

�∈R(e(�)
m� − 1). We claim that

|UQ ∩ WR| ≥ |W 0
R|.

To see this, suppose that nh
∏

�∈R(r(�)
m�)a�n ∈ W 0

R. Since h > H0, there must exist
indices m∗

� with 
 �∈ R such that
∏

�∈R(r(�)
m�)b�

∏
� �∈R(r(�)

m∗
�
)b� = 1. Assume that these

have been chosen so that the right-hand side of (34) is maximized. Then

nh−H0
∏
�∈R

(r(�)
m�

)a�n = nh−H0
∏
�∈R

(r(�)
m�

)(a�+b�)n
∏
� �∈R

(r(�)
m∗

�
)b�n

is an element of UQ ∩WR, and it is clear that this map is injective. It follows that

|UQ ∪ WR| = |UQ| + |WR| − |UQ ∩ WR|
≤ |UQ| + |WR| − |W 0

R|
= |UQ| + |WR − W 0

R|.
Finally, we have

|WR − W 0
R| ≤

∑
(m�)�∈R

(1 +
∑
�∈R

(e(�)
m�

− 1)),

which is less than or equal to the second summand in (35), by the argument pre-
sented in the first case. The bound (36) follows as before, and the proof is com-
plete. �

We remark that the second case above can also be derived from the first case by
a continuity argument.

7. A striking property of indefinite summation

When a1 = a2 = · · · = ak = 0 in (23) we are doing indefinite summation, i.e., the
problem is equivalent to finding a function S(n) (called an indefinite sum function)
such that

(38) S(n) − S(n − 1) = F1(b1n + c1) · · ·Fk(bkn + ck).

In this section we will show that, if no products of the form
∏k

i=1(r
(i)
mi)bi are equal

to 1, there exists an indefinite sum function S(n) expressible (formally) as a linear
combination of monomials in the Fi with coefficients that are independent of the
initial conditions satisfied by the various Fi.

Theorem 4 proved this result (which we will call the independence property)
for power sums

∑
j F (j)p, assuming that the roots ri are distinct, and it is easy to

extend that proof to the case of summands of the form F1(b1n+c1) · · ·Fk(bkn+ck),
with different Fi, as long as the roots are distinct. Among other things, this section
extends Theorem 4 to the multiple root case, where the proof turns out to be
considerably more difficult.
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Similar questions have been considered in [9], where the author describes a
method (different from ours) that finds indefinite sum functions in some but not
all cases,1 but does not delineate these cases with a theorem. In fact, the method
developed in [9] assumes the independence property; the author asserts (in some-
what vague terms, and without proof) that it holds if no products

∏
i(r

(i)
mi)bi are

equal to 1.
Theorem 24 (below) establishes this result, and in full generality. It dispenses

with the assumption of distinct roots, and makes appropriate modifications in the
case where products of the form

∏
i(r

(i)
mi)bi are equal to 1. The first step in the proof

is to identify a collection of functions analogous to the terms λmrn
m, 1 ≤ m ≤ d, that

appear in the proof of Theorem 4, which can be expressed as linear combinations
of the F (n + i) with coefficients that do not depend on the initial conditions.

Lemma 21. Suppose that

F (n) =
d∑

m=1

em−1∑
h=0

λm,h nh (rm)n,

where the rm are distinct and nonzero, and λm,em−1 �= 0 for all m. For m = 1, . . . , d
and h = 0, . . . , em − 1, define

Φm
h (n) =

em−1∑
i=h

(
i

h

)
λm,in

i−h(rm)n.

Let D =
∑

m em. Then each of the functions Φm
h (n) may be expressed as a linear

combination of the functions F (n), F (n+1), . . . , F (n+D−1), with coefficients that
do not depend on the values of λm,h, i.e., those coefficients do not depend on the
initial conditions of F .

Proof. Let F be the column vector of length D whose ith element is equal to
F (n+ i), 0 ≤ i ≤ D− 1. Let R and Φ be column vectors of length D, each indexed
by (m, h), 1 ≤ m ≤ d, 0 ≤ h ≤ em − 1, where the (m, h)th element of R is equal to
nh (rm)n and the (m, h)th element of Φ is equal to Φm

em−1−h(n). Then we have

F = MR,

where M is a matrix with rows indexed by 0, . . . , D − 1 and columns indexed by
(m, h), whose entry in row t and column (m, h) is equal to

(rm)t
em−1∑
i=h

(
i

h

)
λm,it

i−h.

We have the factorization
M = M0 Λ,

where M0 is a matrix indexed as in M, whose entry in row t and column (m, h) is

(rm)t tem−1−h,

and Λ is a matrix with both rows and columns indexed by (m, h), whose entry
is row (m, h) and column (m′, h′) is equal to zero if m �= m′ or h′ > h, and is

1The authors thank the referee for bringing this reference to their attention, and also for several
other helpful suggestions and remarks.
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otherwise equal to

λm,em−1−(h−h′)

(
em − 1 − (h − h′)

h′

)
.

One can also check that
Φ = ΛR.

We note that M0 does not depend on the values of λm,h. Furthermore, after
factoring out various powers of the roots rm, it is column-equivalent to the transpose
of the matrix whose determinant was computed in Theorem 10. Hence, since we
are assuming the rm to be distinct and nonzero, M0 is nonsingular. Thus we can
write

M0
−1 F = ΛR = Φ,

and the lemma follows. �

As an illustration of the previous lemma and its proof, consider the function

F (n) = arn
1 + bnrn

1 + cn2rn
1 + drn

2 + enrn
2 .

Then

Φ1
0(n) = a rn

1 + bn rn
1 + cn2 rn

1 ,

Φ1
1(n) = b rn

1 + 2cn rn
1 ,

Φ1
2(n) = c rn

1 ,

Φ2
0(n) = d rn

2 + en rn
2 ,

Φ2
1(n) = e rn

2 .

We have

MR =

⎛
⎜⎜⎜⎜⎝

a b c d e
(a + b + c)r1 (b + 2c)r1 cr1 (d + e)r2 er2

(a + 2b + 4c)r2
1 (b + 4c)r2

1 cr2
1 (d + 2e)r2

2 er2
2

(a + 3b + 9c)r3
1 (b + 6c)r3

1 cr3
1 (d + 3e)r3

2 er3
2

(a + 4b + 16c)r4
1 (b + 8c)r4

1 cr4
1 (d + 4e)r4

2 er4
2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

rn
1

nrn
1

n2rn
1

rn
2

nrn
2

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

F (n)
F (n + 1)
F (n + 2)
F (n + 3)
F (n + 4)

⎞
⎟⎟⎟⎟⎠

and

M = M0 Λ =

⎛
⎜⎜⎜⎜⎝

0 0 1 0 1
r1 r1 r1 r2 r2

4r2
1 2r2

1 r2
1 2r2

2 r2
2

9r3
1 3r3

1 r3
1 3r3

2 r3
2

16r4
1 4r4

1 r4
1 4r4

2 r4
2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

c 0 0 0 0
b 2c 0 0 0
a b c 0 0
0 0 0 e 0
0 0 0 d e

⎞
⎟⎟⎟⎟⎠ .

Also

Φ =

⎛
⎜⎜⎜⎜⎝

Φ1
2(n)

Φ1
1(n)

Φ1
0(n)

Φ2
1(n)

Φ1
0(n)

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

c 0 0 0 0
b 2c 0 0 0
a b c 0 0
0 0 0 e 0
0 0 0 d e

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

rn
1

nrn
1

n2rn
1

rn
2

nrn
2

⎞
⎟⎟⎟⎟⎠ = ΛR.
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Thus the relation Φ = M0
−1F expresses each Φm

h (n) as a linear combination of
F (n), . . . , F (n + 4), with coefficients that do not depend on a, b, c, d, and e.

To prove our main result, we also need the following lemma.

Lemma 22. If p ≥ 0, define Sp(n, x) =
∑n−1

j=0 jp xj. If x �= 1, then

Sp(n, x) = Bp(x) − xn
( p∑

k=0

(
p

k

)
nkBp−k(x)

)

= Bp(x) − xn
(
(n + Q)p

∣∣∣∣
Qk→Bk(x)

)
,

where Bk(x) = Ak(x)/(1 − x)k+1, and Ak(x) denotes the Eulerian polynomial of
degree k. Here, the notation Qk → Bk(x) means “replace Qk by Bk(x) throughout”.
If x = 1, then Sp(n, x) is a (well-known) polynomial of degree p + 1.

Proof. The identity
∞∑

j=0

jpxj =
Ap(x)

(1 − x)p+1

is classical (see e.g. [1]), and immediately implies the relation xB′
p(x) = Bp+1(x),

as a formal power series identity. The lemma now follows easily by induction. �
The next lemma provides an explicit form for our indefinite sums, expressing the

result in terms of the functions Φm
h (n) defined in Lemma 21.

Lemma 23. Suppose that for each i = 1, . . . , k,

Fi(n) =
d(i)∑
m=1

e(i)
m −1∑
h=0

λ
(i)
m,h nh (r(i)

m )n

with λ
(i)

m,e
(i)
m −1

�= 0 for all i and m. For 1 ≤ i ≤ k, let δi,m = e
(i)
m − 1. Then

(39)
n−1∑
j=0

F1(j)F2(j) · · ·Fk(j) = Ψ(n) + S(0) − S(n),

where Ψ(n) is a polynomial, and

S(n) =
∑

r
(1)
m1 ···r

(k)
mk

�=1

δ1,m1+···+δk,mk∑
s=0

Bs(r(1)
m1

. . . r(k)
mk

)

×
{ ∑

t1+···+tk=s

Φ1,m1
t1 (n) · · ·Φk,mk

tk
(n)

}
.

(40)

If no product of the form r
(1)
m1 · · · r

(k)
mk equals 1, then Ψ(n) ≡ 0; otherwise Ψ(n)

has degree at most 1 +
∑

i ∆(i), where ∆(i) = max1≤j≤d(i)(e
(i)
j − 1), as defined in

Theorem 17. In formula (40), Bs(x) = As(x)/(1−x)s+1, as defined in Lemma 22,
and for 
 = 1, . . . , k,

Φ�,m�
t (n) =

δ�,m�∑
i=t

(
i

t

)
λ

(�)
m,in

i−t(r(�)
m�

)n,

as defined in Lemma 21.
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Note that, in expression (40), the coefficients Bs(r
(1)
m1 . . . r

(k)
mk) depend only on the

roots r
(i)
m , and hence by Lemma 21, S(n) is independent of the initial conditions of

the Fi.

Proof. To simplify notation, we will first consider the case where the Fi each have
a single root, i.e.,

Fi(n) =
(
λ

(i)
0 + λ

(i)
1 n + · · · + λ

(i)
δi

nδi
)
(r(i))n,

where r(i) is a root of multiplicity e(i) = δi + 1. We have

n−1∑
j=0

F1(j) · · ·Fk(j) =
n−1∑
j=0

( δ1∑
i=0

λ
(1)
i ji(r(1))j

)
· · ·

( δk∑
i=0

λ
(k)
i ji(r(k))j

)

=
n−1∑
j=0

δ1+···+δk∑
s=0

∑
i1+···+ik=s

λ
(1)
i1

· · ·λ(k)
ik

js(r(1) · · · r(k))j

=
δ1+···+δk∑

s=0

∑
i1+···+ik=s

λ
(1)
i1

· · ·λ(k)
ik

n−1∑
j=0

js(r(1) · · · r(k))j .

Now for any integer p ≥ 0, define

(41) Hp(n, x) = xn

p∑
k=0

(
p

k

)
nkBp−k(x),

where Bk(x) is as defined in Lemma 22. Thus, by that lemma, we have

n−1∑
j=0

jpxj = Hp(0, x) − Hp(n, x) = xn(n + Q)p

∣∣∣∣
Qk→Bk(x)

,

for any x �= 1. Continuing with the above calculation, we obtain

n−1∑
j=0

F1(j) · · ·Fk(j)

=
δ1+···+δk∑

s=0

∑
i1+···+ik=s

λ
(1)
i1

· · ·λ(k)
ik

(
Hs(0, r(1) · · · r(k)) − Hs(n, r(1) · · · r(k))

)

provided that r(1) · · · r(k) �= 1; otherwise the sum is equal to Ψ(n), a polynomial of
degree at most equal to 1 +

∑
i δi = 1 +

∑
i(e

i − 1). In the former case, write

S(n) =
δ1+···+δk∑

s=0

∑
i1+···+ik=s

λ
(1)
i1

· · ·λ(k)
ik

Hs(n, r(1) · · · r(k))

so that

(42)
n−1∑
j=0

F1(j) · · ·Fk(j) =

{
S(0) − S(n) if r(1) · · · r(k) �= 1, and
Ψ(n) otherwise.



CLOSED FORM SUMMATION OF C-FINITE SEQUENCES 1185

Using the alternate form in (41), we can write

S(n) =
δ1+···+δk∑

s=0

∑
i1+···+ik=s

λ
(1)
i1

· · ·λ(k)
ik

(r(1) · · · r(k))n(n + Q)s

∣∣∣∣
Qs→Bs(r(1)···r(k))

=
( δ1∑

i=0

λ
(1)
i (n+Q)i

)
(r(1))n · · ·

( δk∑
i=0

λ
(k)
i (n + Q)i

)
(r(k))n

∣∣∣∣
Qs→Bs(r(1)···r(k))

=
( δ1∑

i=0

λ
(1)
i

i∑
u=0

(
i

u

)
ni−uQu

)
(r(1))n

· · ·
( δk∑

i=0

λ
(k)
i

i∑
u=0

(
i

u

)
ni−uQu

)
(r(k))n

∣∣∣∣
Qs→Bs(r(1)···r(k))

=
( δ1∑

u=0

δ1∑
i=u

(
i

u

)
λ

(1)
i ni−u(r(1))nQu

)

· · ·
( δk∑

u=0

δk∑
i=u

(
i

u

)
λ

(k)
i ni−u(r(k))nQu

) ∣∣∣∣
Qs→Bs(r(1)···r(k))

=
( δ1∑

u=0

Φ1
u(n)Qu

)
· · ·

( δk∑
v=0

Φk
v(n)Qv

) ∣∣∣∣
Qs→Bs(r(1)···r(k))

.

Combining this last expression with (42) yields the statement of Lemma 23 in
the case where each recurrence has a single root. For the general case (i.e., when
there are multiple roots for each Fi), one can collect terms in the expansion of
F1(j)F2(j) · · ·Fk(j) corresponding to each choice rm1 , rm2 , . . . , rmk

of a sequence
of roots from each Fi, and an expression for K(n) of the form (39) results, with
S(n) as in (40). This completes the proof of Lemma 23. �

Combining Lemmas 21 and 23, we obtain the following theorem, which is the
main result of this section.

Theorem 24. If F1(n), F2(n), . . . , Fk(n) satisfy the hypotheses of Lemma 23, then
the sum

n−1∑
j=0

F1(b1j + c1)F2(b2j + c2) · · ·Fk(bkj + ck)

may be expressed as Ψ(n)− S(n), where Ψ(n) is a polynomial and S(n) is a linear
combination of monomials of the form

F1(b1n + i1)F2(b2n + i2) · · ·F (bkn + ik) (0 ≤ iν ≤ D(ν) − 1; 1 ≤ ν ≤ k)

with D(ν) =
∑

m e
(ν)
m , such that the coefficients of that linear combination are

independent of the initial conditions of the Fi. If no product (r(1)
m1)b1 · · · (r(k)

mk)bk of
the associated roots equals 1, then Ψ(n) is a constant; otherwise it has degree at
most 1 +

∑
i ∆(i). In general, Ψ(n) will depend on the initial conditions of the Fi.
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8. More examples

We will give some examples illustrating the results in the previous two sections.

8.1. A mixed convolution. Let F (n) denote the nth Fibonacci number, and let
G(n) be defined by the subword-avoiding recurrence (13) with A = 3, in other
words G(0) = 1, G(1) = 3, G(2) = 9, and G(n) = 3G(n − 1) − G(n − 3) for n > 2.
Then we have the following identity:

n∑
j=0

j F (j)G(n−j) = 18G(n+1)−(9G(n)+5G(n+2)+3F (n)+nF (n)+nF (n+1)).

The target monomials in this case are

F (n), nF (n), F (n + 1), nF (n + 1), G(n), G(n + 1), G(n + 2),

and the (unique) solution is obtained by solving a system of 7 equations in 7 un-
knowns. Here we are applying Theorem 17 in the case where no product of the
form

∏
rb
m equals 1, with F1(n) = n, F2(n) = F (n), and F3(n) = G(n). The sum

is C-finite of degree 7, and this degree achieves the bounds given in Corollaries 19
and 20.

8.2. The independence property. We will give two examples of indefinite sum-
mations illustrating the phenomena described in Theorems 4 and 24. Consider
the sum

∑n−1
j=0 F (j)3, where F (n) satisfies the Fibonacci recurrence with initial

conditions F (0) = p, F (1) = 1. The target monomials are

1, F (n)3, F (n)2F (n + 1), F (n)F (n + 1)2, F (n + 1)3,

and we obtain the identity

n−1∑
j=0

F (j)3 =
1
2
(1 − 3p + 3p3) − 3

2
F (n)3 +

3
2
F (n)F (n + 1)2 − 1

2
F (n + 1)3,

which is of the form S(0)−S(n) in the notation of Theorem 24. Since the associated
roots are distinct and no product equals 1, this case is covered by Theorem 4.

Next consider the sum
∑n−1

j=0 F (j)4, for which we now have products of roots
equal to 1. The target monomials are

1, n F (n)4, F (n)3F (n + 1), F (n)2F (n + 1)2, F (n)F (n + 1)3, F (n + 1)4,

and we obtain the general solution

1
25

(
A0 + A1n + 52F (n)3F (n + 1) − 22F (n)2F (n + 1)2

− 36F (n)F (n + 1)3 + 19F (n + 1)4
)

+ K
(
(−1 + p + p2)2 − (F (n + 1)2 − F (n)2 − F (n)F (n + 1))2

)
where

A0 = −19 + 36p + 22p2 − 52p3, A1 = 6(−1 + p + p2)2,

and K is an arbitrary constant. If p2 + p − 1 �= 0, the polynomial term Ψ(n) in
Theorem 24 will always have degree 1.
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8.3. Partial summation of series. Consider the sum
n−1∑
j=0

F (j)xj ,

where F (n) is the nth Fibonacci number and x is an indeterminate. The summand
is a product of two C-finite sequences, one of degree two and the other of degree
one. Following Theorem 17, we construct a list of target monomials 1, F (n)xn, and
F (n + 1)xn, and from these we obtain the identity

n−1∑
j=0

F (j)xj =
x

1 − x − x2
− xn

(
1 − x

1 − x − x2
F (n) +

x

1 − x − x2
F (n + 1)

)
.

This identity quantifies the remainder term in the Fibonacci generating function
(an equivalent result appears as problem 1.2.8.21 in [5]). Our approach can be
easily extended; for example, using 1, F (n)2xn, F (n)F (n + 1)xn, and F (n + 1)2xn

as target monomials and solving four equations in four unknowns, we obtain the
partial summation formula

(43)
n−1∑
j=0

F (j)2xj =
x(1 − x)

1 − 2x − 2x2 + x3
− xn Rn(x),

where

(44) Rn(x) =
(1 − 2x − x2)F (n)2 + 2x2F (n)F (n + 1) + x(1 − x)F (n + 1)2

1 − 2x − 2x2 + x3
.

The first term in (43) is the full generating function for squares of Fibonacci num-
bers. A formula for the full generating function for all powers p appears in [8] (see
also [5], problem 1.2.8.30).

We note that, to obtain (43) and (44) by this method, it was only necessary
to know the first four values of the sum, and also that F satisfies some 2-term
recurrence with constant coefficients.

8.4. The degree of the polynomial multiplier. In Theorem 17 we gave a set
of monomials in terms of which the sum can be expressed, in the general case of
repeated roots. In those monomials a polynomial factor ψi1...ik

appears, and the
degree of that polynomial was found to be at most 1 +

∑
{∆(i) : ai = 0}. We

remark here that the C-finite function F (n) = np, for positive integer p, shows that
this upper bound can be achieved. For here we have

k = 1, d(1) = 1, r
(1)
1 = 1, e

(1)
1 = p+1, ∆(1) = p, D(1) = p+1, (a1, b1, c1) = (0, 1, 0).

The monomials in the list (24) are all of degree p, and those in the list (25) are of
degree equal to the degree of ψ1(n). The maximum allowable degree of the latter
is 1 + ∆(1) = p + 1, and in this case ψ is of degree p + 1 since the sum obviously is
also.

8.5. An example from the theory of partitions. Our algorithm for summation
of C-finite sequences can sometimes have by-products that are more interesting than
the particular problem being solved. A small example of this is given here. Suppose
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p5(n) is the number of partitions of n into ≤ 5 parts. Then
∑

n≥0 p5(n)zn =(
(1 − z)(1 − z2)(1 − z3)(1 − z4)(1 − z5)

)−1, so p5 is C-finite of degree ≤ 15. We
asked our Mathematica program [4] to find f(n) =

∑
0≤j≤n−1 p5(j). In addition to

giving the answer, a number of the arbitrary constants that are used to form linear
combinations with target monomials were left unassigned, and since the coefficient
of every such unassigned constant must of course vanish, one has found an identity.
On this occasion we chose one symmetrical looking such identity from the output,
namely

p5(n − 10) + 4 p5(n − 9) + 9 p5(n − 8) + 15 p5(n − 7)

+20 p5(n − 6) + 22 p5(n − 5) + 20 p5(n − 4)

+15 p5(n − 3) + 9 p5(n − 2) + 4 p5(n − 1) + p5(n) =
(

n + 4
4

)
.

The coefficients on the left side are recognized as the numbers of permutations of 5
letters that have k inversions. From this one might suspect that we have generally,

(45)
∑

j

b(k, j)pk(n − j) =
(

n + k − 1
n

)
,

where b(k, j) is the number of k-permutations that have exactly j inversions and
pk(m) is the number of partitions of m into parts ≤ k. A proof of this identity by
generating functions is quite trivial. Here is a bijective proof, that is, a bijection
between pairs consisting of a permutation of k letters with j inversions and a parti-
tion of n− j into ≤ k parts, on the one hand, and one of the

(
n+k−1

n

)
compositions

of n into k nonnegative parts, on the other. Take such a composition X of n into k
parts. Perform a “modified bubble sort,” whereby whenever one sees an adjacent
pair x y with x < y, it is replaced by (y − 1)x. Keep doing this until there are
no adjacent pairs x < y, i.e., until a partition λ (perhaps followed by 0’s) is ob-
tained. Call the resulting permutation of positions σ. Then λ and σ are uniquely
determined by X, and the correspondence is bijective. �

We do not claim novelty for this result or its proof, but offer it only as an example
of the usefulness that our algorithms can have in the discovery process.
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