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RELATIVE WEAK COMPACTNESS
OF ORBITS IN BANACH SPACES

ASSOCIATED WITH LOCALLY COMPACT GROUPS

COLIN C. GRAHAM AND ANTHONY T. M. LAU

Abstract. We study analogues of weak almost periodicity in Banach spaces
on locally compact groups.

i) If µ is a continous measure on the locally compact abelian group G and

f ∈ L∞(µ), then {γf : γ ∈ Ĝ} is not relatively weakly compact.
ii) If G is a discrete abelian group and f ∈ �∞(G)\Co(G), then {γf : γ ∈ E}

is not relatively weakly compact if E ⊂ Ĝ has non-empty interior. That result
will follow from an existence theorem for Io-sets, as follows.

iii) Every infinite subset of a discrete abelian group Γ contains an infinite Io-

set such that for every neighbourhood U of the identity of Γ̂ the interpolation
(except at a finite subset depending on U) can be done using at most 4 point
masses.

iv) A new proof that B(G) ⊂ WAP (G) for abelian groups is given that
identifies the weak limits of translates of Fourier-Stieltjes transforms.

v) Analogous results for Co(G), Ap(G), and Mp(G) are given.
vi) Semigroup compactifications of groups are studied, both abelian and

non-abelian: the weak* closure of Ĝ in L∞(µ), for abelian G; and when ρ is
a continuous homomorphism of the locally compact group Γ into the unitary
elements of a von Neumann algebra M, the weak* closure of ρ(Γ) is studied.

1. Introduction

Let G be a locally compact abelian group. Let CB(G) denote the bounded
continuous functions on G. Let M(G) denote the space of bounded regular Borel
measures on G. We shall denote the Fourier-Stieltjes transform of a measure µ by
µ̂. The symbol “̂” will also be applied to sets of measures, e.g, F .̂

This paper is motivated first by the vast body of results on the almost periodic
functions f ∈ CB(G), resp. weakly almost periodic functions, on G: those are the
functions such that the orbits O(∗)(f) = {δx ∗ f : x ∈ G} are norm compact, resp.
weakly compact. A second motivation is the literature on translation results for
Fourier-Stieltjes transforms on locally compact abelian groups; for a survey, see,
e.g., [15, pp. 234-238] or [4].

We study variations on these as follows: we replace translation by elements x ∈ G
with multiplication by elements of Γ, or we replace CB(G) with other Banach spaces
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related to G, or we do both. In all cases, we ask if the orbit is relatively weakly
compact, or whether the orbit has relatively weakly compact subsets.

An interesting theory in the context of a translational module over a locally
compact abelian group G, which is, among other things, a locally convex space of
measures, has been developed by Argabright and Gil de Lamadrid in [1]. An almost
periodic measure is defined in [1] as one for which the set of translates has compact
closure.

For results related to some of ours, see Host, Méla and Parreau [25].
Our notation will be

O(×)(S) = {γ · S : γ ∈ Γ} and(1.1)

O(∗)(S) = {LgS : g ∈ G},(1.2)

where LgS is the left translation of S by g, defined appropriately depending on
whether S is a function, a measure, or an element of some other space on G closed
under left translations. If Λ (resp. E) is a subset of Γ (resp. G), we define

O
(×)
Λ (S) = {γ · S : γ ∈ Λ} and(1.3)

O
(∗)
E (S) = {LgS : g ∈ E}.(1.4)

Thus, we ask whether the restricted sets of translates O
(×)
Λ (S) and O

(∗)
E (S) are

relatively compact in the weak (or other) topology in their containing space. For
example, see Theorem 4.1(2) and Theorem 4.5.

We also consider analogues of those results for non-abelian groups, and some
compactifications of locally compact groups. We have tried to be thorough in our
examination of the effect translation and multiplication by characters has on spaces
connected with locally compact groups: Co(G), L1(G), Ap(G), Mp(G), and L∞(G).

To give more detail, this paper is organized as follows. Some preliminaries (many
measure theoretic) are given in Section 2 . In Section 4 we consider orbits of the
form

(1.5) O(×)(f) = {γf : γ ∈ Γ} ⊂ L∞(µ),

where µ ∈ M(G) and f ∈ L∞(µ). The section’s main result is that O(×)(f) is
weakly compact (in the σ(L∞(µ), L∞(µ)∗) topology) only if f = 0 or µ is discrete.
We also give a new proof of Theorem 3.1 of [27], as well as a stronger version of that
result: if G is discrete and Λ ⊂ Γ has non-empty interior and if f ∈ L∞(G)\co(G),
then the orbit O

(×)
Λ (f) = {γf : γ ∈ Λ} is not relatively weakly compact in L∞(G).

That proof depends on an interpolation theorem for Io-sets, which we prove in
Section 3.

In Section 5 we consider orbits using elements of M(G). We give a new proof of
the fact that Fourier-Stieltjes transforms are weakly almost periodic, characterizing
nets of translates that converge weakly: δγα

∗ (µ̂) converges weakly in CB(Γ) iff γα

converges weak* in L∞(µ) (Theorem 5.1). We give related results.
Section 6 considers orbits arising from elements of Ap(G) and the Lp-multipliers

on G.
In Section 7 we consider f ∈ L1(G), examining orbits of the forms (1.3)–(1.4).
In Section 8 we consider orbits arising from f ∈ Co(G).
In Sections 9–10 we look at compactifications of Γ, using some results from

Sections 2–4. Section 9 relates properties of the semigroup Γ(µ) to properties of µ,
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and Section 10 examines implications of the condition

(1.6) lim sup
γ→∞

|µ̂(γ)| < 1

for probablity measures (such a measure µ is is called “full”). The opposite1 con-
dition, of a measure being “Dirichlet” is of interest in Section 4:

(1.7) lim sup
γ→∞

Re µ̂(γ) = 1.

A set E ⊂ G is a “Dirichlet set” if there exists a sequence of continuous characters
γj → ∞ such that γj → 1 uniformly on E.

In Section 11 we consider mappings of a (possibly non-abelian) group G into the
unit ball of a von Neumann algebra by a *-homeomorphism.

We conclude with some open problems.

2. Preliminaries

Remark 2.1. Our basic technique in deciding whether a set is relatively weakly
compact or not is to use the fact that if X is relatively weakly compact, then the
weak and weak* topologies agree on the weak closure of X. (That is because the
topologies are Hausdorff, and the closure of X is compact in the stronger, that is,
the weak–topology.) Generally, we find that 0 is in the weak* closure of X but not
in the weak closure. Also, we usually show that 0 is not in the weak closure of X
by using a multiplicative linear functional on the algebra of which X is a subset.

To illustrate the point in a particularly simple way, we prove the (known) fact
that the charisteric function of non-negative integers, H = χ[0,∞), is not weakly
almost periodic in L∞(Z). We obtain a slightly stronger result, namely, that if a
subset of {δn ∗H : n ∈ Z} is relatively weakly compact, then it is finite. Indeed, let
Ξ+ ∈ L∞(Z)∗ be any accumulation point of δn, as n → ∞, and let Ξ− ∈ L∞(Z)∗

be any accumulation point of δn, as n → −∞. Then

〈Ξ+, δm ∗ H〉 = 1 and 〈Ξ−, δm ∗ H〉 = 0 ∀m ∈ Z,(2.1)

δm ∗ H → 0 weak* as m → ∞ and(2.2)

δm ∗ H → 1 weak* as m → −∞.(2.3)

If E ⊂ [0,∞), and O
(∗)
E (H) = {δm ∗ H : m ∈ E} were relatively weakly compact,

then the weak* and weak topologies would agree on the weak closure O
(∗)
E (H) of

O
(∗)
E (H), so 0 ∈ O

(∗)
E (H) by (2.2), contradicting (2.1). A similar argument applies

when E ⊂ (−∞, 0], using (2.3) in place of (2.2).

An important tool of this paper is the following lemma, which we use to show that
0 belongs to weak* closures. We will give a continuous measure version of this idea,
which might be thought of as a singular measure version of the Riemann-Lebesgue
Lemma.

Lemma 2.2. Let µ be a continuous measure on the locally compact abelian group
G. Let Γ be the dual group of G. Then 0 ∈ Γ(µ), the weak* closure of Γ in L∞(µ).

1It is easy to show that if µ is a probability measure, then lim supγ→∞ Re µ̂(γ) = 1 if and only

if lim supγ→∞ |µ̂(γ)| = 1.
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Proof. It will suffice to show that if k ≥ 1 and µ1, . . . , µk 
 µ, then there exists
γ� ∈ Γ such that

(2.4) lim
�→∞

µ̂j(γ�) = 0 for 1 ≤ j ≤ k.

With this in mind, we let {Vα} be a neighbourhood basis of relatively compact
sets at 0 ∈ G. Under the relation of inclusion, {Vα} is a directed set. For each α,
let fα be a continuous positive-definite function on G such that Supp fα ⊂ Vα and
fα(0) = 1, where 0 is the identity in L1(G) for all α. That is,

(2.5) f̂α ≥ 0, and
∫

Γ

f̂αdγ = 1.

Then, by a result of Eberlein [10] (or see [32, 5.6.9]),

(2.6) lim
α

∫
Γ

f̂α|µ̂|2 dγ =
∑
x∈G

|µ({x})|2.

Since µ is continuous, the right-hand side of (2.6) is zero.
Then (2.5)-(2.6) and |µ̂|2 ≥ 0 imply that µ̂ cannot be bounded away from zero,

that is, 0 must belong to the closure of µ̂(Γ).
Now let µ1, . . . , µk 
 µ. Replacing µ in (2.6) with µ =

∑
j µj ∗ µ̃j , we see

that limα

∫
f̂α

( ∑
j |µ̂j |2

)2
dγ = 0. Hence (2.4) must hold. The conclusion now

follows. �

We now give an abstract version of the previous lemma.

Assumptions 2.3. Let µ be a finite positive regular Borel measure on the locally
compact Hausdorff space X. We let S∗(X, µ) denote the elements of L∞(µ) that
have absolute value one µ-almost everywhere. Let ρ : Γ → S∗(X, µ) be a group
homomorphism from a locally compact abelian group Γ such that ρ(γ) ∈ CB(X)
for all γ and such that ρ(Γ) separates the points of X.

Corollary 2.4. Suppose that under Assumptions 2.3, the measure µ is a continuous
measure. Then 0 is a weak* accumulation point of a net in O(×)(f) = {ρ(γ) : γ ∈
Γ}.

Proof. Let G′ be the dual group of ρ(Γ) when the latter is given the discrete topol-
ogy. Since ρ(Γ) separates points of X, X is mapped homeomorphically into G′ and,
therefore, the image of µ is a continuous measure on G′. Because µ is a continuous
measure, considered as a measure on G′, we may apply Lemma 2.2 to conclude
that 0 ∈ ρ(Γ) (the weak* closure). �

When weak limits are considered, we do not have the conclusion of Corollary 2.4.

Lemma 2.5. Under Assumptions 2.3, let F be any weak limit of a net in O(f) =
{ρ(γ) : γ ∈ Γ}. Then F has absolute value one everywhere as an element of
L∞(µ)∗∗.

Proof. Fix a point w in the support of µ, considered as a measure on ∆(L∞(µ)).
Then |ρ(γα)(w)| = 1 for all α, since evaluation of ρ(γα) at w is given by the bounded
linear functional

(2.7) ρ(γα) �→
∫

ρ(γα)dδw = 〈ρ(γα), δw〉,
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which maps L∞(µ) → C. In (2.7), the integration is against the unit point mass
at w ∈ ∆(L∞(µ)), and we are identifying elements of L∞(µ) with their Gel’fand
transforms. Hence, the weak limit F of elements of ρ(Γ) has |F | = 1 as an element
of L∞(µ)∗∗. �

Convergence in S∗(X, µ). The following is well known (e.g., [24, pp. 19-20] for
some of the equivalences below), but it will be useful to have a statement here.

Lemma 2.6. Let µ be a probability measure on the measurable space (X, Σ). Let
Γ = S∗(X, µ) = {f ∈ L∞(µ) : |f | ≡ 1 a.e. dµ}. Let {γα} be a net in Γ and γ ∈ Γ.
Then the following are equivalent:

(1) γα → γ weak*, that is, in the σ(L∞(µ), L1(µ)) topology.
(2) γα → γ in L2(µ)-norm.
(3) γα → γ in L1(µ)-norm.
(4) For some 1 < p < ∞, γα → γ in Lp(µ)-norm.

Remark 2.7. Let ρ, Γ, and F be as in Lemma 2.5. Then F is a weak* limit of
elements of O(f) = {ρ(γ) : γ ∈ Γ}. This is immediate from the fact that the weak
topology is stronger than the weak* topology.

Proof of Lemma 2.6. (1) ⇒ (2).
∫
|γ−γα|2dµ = 2−2Re

∫
γα γdµ. Since γ ∈ L1(µ),

weak* convergence in L∞(µ) implies
∫

γα γdµ →
∫
|γ|2dµ = 1, and (2) follows.

(2) ⇒ (3) is immediate from the Cauchy-Schwarz-Bunyakowski inequality:∫
|γ − γα|dµ ≤

(∫
|γ − γα|2dµ

)1/2(1)1/2.

(3) ⇒ (4). Let 1 < p < ∞. Then, since the γ’s have modulus one,∫
|γ − γα|pdµ =

∫
|γ − γα||γ − γα|p−1dµ

≤ 2p−1

∫
|γ − γα|dµ.

(4) ⇒ (1). Convergence in Lp-norm implies that
∫

F (γ − γα)dµ → 0 for each
F ∈ Lp′

(µ), in particular, when F is a (bounded) measurable step function. Let
f ∈ L1(µ) and ε > 0. Then there is a (bounded) step function F such that
‖f − F‖L1(µ) < ε. Then

(2.8)
∫

f(γ − γα)dµ =
∫

(f − F )(γ − γα)dµ +
∫

F (γ − γα)dµ.

The first term on the right of (2.8) is bounded by 2ε (just separate into two terms
and use the fact that the γs have modulus one). The second term tends to 0 by
weak convergence in Lp. Hence,

lim sup
α

|
∫

f((γ − γα)dµ| < 3ε,

so (4) ⇒ (1). �

Corollary 2.8. Let µ be a probability measure on the measurable space (X, Σ).
Then the multiplication in S∗(X, µ) is continuous in both variables simultaneously
under any of the topologies of Lemma 2.6(1)–(4) and in the weak topology.
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Proof. [24, p. 19] We begin with the four topologies of Lemma 2.6. Let γα → γ
and λβ → λ in any one of those first four topologies, and, hence, in all of them, in
particular in the L1 norm topology. Then

(2.9) |γα λβ − γ λ| ≤ |γα( λβ − λ)| + |(γα − γ) λ| = |λβ − λ| + |γα − γ|.

We apply Lemma 2.6 and (2.9) to conclude that the L1-convergence of the γα

and λβ imply that γα λβ converges in L1(µ) norm to γ λ. Another application of
Lemma 2.6 shows that γα λβ converges to γ λ in the other topologies, except for
the weak topology.

Now assume that γα → γ and λβ → λ weakly. Then Lemma 2.6(1) ⇔ (3) shows
that γα → γ and λβ → λ in L1(ω)-norm, for every ω ∈ L∞(µ)∗. (We work in
L∞(ω), instead of L∞(µ).) Now the proof for the preceding case shows that γα λβ

converges to γ λ in L1(ω)-norm to γ λ, and, hence, in the weak topology. �

3. An interpolation theorem on Io-sets

In this section we shall establish an interpolation theorem for Io-sets (defined
below) that we need to prove the main result, Theorem 4.5, in Section 4.

Before stating the theorem, some background information may be useful. A
subset Λ of the discrete abelian group Γ is an “Io-set” iff every bounded function
on Λ can be extended to an almost periodic function on Γ. This is equivalent
to having every bounded function on Λ being the Fourier-Stieltjes transform of a
discrete measure. See [28, p.165ff] for references. The set Λ is a “Sidon set” if every
bounded function on Λ can be extended to a Fourier-Stieltjes transform on all of Γ.
Let G be the dual group of Γ and K ⊂ G. We say that K is “associated with” Λ if
there exists a constant C > 0 and a finite subset F ⊂ Λ that for all trigonometric
polynomials p(x) on G with coefficients from Λ\F ,

∑
x∈G |p(x) ≤ C supx∈K |p(x)|.

If G is compact and connected, then every Sidon set in Γ is associated with every
K ⊂ G with int K �= ∅ by results of Déchamps-Gondim [8]. The result of [8] is
stronger that we state. See [8] and also [28, p. 109ff] for details and a still stronger
result.

It will be apparent from the preceding paragraph that Theorem 3.1 is a variant
of [8]. The papers [8], [29], and [30], suggested Theorem 3.1. A better result may
be possible. We have stated and proved what would give us Theorem 4.5.

Theorem 3.1. Let G be a discrete abelian group with dual group Γ. Let H ⊂ G be
infinite. Then there exists an infinite subset H ′ ⊂ H and integer q ≥ 2 such that
for every open neighbourhood U of the identity in Γ, and every ε > 0, there exists a
finite subset F ⊂ H ′ such that for every complex valued function φ : H ′ → C with

(3.1) φq ≡ 1

everywhere on H ′, there exists x ∈ U with

(3.2) |〈x, λ〉 − φ(λ)| ≤ ε for λ ∈ H ′\F.

The integer q is not necesarily the order of Γ; it may be a prime factor of the
order of Γ; see, e.g., Corollary 3.10 below.

The following corollary is immediate from Theorem 3.1, and was previously ob-
tained by Hartman and Ryll-Nardzewski [17], Kalton [16], Galindo and Hernández
[13], and Kunen and Rudin [26].
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Corollary 3.2. Let G be a discrete abelian group and H an infinite subset of G.
Then H contains an infinite subset that is an Io-set.

3.0.1. Outline of the proof of Theorem 3.1. We begin the proof of Theorem 3.1 by
consideration of particular cases G, starting with G = Z. We then show that if
Theorem 3.1 holds for a subgroup or a quotient group of Γ, it holds for Γ. After
some other reductions, we consider the case that H contains an infinite independent
set. The case that H has an infinite subset of elements of the same finite order is
reduced to the case of an infinite independent set. We then prove the theorem for
the general case.

Lemma 3.3. Assume the hypotheses of Theorem 3.1. Suppose that G = Z. Then
the conclusion of Theorem 3.1 holds.

Proof. The proof proceeds from the observation that for each interval (a, b) ⊂ T

and λ ∈ Z, λ �= 0, the range of x → e2πiλx x ∈ (a, b) spreads out to cover all of T

as λ → ∞. It is then easy to construct, for each φ, a convergent sequence in (a, b)
which yields the required element. Here are the details. Let a non-empty interval
(a, b) = (a1, b1) ⊂ T be given such that [a1, b1] ⊂ U (using closure here will ensure
that our limit point is in U). Choose λ1 ∈ H such that

(3.3) {e2πiλ1x; x ∈ (a1, b1)} = T.

Choose λ2 > λ1, λ2 ∈ H so large that for any interval I ⊂ T of length at least
b1−a1
400πλ1

,

(3.4) {e2πiλ2x : x ∈ I} = T.

Proceeding in this way, we find a strictly increasing sequence λj → ∞ such that
for j ≥ 2, {e2πiλjx; x ∈ I} = T whenever I has length at least (b1−a1)

400π
∏j−1

k=1 λk
. Let

H ′ = {λj : j ≥ 1}. Let φ : H ′ → T be given. By (3.4), there exists x1 ∈ (a1, b1)
with e2πiλ1x1 = φ(λ1). Then

|x − x1| <
1

200πλ1
⇒ |e2πiλ1,x − φ(λ1)| < 1/100.

Let (a2, b2) = (x1 − 400π/λ1, x1 + 400π/λ1). By (3.4),

{e2πiλjx; x ∈ (a2, b2)} = T for j ≥ 2.

Therefore, there exists x2 ∈ (a2, b2) such that e2πiλ2x2 = φ(λ2). Then

|x − x2| < 1/(200πλ1λ2) ⇒ |e2πiλ2,x − φ(λ2)| < 1/100.

Let (a3, b3) = (x2 − (400π/λ1λ2), x2 + (400π/λ1λ2)).
Proceeding in this way, we find a strictly decreasing sequence of intervals (aj , bj)

and elements xj ∈ (aj , bj) with

(3.5) e2πiλjxj = φ(λj) and |e2πiλj ,x − φ(λj)| < 1/100 if x ∈ (aj , bj).

Let xo = limxj . Then |e2πiλjxo − φ(λj)| ≤ 1/100 for all j ≥ 1. That completes the
proof of Lemma 3.3. �

Lemma 3.4 (Subgroup Lemma). Assume the hypotheses of Theorem 3.1. Let Ξ
be a subgroup of G. Suppose H ∩ Ξ is infinite. Suppose also that the conclusion of
Theorem 3.1 holds for Ξ and H ∩ Ξ. Then the conclusion of Theorem 3.1 holds
for G.
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Proof. Let L = Ξ⊥. Let q and H ′ be given for H ∩ Ξ, and let q and H ′ ⊂ H ∩ Ξ
be given by Theorem 3.1 applied to Ξ and H ∩ Ξ. Let U ⊂ G be an open
neighbourhood of the identity of Γ, and let U1 be the image of U under the quotient
homorphism G → G/H. Then U1 is an open neighbourhood of the identity of G/H,
since the quotient mapping is open. Hence, there exists a finite set F ⊂ H ′ and
a representative x + H ∈ U1 such that (3.2) holds for all λ ∈ H ′\F , that is,
|〈x + H, λ〉 − φ(λ)| < ε for all λ ∈ H ′\F and all φ : H ′ → T with φq = 1. Since
L = Ξ⊥, we can replace x + L with its representative, so that |〈x, λ〉 − φ(λ)| < ε
for all λ ∈ H ′\F . That establishes Theorem 3.1 for G. �

The following corollaries are (nearly) immediate.

Corollary 3.5. Assume the hypotheses of Theorem 3.1. Without loss of generality
in the proof of Theorem 3.1, we may assume that H is countable and generates G.

Corollary 3.6. Assume the hypotheses of Theorem 3.1. Suppose that H contains
an infinite number of elements of a singly generated subgroup of G. Then the
conclusion of Theorem 3.1 holds for G and H.

Proof. Indeed, we can identify the singly generated subgroup of G with Z. Now
Corollary 3.6 follows from Lemma 3.3 and Subgroup Lemma 3.4. �

Lemma 3.7 (Quotient Group Lemma). Assume the hypotheses of Theorem 3.1.
Let Ξ be a subgroup of G. Suppose that the image H + Ξ in G/Ξ is infinite.
Suppose also that the conclusion of Theorem 3.1 holds for H + Ξ and G/Ξ. Then
the conclusion of Theorem 3.1 holds for G.

Proof. Let L = Ξ⊥. Then U is replaced with the intersection U ∩ L, which is a
relatively open neighbourhoood of the identity of L. Let H1 ⊂ H be such that
H1 + Ξ = H + Ξ and the mapping from H1 → H1 + Ξ is one-to-one.2 Define
φ′ : H1 + Ξ → C by φ′(λ + Ξ) = φ(λ). Let q be given for G/Ξ. By the hypotheses
of this lemma, there exists H ′ ⊂ H1 such that if φ : H → C satisfies (3.1), then
there exists x ∈ U ∩ L with |〈x, λ〉 − φ(x)| < ε, by (3.2) applied to G/Ξ. Since
L = Ξ⊥, 〈x, λ〉 = 〈x, λ + Ξ〉 for all λ ∈ H ′, so the conclusion of Theorem 3.1 holds
for G and H. �
Corollary 3.8. Assume the hypotheses of Theorem 3.1. Suppose that H contains
an infinite number of elements of a coset of a finitely generated subgroup of G.
Then the conclusion of Theorem 3.1 holds for G and H.

Proof. Suppose that H contains an infinite set that is contained in a coset of a
finitely generated subgroup of G. We apply the Subgroup Lemma 3.4, so that we
may assume that G is finitely generated by the generators of the finitely generated
subgroup plus a representative of the coset. Then we can find one of the generators,
say ω, of (our now finitely generated) G such that ω has infinite order and the
projection (a quotient mapping!) of H onto the subgroup generated by ω is infinite.
We apply the Quotient Group Lemma, Lemma 3.7, and Lemma 3.3 to conclude
that the conclusion of Theorem 3.1 holds for G and H. �
Lemma 3.9. Assume the hypotheses of Theorem 3.1. Suppose that H contains an
infinite independent set. Then the conclusion of Theorem 3.1 holds for G and H.

2 If we apply Subgroup Lemma 3.4 first, we can reduce to the case of countable G and avoid
the use of the Axiom of Choice in the construction of H1.
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Proof. Suppose that H contains a countable infinite independent set H ′. If all the
elements of H ′ have the same order q ≥ 2, then that q will be the q of the assertion
of Theorem 3.1. Otherwise, we will take q = 2 and assume that the order of every
element of H ′ is greater than 100/ε. Let L be the subgroup of G generated by H ′.
By Subgroup Lemma 3.4, we may assume that G = L. We consider L: it is a direct
sum of cyclic groups, and L̂ is the direct product of the compact dual groups of
those cyclic groups. But now the conclusion will follow easily from the structure
of product groups: we define x by its coordinates, chosing the jth coordinate xj so
that |〈xj , λj〉 − φ(λj)| < ε. Here, we will have equality if q < ∞. Since we have a
product group, 〈xj , λk〉 = 1 if j �= k. Then x =

∏
xj will do, where we take a finite

number of the xj = 1, so that the resulting product is indeed in U . The finite set
F will thus depend on the neighbourhood U : the smaller U is, the larger F is. Of
course, U can be taken as a product set of the form {0}× · · ·× {0}×

∏∞
�=1 Zq, and

then F is the set of elements of H which are non-zero in the factors of E which are
non-zero. Therefore, the conclusion of Theorem 3.1 holds for G and H. �
Corollary 3.10. Assume the hypotheses of Theorem 3.1. Suppose that H contains
an infinite set of elements all having the same finite order q. Then the conclusion
of Theorem 3.1 holds for G and H.

Proof. Suppose that an infinite set of elements of H had the same finite order
q ≥ 2. First suppose that q is prime. We then claim that H contains an infinite
independent set. Indeed, suppose that I = {λ1, . . . , λn} is a maximal independent
subset of H. If λ ∈ H\I, then the maximality of I means that there exist integers
1 ≤ a < q and 0 ≤ aj < q with at least one aj not zero such that aλ =

∑
j ajλj .

Since the λj are independent and q is prime, we have m a λ =
∑

j m aj λj = 0 if
and only if maj ≡ 0(mod q) for all j, that is, m = q. In other words, λ has order
qa, a contradiction, unless a = 1. Of course, only a finite number (qn) of elements
of H\I can have the form λ =

∑
j ajλj . Eliminating those, we find an independent

subset of H that has n + 1 elements, so I is not maximal. This contradiction
establishes the claim, so H does contain an infinite independent set, and therefore,
the conclusion of Theorem 3.1 holds for G and H.

We now reduce to the subcase that q is prime, as follows. Let p be a prime factor
of q, and let q = pr. Let Ξ = rG. Then the image H +Ξ in G/Ξ contains an infinite
set of elements of prime order p. Hence, the conclusion of Theorem 3.1 holds for
G/Ξ and H + Ξ, by the preceding paragraph. By the Quotient Group Lemma 3.7,
the conclusion of Theorem 3.1 holds for G and H. �
Proof of Theorem 3.1. By Corollary 3.5, we may assume that H is countable and
generates G. By Lemma 3.9, we may assume that H does not contain an infinite
independent set. By Corollary 3.8, we may assume that no infinite subset of H is
contained in a finitely generated subgroup of G. Also, by Corollary 3.10, we may
assume that H does not contain an infinite set of elements having the same finite
order.

Therefore, we may assume that H has no infinite independent subset, and that
either

(1) all elements of H have different finite orders, all of which are greater than
100/ε; or

(2) H has no infinite independent subset, and all elements of H have infinite
order.
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For example, in case (1), G could be roots of unity in T, with the discrete topology.
In case (2), G could be the rational numbers Q with the discrete topology. (The
assumption in case (1) that the orders are different and all greater than 100/ε
follows from an (other) application of the Subgroup Lemma 3.4.)

We will reduce the second case to the first, and then show that in the first case,
the conclusion of Theorem 3.1 holds for G and H.

Let I be a maximal independent subset of H. Of course, I could contain only
the element, l and anyway, I is finite. Consider Ξ = Gp(I). Then H + Ξ is
an infinite subset of G/Ξ. Indeed, otherwise, H would be contained in a finitely
generated subgroup of G, contradicting our assumptions at the start of the proof
of Theorem 3.1. Thus, we may assume that H + Ξ is an infinite subset of H/Ξ.

By the Quotient Group Lemma 3.7, it will suffice to prove Theorem 3.1 for G/Ξ
and H +Ξ. We claim that the orders of the elements of H +Ξ are finite. Indeed, if
some element λ + Ξ had infinite order in G/Ξ, then I ∪ {λ} would be independent,
contradicting the maximality of I.

This completes the reduction to case (1).
In this case any q ≥ 2 will do. For simplicity, we will use

(3.6) q = 2.

We recall the assumptions that the order of each element of H is at least 10q/ε and
that H is countable and generates G. Pick any λ1 ∈ H. Let I1 = {λ1}. Consider
G/Gp(I1). Since Gp(I1) is finite, the image H1 = H +Gp(I1)\{0} is infinite. If H1

contained an infinite set of elements of the same finite order, then by the Quotient
Group Lemma 3.7, we are done. Hence, we may assume that H contains an element
λ2 such that λ2 + Gp(I1) has order at least 10q/ε in G/Gp(I1). By induction, we
may find a sequence λ1, λ2, . . . such that for Ik = {λ1, . . . , λk},
(3.7) λk+1 + Gp(Ik) has order at least 10q/ε in G/Gp(Ik).

We have not yet completed our selection of H ′, however. We need a further
growth condition, which we now describe. Let F be a finite subset of G. Suppose
H ′ + Gp(F ) were a finite subset of the quotient group G/Gp(F ), say

H ′ =
�⋃

j=1

(λj + F ).

Then H ′ ⊂ Gp(F ∪{λ1, . . . , λ�}), and we are in the situation of Corollary 3.8, which
we have eliminated. Thus, we may assume that F ⊂ G and #F < ∞ implies that

(3.8) #(H ′ + Gp(F )) = ∞.

Similarly, we may assume that F ⊂ G and #F < ∞ implies the orders of the
elements of H ′+Gp(F ) are unbounded, and no order repeats infinitely often. Thus,
we apply induction to obtain a subset H ′ = {λ1, λ2, . . . } ⊂ H, so that for each
n ≥ 1, and In = {λ1, . . . , λn},

#
(
H ′ + Gp(In)

)
= ∞ and(3.9)

the order of λn+1 + Gp(In) ∈ H ′ + Gp(In) is at least 100n+1/ε.(3.10)

Of course, we may still assume that H ′ generates G.
Now suppose an open neighbourhood E of 0 ∈ G is given. Since E is open,

it contains a basic neighbourhood of the form U = {x : | < λj , x > −1| < δ, j =
1, . . . , m}, for some δ > 0 and some m ≥ 1. In fact, we may assume that U +U ⊂ E.
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(This is not the largest neighbourhood basis, but it is a neighbourhood basis at 0,
since we are assuming that H ′ generates G.) Let F = {λj : 1 ≤ j ≤ m} and
Ξm = Gp(F ).

Now suppose that φ : H ′ → C satisfying (3.1) is given, that is, φ(λj) = ±1,
by (3.6). We must find x ∈ E such that (3.2) holds. Consider λm+1. By (3.10),
λm+1 + Ξm has order at least 100m/ε. Therefore, there exists xm+1 ∈ Ξ⊥

m with
|〈λm+1, xm+1〉 − φ(λm+1)| < ε/2m+1. Since xm+1 ∈ Ξ⊥

m, xm+1 ∈ U .
Assume that k ≥ m. Suppose that for m ≤ n ≤ k,

Ξn = Gp({λ1, . . . , λn}),(3.11)

xn+1 ∈ Ξn
⊥,(3.12)

|〈
n+1∑

j=m+1

xj , λn+1〉 − φ(λn+1)| < ε/2n+1.(3.13)

From (3.11)–(3.12),
∑k

n=m+1 xn ∈ U .
Let Ξk+1 = Gp({λ1, . . . , λk+1}). By (3.10), there exists xk+2 ∈ Ξ⊥

k+1 such that

|〈
k+2∑

j=m+1

xj , λk+2〉 − φ(λk+2)| < ε/2k+2.

Hence, xk+2 ∈ U . We let x be any accumulation point of the set of sums
∑n+1

j=m+1 xj ,
n ≥ m + 1. Straighforward calculations show that x ∈ U ⊂ U + U ⊂ E. That
completes the proof of Theorem 3.1. �

4. Orbits of γf , for f ∈ L∞(µ), γ ∈ Γ, and µ ∈ M(G)

We now give our first variation on the theme of weakly almost periodic functions.
It is a rather general version. For the concrete version, just ignore “ρ(·).”

Theorem 4.1. Suppose that under Assumptions 2.3, µ is continuous and f ∈
L∞(µ) is not the zero function. Then the following hold:

(1) O(f) = {ρ(γ) f : γ ∈ Γ} is not relatively weakly compact in L∞(µ).
(2) If Λ ⊂ Γ and if {ρ(γ) f : γ ∈ ρ(Λ)} is relatively weakly compact, then every

element τ in the weak* closure of ρ(Λ) in L∞(µ)∗∗ has

(4.1) |τ |f = f, as elements of L∞(µ)∗∗.

Remarks 4.2. (i) The set {ρ(γ) f : γ ∈ Γ} can have infinite relatively weakly
compact subsets (in contrast, e.g., with Remark 2.1 and Proposition 6.2). Here is
an example. Suppose µ is a continuous probability measure on a Dirichlet3 subset
E of T; see (1.7). That means there exist γj ∈ Z such that γj → 1 uniformly on E.
It follows that {f} ∪ {γjf : 1 ≤ j < ∞} is norm (!) compact.

(ii) Let G be a locally compact abelian group with dual group Γ, µ ∈ M(G)
and f ∈ L∞(µ). Then {γf : γ ∈ Γ} has weakly compact subsets if and only fµ is
Dirichlet; see Section 10 and [24] for more about Dirichlet measures.

3Every Kronecker set is a Dirichlet set, and Kronecker sets exist in many groups, including T

[15, 19, 32].
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Proof of 4.1. We prove (1) first. We suppose that O(f) is relatively weakly com-
pact and derive a contradiction. The proof is by way of four assertions. (i) We may
assume that f ≡ 1 a.e. dµ. (ii) 0 is in the weak* closure of ρ(Γ). (iii) Relative weak
compactness implies that every function in the weak closure of ρ(Γ)f is unimodular.
(iv) The preceding are contradictory.

(i) Since f �= 0, there exists an element g ∈ L∞(µ) such that fg is a non-zero
idempotent in L∞(µ).

Of course, if {ρ(γ) f : γ ∈ Γ} were relatively weakly compact, then {ρ(γ) fg :
γ ∈ Γ} would also be relatively weakly compact, since multiplication in L∞(µ) is
separately continuous in the weak topology. Therefore, we may assume that f is
idempotent. By replacing µ by fµ, we see that we may assume that f ≡ 1 a.e.

(ii) This is just the conclusion of Corollary 2.4.
(iii) Since f ≡ 1, this is exactly the assertion of Lemma 2.5.
(iv) Now suppose that ρ(Γ) = {ρ(γ) : γ ∈ Γ} is relatively weakly compact. Let

ρ(Γ)
w

denote the weak closure of ρ(Γ). Then the weak and weak* topologies agree
on ρ(Γ)

w
by Remark 2.1. Let {γα} be a net in ρ(Γ) that converges weak* to 0. Such

a net exists by (ii) above. Then {γα} also converges weakly. But {γα} converges
to some element γ such that |γ| ≡ 1 in L∞(µ), by (iii). Hence 0 = |γ| = 1, a
contradiction. That completes the proof of (1).

The proof of (2) is a slight elaboration of the preceding. Suppose that there
exists τ in the weak* closure of ρ(Λ) such that |τ |f �= f . As in (i) above, we may
assume that f is idempotent and fµ = µ (we throw away the part of f where
|τ |f = f). As in (iii), any weak accumulation point τ of ρ(Λ) must have |τ | = 1 as
an element of L∞(µ). Hence |τ |f = f . �

Corollary 4.3. Let µ be a finite regular Borel positive measure on the locally
compact abelian group G. If µ is continuous, then for all f ∈ L∞(µ)\{0}, the
orbit O(×){γf : γ ∈ Γ} is not relatively weakly compact in L∞(µ).

Proof. This is almost immediate. The mapping ρ : Γ → S∗(G, µ) given by
ρ(γ)(f) = γf separates points of X, where X ⊂ G is the support of f .

The mapping is, of course, weak* continuous. �

The next corollary is essentially Theorem 3.1 of [27].

Corollary 4.4. Let G be a locally compact abelian group with dual group Γ.

(1) If there exists a non-zero f ∈ L∞(G) such that O(×)(f) = {γf : γ ∈ Γ} is
relatively weakly compact in L∞(G), then G is discrete.

Suppose that G is discrete. Let f ∈ L∞(G), f �= 0. Let O(×)(f) = {γf : γ ∈ Γ}.
Then the following are equivalent:

(2) f ∈ co(G).
(3) O(×)(f) is norm compact.
(4) O(×)(f) is weakly compact (in the σ(L∞(G), L∞(G)∗) topology).

Proof. (1) (This argument is very different from that in [27].) Let U be a relatively
compact open subset of G such that f|U �= 0, and let µ denote the Haar measure
of G restricted to U . If O(×)(f) is relatively weakly compact in L∞(G), then
{γf1U : γ ∈ Γ} = 1UO(×)(f) would be relatively weakly compact in L∞(µ), since
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multiplication in L∞(G) is weakly continuous in each variable separately. But, by
Corollary 4.3, 1UO(×)(f) is not relatively weakly compact in L∞(µ) if µ is not
discrete (i.e., iff G is not discrete). This establishes (1).

Theorem 4.5 is a stronger version of the equivalences (2)–(4). That stronger
version provides our proof of the equivalences (2)–(4). Our proof is different from
[27, Theorem 3.1]. �

By using a method different from [27], we can obtain a stronger version of Corol-
lary 4.4(2)–(4), as follows.

Theorem 4.5. Let G be a discrete abelian group with dual group Γ. Let f ∈
L∞(G)\Co(G). Let Λ ⊂ Γ. If Int Λ �= ∅, then O

(×)
Λ (f) = {γf : γ ∈ Λ} is not

relatively weakly compact.

Proof of Theorem 4.5. For simplicity, we will write OΛ(f) in place of O
(×)
Λ (f), for

this proof.
Because f(x) �→ 0 as x → ∞, |f(x)| > ε for some ε > 0 and an infinite number

of x ∈ G. Let Λ be that set of x. By multiplying f by an element of L∞(G), we
may assume that f ≡ 1 on Λ.

Let Λ ⊂ Γ have non-empty interior. We may assume that Λ is open. Let γo ∈ Λ.
Then OΛ(f) is relatively weakly compact if and only if γoOΛ(f) is relatively weakly
compact. Therefore, we may assume that Λ is a neighbourhood of the identity.

We now apply Theorem 3.1: let Λ′ and q be given by Theorem 3.1, and let
Ξ be any weak* accumulation point of {δx : x ∈ Λ′} in L∞(G)∗. Then every
neighbourhood U of the identity of Γ contains γU such that

|〈γU , x〉 − e2πi/q| < 1/100 except for a finite number of x ∈ E′.

We then have |〈Ξ, γUf〉 − e2πi/q| < 1/100, while 〈Ξ, f〉 = 1. Hence,

(4.2) γUf �→ f weakly as U ↘ {0},

though

(4.3) γUf → f weak *.

Of course, if OΛ(f) is relatively weakly compact, then OΛ(f) would be relatively
weak* compact, and the two topologies would agree on OΛ(f), which they do not
by (4.2)–(4.3). �

5. Orbits in various containing spaces of γµ,

for µ ∈ M(G) and γ ∈ Γ

It has been known since Eberlein’s 1949 paper [9] (or see [5, Cor. 3.4 on p. 37])
that each Fourier-Stieltjes transform µ̂ on a locally compact abelian group is weakly
almost periodic, but it does not appear to be equally well known that the elements
of the weak closure of the set O(×)(µ̂) of translates are also Fourier-Stieltjes trans-
forms. In this section, we give a new proof of Eberlein’s result, which contains the
stronger statement. We then give some applications of our method, and show how
an analogous conclusion can be obtained in the non-abelian case. By B(Γ), we mean
the set of Fourier-Stieltjes transforms on Γ; by dν

dµ we mean the Radon-Nikodym
derivative of ν with respect to µ.
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Theorem 5.1. Let Γ be a locally compact abelian group. Then every Fourier-
Stieltjes transform µ̂ is a weakly almost periodic function on Γ. Furthermore, the
following are equivalent:

(1) ν̂ is a weak accumulation point in L∞(Γ) of {Lγ µ̂ : γ ∈ Γ}.
(2) dν

dµ is a weak* accumulation point of {γ : γ ∈ Γ} in L∞(µ).

In particular, B(Γ) is closed under the operation of taking weak limits in CB(Γ) of
translates of its elements.

Proof. Let γα be any net in Γ. Without loss of generality, we may assume that
γα → f weak* in L∞(µ). Let S ∈ CB(Γ)∗. Then the composition of S with the
Fourier-Stieltjes transform (call it T , so ν̂ = T (ν) for all ν̂ ∈ B(Γ)) is a bounded
linear functional on L1(µ). Hence, there exists an element FS ∈ L∞(µ) such that
for all ν 
 µ,

(5.1) 〈S, ν̂〉 = 〈S, T (ν)〉 = 〈S ◦ T, ν〉 =
∫

FS dν.

Then

〈S, T (γαµ)〉 =
∫

FSγαdµ(5.2)

=
∫

γαd(FSµ) →
∫

fd(FSµ), and(5.3) ∫
fd(FSµ) =

∫
FSd(fµ) = 〈S ◦ T, fµ〉(5.4)

= 〈S, T (fµ)〉 = 〈S, (fµ)̂ 〉.(5.5)

The limit in (5.3) follows from the assuption that γα → f weak*, and the equali-
ties in (5.2)–(5.5) are from the definitions and (5.1). It now follows that Lγα

µ̂ =
T (γαµ) → T (fµ) = (fµ)̂ ∈ L∞(Γ) weakly. The equivalence of (1) and (2) is now an
exercise in functional analysis. The last assertion is immediate from the equivalence
of (1) and (2). �

A similar argument yields the following generalization. Its proof is essentially
identical to the proof of Theorem 5.1 (just remove the “̂”s), and is left to the
reader.

Theorem 5.2. Let G be an infinite locally compact abelian group. Let µ ∈ M(G),
µ �= 0. Let X be a Banach space, and let T : L1(µ) → X be a bounded linear
mapping. Then T ({γµ : γ ∈ Γ}) is relatively weakly compact in X.

Furthermore, if T is one-to-one, then the following are equivalent:
(1) T (fµ) is a weak accumulation point of T ({γµ : γ ∈ Γ}).
(2) f is a weak* accumulation point of {γ : γ ∈ Γ} in L∞(µ).

A non-abelian version of Theorem 5.1. Let G be a locally compact group, not
necessarily abelian. Let CB(G) be the set of continuous bounded functions on
G. Let B(G) denote the subspace of CB(G) that is generated by the continuous
positive definite functions [18, Vol. II, p. 253 ff]. Each f ∈ B(G) is thus a sum

(5.6) f = p1 − p2 + i(p3 − p4), p1, . . . , p4 positive-definite.

The Eberlein proof [9], [5, p. 37] shows that every function in B(G) is weakly
almost periodic on G.
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Proposition 5.3. Let Γ be a locally compact group and f ∈ B(Γ). Then B(Γ)
is closed under the operation of taking weak limits in CB(Γ) of translates of its
elements.

Proof. Let Kp denote the pointwise closure of convex hull of the left orbit of f .
Then, Kp must be contained in B(Γd) (here Γd is Γ with the discrete topology.
This is because the weak* topology on bounded sets of B(Γ) is the same as the
pointwise topology on B(Γd). Now, the weak closure of the translates of f , call it
K, is weakly compact. Also K is contained in CB(Γ). It follows that the weak
topology agrees with the pointwise topology. So K = Kp. Consequently, K is
contained in the intersection of B(Γd) ∩ CB(Γ). By a result in Eymard [12, 2.24],
K must be contained in B(Γ). In particular, any weak limit of translates of f must
belong to B(Γ). �

The following result led us to Theorem 5.2.

Corollary 5.4. Let Γ be a locally compact abelian group with dual group G. Let
M(G) be the space of bounded regular Borel measures on G. Let µ ∈ M(G). Then
the set O(×)(µ) = {γµ : γ ∈ Γ} is relatively weakly compact in M(G).

Proof of Corollary 5.4. Let X = M(G) and T the identity mapping. Then the
conclusion is immediate from Theorem 5.2. �

6. Orbits of γf and δx ∗ f for f ∈ Ap and f ∈ Mp

This section gives some “p” versions of Theorem 4.1.
If G is a locally compact abelian group, and 1 ≤ p < ∞, an Lp-multiplier is a

linear mapping of Lp(G) that commutes with translations. Every bounded regular
Borel measure on G gives rise to an Lp-multiplier by convolution. We let Mp(G)
denote the set of Lp-multipliers on G with the operator norm. Then Mp(G) is a
Banach algebra. We begin with an immediate consequence of Theorem 5.2.

Corollary 6.1. Let Γ be a locally compact abelian group with dual group G. Let µ
be a regular bounded Borel measure on G, considered as an operator on Lp(G) by
convolution. Then the set O(×)(µ) = {γµ : γ ∈ Γ} is relatively weakly compact in
Mp(G).

We now turn to some other versions of Theorem 4.1. The conclusion of the first
is stronger than what we have in the general L∞ situation; contrast Remarks 4.2,
above. The conclusion of the second is also stronger (in the opposite direction)
than Theorem 4.1: there are some “new variant WAP” multipliers. We will restrict
our discussion to the circle group T and its dual group Z. We shall denote the nth

character on T by χn(x) = e2πinx, x ∈ T, n ∈ Z.
We will assume that 1 < p < ∞. We begin by defining the predual of Mp(T).
The Figa-Talamanca–Herz algebra [21] Ap(G) is as follows: f ∈ Ap(G) if and

only if there exist gj ∈ Lp(G) and hj ∈ Lq(G) with

f =
∑

gj ∗ ȟj , where ȟ(x) = h(x−1) and(6.1) ∑
||gj ||p||hj ||q < ∞,(6.2)

p, q being conjugate indices. The norm is the infimum of all expressions (6.2)
subject to (6.1). For all G, Ap(G) is a regular Banach algebra [20]. Of course,
A2(G) = A(G), the usual Fourier algebra. The dual space of Ap(T) can be identified
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with the space Mp = Mp(T) of Lp(T)-multipliers; see [15, 10.2.16]. Each regular
bounded Borel measure on T gives rise to a multiplier. In particular, we will be
interested in the absolutely continuous measures, and in the discrete measures.
First, though, we consider Ap(T).

Proposition 6.2. Let f ∈ Ap(T), f �= 0. Let {γk} be an infinite subset of Z. Then
{γkf : k ∈ Z} has no infinite subsequence {γ�f : 1 < � < ∞} that is relatively
weakly compact.

We need some Littlewood-Paley theory for the proof of Proposition 6.2. We let

(6.3) Ej =

⎧⎪⎨⎪⎩
{n : 2j−1 ≤ n < 2j} if j > 0,

{0} if j = 0, and
{n : −2j < n ≤ −2j−1} if j < 0.

We use {Ej}∞j=−∞ for the resulting Littlewood-Paley decomposition of Z, and Sjf =∑
λ∈Ej

f̂(λ)λ. The book [11] has a proof that for 1 < p < ∞, there exist constants
0 < Ap < Bp < ∞ with

(6.4) Ap||f ||p ≤
∣∣∣∣( ∞∑

j=−∞
|Sjf |2

)1/2∣∣∣∣
p
≤ Bp||f ||p for all f ∈ Lp(Z).

The following lemma is nearly immediate from (6.4); see [15, 10.1–10.2] for de-
tails.

Lemma 6.3. Let {cj} ∈ �∞. Then ||
∑

j cjSj ||Ap(T )∗ ≤ Cp sup |cj |, where the
constant Cp depends only on p.

Proof of Proposition 6.2. Suppose first that f(0) = 1. It is apparent from the
definition of Ap(T) that there exists a trigonometric polynomial t such that t(0) =
1 and ‖f − t‖Ap

< 1
9Cp

, where Cp is given by Lemma 6.3. Let T denote the support
of the Fourier transform of t. Let {γk(�)} be an infinite subsequence of {γk}. We
will show that {γk(�)f} has a subsequence {γm(�)f} which is not relatively weakly
compact.

We claim it will be enough to show that γ�f does not accumlulate weakly at
0. Indeed, since {γm(�)f} converges to zero as far as the absolutely continuous
measures are concerned, and since evaluation at the absolutely continuous measures
separates points of Ap(T), it will be necessary for {γm(�)f} to accumulate weakly
at 0, if {γm(�)f} is to be relatively weakly compact. Thus it will be enough to
construct an element S of Mp(T) = Ap(T)∗ such that

(6.5) lim inf |〈S, γ�f〉| > 0.

We may assume that m(�) is increasing so rapidly that there exist j(1) < j(2) <
. . . such that, for all � ≥ 1,

m(�) ∈ Ej(�) and(6.6)

m(�) + T ⊂ Ej(�)−1 ∪ Ej(�) ∪ Ej(�)+1.(6.7)
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Let {c�} ∈ �∞. Then∑
�

c�(Sj(�)−1 + Sj(�) + Sj(�+1)) ∈ Mp(T) and(6.8)

‖
∑

�

c�(Sj(�)−1 + Sj(�) + Sj(�+1))‖Mp
≤ Cp sup

�
|c�|,(6.9)

where Cp is given by Lemma 6.3. Also, for all 1 ≤ k0 < ∞,

〈
∑

�

c�(Sj(�)−1 + Sj(�) + Sj(�+1)), γk0t〉 = ck0 and(6.10)

|〈
∑

�

c�Sj(k), γk0(t − f)〉| <
sup |ck|

9
.(6.11)

Taking c� = 1 for all �, and S =
∑

� c�(Sj(�)−1 + Sj(�) + Sj(�+1)), we see that
(6.5) holds, and {γkf} is not relatively weakly compact.

Now suppose that f �= 0, but f(0) = 0. Then there is an x such that f ′ = δx ∗ f
has f ′(0) �= 0. We may assume f ′(0) = 1, so there exists, by the first part of the
proof, γk such that {γkf ′} has no infinite relatively weakly compact subsets. Then
δ−x∗(γkδx∗f) = 〈x, γk〉f for all k. We may replace γk with a subsequence γk(�) such
that 〈x, γk(�)〉 converges. Suppose that {γk(�)f} has a relatively weakly compact
subset, which we may as well assume to be {γk(�)f}. Then

{〈x, γk(�)〉} × {γk(�)f : k ≥ 1}
is relatively compact in T×L∞(µ)∗∗, when the second factor has the weak topology,
and so the diagonal {(〈x, γk(�)〉, γk(�)f)} is also relatively compact in T×L∞(µ)∗∗.
Therefore, the continuuous image of that diagonal, {〈x, γk(�)〉γk(�)f : k ≥ 1}, is
relatively weakly compact, a contradiction. Thus, {γk(�)f} has no relatively weakly
compact subsets. �

A similar argument yields the analogous result for all groups for which there is
a Littlewood-Paley theorem (e.g, R).

We now turn to two versions of Theorem 4.1 for the space Mp = Mp(T) of Lp(T)-
multipliers. Each multiplier M has a Fourier transform, denoted M̂ . We let H be
the element of Mp(T) whose Fourier transform is the characteristic function of the
set of non-negative integers. We first look at the translation of the transforms. In
this circumstance, we find some multipliers that are “WAP” and some that are not.

Proposition 6.4. (1) Let M ∈ Mp(T) be in the closure of the multipliers
whose transforms have finite support. Let {γk} be any infinite subset of
Z. Then {γM : γ ∈ Z} converges weakly to 0.

(2) The only relatively weakly compact subsets of {γH : γ ∈ N} are the finite
sets.

(3) If µ ∈ M(T), then {γµ : γ ∈ Γ} is weakly compact in Mp(T).

Proof. (1) We need a few facts about M∗
p . Consider any sequence {γ�} such that

(6.12) 1 ≤ γ1 and 2γ� ≤ γ�+1.

Because of (6.12), we may apply [15, 10.3.7] to conclude that there exists To ∈ Mp

such that

(6.13) T̂o(n) =

{
1, for n ∈ {γ� : � ≥ 1},
0, otherwise.
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Using Lemma 6.3 and (6.13), we see that for each sequence {c�} of complex num-
bers,

∑
� c�γ� ∈ Ap(T)∗ = Mp(T) and ‖

∑
� c�γ�‖Mp

≤ Cp sup |c�|. Therefore the set
of “restrictions” of the elements of the dual of the multipliers to {γ�} is isomorphic
to �1, that is, if X ∈ M∗

p , then∑
�

|X̂(γ�)| < ∞, so X̂(n) → 0 as |n| → ∞.(6.14)

Now suppose that M is a Lp(T)-multiplier whose Fourier transform has finite sup-
port, say Support M ⊂ [−k, k]. Let X ∈ M∗

p . Then

|〈X, γ�M〉| ≤ (2k + 1) sup
j

|M̂(j)| sup
|n|≥�

|X̂(n)| → 0 as � → ∞,

by (6.14). Hence, γ�M → 0 weakly.
If M is in the closure of the multipliers whose transforms have finite support,

then a 2ε argument shows that |〈X, γ�M〉| → 0 as � → ∞, as required.
(2) The argument here is basically that of Theorem 4.1: we look at an element

of the maximal ideal space of the algebra. We first note that for each f ∈ Ap(T),

lim
n→∞

〈χnH, f〉 = 0 and lim
n→−∞

〈χnH, f〉 = 〈δ0, f〉 = f(0).

Thus,

(6.15) χnH → 0 as n → ∞ and χnH → δ0 as n → −∞,

in the weak* topology σ(Mp, Ap). In an abuse of notation, let χn also denote the
element f ∈ Ap(T) with f(x) = χn(x), x ∈ T, n ∈ Z. Let Ξ+ be any weak*
accumulation point of {χn : n ≥ 0} in M∗

p (this is in the σ(M∗
p , Mp) topology!),

and let Ξ− be any weak* accumulation point of {χn : n ≤ 0}. Then

(6.16) 〈Ξ+, χnH〉 = 1 for n ∈ Z, and 〈Ξ−, χnH〉 = 0 for n ∈ Z.

We separate the positive and negative directions. Positive: let L+ be any weak
accumulation point of {χnH : n ≥ 0}. Then the first equalities of (6.15) and (6.16)
are contradictory: χnH cannot have a weak accumulation point in Mp as n → +∞.
(Indeed, 〈Ξ+, L+〉 = 1, so ‖L+‖Ap

≥ 1. On the other hand, χnH → 0 weak* in
Mp as n → ∞, and weak convergence implies weak* convergence. Hence L = 0, a
contradiction.)

Negative: let L− be any weak accumulation point of {χnH : n ≤ 0}. Then the
second equalities of (6.15) and (6.16) are contradictory.

(3) This is Corollary 6.1. �

If we use translation in T, we have a different result.

Proposition 6.5. Let M = δ0 ∈ Mp(T) be the unit point mass at the identity.
Then {δx ∗ M : x ∈ T} is not relatively weakly compact in Mp.

Proof. Let {x(j)} be a sequence that converges to 0. We shall show that {δx(j)}
is not relatively weakly compact in Mp(T). By evaluating the translates δx at
elements of Ap(T), we see that if {δx(j)} is weakly compact, then we must have
δx(j) → δ0 weakly. We will show that this does not occur. Indeed, by passing to
a subsequence, we may assume that each finite subset of U = {xj} is a Helson
set with Helson constants bounded by 2 (see, e.g., [15, p. 34ff] for this and the
definition of “Helson”). Then for every finite subset V ⊂ U and complex numbers
cv, v ∈ V , there exists f ∈ A(T) = A2(T) such that f(v) = cv for all v ∈ V and
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‖f‖A(T) ≤ 2 supv∈V |cv| (this follows from, e.g., [32, 5.1.3]). Since A2(T) ↪→ Ap(T)
is norm-decreasing, we can take weak* limits to conclude that for every bounded
set {cu ∈ C : u ∈ U}, there exists F ∈ Mp(T)∗ such that 〈F, δu〉 = cu, u ∈ U with
‖F‖M∗

p
≤ 2 supu |cu|. It follows that {δu : u ∈ U} does not converge to δ0 weakly,

and, therefore, that {δu : u ∈ U} is not relatively weakly compact. �

Corollary 6.6. {δx ∗ H : x ∈ T} is not relatively weakly compact in Mp.

Proof. Indeed, suppose that {δx ∗ H : x ∈ T} is relatively weakly compact. Let
H ′ be the element of Mp whose Fourier transform is the characteristic function
of (−∞,−1), so H + H ′ = δ0. Then {δy ∗ H ′ : y ∈ T} would also be relatively
weakly compact, as would be the product {δx ∗ H : x ∈ T} × {δy ∗ H ′ : y ∈ T} (in
Mp×Mp) and the diagonal {(δx ∗H, δx ∗H ′) : x ∈ T}. Since addition is continuous,
{δx ∗ H + δx ∗ H ′ : x ∈ T} = {δx : x ∈ T} would be relatively weakly compact,
contradicting Proposition 6.5. �

7. Orbits of δx ∗ f and γf for f ∈ L1(G)

In this section, we consider L1(G) as our source of functions to be translated or
multiplied. We begin with a simple observation.

Remark 7.1. Let G be a locally compact group with dual group Γ and f ∈ L1(G),
f �= 0. Let O(∗)(f) = {δx ∗ f : x ∈ G} be the set of translates of f . Then the
following are equivalent:

(1) O(∗)(f) is relatively weakly compact in L1(G) (i.e., relatively compact in
the σ(L1(G), L∞(G)) topology).

(2) G is compact.
(3) O(∗)(f) is norm compact.

Furthermore, if G is non-compact, then the only relatively weakly compact subsets
of O(∗)(f) are those sets O

(∗)
E (f) = {δx ∗ f : x ∈ E} with E relatively compact in

G (which are also relatively norm compact).

Proof. (1) ⇒ (2). We suppose that G is not compact. Then whatever the net
xα → ∞, δxα

∗ f → 0 weak*, i.e., in the σ(L1(G), Co(G)) topology. Since f �= 0,
there exists S ∈ L∞(G) and αn → ∞ such that

∫
G

δxαj
f(y)S(y)dy → ‖f‖1, so

δxαj
∗ f �→ 0. Hence, if G is not compact, then O(∗)(f) is not relatively weakly

compact, since the weak and weak* topologies do not agree on O(∗)(f).
(2) ⇒ (3) is trivial, since translation in L1(G) is norm continuous.
(3) ⇒ (1) is trivial.
The final statement is immediate from the proof of (1) ⇒ (2), except for part of

the parenthetical remark, which is immediate from (2) ⇒ (3). �

Proposition 7.2. Let G be a locally compact abelian group with dual group Γ. Let
f ∈ L1(G), f �= 0. Let O(×)(f) = {γf : γ ∈ Γ}. Then the following hold:

(1) G is discrete ⇔ O(×)(f) is norm compact.
(2) O(×)(f) is relatively weakly compact (in the σ(L1(G), L∞(G)) topology).
(3) If G is not discrete, then O(×)(f) ∪ {0} is weakly compact, but not norm

compact.
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Proof. (1) Taking Fourier transforms, we see that we are considering translation
in the Fourier algebra A(Γ). If G is compact, then the continuity of translation
implies that O(×)(f) is norm compact.

Suppose that O(×)(f) is relatively norm compact. Then O(×)(f) would also be
relatively weakly compact and the two topologies would agree on O(×)(f). Suppose
also that G is not discrete, so Γ is not compact. Then if γα is a net in Γ with
γα → ∞, then γαf → 0 weakly, by the Riemann-Lebesgue Lemma. Hence, if
O(×)(f) is norm compact, then γαf only would accumulate at 0. But we can find
ε > 0 and a compact subset E ⊂ G such that |f | > ε on E, and the Haar measure
mG(E) > ε. Suppose that γαf accumulated (in norm) at γ. Then γαχE would
accumulate (in norm) at γχE/f|E . Also, the norm convergence implies that γαχE

would have absolute value 1 a.e. on E. Hence |γ| ≥ ε on E, so the norm and weak
topologies do not agree on O(×)(f). That completes the proof of (1).

(2) This is a special case of Corollary 5.4.
(3) The failure of norm compactness is immediate from (1).
We must identify the weak closure of O(×)(f), when G is not discrete. Let

S ∈ L∞(Γ) = L1(G)∗. Then

〈S, γf〉 =
∫

G

〈γ, x〉f(x)S(x)dx → 0 as γ → ∞,

by the Riemann-Lebesgue Lemma, applied to the L1-function fS. It follows that
the weak closure of O(×)(f) is indeed O(×)(f) ∪ {0}. �

The reader will note that the last paragraph of the preceding proof is a simple
version of Lemma 2.2, as well as being closely related to the argument of Theo-
rem 5.1.

8. Orbits of γf and δx ∗ f , for f ∈ Co(G)

Multiplication in Co(G) characterizes discreteness, as follows.

Proposition 8.1. Let G be a locally compact abelian group. Let f ∈ Co(G), f �= 0.
Then the following are equivalent:

(1) G is discrete.
(2) O(×)(f) = {γf : γ ∈ Γ} is relatively norm compact in Co(G).
(3) O(×)(f) = {γf : γ ∈ Γ} is relatively weakly compact in Co(G).

Proof. (1) ⇒ (2) is trivial: if γα ∈ Γ is any net, then it has a subnet γα(n) that con-
verges pointwise on the (countable) support of f . Hence, γα(n)f converges pointwise
and boundedly on G. A two epsilon argument, using f ∈ Co(G), shows that γα(n)f

converges in norm. A fortiori , the net converges weakly, i.e., in σ(co(G), �1(G)).
(2) ⇒ (3) is trivial.
(3) ⇒ (1). Suppose G is not discrete. Let µ be an absolutely continuous measure

whose support is the support of f . Suppose that γα is a net in Γ that tends to
infinity in Γ. Then γαf → 0 weak* in L∞(µ) (by the Riemann-Lebesgue Lemma).
Of course, this holds for any ν that is absolutely continuous with respect to µ.
Hence, if γαf converges weakly, it converges weakly to 0.

On the other hand, let ω be a Dirichlet probablity measure whose support is
contained in the support of f . Then there exists a net γα → ∞ such that ω(γα) →
‖ω‖ = 1. Hence γαf → f weak* in L∞(ω), so if γαf has a weak accumulation
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point, 0 is not that weak accumulation point. Hence, γαf does not have a weak
accumulation point. �

Remark 8.2. For completeness, we make the trivial observations: let G be a locally
compact abelian group and f ∈ Co(G), f �= 0. Then

(1) {δx ∗ f : x ∈ G} is norm compact iff G is compact.
(2) 0 is in the weak closure of {δx ∗ f : x ∈ G} iff G is not compact. In this

case, {δx ∗ f : x ∈ G} is relatively weakly compact, with 0 as the “point at
infinity”.

9. Weak* limits and the topology of Γ(µ)

We assume in this section that G is a locally compact abelian group with dual
group Γ, and that µ is a finite regular measure on G.

For each µ ∈ M(G), the space of bounded regular Borel measures, let Γ(µ)
denote the image of Γ in L∞(G), let Γ(µ) be the closure of Γ(µ) in L∞(|µ|) in the
weak* topology, and let Γ̃(µ) be the set of elements χ ∈ Γ(µ) with |χ| = 1 a.e. dµ.
See [24, pp. 13, 33, 37].

It follows that Γ(µ) is a compact semi-topological semigroup (in the weak*
topology): multiplication (pointwise of functions) is separately continuous. Thus,
Γ(µ) is a semigroup compactification of Γ (see [2]). It is natural to ask the following
question: given a measure µ, what can we say about Γ(µ)? This question has been
considered quite extensively in [24], leading (among other things) to a new proof of
the Cohen Idempotent Theorem and its generalization to non-abelian groups (see
[23]).

The main results of this section are as follows. First, the simple result that Γ(µ)
and Γ̃(µ) are topological groups (multiplication is continuous in both variables
simultaneously), but Γ(µ) is (in general) only a semitopological semigroup; see
Theorem 9.4.

We show that measures with finite support group are not interesting in this
context in Proposition 9.2.

We consider when Γ(µ) can be metrizable in Proposition 9.3.
Discrete measures are characterized in terms of properties of Γ(µ) (Theorem 9.4).
We answer the question of when Γ̃(µ) or Γ(µ) can be discrete in Theorem 9.5.
We will use the notion of “L-subalgebra”: a norm closed subspace of measures

which is closed under the operation of multiplication by bounded measurable func-
tions.

Proposition 9.1. Let G be a locally compact abelian group and µ ∈ M(G). Then
the multiplications in Γ(µ) and Γ̃(µ) are continuous in both variables simultane-
ously.

Proof. This is a special case of Corollary 2.8. It is also a special case of Proposi-
tion 11.5. �

Proposition 9.2. Let µ be a regular probability measure on the locally compact
abelian group G with dual group Γ. Let A be the symmetric L-subalgebra of M(G)
generated by µ, and let C( Γ(µ)) be the space of bounded continous functions on
Γ(µ). Then the following are equivalent:

(1) The support of µ generates an infinite group.
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(2) Γ(µ) is infinite.
(3) C( Γ(µ)) is infinite dimensional.
(4) C( Γ(µ))/L1(µ)̂ has dimension at least c.
(5) Â is not closed in C(Γ(µ)).

Proof. The equivalence of (1)–(3) is trivial: Γ(µ) is finite if and only if L1(µ) and
L1(µ)̂ are finite dimensional, so C( Γ(µ)) is finite dimensional and C( Γ(µ)) =
L1(µ)̂ . [Because Γ(µ) separates the points of L1(µ), that latter Banach space is
finite dimensional if and only if Γ(µ) is finite if and only if the support of µ generates
an infinite group.]

(2) ⇒ (4). We prove more, namely that (2) implies that C( Γ(µ))/Â has dimen-
sion at least c, where A is the symmetric L-subalgebra generated by µ.

Of course Â is dense in C( Γ(µ)) if A contains an identity, and otherwise the
closure of Â has codimension one in C( Γ(µ)), by the Stone-Weierstrass Theorem.

If Â were not closed in C( Γ(µ)), then C( Γ(µ))/Â has dimension at least c by a
standard theorem in Banach space theory.

If Â is closed in C( Γ(µ)), then the uniform topology on Â and the L1 norm
topology are equivalent, so Â is weakly sequentially complete. Since Â is a C*-
subalgebra of C( Γ(µ)), it must be finite dimensional [7]. Thus, Γ is finite, so G is
finite.

We note that we have also proved that (2) =⇒ (5).
That (4) and (5) each imply (2) is trivial. �

Proposition 9.3. The following hold for µ ∈ M(G), where G is a locally compact
abelian group:

(1) Γ(µ) is metrizable if L1(µ) is separable; the latter occurs if G is separable.
(2) ∆(M(G)) is metrizable iff and only if G is countable.

Proof. (1) This is trivial. (But Γ(µ) can be metrizable when G is not separable:
let G be compact and not separable and let µ be a Haar measure on G.)

(2) If G is not countable, then we can map ∆(M(G)) continuously onto the
Bohr compactification bΓ of Γ by the mapping restricting each multiplicative linear
functional on M(G) to the discrete measures. If G is not countable, then bΓ is not
metrizable, so neither is ∆(M(G)). �

Theorem 9.4. Let G be a locally compact abelian group with dual group Γ and
µ ∈ M(G), µ ≥ 0. Then the following are equivalent:

(1) µ is discrete.
(2) The multiplication in Γ(µ) is jointly continuous.
(3) Γ̃(µ) is compact.

Furthermore, if Γ(µ) is compact, then µ is discrete (though the converse is false).

Proof. (1) ⇔ (2). If µ is discrete, then Γ(µ) = Γ̃(µ) is just a quotient of the Bohr
compactification of Γ, so the multiplication is jointly continuous.

But, if µ is not discrete, then Lemma 2.2 applies, so there exists a net γα which
converges weak* to an element of Γ(µ) which is zero with respect to the continuous
part of µ. This implies that the limit of the product is not the product of the limits:
limα γα γα = 1 everwhere, but limβ limα γα γβ = 0 (with respect to the continuous
part of µ). Therefore the multiplication is not jointly continuous.
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(1) ⇔ (3). If µ is discrete, then, as in the proof of (1), Γ(µ) is compact, so
Γ(µ) = Γ(µ) = Γ̃(µ) is compact. On the other hand, suppose that Γ̃(µ) is compact.
Let H = (Γ̃(µ))̂ . If Λ = (Γ̃(µ)) is compact, then H is discrete. Now, µ̂ is a
positive-definite, continuous function on Λ, so there exists a regular probability
measure µ′ on H with µ̂′ = µ̂ on Γ̃(µ). Since µ has the same Fourier-Stieltjes
transform as µ′, µ = µ′, that is, µ is supported on the discrete group H. The
continuous group homomorphism of Γ → Γ̃(µ) induces an injection of H into G.
Since µ is concentrated on (the image of) H, µ must be a discrete measure.

Finally, if Γ(µ) is compact, then Γ(µ) = Γ(µ) and Γ(µ) has jointly continuous
multiplication. Apply the first part.

Now for a counterexample to show that the converse is false. We let G = T and
µ = δπ/

√
2 . This gives us a discrete measure whose support group is (isomorphic

to) Z. Then Γ(µ) = Z (not compact) and Γ(µ) = T (topologically). �

Theorem 9.5. Let G be a locally compact abelian group with dual group Γ and
µ ∈ M(G), µ ≥ 0. Then the following hold:

(1) It is not the case that G is necessarily discrete if Γ(µ) is compact.
(2) If Γ̃(µ) is countable, then Γ(µ) is discrete.
(3) If Γ(µ) is discrete, then Γ(µ) = Γ̃(µ).
(4) There exist µ ∈ M(T) with Γ(µ) discrete and Γ(µ) �= Γ(µ).

Proof. (1) Let G be the Bohr compactification of Z, and let µ be the unit point mass
at the number 1 ∈ Z (not the identity of G). Then G is compact, and Γ(µ) = T is
also compact.

(2) If Γ̃(µ) is non-discrete, then it is a perfect space (because it is a topological
group, so every point is non-isolated). But Γ̃(µ) is a subset of L1(µ), and its
relative (the norm!) topology agrees with the weak* topology by Lemma 2.6. Of
course, if χj is Cauchy in Γ̃(µ) for the L1-norm topology, then lim χj must also be
unimodular (that is, the absolute value is 1 everywhere), so Γ̃(µ) is closed in the
L1-norm topology. Hence Γ̃(µ) is a perfect complete metric space and therefore not
countable [22, 6.65].

(3) This is an exercise in weak* limits. If Γ(µ) is discrete, then there exist 1 ≤
n < ∞ and ν1, . . . , νn ∈ L1(µ) such that {0} = {γ ∈ Γ(µ) : supj |ν̂j(γ)−ν̂j(0)| < 1}.
Suppose γα → λ is a net in Γ(µ) converging weak* to λ ∈ Γ̃(µ), with λ �∈ Γ(µ). We
can assume that for each β, the set Aβ of α with γα �= γβ is cofinal. [Indeed, just
take a weak* neighbourhood U of λ that does not contain γβ and consider the set
Aβ = {α : γα ∈ U}. Then Aβ is cofinal.]

Then, for each β and each α ∈ Aβ, supj |ν̂j(γα γβ) − ν̂j(0)| ≥ 1. Taking first
the weak* limit in α ∈ Aβ, and then using the continuity of the sup function
(over a finite set), we have supj |ν̂j(λ γβ) − ν̂j(0)| ≥ 1. Now take the limit in β:
supj |ν̂j(λ λ)− ν̂j(0)| ≥ 1, which is absurd. Therefore, we cannot have Γ(µ) �= Γ̃(µ)
when Γ(µ) is discrete.

(4) Consider the Riesz product µ = limn Πn
k=1(1 + cos4kx)dx on T. (The limit

is weak* .) Then Γ(µ) can be identified topologically with Z × {0, 1
2 , 1

4 , 1
8 , . . . }, by

Brown [3]; or see [15, 7.1.2]. �

Theorem 9.6. If Γ(µ) is open in Γ̃(µ) or open in Γ(µ), then Γ(µ) = Γ̃(µ).
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Proof. Suppose first that Γ(µ) is open in Γ̃(µ). Since the multiplication in Γ̃(µ) is
separately continuous, all the cosets of Γ(µ) in Γ̃(µ) are also open. Hence, Γ(µ) is
closed in Γ̃(µ). But Γ(µ) is dense in Γ̃(µ), so Γ(µ) = Γ̃(µ).

If Γ(µ) is open in Γ(µ), then Γ(µ) is open in Γ̃(µ) and hence equal to Γ̃(µ) by
the preceding paragraph. �

10. Full measures and Dirichlet measures

Let G, H be locally compact abelian groups. Suppose that H
i

↪→ G continuously
embeds H as a subgroup of G. Let τ be the topology on G which declares iH to
be an open subgroup of G, with the topology on iH being that inherited from H.
Let GH denote G with that topology.

A non-negative regular Borel measure µ on the locally compact abelian group
G is full [24, p. 35] iff lim supγ→∞ |µ̂(γ)| < ‖µ‖. A regular Borel measure µ on G
is full iff |µ| is full. A measure that is not full is called Dirichlet. These measures
have already been mentioned in Remarks 4.2. Discrete measures and measures
supported on Kronecker sets are Dirichlet.

Remark 10.1. If H is the closed subgroup generated by the support of µ, then Γ(µ)
is topologically isomorphic to Γ/H⊥ iff µ is a full measure in M(H). This is [24,
p. 35, Prop. 2].

Theorem 10.2. Let G be a locally compact abelian group with dual group Γ and
µ ∈ M(G). If either Γ(µ) or Γ̃(µ) is locally compact, then there exists a locally

compact group H and a continuous embedding H
i

↪→ G of H as a subgroup of G
such that

(1) µ ∈ M(GiH),
(2) µ (as a measure on GiH) is supported on iH,
(3) the support of µ (as a measure on iH) generates a dense subgroup of iH,

and
(4) µ is a full measure on iH.

Proof. Suppose first that Γ(µ) is locally compact. Let H be the dual group of
Γ(µ). Then the natural mapping r : Γ → Γ(µ) is onto, and r induces a continuous

embedding H
i

↪→ G, which is one-to-one into. Furthermore r is multiplicative.
First note that µ̂ as a function on Γ(µ) satisfies the Eberlein criterion [32, 1.9.1]

to be the Fourier-Stieltjes transform of a measure ν on H. Furthermore, since L1(µ)̂
separates points of Γ(µ), the group generated by the support of ν must be dense in
H. It is obvious that the induced mapping of measures ǐ : M(H) ↪→ M(G) is such
that ǐν = µ. That establishes (1), (2), and (3) when Γ(µ) is locally compact.

(4) This follows from Remark 10.1: iH is the closed subgroup generated by the
support of iν = µ, and Γ(µ) = Γ(iν) = Ĥ is topologically isomorphic to ĜiH/H⊥,
so µ is indeed a full measure in M(iH).

Suppose now that Γ̃(µ) is locally compact. Let H be the dual group of Γ̃(µ). We
have Γ ↪→ Γ̃(µ), and the image of Γ (which is Γ(µ)) is dense in Γ̃(µ), so the dual
group mapping sends H continuously and one-to-one into G. We now proceed as
in the previous case. �
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Here are some examples related to the preceding result. In the first example, the
subgroup H that Theorem 10.2(2) says exists is the support group of the convolution
of the product �N

j=1 µj .

Remark 10.3. Γ(µ) is locally compact if µ =
∑N

j=1 µj , where the µj are mutually
singular such that for each j there exists a locally compact group topology τj on G
(stronger than the given one) such that µj is a full measure in M(Gτj

).

Proof. This works because the sum is finite: embed Γ(µ) in
∏N

j=1 Γ(µj), using the
mapping γ �→ (γ1, . . . , γN ), where γj is the image of γ in Γ(µj). That product
space is locally compact since each factor is locally compact. Here are some of the
details.

Suppose that N = 1. Let µ be such that there exists a locally compact topology
τ on G such that µ ∈ M(Gτ ) and µ is full as a measure on Gτ . Then Γ(Gτ , µ)
(in the obvious notation) is locally compact. But Γ(Gτ , µ) = Γ(G, µ). That proves
the assertion for N = 1, as well as showing that the product group

∏N
j=1 Γ(µj) is

locally compact when N > 1.
Since the µj are mutually singular, L1(µ) is the direct sum

⊕ N∑
j=1

L1(µj).

It follows easily that the image of Γ(µ) in
∏N

j=1 Γ(µj) is closed, and therefore
locally compact. Indeed, the definition of the weak* topology on Γ(µ) and the
mutual singularity of the µj imply that a net γα converges weak* in Γ(µ) iff γα

converges weak* in Γ(µj) for each j. Therefore, Γ(µ) →
∏N

j=1 Γ(µj) is one-to-one
and continuous. Since the diagonal {γ, . . . , γ) : γ ∈ Γ} in

∏N
j=1 Γ(µj) is closed (the

product being locally compact), Γ(µ) is (isomorphic to) a locally compact group.
�

It is not the case that Γ(µ) is locally compact iff µ =
∑∞

1 µj , where the µj are
mutually singular such that for each j there exists a locally compact group topology
τj on G (stronger than the given one) such that µj is a full measure in M(Gτj

). A
counterexample to that is as follows.

Remark 10.4. Let G =
∏∞

j=1 Gj , where each Gj is a copy of the Bohr compactifi-
cation of R. Let µj be 2−j times Lebesgue measure on [0, 1] ⊂ R (the copy in Gj)
and µ =

∑
µj . Then Γ(µ) =

∑
R, the sum of an infinite number of copies of R,

which is not locally compact. The measure µ is Dirichlet.

Proof. The topology induced on Γ by µ̂ is no weaker than that induced by the set
{µ̂j : 1 ≤ j < ∞}. Since Γ =

∑∞
1 Rd, if a net γα → γ in

∑
R, then γα → γ in

Γ(µ). Now, µ̂(γα) =
∑

µ̂j(γ
(j)
α ), where γα = (γ(j)

α ), so µ̂(γα) → µ̂(γ) if and only if
µ̂j(γ

(j)
α ) → µ̂j(γ(j)) for all j. Thus, convergence in Γ(µ) is the same as convergence

in
∑

R.
To show that µ is Dirichlet, we let γ(k) be the character on G = ΠbR that equals

1 (not the identity 0) in the kth factor and equals the identity in every other factor.
Then γ(k) → ∞, while µ̂(γ(k)) → ‖µ‖. �
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Saying Γ(µ) = Γ̃(µ) is not quite the same as saying “µ is full in G”. Let G be the
Bohr compactification of R, and let µ be Lebesgue measure on [0, 1] considered as
a subset of R ⊂ G. Then µ is not full (because Γ is discrete), but Γ(µ) = Γ̃(µ) = R
as locally compact abelian groups (though, of course, µ is full for the subgroup
iR ↪→ G).

Remark 10.5. Γ̃(µ) may be locally compact without being equal to Γ(µ). Indeed,
let G = T × T and let µ be Lebesgue measure on [0, 1], where we identify R with
the dense subgroup H = {(x,

√
2x) : −∞ < x < ∞} of G. Then Γ(µ) = Z × Z,

while Γ̃(µ) = R.

11. Semigroup compactifications of non-abelian groups

We study some general compactifications of non-abelian locally compact groups.
Let M be a von Neumann algebra and let M∗ be its unique predual. For each

x ∈ M, φ ∈ M∗, write (Lxφ)(y) = φ(xy) and (Rxφ)(y) = φ(yx), y ∈ M. Then
Lxφ, Rxφ ∈ M∗. We denote the unit ball in M by M1 and, of course, |b| = (b∗b)1/2,
b ∈ M . The various powers of |b| belong to M and are denoted either by |b|q or
(b∗b)q/2.

Remarks 11.1. (i) For each φ ∈ M∗,

{Lxφ; x ∈ M1} and {Rxφ; x ∈ M1}
are weakly compact subsets of M∗.

(ii) Any non-void weak*-closed subset Λ of M1 possesses an element a such that
|a| is minimal in |Λ| = {|b| : b ∈ Λ} in the ordering of M+.

(iii) Let {xj} be a sequence in M1 converging to a projection h (a positive
idempotent element). If V is any neighborhood of h, there is a subsequence {xj�

}
such that V contains each product of the form xj0x

ε1
j1

. . . xεn
jn

, for n ≥ 1 and each
choice ε1 = 0,±1 . . . εn = 0,±1, where x0 is defined to be 1, x1 = x and x−1 = x∗.
If the orginal sequence is infinite, we may choose {xj�

} to be infinite. If the elements
of the original sequence are distinct, then the products xj0x

ε1
j1

. . . xεn
jn

are all distinct.

Proof. (i) The map x → Lxφ from M to M∗ is weak*-weak continuous, and M1

is compact in the weak*-topology. Hence {Lxφ; x ∈ M1} is weakly compact.
Similarly {Rxφ; x ∈ M1} is also weakly compact.

(ii) Let Λ′ ⊂ Λ be such that |Λ′| is totally ordered and give Λ′ the order from
|Λ′|. In that ordering, Λ′ possesses a weak* -cluster point φo ∈ Λ. If φ ∈ Λ′, then
φo is a cluster point of the set {ψ ∈ Λ′ : |ψ| ≤ |φ|}. Hence φo ≤ φ. An application
of Zorn’s lemma completes the argument.

(iii) This follows from an adaptation of [24, pp. 65-66]. �

Let σ denote the weak*-topology on M. Let 1 ≤ q < ∞. By the sq-topology on
M we shall mean the locally convex topology determined by the family of seminorms

(11.1) {pφ,q : φ ∈ M∗; φ ≥ 0}, where pφ,q(x) =
(
φ((x∗x)q/2)

)1/q
.

Then, as is known, multiplication is separately continuous on M when M has the
σ-topology and jointly continuous on the unit ball M1 when M1 has the s2-topology;
see Corollary 11.4 below, or [34, p. 18 and p. 21]. Hence (M1, σ) is a compact
semitopological semigroup, and (M1, s1) is a topological semigroup. Note that σ ≤
sq always. But σ and sq do not agree on M1 in general.
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The following extends known results for ∆M(G); see Lemma 2.6 and [24, p. 20,
Lemme 7].

Proposition 11.2. Let p ∈ M1 be a projection. Let Λ = Λ(p) = {x ∈ M1 : x∗x =
p}. Let {γα} be a net in Λ and γ ∈ Λ. Consider the following:

(1) γα → γ weak* .
(2) γα → γ in the s2-topology.
(3) γα → γ in the s1-topology.
(4) For some 1 < q < ∞, γα → γ in the sq-topology.

Then (1) ⇒ (2), and (2)–(4) are equivalent.

Lemma 11.3. Let x, y ∈ M , and let A be a commutative C∗−subalgebra of M
which contains an identity 1. Let φ ∈ M∗, φ ≥ 0, with φ(1) = 1 and ‖φ‖ = 1. Let
1 < r < ∞ and let r′ be the conjugate index: 1

r + 1
r′ = 1. Then the following hold

for x, y ∈ M :

|φ(x∗x)| ≤ φ((x∗x)r)1/rφ(1r′
)1/r′

,(11.2)

φ((x∗x)r/2) ≤ ‖x‖r−1 φ(x∗x)1/2.(11.3)

Proof of Lemma 11.3. For (11.2): this is a version of the Hölder inequality, and
the proof is by using the C∗-algebra generated by x∗x and 1. Then φ restricts to
a probability measure on that C∗-algebra. The proof then proceeds as usual for
measurable spaces [6, p. 120].

For (11.3): use the C∗-algebra generated by x∗x and 1. Then φ restricts to
a probability measure on that C∗-algebra. The proof then proceeds as usual for
measurable spaces. �

Proof of Proposition 11.2. As in the proof of Lemma 2.6, we will show that the
semi-norms pφ,q, 1 ≤ p < ∞, are equivalent on Λ. For this proof, it will be enough
to consider only those φ ≥ 0 with φ(p) = 1.

(1) ⇒ (2). By the assumptions on φ, φ((γ − γα)∗(γ − γα)) = 2 − 2Reφ(γ∗γα).
Then weak* convergence in M implies

φ(γ∗γα) → φ(γ∗γ) = 1,

and (2) follows.
(2) ⇒ (3) is immediate from the Cauchy-Schwarz-Buniakowski inequality:

φ(
(
(γ − γα)∗(γ − γα)

)1/2) = (φ(
(
γ − γα)∗(γ − γα)

)1/2
p)

≤
(
φ((γ − γα)∗(γ − γα))

)1/2(φ(p2))1/2

=
(
φ((γ − γα)∗(γ − γα))

)1/2
.

(3) ⇒ (4). Let 1 < p < ∞. Then

φ(
(
(γ − γα)∗(γ − γα)

)p/2)

= φ(
(
(γ − γα)∗(γ − γα)

)(p−1)/2((γ − γα)∗(γ − γα)
)1/2)

≤ 2p−1φ(
(
(γ − γα)∗(γ − γα)

)1/2).

(4) ⇒ (2). This is immediate from (11.2). �



1156 COLIN C. GRAHAM AND ANTHONY T. M. LAU

Corollary 11.4. Let Λ = Λ(p) and let p be as in Proposition 11.2. Then the
multiplication in Λ is continuous in both variables simultaneously under any of the
topologies (2)–(4) of Proposition 11.2.

In the context of von Neumann algebras, we have the following analogue of
Lemma 2.5.

Proposition 11.5. Let U denote the group of units in M1 (the largest subgroup
containing 1). Then the map M1 ×M1 → M1, (x, y) → xy is jointly continuous at
each (x, u) and (u, x), for x ∈ M1, u ∈ U, when M1 has the σ-topology, and in the
sq-topologies.

Proof. This follows from the Ellis-Lawson Joint continuity theorem; see [33, p. 95]
for the σ-topology, and Proposition 11.2 for the sq-topologies. �

Remark 11.6. The sq-topologies (1 ≤ q < ∞) and the σ-topology agree on the set
of projections in M1. (This is well known: assume the {pα} is a net of projections,
and pσ→σ p, p a projection. Then for any φ ∈ M∗, φ ≥ 0,

φ
(
(pα − p)∗(pα − p)

)
= φ

(
(pα − p)(pα − p)

)
= φ(pα) − φ(ppα) − φ(pαp) + φ(p)
→ 0

by separate continuity in the σ-topology. Hence the σ-topology and the s2-topologies
agree. Now apply the Cauch-Schwarz-Buniakowski inequality and (11.3) to obtain
the equivalance with the sq-topologies.

Let G be a locally compact group and let M be a von Neumann algebra. Let ρ :
G → M be a continuous homomorphism of G into the group of unitary elements in
M with the relative weak* (i.e. σ)-topology. For each φ ∈ M∗, let φ̂(g) = φ

(
ρ(g)

)
,

for g ∈ G. Then clearly φ̂ is a bounded continuous function on G. Furthermore if
a ∈ G, then fa = (Lρ(a)φ)∧. Now the map φ → φ̂ from M∗ into CB(G) is weak-weak
continuous. Using that and Remarks 11.1(i), we conclude that each φ̂ ∈ WAP (G),
the space of continuous weakly almost periodic functions on G. Let ρ(G) denote
the closure of ρ(G) in M in the σ-topology. Then ρ(G) with the σ-topology is a
compact semitopological semigroup, and ρ : G → ρ(G) is a continuous embedding
of G into a dense subset of ρ(G). Hence if G

w
denotes the weakly almost periodic

compactification of G, and i : G → G
w

is the embedding of G in G
w
, then there

exists a continuous homomorphism γ from G
w

onto ρ(G) such that the following
diagram commutes (see [2]):

G −→i G
w

ρ ↘ ↙ γ

ρ(G)

Let N be the σ-closure of the linear span of ρ(G)
σ
, the von Neumann subalgebra

in M generated by ρ(G). Then ρ(G) ⊆ N. Since N∗ = {φ|N : φ ∈ M∗} (see [31,
p. 317]) the σ(N, N∗) and σ(M, M∗) topologies on N are the same. Hence we shall
from now on assume that N = M.
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Proposition 11.7. For each x ∈ ρ(G), the restriction of the multiplication of ρ(G)
to x ρ(G)× ρ(G) is jointly continuous at (x, s), for each s ∈ ρ(G) in the σ-topology
and in the sq-topologies.

Proof. σ-topology: this follows from the fact that the group of units in ρ(G) (which
contains ρ(G)) is dense in ρ(G) and [33, p. 70].

sq-topologies: immediate from Proposition 11.2. �

Corollary 11.8. Let 1 be the identity in M. Then the multiplication in ρ(G)
is jointly continuous at (1, 1) in the σ-topology and the sq-topologies (note that
ρ(e) = 1).

Corollary 11.9. The identity map i is continuous from
(
ρ(G), σ

)
to

(
ρ(G), s2

)
at 1 in the σ and sq-topologies.

Proof. Let xα ∈ ρ(G) such that xα→σ 1. Let φ ∈ M∗, φ ≥ 0. Then

φ
(
(xα − 1)∗(xα − 1)

)
= φ(x∗

αxα) − φ(x∗
α) − φ(xα) + φ(1) → 0

by Corollary 11.8. It follows that φ(|xα − 1|) → 0. Hence, we have the limit in σ
(weak*). Now apply Lemma 2.6. �

For each φ ∈ M∗, let LO(∗)(φ) = {Lρ(g)φ; g ∈ G} and let RO(∗)(φ) = {Rρ(g)φ;
g ∈ G}. By Remarks 11.1(i), both LO(∗)(φ) and RO(∗)(φ) are relatively weakly
compact subsets of M∗. For φ ∈ M∗, define a seminorm of M by

nφ(x) = sup
{
|φ

(
ρ(g)x

)
|; g ∈ G

}
.

Let τ be the locally convex topology on M determined by all the seminorms
{nφ : φ ∈ M∗}. Then, clearly τ is stronger than σ. Also by the Mackey-Arens
Theorem, τ is a topology of the dual pair (M, M∗), i.e. the continuous linear
functionals on M with respect to τ are also the set M∗.

Proposition 11.10. Let G be as above. Then the following hold:

(1) The action of G on ρ(G), defined by (g, x) → ρ(g)x, g ∈ G, x ∈ ρ(G), is
jointly continuous when ρ(G) has the σ-topology.

(2) The action above is equicontinuous when ρ(G) has the τ -topology.
(3)

(
ρ(G), σ

)
is a topological group.

Proof. The first and last items follow from Proposition 11.5.
The second follows from the simple observation that pφ(g · x) = pφ(x) for each

φ ∈ M∗, g ∈ G. �

Remark 11.11. It is easy to see that ρ(G) has jointly continuous multiplication in
the σ-topology if and only if ρ(G) is a compact group.

Let ρ(G)
+

denote the set of positive elements in ρ(G).

Proposition 11.12.
(
ρ(G)

+
, σ

)
is compact, contains the identity element of M

and for each x ∈ ρ(G), |x|2 = x∗x ∈ ρ(G)
+
. In particular if p ∈ ρ(G) is a

projection, then p ∈ ρ(G)
+
.
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Proof. Since ρ(G)
+

=: ρ(G)∩M+, and M+ is σ-closed [34, p. 14], ρ(G)
+

must be
compact in the σ topology. Also, if x ∈ ρ(G), let {ρ(gα)} be a net converging to x

in the σ-topology; then ρ(gα)∗ = ρ(g−1
α ) → x∗ in the σ-topology. Hence x∗ ∈ ρ(G).

So x∗x ∈ ρ(G) and x∗x ≥ 0, i.e. x∗x ∈ ρ(G)
+

. �

Proposition 11.13. If ρ(G) consists of partial isometries, then the set of projec-
tions in ρ(G), ρ(G)e forms a commutative semitopological semigroup.

Proof. We may assume that M acts on a Hilbert space H. Now if p, q ∈ ρ(G)e, then
pq, qp ∈ ρ(G). Hence they are partial isometries. Now if ξ ∈ H, then ‖pq(ξ)‖ =
‖ξ‖ ⇐⇒ qξ = ξ = pξ and so pqξ = ξ. (Indeed, if ‖pqξ‖ = ‖ξ‖, then ‖q(ξ)‖ ≥
‖pq(ξ)‖ = ‖ξ‖. So ‖q(ξ)‖ = ‖ξ‖, i.e. q(ξ) = ξ. Consequently, ‖pq(ξ)‖ = ‖p(ξ)‖ =
‖ξ‖, i.e. p(ξ) = ξ.) Similarly ‖pq(ξ)‖ = ‖ξ‖ ⇐⇒ p(ξ) = ξ = q(ξ) and so qp(ξ) = ξ.

Hence pq = qp. Also (pq)∗ = pq and (pq)2 = pq, i.e. pq ∈ ρ(G)e. Hence ρ(G)e is a
commutative semigroup. �

Corollary 11.14. If ρ(G)
+

consists of projections, then ρ(G)
+

is a compact
commutative topological semigroup.

Proof. In this case, for each x ∈ ρ(G), x∗x ∈ ρ(G)
+
. Hence x is a partial isometry.

To see that multiplication on ρ(G)
+

is jointly continuous, we note that the WOT

(weak operator topology) agrees with the σ-topology on ρ(G)
+

since σ is stronger
than the WOT ; ρ(G)

+
is σ-compact and WOT is Hausdorff. Also the WOT

agrees with the SOT (strong operator topology) on ρ(G)
+

since ρ(G)
+

consists of
projections. Hence σ-topology and the SOT agree on ρ(G)

+
, and multiplication

is jointly continuous with respect to the SOT as readily checked. �

12. Problems

(1) For f ∈ Ap(G), is it the case that {δx ∗ f : x ∈ G} is relatively weakly
compact iff either f = 0 or G is compact?

(2) For f ∈ Ap(G) and abelian G, is it the case that {γf : γ ∈ Ĝ} is relatively
weakly compact iff f = 0 or the dual group Ĝ is compact? The proof of
Proposition 6.2 says the answer is “Yes” if there is a Littlewood-Paley
theory; what about the general case?

(3) For which Lp-multipliers M on T is {γM : γ ∈ Z} relatively weakly com-
pact? What if M̂ vanishes at infinity but is not in the closure of the
trigonometric polynomials? See Proposition 6.5.

(4) For which measures µ ∈ M(T) is it the case that {δx∗µ : x ∈ T} is relatively
weakly compact in Mp(T)?

(5) Let Uα be a weakly convergent net of unitary elements of a von Neuman
algebra. Is the limit element unitary?

(6) Let G be a compact group with Fourier algebra A(G) and von Neumann
algebra V N(G) = A(G)∗. If S ∈ V N(G) is such that O(∗)(S) = {δx ∗ S :
x ∈ G} is relatively weakly compact, is S in the norm closure of L1(G) in
V N(G)? (The converse is evident: O(∗)(S) is norm compact.)

(7) Let {ρ, H} be a continuous unitary representation of G. What is the struc-
ture of ρ(G) ⊂ B(H) in terms of ρ?
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(8) Is there a theory for relatively weak* compact sets?
(9) If G is a locally compact group and P ∈ V N(G) is a projection and a net

of left translates Lxα
P → T weakly, what can we say about T?

(10) Does µ tame ⇒ Γ(µ) is locally compact?
(11) What is the structure of Γ̃(µ)/Γ(µ)?
(12) What are the idempotents in Γ(µ)?
(13) What are the minimal ideals in Γ(µ)?
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