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ON ALGEBRAIC σ-GROUPS

PIOTR KOWALSKI AND ANAND PILLAY

Abstract. We introduce the categories of algebraic σ-varieties and σ-groups
over a difference field (K, σ). Under a “linearly σ-closed” assumption on (K, σ)
we prove an isotriviality theorem for σ-groups. This theorem immediately
yields the key lemma in a proof of the Manin-Mumford conjecture. The present
paper crucially uses ideas of Pilay and Ziegler (2003) but in a model theory
free manner. The applications to Manin-Mumford are inspired by Hrushovski’s
work (2001) and are also closely related to papers of Pink and Roessler (2002
and 2004).

1. Introduction

The notion of an algebraic σ-variety over a difference field (K, σ) generalizes the
notion of an algebraic variety equipped with a self-map. So, if K is an algebraically
closed field, and σ an automorphism of K by an algebraic σ-variety (over (K, σ)),
we mean an algebraic variety X over K together with a morphism φ from X to Xσ,
sometimes assumed to be dominant. The category of algebraic σ-varieties over a
difference field (K, σ) belongs entirely to algebraic geometry, but captures some of
the geometry of difference equations. A trivial σ-variety is one of the form (X, id),
where X is defined over the fixed field of σ. The main result of this paper (Theorem
3.7) is an “isotriviality” theorem for algebraic σ-groups over a “linearly σ-closed”
difference field (K, σ): Assume (G, φ) to be a separable algebraic σ-group, and X a
σ-subvariety of G which generates G (all defined over K). Then there is a normal
algebraic σ-subgroup N < Stab(X) of G such that (G/N, φ/N) is isomorphic to
a trivial algebraic σ-group, again with N and the trivializing isomorphism defined
over K. The result thus ties up with both issues of descent (to the fixed field of σ)
and “periodicity” of φ.

The “linearly σ-closed” assumption on (K, σ) is that K is algebraically closed
and that linear difference equations over (K, σ) have “enough solutions” in K. The
proof of the isotriviality theorem (Theorem 3.7) is elementary, and makes use of a
higher Gauss map. It is an adaptation of the more model-theoretic proofs in [10],
but the construction also appears in [1].

In section 4 we point out how Theorem 3.7 yields an elementary proof of the
Manin-Mumford conjecture concerning the intersection of a subvariety X of a semi-
abelian variety A with the torsion subgroup of A. In that section we will go into
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more detail regarding the connection with other work and the benefits or even
superiority of our methods.

Both authors would like to thank the organizers of the Arizona Winter School in
Logic and Number Theory (March 2003) where some of the work presented here was
done. Thanks also to the referee for his/her helpful comments on the organization
and emphasis of the paper.

2. Algebraic σ-varieties and their basic properties

Let K be an algebraically closed field, which we often assume to have an un-
countable transcendence degree. Let Fr denote the Frobenius map Fr(x) = xp on
K in case K has characteristic p > 0.

We identify an algebraic variety X over K with its set of K-rational points.
Let us fix an automorphism σ of K (so (K, σ) is a difference field). Let C denote

the fixed field {x ∈ K : σ(x) = x} of σ. For X a variety over K, Xσ is the variety
over K obtained from X by applying σ to the coefficients of the defining data of X.
Likewise, if f : X → Y is a rational map defined over K, we obtain fσ : Xσ → Y σ.
Note that if X is a quasiprojective variety over K, then Xσ = σ(X).

By an algebraic σ-variety we mean a pair (X, φ), where X is a variety over K
and φ : X → Xσ is a morphism defined over K.

We will be interested in several classes of σ-varieties (all maps mentioned below
are assumed to be defined over K):

(X, φ) is said to be dominant if φ is dominant, namely φ(X) is Zariski-dense in
Xσ.

(X, φ) is separable if φ is dominant and separable.
(X, φ) is trivial if X is defined over C and φ is the identity on X.
A σ-morphism between (X, φ) and (Y, ψ) is a morphism f : X → Y such that

the following diagram is commutative:

X
f−−−−→ Y

φ

⏐
⏐
�

⏐
⏐
�ψ

σ(X) −−−−→
fσ

σ(Y )

Note that the composition of σ-morphisms is also a σ-morphism, so that the family
of σ-varieties becomes a category.

A σ-variety (X, φ) will be called σ-isotrivial if it is σ-isomorphic to a trivial
σ-variety.

A σ-rational map from (X, φ) to (Y, ψ) is a rational map f : X → Y such that
fσ ◦ φ = ψ ◦ f holds on a Zariski-dense Zariski open subset of X. If (X, φ) is a
σ-variety, by a (closed) σ-subvariety of (X, φ) we mean a (closed) subvariety Y of X
such that φ(Y ) ⊆ Y σ, namely, such that (Y, φ|Y ) is a σ-variety itself. We will call a
σ-subvariety Y of (X, φ) dominant (separable) if (Y, φ|Y ) is dominant (separable).

We will say that (X, φ) is an irreducible σ-variety if X is irreducible as an
algebraic variety.

The following summarizes some straightforward facts about the category of σ-
varieties.
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Lemma 2.1. Let (X, φ) and (X ′, φ′) be σ-varieties and f : X → X ′ a σ-morphism.
(i) If (X, φ) is σ-trivial, and Y is a subvariety of X, then Y is a σ-subvariety if

and only if Y is defined over C. In particular a σ-subvariety of a trivial σ-variety
is itself trivial.

(ii) The Zariski-closure of f(X) is a σ-subvariety of (X ′, φ′).
(iii) If Y ′ is a σ-subvariety of (Y ′, φ′), then f−1(Y ′) is a σ-subvariety of (X, φ).
(iv) {(x, y) ∈ X × X : f(x) = f(y)} is a σ-subvariety of (X × X, φ × φ).
(v) If Y1, Y2 are σ-subvarieties of (X, φ), then so are Y1 ∪ Y2 and Y1 ∩ Y2.
(vi) Suppose f is dominant, (X ′′, φ′′) is a σ-variety, g : X ′ → X ′′ is a morphism

(of varieties), and g ◦ f is a σ-morphism between (X, φ) and (X ′′, φ′′). Then g is
also a σ-morphism from (X ′, φ′) to (X ′′, φ′′).

(vii) The “σ-rational map” analogues of (ii), (iii), (iv) and (vi) hold.

Proof. (i) So our assumption is that X is defined over C and φ = id. Right to left
is clear.

Left to right: Assume Y is a σ-subvariety of (X, id). So Y σ = Y . Let c be a
finite tuple from K generating the field of definition of Y . So σ(c) = c, whereby
the tuple c is from C and Y is defined over C.

(ii) Let Z be the Zariski-closure of f(X). Then Zσ is the Zariski-closure of
fσ(Xσ). For x ∈ X,

φ′(f(x)) = fσ(φ(x)) ∈ fσ(Xσ) ⊆ Zσ.

So φ′(z) ∈ Zσ for all z ∈ Z, as f(X) is Zariski-dense in Z.
(iii) If x ∈ f−1(Y ), then

fσ(φ(x)) = φ′(f(x)) ∈ Y σ.

Hence

φ(x) ∈ (fσ)−1(Y σ) = (f−1(Y ))σ.

(iv) follows from (iii), since the diagonal is a σ-subvariety of (X ′ × X ′, φ′ × φ′).
(v) This is immediate.
(vi) Let x ∈ X and x′ = f(x). Then φ′(x′) = fσ(φ(x)). Hence

gσ(φ′(x′)) = gσ ◦ fσ(φ(x)) = (g ◦ f)σ(φ(x)) = φ′′(g(f(x)) = φ′′(g(x′)).

As f(X) is Zariski-dense in X ′, we see that for all x′ ∈ X ′, gσ(φ′(x′)) = φ′′(g(x′)),
and g is a σ-morphism.

(vii) The same proofs work.
By an algebraic σ-group, we mean an algebraic group G (over K) together with

a homomorphism of algebraic groups, φ : G → Gσ (also defined over K). Equiva-
lently, an algebraic σ-group is a group object in the category of algebraic σ-varieties,
namely an algebraic σ-variety (G, φ) such that G is an algebraic group, and the
group operation is a σ-morphism from (G × G, φ × φ) to (G, φ).

By a σ-homomorphism of algebraic σ-groups we mean the obvious thing, a ho-
momorphism of algebraic groups which is also a σ-morphism. Likewise for a σ-
subgroup of an algebraic σ-group.
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For an algebraic group G, and subvariety X, Stab(X) denotes as usual {g ∈ G :
gX = X}, an algebraic subgroup of G.

We begin by compiling some easy facts about σ-groups.

Lemma 2.2. Let (G, φ) be an algebraic σ-group, H a σ-subgroup of (G, φ), and X
an irreducible dominant σ-subvariety of (G, φ). Then:

(i) Stab(X) is a σ-subgroup of (G, φ).
(ii) The principal homogeneous space G/H has the structure of a σ-variety such

that the action of G on G/H is a σ-morphism. If moreover H is normal, then G/H
with its σ-variety structure is an algebraic σ-group.

(iii) If φ is dominant (so surjective), then Z(G), the center of G is a σ-subgroup.
(iv) The connected component H0 of H is a σ-subgroup of (G, φ).

Proof. (i) Let g ∈ Stab(X) and x ∈ X. Then φ(g)φ(x) = φ(gx) ∈ Xσ. As φ(X) is
Zariski-dense in Xσ, φ(g) ∈ Stab(Xσ) = (Stab(X))σ.

(ii) Note that (G/H)σ = Gσ/Hσ. Define

φ/H : G/H → (G/H)σ, φ/H(gH) := φ(g)Hσ.

Then it is easily checked that (G/H, φ/H) is a PHS for (G, φ) in the category of
algebraic σ-varieties.

(iii) As φ : G → Gσ is surjective, φ(Z(G)) ⊆ Z(Gσ) = (Z(G))σ.
(iv) Clearly φ(H0) is a connected algebraic subgroup of Hσ, hence contained in

(Hσ)0 = (H0)σ.

The next lemma requires a little more work.

Lemma 2.3. Suppose that (G, φ) is a σ-group, (Y, id) is a trivial σ-variety and
h : Y → G is a dominant σ-rational map. Then (G, φ) is σ-isotrivial.

Proof. Note that the connected component of G is a σ-subgroup of (G, φ). Likewise
every irreducible component of Y is (trivially) a σ-subvariety of (Y, id). Hence we
may and will assume that Y and G are irreducible. Let W be the Zariski-closure
of {(x, y) ∈ Y × Y : h(x) = h(y)}. By Lemma 2.1(iv), W is a σ-subvariety of
(Y × Y, id), so by Lemma 2.1(i) is defined over C. Let k0 be a countable subfield
of C over which Y and W are defined. Let K0 be a countable field containing k0

over which (G, φ) and h are defined. Note that for x, y generic points of Y over K0,
(x, y) ∈ W if and only if h(x) = h(y). It follows that the restriction of W to generic
points of Y over k0 is an equivalence relation. Hence there is an irreducible variety
Z defined over k0 and a dominant rational map h′ : Y → Z defined over k0 such
that for x, y ∈ Y , each generic over K0, h′(x) = h′(y) if and only if h(x) = h(y).
Note that h is a σ-rational dominant map between the trivial σ-varieties (Y, id)
and (Z, id). Clearly we obtain a σ-birational isomorphism h′′ between (Z, id) and
(G, φ). The pullback of the group operation on G to Z then gives a generically
associative and invertible σ-rational map ∗ : Z ×Z → Z. Again by Lemma 2.1, ∗ is
defined over C. A classical theorem of Weil [15] then yields a connected algebraic
group H defined over C and a birational isomorphism (defined over C) between Z
and H which takes ∗ to the group operation of H. Putting everything together we
obtain a σ-birational isomomorphism between (G, φ) and (H, id) which takes the
group operation of G to that of H. This clearly extends to a σ-isomorphism of
σ-groups between (G, φ) and (H, id), which completes the proof.
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We will need one more σ-isotriviality result, for which the following well-known
fact about algebraic groups is needed.

Lemma 2.4. Let G be a connected algebraic group, and U the unipotent radical of
the maximal normal linear subgroup L of G. Let n > 0, and let Gn be the connected
algebraic subgroup of G generated by {xn : x ∈ G}. Then Gn ∪ U generates G.

Proof. In the characteristic zero case Gn already equals G, but we give a proof
valid in all characteristics.

Note that Gn projects onto the abelian variety G/L. Hence we may assume that
G = L is linear. Now G/U is reductive, and hence by [6], Exercise 12, is generated
by its semisimple elements. For any semisimple s ∈ G/U there is semisimple s′ ∈ G
such that s′/U = s. By [6], 15.3, s′ is contained in a maximal algebraic torus T of
G. But Tn = T . Hence Gn projects onto G/U , and we are finished.

The next lemma is obvious.

Lemma 2.5. Let τ be an automomorphism of K which commutes with σ. Then for
any σ-variety (X, φ), (Xτ , φτ ) is also a σ-variety. Moreover (X, φ) is σ-isotrivial
if and only if (Xτ , φτ ) is σ-isotrivial.

Proposition 2.6. Let (G, φ) be a connected σ-group, and f : (G, φ) → (H, id) a
surjective σ-homomorphism with finite kernel. Then (G, φ) is σ-isotrivial.

Proof. To begin with, let us note that as f is an n-to 1 homomorphism (some n)
and fσ : Gσ → H is likewise, and fσ = f ◦ φ, it follows that φ is a bijective
homomorphism G → Gσ. (In fact as the referee noted, a degree counting argument
shows that φ is an isomorphism of algebraic groups.)

We first prove:

Claim 1. The proposition is true if G is unipotent.

Proof. So assume G to be unipotent and connected and (G, φ) to be a σ-group. We
show by induction on dim(G) that (G, φ) is σ-isotrivial. By Lemma 2.2(iii) and (iv)
Z(G)0 is a normal σ-subgroup of (G, φ), and as G is unipotent, dim(Z(G)0) > 0.
Now let L be the subgroup of Z(G)0 consisting of elements of order p. Then
L is an infinite connected normal σ-subgroup of (G, φ). We will first show that
(L, φ|L) is σ-isotrivial. By Proposition 11, Chapter VII of [14], L is a vector group,
namely isomorphic (over K) to Kd for some d. Hence replacing L by Kd we may
assume that Lσ = L, hence φ|L is an (abstract) automorphism of the group L. Our
assumptions give us a finite-to-one homomorphism f ′ from (L, φ|L) onto a trivial σ-
group. So φ fixes ker(f ′) setwise and induces the identity on L/Ker(f ′). It follows
easily that Fix(φ|L) = {x ∈ L : φ(x) = x} is a subgroup of L of finite index. As L
is connected, φ is the identity on L. We have shown that L is σ-isotrivial.

By induction hypothesis (G/L, φ/L) is σ-isotrivial. By Lemma 2, Chapter VII
of [14], the projection π : G → G/L has a rational section s. As π is a σ-
homomorphism, s is a σ-rational map. As G is generated by L and the image
of s, it follows that (G, φ) is σ-isotrivial. We have proved Claim 1.

We now return to the general case. Let N = ker(f). Then N is central (as G
is connected). Let n = |N |. Thus the n-th power map g �→ gn induces a function
s : H → G (such that f(s(g)) = gn), which is clearly constructible.
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Claim 2. sσ = φ ◦ s.

Proof. The graph of s is {(f(g), gn) : g ∈ G}. As f is a σ-morphism and H is σ-
trivial, we have that f(g) = fσ(φ(g)) for all g ∈ G. Hence for g ∈ G, (f(g), φ(g)n)
is in the graph of sσ, which suffices.

As s is constructible there is some k ≥ 0 and a rational map s′ : H → Frk(G) such
that (generically) s coincides with the composition of s′ with Fr−k : Frk(G) → G.
By Lemma 2.4, (Frk(G), Frk(φ)) is a σ-group. It follows from Claim 2 that s′ is
a σ-rational map (from (H, id) to (Frk(G), Frk(φ))). By Lemma 2.3, the algebraic
subgroup of Frk(G) generated by im(s′) is a σ-isotrivial σ-subgroup. As im(s′) =
Frk(im(s)) we conclude by 2.4 that:

Claim 3. The algebraic subgroup of G generated by im(s) is a σ-isotrivial σ-
subgroup.

Now let U be the unipotent radical of the linear part of G.

Claim 4. U is a σ-isotrivial σ-subgroup of (G, φ).

Proof. Clearly Uσ is the unipotent radical of the linear part of Gσ. Moreover the
bijective homomorphism φ takes U to the unipotent radical of Gσ. This shows that
U is a σ-subgroup of G. By Claim 1, (U, φ|U) is σ-isotrivial.

As im(s) = {gn : g ∈ g}, it follows from Claims 3 and 4 together with Lemma
2.4 that (G, φ) is σ-isotrivial.

3. Linearly closed difference fields

and an isotriviality theorem

In this section we will we define a genericity property (for (K, σ)) which allows us
to prove an important isotriviality theorem for algebraic σ-groups. This isotriviality
theorem has its origin in Proposition 4.3 of Hrushovski’s [4] which has come to be
known as the “socle theorem”.

Definition 3.1. Let (K, σ) be a difference field.
(i) By a σ-module over (K, σ) we mean a finite-dimensional vector space V over

K together with an additive automorphism Φ : V → V such that

Φ(cv) = σ(c)Φ(v) for all v ∈ V and c ∈ K.

(Equivalently, a σ-module over (K, σ) is a left module for for the noncommutative
ring K[σ].)

(ii) We say that (K, σ) is linearly closed if (K is algebraically closed and) for any
σ-module (V, Φ) over (K, σ), we can find a basis for V over K consisting of vectors
v ∈ V such that Φ(v) = v.

Remark 3.2. A σ-module over (K, σ) can be thought of as yielding the linear differ-
ence equation Φ(v) = v over (K, σ), and linear closedness of (K, σ) means that we
can always find over K a “fundamental system of solutions” of such an equation.

Definition 3.3. A difference field (K, σ) is said to be existentially closed if any
finite system of difference equations and inequations over K with a solution in some
difference field extension of (K, σ) already has a solution in K.
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Fact 3.4. The difference field (K, σ) will be linearly closed in either of the following
cases:

(i) (K, σ) is existentially closed,
(ii) K is an algebraically closed field of characteristic p > 0, and σ is some

integer power of the Frobenius.

Proof. Let (V, Φ) be a σ-module over (K, σ), where dimK(V ) = n, say. After
choosing a basis v1, ..., vn for V over K, this σ-module becomes (Kn, Aσ), where
A is the (invertible) n×n matrix over K such that Φ((v1, ..., vn)t) = A(v1, ..., vn)t.
So to prove that V has a basis consisting of solutions of Φ(v) = v, it suffices to find
a nonsingular n × n matrix B over K such that Aσ(B) = B. Equivalently,

(*) find B ∈ GL(n, K) such that A = B−1σ(B).
Case (i). We can easily solve A = X−1σ(X), X ∈ GL(n,−) in some difference

field extension of (K, σ). Namely, simply extend σ to an automorphism of the
function field of GL(n,−) over K by putting σ(X) = AX. So assuming (K, σ) to
be existentially closed, we find a solution in GL(n, K).

Case (ii). Suppose first that σ is a positive power of the Frobenius, say σ(x) = xq.
Then we can find B as in (*) by for example Proposition 3 of [14] which says that
for a connected algebraic group G defined over Fq the map taking g ∈ G to g−1σ(g)
is surjective. Equivalently, use that fact that H1(k, GL(n)) is trivial for k perfect.

The general case (where σ is a possibly negative power of the Frobenius) follows
because any power of the Frobenius yields a bijection GL(n, K) → GL(n, K).

We now point out that a σ-module over (K, σ) is really the same thing as a
“σ-vector group”. Recall that a vector group G over an algebraically closed field
K is simply an algebraic group over K which is isomorphic (as an algebraic group)
to some power of the additive group. As such G has the structure of a vector space
over K. By a σ-vector group over (K, σ) we mean a vector group G over K together
with an isomorphism (of vector groups, so K-linear), φ : G → Gσ. Note that if V
is a vector group, then Gr(V ), the set of linear subspaces of V has the structure
of an algebraic variety, and GL(V ) the group of linear transformations of V has
the structure of an algebraic group. If (V, φ) is a σ-vector group, then Gr(V ) is
equipped with the structure of a σ-variety (Gr(V ), Gr(φ)), where if W is a linear
subspace of V , (Gr(φ))(W ) = φ(W ) a linear subspace of V σ. Likewise, GL(V )
acquires an algebraic σ-group structure (GL(V ), GL(φ)), where for α ∈ GL(V )),
and v ∈ V σ, ((GL(φ))(α))(v) = φαφ−1(v).

Fact 3.5. Suppose (K, σ) is linearly closed, and (V, φ) is a σ-vector group. Then
(i) (V, φ) is isotrivial, in fact is linearly isomorphic to a trivial σ-vector group.
(ii) Both (Gr(V ), Gr(φ)) and (GL(V ), GL(φ)) are also isotrivial.

Proof. (i) Note that (V, φ−1σ) is a σ-module over (K, σ). By Fact 3.4, let v1, .., vn

be a basis of V consisting of solutions of φ−1σ(v) = v, namely of φ(v) = σ(v). This
basis gives rise to an isomorphism f : V → Kn, which is a σ-isomorphism between
(V, φ) and (Kn, id).

(ii) follows directly. �

Lemma 3.6. Let (G, φ) be a separable σ-group. Then (G/Z(G), φ/Z(G)) is σ-
isotrivial.

Proof. By Lemma 2.2(ii) and (iii), (G/Z(G), φ/Z(G)) is a σ-group and the quotient
map from G to G/Z(G) is a σ-homomorphism.
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Let V denote the Lie algebra (tangent space to identity) of G, and let AdG :
G → GL(V ) be the adjoint representation. Note that V σ is the Lie algebra of Gσ.
As φ : G → Gσ is separable, its differential φ′ : V → V σ is an isomorphism (of
K-vector spaces), whence (V, φ′) is a σ-vector group. By Fact 3.5, (GL(V ), GL(φ′))
is an isotrivial algebraic σ-group. It is rather easy to see that AdG is actually a σ-
homomorphism from (G, φ) to (GL(V ), GL(φ′)). As ker(AdG) = Z(G), we obtain
a σ-embedding

ψ : (G/Z(G), φ/Z(G)) → (GL(V ), GL(φ′)).
By Lemma 2.1 and Fact 3.5(ii), the image of (G/Z(G), φ/Z(G)) under ψ is σ-
isotrivial.

Here is our “isotriviality theorem” for σ-groups.

Theorem 3.7. Let (G, φ) be a separable algebraic σ-group, and X an irreducible
σ-subvariety of G which contains the identity and generates G. Then there is a
normal connected σ-subgroup N of (G, φ) such that N < Stab(X) and (G/N, φ/N)
is isotrivial.

Proof. First we recall the generalized Gauss map (see [12] and [10]). Suppose H
is an algebraic group, and W an irreducible subvariety of H. Let V be the r-jet
of H at the identity, for some r ≥ 1. (If r = 1, V is the tangent space.) Let
FW : W → Gr(V ) be defined by: FW (x) is the image of the r-jet at the identity
of the variety x−1W in V , a linear subspace of V . FW is a rational map, and
for r sufficiently large, after quotienting by Stab(W ), FW becomes a birational
embedding. Note also that W/ Stab(W ) is Zariski-closed in G/ Stab(W ).

We now return to the context of the theorem. As φ is finite and separable,
it induces a linear isomorphism φ′ from V to V σ, where V is the r-jet of G at
the identity for sufficiently large r. So (Gr(V ), Gr(φ′)) is a σ-variety. It is easy
to check that Gr(φ′) ◦ FX = FXσ ◦ (φ|X). Thus FX is a σ-rational map from
(X, φ|X) to (Gr(V ), Gr(φ′)). By Lemma 2.2(i) and (ii), (G/ Stab(X), φ/ Stab(X))
is a σ-variety and the quotient map G → G/ Stab(X) is a σ-morphism. By Lemma
2.1(vii), the birational embedding X/ Stab(X) → Gr(V ) is σ-rational. By Fact 3.5
(Gr(V ), Gr(φ′)) is isotrivial. By Lemma 2.1(i) and (ii) we conclude that X/ Stab(X)
is σ-birational with a trivial σ-variety.

By Lemmas 2.1(v) and 2.2(iii), Stab(X) ∩ Z(G) is a σ-subgroup of G which
is clearly normal. Let N ′ denote this subgroup. By Lemma 2.1(v) the natural
embedding of G/N ′ in G/ Stab(X) × G/Z(G) is a σ-embedding. By the previous
paragraph X/ Stab(X) is σ-birational with some trivial (Y, id). So X/ Stab(X) ×
G/Z(G) is σ-birational with Y × (G/Z(G)), which is σ-isotrivial. We clearly obtain
a σ-birational isomorphism of X/N ′ with a σ-subvariety of Y × (G/Z(G)), and so
by Lemma 2.1, we see that X/N ′ is σ-birational with a trivial σ-variety. But X/N ′

generates G/N ′, so we easily find some trivial σ-variety and a dominant σ-rational
map from it to G/N ′. We conclude by Lemma 2.3 that (G/N ′, φ/N ′) is σ-isotrivial.
Let N be the connected component of N ′. Then by Proposition 2.6, G/N is also
σ-isotrivial.

4. On φ-invariant subvarieties of semiabelian varieties

and the Manin-Mumford conjecture

In this section we give some applications of the general formalism of algebraic
σ-groups and in particular of Theorem 3.7. Our main result here is Proposition
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4.1(i) and (ii), which concerns algebraic groups G equipped with an isogeny φ, and
φ-invariant subvarieties X of G. This corresponds to Propositions 7.1 and 7.3 in
[12]. However their 7.3 deals only with semiabelian varieties, but part (ii) of our
Proposition 4.1 below deals with arbitrary algebraic groups.

The importance of Proposition 4.1(i) is that it yields, by standard techniques,
the Manin-Mumford conjecture. This was the route in Theorem 3.6 of [12]. So
as to make the current paper self-contained and complete, we take the liberty of
stating and proving the Manin-Mumford conjecture this way (Theorem 4.3 below).
We also discuss a positive characteristic version of Manin-Mumford, and the role
of Proposition 4.1(i) and (ii).

Hrushovski’s proof [5] of the Manin-Mumford conjecture over number fields has
a strong model-theoretic character, depending on a detailed study of definable sets
in existentially closed difference fields and a crucial dichotomy theorem [2]. In
[10] we gave another proof of the dichotomy theorem using higher Gauss maps (in
characteristic zero). We wanted to apply our methods to obtain a direct proof of
Manin-Mumford without the model-theoretic detour (as was done for Mordell-Lang
in [9]). After seeing [11] and [12] the second author saw how to accomplish this,
and this is more or less the approach in the current paper. But [12] also contains
a version of Manin-Mumford in positive characteristic, which essentially says that
any counterexample is defined over a finite field. Answering a question of the second
author, the first author saw how to prove a key lemma in [12] by simply applying
the isotriviality theorem in the case where σ is a power of the Frobenius. In fact
we generalize the key lemma from [12] from semi-abelian varieties to arbitrary
algebraic groups. This is Proposition 4.1(ii) of the current paper. Another proof
of the positive characteristic version of Manin-Mumford was given by Scanlon [13],
using the “dichotomy theorem” in positive characteristic [3]. Our methods have
so far been unable to yield this positive-characteristic dichotomy theorem in full
generality.

In any case our treatment of the Manin-Mumford issues here is very closely
related in mathematical content to [12], although we believe that our account of
the key lemmas (our Proposition 4.1(i) and (ii)) is more elementary and direct. The
paper [11] (see also [8]) dealing just with the abelian variety case uses relatively
simple arguments, but requiring more sophisticated background theories, such as
a result of Ueno on stabilizer-free subvarieties of abelian varieties being of general
type, as well as Matsumura’s theorem on the automorphism groups of varieties of
general type.

Proposition 4.1. (i) Let K be an algebraically closed field. Let A be a semiabelian
variety over K, φ : A → A a separable isogeny of A, and X an irreducible subvariety
of A containing 0 which generates A and is φ-invariant (φ(X) ⊆ X). Assume also
that StabA(X) is finite. Then φ is an automorphism of A of finite order.

(ii) Let K be an algebraically closed field of characteristic p > 0, and let G be a
connected algebraic group over K. Suppose φ : G → G is a surjective homomor-
phism (of algebraic groups). Let X be an irreducible subvariety of G which contains
the identity, generates G, is φ-invariant, and has finite stabilizer. Assume that for
some r, s > 0, φs ◦ Fr−r : Frr(G) → G is separable. Then there is an algebraic
group H defined over Fpr and an isomorphism f of G with H such that f takes φs

to Frr (so (G, φs) and (H, Frr) are isomorphic as algebraic id-groups).
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Proof. (i) Without loss of generality there is an automorphism σ of K such that
(K, σ) is existentially closed and A, φ, X are defined over the fixed field C of σ.
By Fact 3.4 (K, σ) is weakly generic and Theorem 3.7 applies. So as Stab(X) is
finite, (A, φ) is σ-isotrivial. Thus there is a σ-isomorphism f of (A, φ) with (B, id)
for some semiabelian variety B defined over C. Now f is defined over a finite
extension of C, so for some s > 0, σs(f) = f . But clearly σs(f)φs = f : A → B. It
follows that φs is the identity.

(ii) Let ψ = φs ◦ Frr. So (Frr(G), ψ) is a separable Fr−r group. By Fact 3.4(ii)
and Theorem 3.7, (Frr(G), ψ) is Fr−r-isotrivial, hence there is an algebraic group
H defined over Fpr and an isomomorphism f : Frr(G) → H such that

Fr−r(f) ◦ φs ◦ Fr−r = f : Frr(G) → H.

But also clearly
f ◦ Frr = Frr ◦Fr−r(f) : G → H.

So putting these together we see that

Fr−r ◦φs = Frr ◦Fr−r(f) : G → H.

So Fr−r(f) is an isomorphism between G and H which takes φs to Frr.
We will now show how the Manin-Mumford conjecture (for semiabelian vari-

eties) follows from Proposition 4.1(i). The proof is an elementary consequence of
Proposition 4.1(i) together with the following nontrivial number-theoretic fact.

Fact 4.2. Let A be a semiabelian variety defined over a number field k. Then there
is an automorphism σ of k̄ over k, and a monic integral polynomial P (T ) ∈ Z[T ]
such that P (σ) annihilates T (A), the torsion subgroup of A, and neither 0 nor any
roots of unity are among the zeroes of P (T ).

Explanation and remarks. Write A additively. If P (T ) = Tn + an−1T
n−1 + ... +

a1T + a0 and σ ∈ Gal(k̄/k), then P (σ) is the (abstract) endomorphism of A(k̄)
given by P (σ)(x) = σn(x) + an−1σ

n−1(x) + ... + a0x. Details about Fact 4.2 are
given in Sections 5 and 6.2 of [5]. Although the condition that P (0) 
= 0 is not
explicitly mentioned, it is clearly true from the construction there. The abelian
variety case is dealt with in Section 3 of [11]. It should be said that a nontrivial
result of Serre concerning the intersection of the fields generated over k by the p-
torsion and prime-to-p torsion subgroups of A(k̄) is involved here. One can avoid
recourse to Serre’s result at the expense of weakening the conclusion of Fact 4.2 to:
for arbitrarily large primes there is suitable Pp(T ) and σ such that Pp(σ) annihilates
the prime-to-p torsion of A. All that is involved here is lifting the characteristic
polynomial of the Frobenius acting on the Tate module of the reduction of A mod
p. In any case, using two primes as in [5], the methods of the present paper still
yield an elementary proof of Manin-Mumford.

Theorem 4.3. Let k be a number field, A a semiabelian variety defined over k, and
X an irreducible subvariety of A, also over k. Assume that T (A) ∩ X is Zariski-
dense in X, where T (A) is the torsion subgroup of A. Then X is the translate of a
semiabelian subvariety of A.

Proof. After translating by an element of T (A)∩X, we may assume that X contains
0. Let σ ∈ Gal(k̄/k) and P (T ) = Tn + an−1T

n−1 + ... + a1T + a0 be as given by
Fact 4.2. Let An = A × ... × A (n times), also a semiabelian variety. Let φ be the
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endomorphism of An defined as φ(x0, ..., xn−1) = (x1, x2, ..., xn−1,−a0x0 − a1x1 −
... − an−1xn−1).

Claim. φ is an isogeny of An, and for each r, φr − id is an isogeny of An.

Proof. Note that P (φ) = 0. If φ were not an isogeny of An with itself, then there
would be a positive-dimensional semiabelian subvariety B of An such that φ|B = 0.
Evaluating P (φ) at an element x ∈ B of infinite order yields that P (0) = 0, a
contradiction. So φ is an isogeny of An.

For each r ≥ 1 there is an integral polynomial Pr(T ) without complex roots
of unity among its zeroes such that Pr(φr) = 0. It follows as above, using the
assumptions on P (T ), that φr − id is an isogeny of An with itself.

Let π : An → A be projection on the first coordinate. Let ∇ : A(k̄) → An(k̄) be
given by ∇(x) = (x, σ(x), ..., σn−1(x)). Let Y be the Zariski-closure of ∇(X∩T (A)).
As P (σ) vanishes on T (A) it follows that φ(∇(x)) = ∇(σ(a)) ∈ ∇(X ∩ T (A)) for
x ∈ X ∩ T (A). Hence φ(Y ) ⊆ Y . Also X is the Zariski-closure of π(Y ). Let Y ′ be
an irreducible component of Y such that X is the Zariski-closure of π(Y ′). Then
as φ “permutes” the components of Y , φm(Y ′) ⊆ Y ′ for some m ≥ 1. Let X ′ be
the translate of Y ′ by y−1 for some y ∈ Y ′ ∩∇(X ∩ T (A)). Then X ′ contains the
identity of An, is still φm-invariant, and some translate of X is the Zariski closure
of π(X ′).

Case 1. X ′ is a semiabelian subvariety of An.
Then, as 0 ∈ X, π(X ′) = X and X is a semiabelian subvariety of A, proving the

theorem.
Case 2. Otherwise.
Let B be the semiabelian subvariety of An generated by X ′. Then φm is an

isogeny of B with itself. Let S = StabB(X ′). Then S is φm-invariant, and X ′/S is
a positive-dimensional irreducible subvariety of the semiabelian variety B/S with
trivial stabilizer. Moreover φm induces an isogeny φm/S of B/S with itself; X ′/S
is φm/S-invariant and generates B/S. By Proposition 4.1(i), some positive power
of φm/S is the identity on B/S. This contradicts the Claim above and so proves
Theorem 4.3.

We complete this section with remarks on the positive characteristic analogue
of Manin-Mumford. This is Theorem 4.4 below. It was proved in [12] (Theorem
3.6(b)). A proof was also given by Scanlon [13], using the “dichotomy theorem” for
rank 1 types in existentially closed difference fields of positive characteristic from
[3]. The Pink-Roessler proof has two ingredients. The first is a result stating that
if A is a semiabelian variety and φ : A → A an isogeny, then there are semiabelian
varieties A1, ..., An, and for each i an isogeny φi of Ai such that for each i, there is
s > 0 and r ≥ 0 such that φs is a composition of Frr with a separable isogeny, and
such that (A, φ) is isogenous to (

∑
Ai,

∑
φi). The proof uses formal groups and

Dieudonné modules. The second ingredient is Proposition 4.1 above for which we
have given a somewhat elementary proof. The statement below follows relatively
easily (as in the proof of Theorem 4.3 above) from these ingredients.

Theorem 4.4. Let A be a semiabelian variety over an algebraically closed field K
of characteristic p > 0, and X an irreducible subvariety of A such that T (A)∩X is
Zariski-dense in X. Let B be the identity component of StabA(X). Then there is a
semiabelian variety A′ and an irreducible subvariety X ′ of A′, both defined over a
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finite field, and a homomorphism h : A′ → A/B with finite kernel, such that X/B
is a translate of h(X ′).

5. Additional remarks

In [7], the authors studied algebraic D-varieties and D-groups and proved a
“Chevalley-type theorem”: the image of a D-constructible subset of an algebraic
D-group under a D-homomorphism is also D-constructible. Here D-constructible
means Boolean combination of D-closed. This result is precisely “quantifier-
elimination” for the many-sorted structure of algebraic D-groups with predicates
for algebraic D-subvarieties of Cartesian powers.

Our original aim was to do something similar for the category of separable al-
gebraic σ-groups equipped with predicates for dominant subvarieties. However,
among the problems is that the intersection of two dominant subvarieties may no
longer be dominant as the following example shows.

Let the algebraic σ-group be (G2
m, φ), where φ(x1, x2) = (x2

1, x
2
2). We have two

dominant subvarieties: X given by x1 = x2
2 and Y given by x1 = x4

2. X ∩ Y =
{(1, 1), (1,−1)}, which is not dominant.

However, we can prove the following weak version of quantifier-elimination.

Theorem 5.1. Suppose that G and G0 are separable σ-groups and f : G → G0

is a σ-homomorphism. Let X be an irreducible dominant σ-subvariety of G. Then
f(X) is a Boolean combination of dominant σ-varieties.

Proof. The proof proceeds as in the proof of the analogous Theorem 3.2 of [7]. The
relevant lemmas were proved in Section 2. One should only note that the result
holds for trivial σ-varieties because of Lemma 2.1 and the Chevalley’s theorem
(quantifier-elimination) for algebraically closed fields.
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[8] J. Oesterlé, La conjecture de Manin-Mumford (d’apres Pink et Roessler), electronic letter to

D. Roessler, 20 Dec. 2002. (See preprints at http://www.math.ethz.ch/ roessler/.)
[9] A. Pillay, Mordell-Lang conjecture for function fields in characteristic zero, revisited, Com-

positio Math. 140 (2004), 64-68. MR2004123 (2005b:14079)
[10] A. Pillay and M. Ziegler, Jet spaces of varieties over differential and difference fields, Selecta

Math. New Ser. 9 (2003), 579-599. MR2031753 (2004m:12011)
[11] R. Pink and D. Roessler, On Hrushovski’s proof of the Manin-Mumford conjecture, Proceed-

ings ICM 2002, Vol. I, Higher Education Press, 2002. MR1989204 (2004f:14062)
[12] R. Pink and D. Roessler, On ψ-invariant subvarieties of semiabelian varieties and the

Manin-Mumford conjecture, Journal of Algebraic Geometry 13 (2004), 771-798. MR2073195
(2005d:14061)

http://www.ams.org/mathscinet-getitem?mr=1266493
http://www.ams.org/mathscinet-getitem?mr=1266493
http://www.ams.org/mathscinet-getitem?mr=1652269
http://www.ams.org/mathscinet-getitem?mr=1652269
http://www.ams.org/mathscinet-getitem?mr=1912052
http://www.ams.org/mathscinet-getitem?mr=1912052
http://www.ams.org/mathscinet-getitem?mr=1333294
http://www.ams.org/mathscinet-getitem?mr=1333294
http://www.ams.org/mathscinet-getitem?mr=1854232
http://www.ams.org/mathscinet-getitem?mr=1854232
http://www.ams.org/mathscinet-getitem?mr=0396773
http://www.ams.org/mathscinet-getitem?mr=0396773
http://www.ams.org/mathscinet-getitem?mr=2171228
http://www.ams.org/mathscinet-getitem?mr=2004123
http://www.ams.org/mathscinet-getitem?mr=2004123
http://www.ams.org/mathscinet-getitem?mr=2031753
http://www.ams.org/mathscinet-getitem?mr=2031753
http://www.ams.org/mathscinet-getitem?mr=1989204
http://www.ams.org/mathscinet-getitem?mr=1989204
http://www.ams.org/mathscinet-getitem?mr=2073195
http://www.ams.org/mathscinet-getitem?mr=2073195


ON ALGEBRAIC σ-GROUPS 1337

[13] T. Scanlon, Positive characteristic Manin-Mumford, Compositio Math. 141 (2005), 1351-1364.
MR2185637

[14] J.-P. Serre, Groupes algebriques et corps de classes, Hermann, 1956. MR0103191 (21:1973)
[15] Andre Weil, On algebraic groups of transformations, American J. Math. 77 (1955).

MR0074083 (17:533e)

Department of Mathematics, University of Wroclaw, pl Grunwaldzki 2/4, 50-384

Wroclaw, Poland – and – Department of Mathematics, University of Illinois at Urbana-

Champaign, Urbana, Illinois 61801-2975

Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana,

Illinois 61801-2975 – and – School of Mathematics, University of Leeds, Leeds, England

LS2 9JT

http://www.ams.org/mathscinet-getitem?mr=2185637
http://www.ams.org/mathscinet-getitem?mr=0103191
http://www.ams.org/mathscinet-getitem?mr=0103191
http://www.ams.org/mathscinet-getitem?mr=0074083
http://www.ams.org/mathscinet-getitem?mr=0074083

	1. Introduction
	2. Algebraic -varieties and their basic properties
	3. Linearly closed difference fieldsand an isotriviality theorem
	4. On -invariant subvarieties of semiabelian varietiesand the Manin-Mumford conjecture
	5. Additional remarks
	References

