
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 359, Number 5, May 2007, Pages 2191–2220
S 0002-9947(06)04013-X
Article electronically published on December 19, 2006

ZUCKERMAN FUNCTORS BETWEEN EQUIVARIANT
DERIVED CATEGORIES

PAVLE PANDŽIĆ

Abstract. We review the Beilinson-Ginzburg construction of equivariant de-
rived categories of Harish-Chandra modules, and introduce analogues of Zuck-
erman functors in this setting. They are given by an explicit formula, which
works equally well in the case of modules with a given infinitesimal character.
This is important if one wants to apply Beilinson-Bernstein localization. We
also show how to recover the usual Zuckerman functors from the equivariant
ones by passing to cohomology.

Introduction

One of the basic problems in representation theory is to understand linear repre-
sentations of a real semisimple connected Lie group G0 with finite center. One can
instead study related problems of understanding g-modules, where g is the com-
plexified Lie algebra of G0, or (g, K)-modules, where K is the complexification of
a maximal compact subgroup of G0.

To be more specific, let M(g) be the abelian category of modules over g, or
equivalently over the enveloping algebra U(g) of g. Let K be an algebraic group
acting on g via inner automorphisms, such that the differential of this action iden-
tifies the Lie algebra k of K with a subalgebra of g. Then one can define an abelian
category M(g, K) of Harish-Chandra modules for the pair (g, K). This category
consists of g-modules with an algebraic action of K satisfying the usual compati-
bility conditions; see §1. Clearly, there is a natural forgetful functor from M(g, K)
into M(g).

In the late 1970s, G. Zuckerman proposed a homological construction of Harish-
Chandra modules based on the following observation. Let T be a closed subgroup
of K. Then there is a natural forgetful functor from M(g, K) into M(g, T ). This
functor has a right adjoint functor ΓK,T , called the Zuckerman functor. Roughly
speaking, ΓK,T attaches to a Harish-Chandra module in M(g, T ) its largest Harish-
Chandra submodule for (g, K). Zuckerman functors are left exact and usually zero
on “interesting” modules. Therefore, one uses the machinery of homological algebra
and considers their right derived functors. Using them, one can construct “a lot
of” (g, K)-modules. For example, if g and K are related to G0 as above, then
all irreducible (g, K)-modules are submodules of modules obtained in this way for
certain specific choices of (g, T )-modules for various suitable (reductive) T . See for
example [Vo] or [KV]. We review the Zuckerman construction briefly in §1; a more
detailed review is contained in [MP1], §1.
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As usual, if one wants to study homological algebra of an abelian category A, the
natural setting is the derived category D(A) of A. In our case, one can consider the
bounded derived categories Db(M(g, T )) and Db(M(g, K)) of complexes of Harish-
Chandra modules, the forgetful functor from Db(M(g, K)) into Db(M(g, T )) and
its right adjoint, the derived Zuckerman functor RΓK,T from Db(M(g, T )) into
Db(M(g, K)). One can recover the “classical” derived Zuckerman functors by ap-
plying RΓK,T to a single module and then taking cohomology.

On the other hand, a powerful algebro-geometric method of studying g-modules
is the localization theory, due to A. Beilinson and J. Bernstein. Let θ be a maximal
ideal in the center Z(g) of the enveloping algebra U(g) and denote by Uθ the quo-
tient of U(g) by the two-sided ideal generated by θ. As before, we can define the
abelian categories M(Uθ) and M(Uθ, K) of g-modules, resp. Harish-Chandra mod-
ules, with a given infinitesimal character determined by θ. By the Harish-Chandra
homomorphism, θ corresponds to a Weyl group orbit in the linear dual h∗ of a
Cartan subalgebra h of g. To each λ in h∗, Beilinson and Bernstein attach a sheaf
of twisted differential operators Dλ on the flag variety X of g. They prove that the
global sections Γ(X,Dλ) of Dλ are equal to Uθ, and that the higher cohomology
vanishes. They define the localization functor from the category M(Uθ) into the
category of quasicoherent Dλ-modules M(Dλ) on X by ∆λ(V ) = Dλ ⊗Uθ

V . In the
case of a regular λ which satisfies a geometric positivity condition, the localization
functor ∆λ is an equivalence of the category M(Uθ) with M(Dλ). Its quasi-inverse
is the functor of global sections Γ(X,−). Under this equivalence, the category
M(Uθ, K) of Harish-Chandra modules corresponds to the category M(Dλ, K) of
Harish-Chandra sheaves. Without the positivity condition, the localization func-
tor induces an equivalence of corresponding derived categories Db(M(Uθ)) and
Db(M(Dλ)). This enables one to apply the machinery of sheaf cohomology the-
ory to the study of representations. Many results have been obtained using this
method, the most famous one being the proof of Kazhdan-Lusztig conjectures.

It is a natural problem to try to connect these two constructions and “localize”
the Zuckerman functor construction. The solution is not obvious, as the homo-
logical properties of the categories M(g, K) and M(Dλ) are quite different. Still,
Bernstein managed to find a partial solution in the case when λ satisfies the geo-
metric positivity condition so that the localization functor is exact. Also, Hecht,
Miličić, Schmid and Wolf in their Duality Theorem calculated the cohomology of
“standard” Harish-Chandra sheaves on the flag variety in terms of “standard” Zuck-
erman modules, which can be interpreted as a particular instance of this problem.

In the meantime, the notion of equivariant derived category of Harish-Chandra
modules (and D-modules) has been introduced by Beilinson and Ginzburg ([BB],
[G]; see also [BL2] and [MP1], §2). An analogous construction for equivariant
sheaves has been done by Bernstein and Lunts. This category can be used as a
bridge between the above two theories. Namely, it allows localization in a natural
way, and on the other hand it carries the information about homological algebra of
Harish-Chandra modules as well. The reason for the better behavior of this category
with respect to localization is the fact that its definition is based on the notion of
“weak Harish-Chandra modules.” These are defined in the same way as Harish-
Chandra modules, but the compatibility conditions are relaxed: the two actions of
k are no longer required to agree. In particular, free U(g)-modules are weak Harish-
Chandra modules for the pair (g, K) (but they are not Harish-Chandra modules).
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Similarly, free Uθ-modules are weak (Uθ, K)-modules, and consequently it is easy to
study localization theory for such modules. In §2 we review the Beilinson-Ginzburg
construction, including some details that are usually not mentioned.

A technical complication is that the equivariant derived category of Harish-
Chandra modules Db(g, K) is a triangulated category, but not a priori a derived
category of any abelian category. Therefore, its use requires some modifications
of standard tools used in homological algebra. In particular, a generalization of
the notion of derived functors to the case of an arbitrary triangulated category
and its localization due to P. Deligne, [De] is used. This generalized version of
derived functors is explained in detail in [M], Chapter 5, §1.3. In this setting the
place of projective and injective resolutions is taken by the notions of S-projective
and S-injective objects in the triangulated category in question; here S is the
localizing class defining the localization. These objects were first defined by Verdier
in [Ve1]; he calls them “free on the left” (respectively right). In the setting of
homotopic categories, they were further studied and applied by Spaltenstein in [Sp]
and Bernstein and Lunts in [BL1] and [BL2] under the name of K-projectives and
K-injectives. One can find an account of this material in [P1], which also contains a
summary of some mostly well-known properties of adjoint functors, with emphasis
on their use in homological algebra.

§3 is devoted to the construction of the analogues Γeq
K,T of the derived Zuckerman

functors in the setting of equivariant derived categories. Γeq
K,T is defined as the right

adjoint of the forgetful functor from the equivariant derived category D(g, K) into
D(g, T ). Analogously, one can define a variant of this functor Γeq

K,T : D(Uθ, T ) →
D(Uθ, K). It is shown how both of them can be described by the same explicit
formula, involving the standard complex N(k) of k. The main technical result here
is that N(k) is a K-projective equivariant (k, T )-complex; see §3.2. Furthermore, it
is proved that in the case of Γeq

K,T : D(g, T ) → D(g, K), when applied to a single
Harish-Chandra module V , this formula gives a complex with cohomology modules
equal to the “classical” derived Zuckerman functors of V . In fact, in this case the
formula reduces to the Duflo-Vergne formula 1.3.3; see [DV] and [MP1], 1.6. All of
the above is also true on the level of the bounded equivariant derived categories.

It is explained in [MP1] how these results can be used to localize the Zuckerman
construction.

Finally, let me mention that, as indicated in [MP1], one can use localization of
the Zuckerman construction to obtain a formula for the cohomology of standard
Harish-Chandra sheaves in terms of the derived Zuckerman functors. As a special
case one can recover the duality theorem of Hecht, Miličić, Schmid and Wolf from
[HMSW]. The details will appear in [MP2].

Most of this paper comes out of my 1995 University of Utah Ph.D. thesis, which
was written under guidance of my advisor Dragan Miličić. I am very much indebted
to him for his generous help and many suggestions and ideas he supplied me with.
I would also like to thank David Vogan for several useful conversations.

1. Harish-Chandra modules and Zuckerman functors

1.1. Harish-Chandra pairs and modules. Let K be a complex algebraic group
and k its Lie algebra. We recall that an algebraic representation of K is a vector
space V with a K-action, which is a union of K-invariant finite-dimensional sub-
spaces Vi, so that the action on each Vi is given by an algebraic group morphism
K → GL(Vi).
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Let A be an associative algebra with identity, with an algebraic action of K,

φ : K → Aut(A),

and a Lie algebra homomorphism ψ from k into A such that the following conditions
hold:

(A1) ψ is K-equivariant, i.e.,

ψ ◦ Ad k = φ(k) ◦ ψ for all k ∈ K.

(A2) The differential of the action φ is the same as the action of k on A given by
inner derivations ψ(ξ), ξ ∈ k, i.e.,

L(φ)(ξ)(a) = [ψ(ξ), a]

for any ξ ∈ k and a ∈ A.
These conditions are related, but in a general situation none of them implies the
other.

A pair (A, K) as above is called a Harish-Chandra pair. The main examples come
from a similar notion of a “classical” Harish-Chandra pair, when A is replaced by a
Lie algebra g. Let g be a complex Lie algebra, and K a (usually reductive) algebraic
group over C, acting algebraically on g via a morphism φ : K → Int(g) of algebraic
groups. Assume further there is a K-equivariant embedding ψ of the Lie algebra k

of K into g, such that the differential of φ is equal to ad ◦ψ. Then (g, K) is called
a (classical) Harish-Chandra pair.

In this situation, (U(g), K) is a Harish-Chandra pair as above: φ defines an
action of K on U(g) in an obvious way, and ψ defines an embedding of k into U(g);
the compatibility conditions (A1) and (A2) clearly hold. An important special case
of this is when G is a real semisimple Lie group, g its complexified Lie algebra, and
K the complexification of the maximal compact subgroup of G. The map φ is just
the adjoint action and ψ is the inclusion of k into U(g).

Another set of examples is obtained from a complex Lie group G; let g be the Lie
algebra of G, and let K be any algebraic subgroup of G, such as a Borel subgroup
or its unipotent radical; K can also be G itself. The maps φ and ψ are, as before,
the adjoint action and the inclusion.

In the above cases, when g is semisimple, one can also take A to be the quotient
Uθ of U(g) corresponding to an infinitesimal character given by the Weyl group
orbit θ of an element of the dual of a Cartan subalgebra of g. This is particularly
important for us, as it is the setting of the Beilinson-Bernstein localization theory.

Finally, we will occasionally use another simple example: A = C, and K is an
arbitrary algebraic group; φ is the trivial action on C and ψ is 0.

A vector space V is called a weak (A, K)-module or a weak Harish-Chandra
module for the pair (A, K) if:
(HC1) V is an A-module with an action π;
(HC2) V is an algebraic K-module with an action ν;
(HC3) for any a ∈ A and k ∈ K we have

π(φ(k)a) = ν(k)π(a)ν(k)−1;

i.e., the A-action map A⊗ V → V is K-equivariant.
In the future we will denote the representation π ◦ ψ of k on V simply by π. This
should not create confusion; in fact, in the most important examples ψ is injective
and k can be identified with a Lie subalgebra of A.
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The action ν of K differentiates to an action of k which we denote also by ν. We
put ω(ξ) = ν(ξ) − π(ξ) for ξ ∈ k. The following lemma is [MP1, 2.1].

1.1.1. Lemma. Let V be a weak (A, K)-module. Then ω is a representation of
k on V , which is K-equivariant, i.e., ω(Ad(k)ξ) = ν(k)ω(ξ)ν(k)−1 for ξ ∈ k and
k ∈ K. Moreover, ω commutes with the action π of A, i.e., [ω(ξ), π(a)] = 0 for
ξ ∈ k and a ∈ A.

We say that a weak (A, K)-module V is an (A, K)-module if ω = 0, i.e., if in
addition to (HC1)-(HC3) it satisfies:

(HC4) π(ξ) = ν(ξ) for all ξ ∈ k.

A morphism α : V → W of two weak (A, K)-modules is a linear map which
is a morphism for both A- and K-module structures. We denote by M(A, K)w

the category of all weak (A, K)-modules, and by M(A, K) its full subcategory of
(A, K)-modules. Clearly, these are abelian categories.

The inclusion functor from M(A, K) into M(A, K)w has both adjoints. The
right (respectively left) adjoint is the functor of taking invariants (respectively coin-
variants) with respect to ω, denoted by U �→ U k (respectively U �→ Uk). Indeed,
1.1.1 implies that the actions of A and K on U induce actions on U k and Uk. It
is clear that U k is the largest (A, K)-submodule of U , and that Uk is the largest
(A, K)-quotient of U . So we get

1.1.2. Proposition. The functors U �−→ U k and U �−→ Uk are right respectively
left adjoint to the forgetful functor from M(A, K) into M(A, K)w. In other words,
for any (A, K)-module V ,

Hom(A,K)(V, U) = Hom(A,K)(V, U k) and Hom(A,K)(U, V ) = Hom(A,K)(Uk, V ).

1.2. Change of algebras. Let (A, K) and (B, K) be two Harish-Chandra pairs.
Denote by φA, ψA and φB, ψB the corresponding maps. Assume that there is a
morphism of algebras γ : B → A such that

γ ◦ φA(k) = φB(k) ◦ γ, k ∈ K,

i.e., γ is K-equivariant. If V is a weak (A, K)-module, we can view it as a weak
(B, K)-module, where the action of B is given by π̃(b) = π(γ(b)) for b ∈ B. The
equivariance condition is preserved because of the equivariance of γ. This defines
an exact functor For = ForB,A from the category M(A, K)w into the category
M(B, K)w. This forgetful functor has both adjoints, analogous to the well-known
functors ind and pro; see for example [KV]. We will need the left adjoint ind,
defined as

indA,B(V ) = A⊗B V,

for a weak (B, K)-module V . Here ⊗B is taken with respect to the right multipli-
cation on A and the given action on V . A acts on A⊗B V via left multiplication in
the first factor, and K acts by the tensor product of the actions φA on A and νV

on V . One easily checks that indA,B(V ) is a weak (A, K)-module, and that indA,B
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is a functor which is left adjoint to For. This is just a version of the standard
“extension of scalars” construction. So we have

1.2.1. Proposition. Let γ : B → A be a K-equivariant morphism of algebras.
Then the corresponding forgetful functor For : M(A, K)w → M(B, K)w, has a left
adjoint, the functor indA,B defined above.

In case K is reductive, we can use this result to construct projectives in the
categories M(A, K)w and M(A, K). Namely, clearly M(K) = M(C, K)w and
this category is semisimple, hence all its objects are projective. Furthermore, the
inclusion C → A given by λ �→ λ1 is clearly K-equivariant. Since ForC,A is exact,
its left adjoint indA,C preserves projectives. So for any V ∈ M(A, K)w, indA,C(V )
is a projective weak (A, K)-module. On the other hand, the adjunction morphism
ΨV : indA,C(V ) → V is surjective, since ΨV (1 ⊗ v) = v for any v ∈ V . So V is a
quotient of a projective module.

Using this together with 1.1.2, we can similarly prove that M(A, K) also has
enough projectives. Hence we have proved

1.2.2. Proposition. Let K be a reductive algebraic group. Then the categories
M(A, K)w and M(A, K) have enough projectives.

Let us note that if we in addition assume that ψA = γ ◦ψB, then clearly ForB,A
sends M(A, K) into M(B, K). Moreover, an easy calculation shows that the ω-
action on indA,B V is equal to the tensor product of the trivial action on A with
ωV . It follows that indA,B sends (B, K)-modules into (A, K)-modules. This implies
the following variant of 1.2.1.

1.2.3. Proposition. Let γ : B → A be a K-equivariant morphism of algebras such
that ψA = γ ◦ ψB. Then the functor indA,B : M(B, K) → M(A, K) is left adjoint
to the forgetful functor from M(A, K) into M(B, K).

1.3. Change of groups and Zuckerman functors. Let (A, K) be a Harish-
Chandra pair, with φK : K → Aut(A) and ψK : k → A the corresponding mor-
phisms.

Let T be another algebraic group and γ : T → K a morphism of algebraic
groups. The main example is the inclusion of a closed subgroup. We denote the
differential of γ again by γ; in applications it will always be injective. It is easily
checked that (A, T ) becomes a Harish-Chandra pair if we define φT = φK ◦ γ and
ψT = ψK ◦ γ. Moreover, composing the K-action with γ to get a T -action clearly
defines a forgetful functor from M(A, K)w into M(A, T )w, and also from M(A, K)
into M(A, T ). We want to describe right adjoints of these forgetful functors.

First we treat the case T = {1}. Then, as was proved in [MP1, 2.2] (see also
[MP1, 1.2]), the right adjoint of For : M(A, K)w → M(A) is Indw, given by

Indw(V ) = R(K) ⊗ V = R(K, V ).

Here V is an A-module, R(K) denotes the space of regular functions on K, and
R(K, V ) denotes the space of V -valued regular functions on K. Recall that K acts
on Indw(V ) by the right regular representation, and a ∈ A acts on F ∈ Indw(V )
by

(π(a)F )(k) = πV (φK(k)a)(F (k)), k ∈ K.
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The adjunction morphisms are given as follows. For a weak (A, K)-module V ,
ΦV : V → Indw(For V ) is the matrix coefficient map, given by

ΦV (v)(k) = νV (k)v, v ∈ V, k ∈ K.

For an A-module W , ΨW : For(Indw(W )) → W is the evaluation at 1.
The Zuckerman functor ΓK,T sends an (A, T )-module V into the invariants of

Indw(V ) with respect to the (k, T )-action λ = (λk, λT ), the tensor product of the left
regular action of (k, T ) on R(K) with the given action on V . To see that ΓK,T (V )
is an (A, K)-module, one can use the following formula relating the ω-action of k

on the weak (A, K)-module Indw(V ) with the above described λ-action.

1.3.1. Lemma. For any ξ ∈ k, F ∈ Indw(V ) and k ∈ K,

(ω(ξ)F )(k) = −(λk(Ad(k)ξ)F )(k).

This formula was proved below 2.4 in [MP1]. One further shows

1.3.2. Theorem. The forgetful functor from M(A, K) to M(A, T ) has a right
adjoint, the Zuckerman functor ΓK,T . For an (A, T )-module V ,

ΓK,T (V ) = Homk,T (C, R(K, V )),

where C is the trivial (k, T )-module, R(K, V ) is a (k, T )-module with respect to the
action λ = (λk, λT ), and the (A, K)-action on ΓK,T (V ) comes from the (A, K)-
action on R(K, V ).

Being a right adjoint, ΓK,T is left exact, and it has right derived functors (since
there are enough injectives). The following is a version of the Duflo-Vergne formula
[DV], which is an explicit formula for the derived Zuckerman functors holding under
certain assumptions. It generalizes the formula for ΓK,T from 1.3.2. A proof can
be found in [MP1, 1.6].

1.3.3. Theorem. Assume that T is reductive and that A is a flat right U(k)-module
for the right multiplication. Let V be an (A, T )-module. Then

RpΓK,T (V ) = Hp(k, T ; R(K, V ))

for p ∈ Z+, where R(K, V ) is a (k, T )-module with respect to the action λ. The
(A, K)-action on RpΓK,T (V ) comes from the (A, K)-action on R(K, V ).

One can also consider the derived functor RΓK,T between the corresponding
derived categories. However, 1.3.3 does not generalize readily to a claim about
this functor. The situation is better in the setting of equivariant derived categories
which we define in the following.

2. Equivariant derived categories

We are going to outline an algebraic construction of equivariant derived cate-
gories due to Beilinson and Ginzburg (see [BB], [G] and [BL2]). There is also a
geometric construction due to Bernstein and Lunts [BL1].
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2.1. Equivariant complexes. Let (A, K) be a Harish-Chandra pair. An equi-
variant (A, K)-complex is a complex V = V · of weak (A, K)-modules, together
with a family of linear maps iξ : V → V of degree −1, depending linearly on ξ ∈ k,
and satisfying the following conditions:

iξπ(a) = π(a)iξ, ξ ∈ k, a ∈ A;(EC1)

iAd(k)ξ = ν(k)iξν(k)−1, ξ ∈ k, k ∈ K;(EC2)

iξiη + iηiξ = 0, ξ, η ∈ k;(EC3)

diξ + iξd = ω(ξ), ξ ∈ k.(EC4)

Here π and ν are the actions of A and K on V , ω = ν − π is the action of k from
§1.1, and d is the differential of the complex V .

Note that for any ξ ∈ k, ω(ξ) is a morphism of complexes of A-modules, which
is homotopic to zero, iξ being the homotopy. It follows that Hp(ω(ξ)) = 0 for any
p ∈ Z, so the cohomology modules of V are (A, K)-modules.

A morphism between two equivariant (A, K)-complexes is a morphism of com-
plexes of weak (A, K)-modules which commutes with the iξ’s. We denote the cate-
gory of equivariant (A, K)-complexes by C(A, K). It is clearly an abelian category.

2.2. DG algebras and modules. It will be convenient to reformulate the defi-
nition of equivariant complexes using the notion of DG modules over DG algebras.
For more about these see [Il]; see also [BL1] and [BL2]. The details needed here are
written out in [P1]. The Lie algebra version of the theory is closely related to the
theory of Lie superalgebras, which can be found in [Sch].

In the following, a complex will often be identified with the sum of its components
with the natural grading. A differential graded (DG) Lie algebra is a complex of
vector spaces d with a graded bilinear operation [−,−] called the supercommutator,
satisfying the following conditions for any three homogeneous X, Y, Z ∈ d:

[X, Y ] = −(−1)deg X deg Y [Y, X];(DGLA1)

[X, [Y, Z]] = [[X, Y ], Z] + (−1)deg X deg Y [Y, [X, Z]];(DGLA2)

d[X, Y ] = [dX, Y ] + (−1)deg X [X, dY ].(DGLA3)

If we forget the differential and introduce the obvious Z2-grading, we get a Lie
superalgebra.

A differential graded (DG) module over d is a complex V of vector spaces, with
a graded action of d on V by linear endomorphisms, satisfying the properties

[X, Y ]v = XY v − (−1)deg X deg Y Y Xv

and
dV (Xv) = (ddX)v + (−1)deg XXdV v

for any (homogeneous) X, Y ∈ d and v ∈ V .
An example of a DG Lie algebra is a Lie algebra considered as a complex con-

centrated in degree zero. The example important for us is the DG Lie algebra k,
corresponding to a Lie algebra k, defined as follows. As a complex of vector spaces,
k is

. . . 0 → k
1→ k → 0 . . . ,

with k appearing in degrees −1 and 0. The supercommutator is defined in the
following way: on k

0 = k it is just the commutator of k, k
−1 supercommutes with



ZUCKERMAN FUNCTORS 2199

itself, and for X ∈ k
0, ξ ∈ k

−1, [X, ξ] in k is the same as [X, ξ] in k, understood as
an element of k

−1.
It is straightforward to check that in this way k becomes a DG Lie algebra.

Furthermore, K acts on k by adjoint action on each component. This is clearly an
algebraic action by morphisms of complexes.

The reason for our interest in this is the following. Let V be an equivariant
(A, K)-complex. We can define an action of k on V as follows: X ∈ k

0 = k acts by
ω(X) while ξ ∈ k

−1 acts by iξ. The fact that this is a DG action is equivalent to
(EC3), (EC4), and the fact that ω is a representation of k. Furthermore, (EC1),
(EC2), and the analogous properties of ω from 1.1, say that this is a K-equivariant
action which commutes with the action of A.

Now we want to pass to associative algebras. An associative DG algebra is a
Z-graded algebra D with unit, which is also a complex of vector spaces, such that
for any homogeneous x, y ∈ D,

d(xy) = d(x)y + (−1)deg xxd(y).

Any (associative) DG algebra is a DG Lie algebra, if we define

[a, b] = ab − (−1)deg a deg bba

for homogeneous a and b in D.
A morphism of two DG algebras is a map that is both an algebra homomorphism

and a morphism of complexes. A (left) DG module over a DG algebra D is a graded
(left) D-module M , which is also a complex of vector spaces, such that the grading
of the module is the same as the grading of the complex, and the following condition
holds:

dM (xm) = (dDx)m + (−1)deg xx(dMm)

for any homogeneous x ∈ D and m ∈ M .
An example of a DG algebra is any associative algebra considered as a complex

concentrated in degree 0. The most important examples for our purposes are the
universal enveloping algebras of DG Lie algebras (concretely, of k). These are
defined analogously to ordinary enveloping algebras, and enveloping algebras of
superalgebras (see [Sch]). Starting with a DG Lie algebra d, we first define its
tensor algebra T (d); as an algebra, it is the ususal tensor algebra. The grading is
given by

deg(X1 ⊗ · · · ⊗ Xk) = deg X1 + · · · + deg Xk

for homogeneous X1, . . . , Xk ∈ d, and the differential is given by

d(X1⊗· · ·⊗Xk) =
k∑

i=1

(−1)deg X1+... deg Xi−1X1⊗· · ·⊗Xi−1⊗d(Xi)⊗Xi+1⊗· · ·⊗Xk

and d(1) = 0. It is easy to check that in this way T (d) becomes a DG algebra.
Then we consider the two-sided ideal I of T (g) generated by the elements of the
form

X ⊗ Y − (−1)deg X deg Y Y ⊗ X − [X, Y ]

for homogeneous X, Y ∈ d. One checks that I is a DG ideal, i.e., a graded ideal
closed under the differential. It follows that the universal enveloping algebra

U(d) = T (d)/I
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of d is a DG algebra. There is an obvious DG Lie algebra morphism φ : d → U(d),
and the following universal property holds: For any DG algebra D and a DG Lie
algebra morphism f from d into D (considered as a DG Lie algebra as above),
there is a unique DG algebra morphism f̃ from U(d) into D such that f = f̃ ◦ φ.
In particular, M is a DG module over d if and only if it is a DG module over U(d).

The proof is the same as for Lie algebras, as is the proof of the following version
of the Poincaré-Birkhoff-Witt Theorem.

2.2.1. Proposition. Let X1, . . . , Xn, Y1, . . . , Ym be a basis of d consisting of ho-
mogeneous elements, with Xk’s even and Yk’s odd. Then

(Xi1
1 . . . Xin

n Y j1
1 . . . Y jm

m )ik∈Z+, jk∈{0,1}

is a basis of U(d).

Using this and a straightforward calculation of the differential, we obtain the
following (known) result which goes back to Cartier; see [BL2], 1.9.7. Recall that
the standard complex N(k) of a Lie algebra k is defined by

Np(k) = U(k) ⊗
∧−p(k),

with the differential given by

d(u ⊗ λ1 ∧ · · · ∧ λp) =
p∑

i=1

(−1)i−1uλi ⊗ λ1 ∧ · · · ∧ λ̂i ∧ · · · ∧ λp

+
∑
j<i

(−1)j+iu ⊗ [λj , λi] ∧ λ1 ∧ · · · ∧ λ̂j ∧ · · · ∧ λ̂i ∧ · · · ∧ λp.

2.2.2. Proposition. Let k be a Lie algebra. As a complex of vector spaces, U(k)
is isomorphic to the standard complex N(k) of k.

In particular, it follows that N(k) has the structure of a DG algebra. The same
structure is described in [MP1, §3].

We see that our equivariant (A, K)-complexes are DG modules over N(k). This
suggests the following definitions. Let D be a DG algebra with an algebraic action
χ of K by (DG) automorphisms, and with a morphism ρ : k → D of DG Lie
algebras, such that the same conditions as for A are satisfied: ρ is K-equivariant,
and the differential of the action χ is the same as the action of k on D given by
inner derivations [ρ(ξ),−]. Such a D is called a Harish-Chandra DG algebra in
[BL2]. Note that ρ being a morphism of DG Lie algebras implies that its image is
contained in the cycles of D0.

The main example for D is the standard complex of k, or of a Lie algebra g such
that (g, K) is a Harish-Chandra pair. Other examples are D = C or D = U(k)
(concentrated in degree 0). In these examples K acts trivially on C and by the
adjoint action on U(k), N(k) and N(g), while ρ is the zero map, respectively the
natural inclusion.

We now define an (A, K,D)-module to be a complex V of vector spaces, with
actions π of A, ν of K and ω of D, such that the following conditions hold:

(AKD1) A and K act by morphisms of complexes, the K-action is algebraic,
and the D-action is a DG-action;

(AKD2) π and ω are both K-equivariant and they commute;
(AKD3) The representations π, ω and ν of k satisfy the relation π + ω = ν.
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A morphism between two (A, K,D)-modules is a morphism of complexes which
preserves all the actions. The category M(A, K,D) of all (A, K,D)-modules is
clearly abelian. Examples of interest are the following:

(1) D = N(k); then M(A, K,D) is the category of equivariant (A, K)-complexes.
(2) D = U(k); then M(A, K,D) is the category of complexes of weak (A, K)-

modules.
(3) D = C; then M(A, K,D) is the category of complexes of (A, K)-modules.

We will describe the relationship between these categories in 2.5.2.
Let us now briefly discuss right DG modules. A right module M over D is a

right DG module if

dM (mx) = (dMm)x + (−1)deg mm(dDx)

for any homogeneous x ∈ D and m ∈ M .
We can also define the opposite DG algebra Dopp: As a complex of vector spaces

it is the same as D, and the multiplication is given by

x ◦ y = (−1)deg x deg yyx

for homogeneous x and y, where yx is the multiplication in D.
Then the category of left (respectively right) DG modules over D is naturally iso-

morphic to the category of right (respectively left) DG modules over Dopp. Namely,
if M is a left DG module over D, then it becomes a right DG module over Dopp if
we define

m ◦ x = (−1)deg x deg mxm

for homogeneous x ∈ D and m ∈ M .
In case D = U(d) for a DG Lie algebra d, Dopp can be identified with D. Namely,

let us define ι : d → U(d)opp by

ι(X) =ι X = −X, X ∈ d.

It is easily checked to be a morphism of DG Lie algebras. Therefore it defines a
DG algebra morphism from U(d) into U(d)opp. In a Poincaré-Birkhoff-Witt basis,
ι acts on monomials by flipping the order and putting an appropriate sign. So it is
clearly an isomorphism. We will call ι, understood as a map from U(d) into itself,
the principal anti-automorphism of U(d). It is a generalization of the principal
anti-automorphism in the case of ordinary Lie algebras. It clearly satisfies

ι(uv) = (−1)deg u deg v ιvιu

for homogeneous u, v ∈ U(d).
Note that we can use ι to pass from left to right DG modules over U(d) and vice

versa. Indeed, the following lemma holds.

2.2.3. Lemma. If ω is a left (respectively right) action of U(d) on M , then setting

ω̃(u)(m) = (−1)deg u deg mω(ιu)(m)

for homogeneous u ∈ U(d) and m ∈ M defines a right (respectively left) action of
U(d) on M .

The above principal anti-automorphism is actually the antipode map for a Hopf
algebra structure on U(d). Let us briefly describe this structure.

Let us first remark that for DG algebras D and E , we can define their tensor
product D⊗̄E . It is equal to D ⊗ E as a vector space, it has the standard tensor
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product grading and differential (see the definition of the tensor algebra above),
and the multiplication is given by

(x ⊗ y)(x′ ⊗ y′) = (−1)deg y deg x′
(xx′ ⊗ yy′)

for x, x′ ∈ D and y, y′ ∈ E . It is straightforward to check that D⊗̄E is a DG algebra.
We now define c : d → U(d)⊗̄U(d) by

c(X) = X ⊗ 1 + 1 ⊗ X, X ∈ d.

One easily checks that c is a morphism of DG Lie algebras, hence it extends in a
unique way to a DG morphism c : U(d) → U(d)⊗̄U(d). This is the coproduct for
U(d).

The counit ε : U(d) → C is defined by the requirements ε(dU(d)) = 0 and
ε(1) = 1.

It is now straightforward to check the following:

2.2.4. Proposition. With the above definitions, U(d) becomes a Hopf algebra.
Moreover, the Hopf algebra structure is compatible with the DG algebra structure,
in the sense that c and ε are not just algebra morphisms, but DG algebra morphisms.

2.3. Homotopic and derived categories of (A, K,D)-modules. We first de-
fine the translation functor for (A, K,D)-modules. Let V be an (A, K,D)-module.
Then T (V ) = V [1] is the same as V as a weak (A, K)-module. The grading is
shifted: T (V )i = V i+1, the differential is given by dT (V ) = −dV , and the D-action
is twisted:

ωT (V )(x)v = (−1)deg xωV (x)v,

for homogeneous x ∈ D and v ∈ V . It is clear that T (V ) is again an (A, K,D)-
module. If we define the action of T on morphisms just by shifting the degree:
T (f)i = f i+1, then T clearly becomes a functor. Moreover, T is an autoequivalence
of the category M(A, K,D); the inverse is given by similar shifting but in the
opposite direction.

We say that two (A, K,D) morphisms f and g from V to W are homotopic if
there exists h : V → T−1(W ), which is an (A, K)-morphism and a D-morphism of
degree 0, but not necessarily a morphism of complexes (so it is not a morphism in
M(A, K,D)), such that

f − g = hdV + dW h.

For equivariant complexes (D = N(k)), this condition just means that f and g are
homotopic as morphisms of complexes of weak (A, K)-modules, via a homotopy
which anticommutes with iξ’s.

We now define the homotopic category K(A, K,D). Its objects are (A, K,D)-
modules, and its morphisms are homotopy classes of morphisms in M(A, K,D).

2.3.1. Proposition. The category K(A, K,D) is a triangulated category.

Proof. The proof is basically the same as for the homotopic category of complexes
over an abelian category. First, it is clear that the above translation functor de-
scends to K(A, K,D); namely, if h is a homotopy from f to 0, then −h shifted in
degree by 1 is a homotopy from T (f) to 0.

Next we define the cone of a morphism. Let f : V → W be a morphism in
M(A, K,D). As a weak (A, K)-module and a graded D-module, the cone of f is
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Cf = T (V ) ⊕ W . The differential of Cf is

df =
(

dT (V ) 0
T (f) dW

)
.

Then one easily checks that Cf is an (A, K,D)-module.
The inclusion if : W → Cf and the projection pf : Cf → T (V ) are clearly

(A, K,D)-morphisms. In this way we obtain the standard triangles

V
f→ W

if→ Cf
pf→ T (V ).

We should show that these triangles are well-defined for a morphism f in the homo-
topic category K(A, K,D), i.e., that homotopic f and g give isomorphic triangles
(in the obvious sense). Then we can define the distinguished triangles as all trian-
gles in K(A, K,D) which are isomorphic (in K(A, K,D)) to some standard triangle.
Finally, we should check the axioms of triangulated categories.

Note, however, that both our homotopies and cones are also homotopies and
cones in the category of complexes of weak (A, K)-modules. They only have the
additional structure of graded D-morphisms, respectively modules. If we now go
through the classical proof of the fact that K(M(A, K)w) is a triangulated cate-
gory, we see that for the proof we only need to construct certain morphisms and
homotopies. All these are given by matrices and all the components of these matri-
ces are clearly graded D-morphisms in our case. Therefore the classical proof goes
through without changes. �

To obtain the derived category D(A, K,D) of (A, K,D)-modules, we localize
K(A, K,D) with respect to quasi-isomorphisms, that is, morphisms in K(A, K,D)
which induce isomorphisms on cohomology.

2.3.2. Lemma. Quasi-isomorphisms in K(A, K,D) form a saturated localizing
class (or multiplicative system) compatible with triangulation.

Proof. The proof of this lemma is analogous to the standard proof of the same fact
for the homotopic category of an abelian category. The simplest approach is to first
note that taking pth cohomology is a cohomological functor for every p, i.e., that
for any distinguished triangle

V
f→ W → Z → T (V )

in K(A, K,D) we have a corresponding long exact sequence of vector spaces

· · · → Hp−1(Z) → Hp(V ) → Hp(W ) → Hp(Z) → Hp+1(V ) · · · .

This immediately implies that f is a quasi-isomorphism if and only if Z is acyclic,
i.e., Hp(Z) = 0 for all p.

The above claim about quasi-isomorphisms is therefore equivalent to the fact
that acyclic objects form a null system in K(A, K,D) (as defined in [KS], Definition
1.6.6), with the additional condition corresponding to the saturation condition: any
direct summand of an object in N is in N . It is trivial to check that this is indeed
the case. For details, see [P1], 5.2.2 and 1.1.9. �

It is a standard fact (see [KS], Proposition 1.6.9, or [GM]) that if the above con-
ditions are satisfied, then the localized category D(A, K,D) inherits the structure
of a triangulated category. The distinguished triangles in D(A, K,D) are simply
all triangles isomorphic in D(A, K,D) to distinguished triangles in K(A, K,D).
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2.3.3. Corollary. The category D(A, K,D) is a triangulated category.

In case D = N(k), which is our main example, the category D(A, K, N(k))
is called the equivariant derived category of (A, K)-modules. We will sometimes
denote it just by D(A, K), and the corresponding homotopic category by K(A, K).

All the above goes through without changes for complexes bounded above, be-
low, or from both sides. The corresponding derived categories are denoted by
D∗(A, K,D), where ∗ can be −, +, or b (or nothing in the case of the full derived
category as above).

Another important property of equivariant derived categories is the fact that
we can embed the category M(A, K) into Db(A, K), via the functor D sending a
module M into the equivariant complex concentrated in degree 0 and having M as
its zeroth component. The functor D is fully faithful, and its image is a generating
class of Db(A, K). This is completely analogous to the embedding of an abelian
category C into its derived category Db(C). The proof in our present situation is also
completely analogous. It is based on the notion of truncations, which are defined
in a usual way, and have analogous properties as their classical counterparts.

2.4. Functors between homotopic categories. In the next sections we will
construct various functors on the level of (A, K,D)-modules, and then we will need
to show that they make sense on the level of homotopic categories. In this section
we give a criterion that will be useful in such situations.

Let us fix two triples, (A, K,D) and (B, T, E), as in Section 2.2. Let F1 be
an additive functor from M(A, K,D) into M(B, T, E), and let F2 be an additive
functor between the corresponding categories of graded modules, MGR(A, K,D)
and MGR(B, K, E). Here morphisms of graded modules are required to be of degree
0. Assume that the diagram

M(A, K,D) F1−−−−→ M(B, T, E)

For

⏐⏐� For

⏐⏐�
MGR(A, K,D) F2−−−−→ MGR(B, T, E)

commutes. Here For denotes the obvious forgetful functors. Then we will loosely
denote both F1 and F2 by F and think of F as a functor defined both on the level
of DG modules and on the level of graded modules, in a compatible way. We also
assume that F commutes with translations, i.e., that both F1 and F2 commute with
translations.

Now we need to define the Hom·-complex. Let V and W be two objects of
M(A, K,D). First we define Hom·

C(V, W ) to be just the standard Hom· of com-
plexes. In other words,

Homk
C(V, W ) =

∏
j

HomC(V j , W j+k)

and the differential is given by df = dW ◦ f − (−1)deg ff ◦ dV for a homogeneous
f ∈ Hom·

C(V, W ). More precisely,

dkf = (dj+k
W ◦ fj − (−1)kfj+1 ◦ dj

V ),

for f = (fj) ∈
∏

j HomC(V j , W j+k).
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Now we define Hom·
(A,K,D)(V, W ) as the linear subspace of Hom·

C(V, W ), con-
sisting of (A, K)-morphisms whose homogeneous components f satisfy

f(xv) = (−1)deg f deg xxf(v)

for any homogeneous x ∈ D and v ∈ V . It is easy to see that Hom·
(A,K,D)(V, W ) is

actually a subcomplex of Hom·
C(V, W ), and that Hom·

(A,K,D) is an additive bifunc-
tor into the category C(V ectC) of complexes of vector spaces.

Note that HomM(A,K,D)(V, W ) consists of 0-cycles in Hom·
(A,K,D)(V, W ),

and that HomK(A,K,D)(V, W ) is the zeroth cohomology space of the complex
Hom·

(A,K,D)(V, W ).
Now we return to a functor F as above. Since (A, K,D)-maps of degree k between

V and W are the same as (A, K,D)-maps of degree 0 between V and W [k], and F
commutes with translations, we see that F defines a linear map

F = FV,W : Hom·
(A,K,D)(V, W ) → Hom·

(B,T,E)(F (V ), F (W )).

2.4.1. Theorem. Let F be a functor as above, such that for any V and W in
M(A, K,D) the linear map FV,W defined above is a morphism of complexes. Then
F defines an exact functor from K(A, K,D) into K(B, T, E).

Remark. Recall that an exact functor between triangulated categories is a functor
commuting with translation and sending distinguished triangles to distinguished
triangles.

Proof. Since FV,W is a morphism of complexes, it defines a map on the level of
cohomology, so it defines a map on the level of homotopic classes of morphisms.
Therefore, to finish the proof, it is enough to show that F preserves cones (we
already assumed that F commutes with translation).

Let f : V → W be a morphism in M(A, K,D). Since F is additive and commutes
with translation, F (Cf ) = CF (f) as graded (B, K, E)-modules. So we only need to
show that the differential of F (Cf ) is equal to the differential dF (f) of the cone
CF (f), i.e., that

dF (Cf ) =
(

dT (F (V )) 0
T (F (f)) dF (W )

)
.

This is proved by a straightforward calculation of the matrix coefficients of dF (Cf ).
�

Let us remark that in the classical situation one usually starts with a functor on
the level of abelian categories, and then lets it act on complexes by acting on all
components and on differentials. The action on morphisms of complexes is given
componentwise. Such a functor obviously acts on graded objects and morphisms,
and it trivially meets the conditions of 2.4.1. Therefore such a functor always
defines a functor on the level of homotopic categories.

The first functor for which the above conditions are nontrivial is Hom·
(A,K,D)

itself. Let V be an (A, K,D)-module. Then Hom·
(A,K,D)(V,−) is a functor from

M(A, K,D) into C(V ectC), which is compatibly defined on the level of graded
modules; in both cases it is defined on morphisms by α �→ α ◦ −.

It is easy to show that Hom·
(A,K,D)(V,−) commutes with translation. It remains

to show that the map sending α ∈ Hom·
(A,K,D)(W1, W2) into

α̃ = α ◦ − ∈ Hom·
C(Hom·

(A,K,D)(V, W1), Hom·
(A,K,D)(V, W2))
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is a morphism of complexes. Since Hom·
(A,K,D)(V, W ) is a subcomplex of

Hom·
C(V, W ), this follows immediately from the first part of the following lemma.

2.4.2. Lemma. Let V , W1 and W2 be complexes of vector spaces.
(i) For α ∈ Hom·

C(W1, W2), define α̃ ∈ Hom·
C(Hom·

C(V, W1), Hom·
C(V, W2)) by

α̃ = α ◦ −. Then the map α �→ α̃ is a morphism of complexes.
(ii) The map α �→ α ⊗ id from Hom·

C(W1, W2) into Hom·
C(W1 ⊗C V, W2 ⊗C V )

is a morphism of complexes.

The proof of the lemma is straightforward, and hence we get

2.4.3. Proposition. For any (A, K,D)-module V , Hom·
(A,K,D)(V,−) defines an

exact functor from K(A, K,D) into K(V ectC).

We remark that similarly one can prove the analogous claim for the first vari-
able, and it is then easy to show that Hom·

(A,K,D) is an exact bifunctor from
K(A, K,D)opp × K(A, K,D) into K(V ectC).

The last question we want to address in this section is adjunction of functors on
the homotopic level. The following easy fact is enough for most purposes.

2.4.4. Proposition. Let F : M(A, K,D) → M(B, T, E) be left adjoint to the
functor G : M(B, T, E) → M(A, K,D). Suppose that both functors define the same
named functors on the level of homotopic categories. Then F and G are adjoint
functors between the homotopic categories.

Proof. The adjunction morphisms on the level of homotopic categories are defined
as the homotopy classes of the adjunction morphisms on the level of complexes.
The compositions in the definition of adjunction are the identities because it is so
on the level of representatives. �

In most situations the reason for F and G to define functors on the level of
homotopic categories will be the fact that they satisfy the conditions of 2.4.1. If
this is the case, and if the adjunction morphisms ΦX and ΨY are natural not only
with respect to morphisms (which are in particular morphisms of complexes), but
also with respect to graded morphisms (which are not necessarily morphisms of
complexes), then we actually have the following stronger version of 2.4.4 (2.4.4
follows from it by taking zeroth cohomology):

2.4.5. Theorem. Let F : M(A, K,D) → M(B, T, E) be left adjoint to G :
M(B, T, E) → M(A, K,D). Assume that both functors satisfy the conditions of
2.4.1, and that the adjunction natural transformations Φ and Ψ are natural with
respect to graded morphisms. Then

Hom·
(B,T,E)(FX, Y ) ∼= Hom·

(A,K,D)(X, GY )

for any X ∈ M(A, K,D) and Y ∈ M(B, T, E).

Proof. The proof is similar to the standard proof of the fact that adjunction of two
functors (defined by the equality Hom(FX, Y ) = Hom(X, GY )) is equivalent to the
existence of adjunction natural transformations. Namely, one defines

αX,Y : Hom·
(B,T,E)(FX, Y ) → Hom·

(A,K,D)(X, GY )

and βX,Y in the opposite direction by

αX,Y (f) = G(f) ◦ ΦX ; βX,Y (g) = ΨY ◦ F (g).
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This makes sense since F and G are defined on graded morphisms. The proof
that α and β are natural, and that their compositions in both orders give identity
morphisms, is the same as in the classical proof (but using our present assumptions).
The only thing we have to show is that αX,Y is a morphism of complexes. This
follows from the fact that G induces a morphism of complexes between Hom·-spaces,
and that ΦX is a morphism of complexes. �

2.5. Change of DG algebras. Let (A, K,D) and (A, K, E) be triples as in
Section 2.2, with φ, ψ, χE , χD, ρE and ρD the corresponding maps. Let α : D → E
be a morphism of DG algebras, intertwining the K-actions, and such that

ρE = α ◦ ρD.

Then α defines a forgetful functor For from M(A, K, E) into M(A, K,D) in the
obvious way: The D action is obtained by composing the E-action with α. We want
to construct adjoints of For.

For simplicity, we assume that both D and E have principal anti-automorphisms,
commuting with the K-action, which we denote by ι in each case; we also assume
that ιρ(ξ) = −ρ(ξ) for any ξ ∈ k and that the morphism α intertwines the ι’s. This
will be satisfied in all the examples we need, and it simplifies matters by allowing
us to work with left modules only.

To construct the left adjoint, let V be an (A, K,D)-module, with actions πV of
A, νV of K and ωV of D. We consider it a right DG module over D as in 2.2.3.
Now we consider V ⊗D E , with D-action on E being the left multiplication. This is a
right DG module over E , for the right multiplication in the second factor. We turn
it into a left E-module using 2.2.3 again. In other words, the E-action on V ⊗D E
is given by

ωE(e)(v ⊗ e′) = (−1)deg e(deg v+deg e′)v ⊗ e′ ιe

for e, e′ ∈ E and v ∈ V .
We let A act on V ⊗D E in the first variable, and K in both variables. In other

words,
π(a) = πV (a) ⊗ 1; ν(k) = νV (k) ⊗ χE(k)

for a ∈ A and k ∈ K. It is straightforward to see that these actions are well defined,
and that in this way V ⊗D E becomes an (A, K, E)-module.

Clearly, in this way we have defined a functor V �→ V ⊗D E from M(A, K,D)
into M(A, K, E). This functor is left adjoint to For. The adjunction morphisms
are given as follows. For an (A, K,D)-module V , ΦV : V → V ⊗D E is given by

ΦV (v) = v ⊗ 1.

For an (A, K, E)-module W , ΨW : W ⊗D E → W is given by

ΨW (w ⊗ e) = (−1)deg w deg eωW (ιe)w.

It is easy to see that these morphisms are well defined, that ΦV is an (A, K,D)-
morphism and that ΨW is an (A, K, E)-morphism, and that in this way we really
get adjunction. So we have

2.5.1. Theorem. The functor V �→ V ⊗D E described above is left adjoint to the
forgetful functor from M(A, K, E) into M(A, K,D). The same is true on the level
of homotopic categories.
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Proof. It remains to prove the claim about homotopic categories. It is clear that
− ⊗D E is well defined on the level of graded modules. To check that this functor
commutes with translation, we use the obvious identification of T (V ) ⊗D E and
T (V ⊗D E). The actions of A and K obviously agree, and it is straightforward to
check that the action of E and the differential agree as well.

To apply 2.4.1, it remains to show that our functor induces morphisms of com-
plexes between corresponding Hom·-complexes. However, this follows from 2.4.2(ii).

�
Remark. It would look more natural to consider the similarly defined functor V �→
E ⊗D V instead of the above functor. This would eliminate passing from left to
right modules and back. On the other hand, in the usual definition of the standard
complex of a Lie algebra the iξ’s come from the right multiplication. We do not
want to change this, and one of the important examples will be D = U(k), E = N(k).
Hence we consider V ⊗D E , with E-action given by right multiplication.

As usual, one can construct the right adjoint of For in a similar way, using a
Hom-space instead of the tensor product. We omit this construction since it is not
needed in this paper.

2.5.2. Examples. Here are the two most important cases of the above construc-
tions for our applications.

(i) D = U(k) and E = N(k). Then M(A, K,U(k)) is just the category
C(M(A, K)w) of complexes of weak (A, K)-modules, and M(A, K, N(k))
is the category C(A, K) of equivariant (A, K)-complexes. For is just the
obvious forgetful functor, and the left adjoint of For is

V �−→ Ck(V ) = V ⊗U(k) N(k).

Since N(k) is a free U(k)-module for the left multiplication, this functor
preserves acyclicity, i.e., if a complex of weak (A, K)-modules V is acyclic,
then Ck(V ) is also acyclic.

(For has also a right adjoint Ck = HomU(k)(N(k),−), which we will not
need.)

(ii) D = N(k), E = C and α : N(k) → C is the counit map (see 2.2.4). Then
M(A, K, N(k)) = C(A, K) as in (i), while M(A, K, C) is the category
C(M(A, K)) of complexes of (A, K)-modules. The corresponding forgetful
functor can be described in the following way: A complex V · of (A, K)-
modules can be viewed as an equivariant (A, K)-complex, if we define all
iξ’s to be 0. We will denote this functor by Q. The left adjoint of Q is the
functor

V �−→ V ⊗N(k) C,

i.e., the functor of taking k-coinvariants. This functor plays an important
role in [P2]. (Similarly, the right adjoint of Q is the functor of taking
k-invariants.)

2.6. A property of K-projectives. Let us recall that an (A, K,D)-module V is
called K-projective, if for any acyclic (A, K,D)-module W , HomK(A,K,D)(V, W ) =
0. Dually, one defines K-injective (A, K,D)-modules: V is K-injective if for any
acyclic (A, K,D)-module W , HomK(A,K,D)(W, V ) = 0.

Since any translate of an acyclic object is acyclic, one sees that V is K-projective
if and only if for any acyclic (A, K,D)-module W , the complex Hom·

K(A,K,D)(V, W )



ZUCKERMAN FUNCTORS 2209

is acyclic. A similar claim holds for K-injectives. Also, the K-projectives form a
null system in K(A, K,D) (see [KS], Definition 1.6.6). This follows immediately
from the definitions. The same is true for K-injectives.

The purpose of this section is to prove a property of K-projectives, which is
actually a property of any null system. This property is proved in 2.6.4 below. It
says that if an (A, K,D)-module V has a finite filtration such that the corresponding
graded modules are K-projective, and if this filtration satisfies a certain splitting
condition, then V is K-projective. We will need this property in Section 4.2 to
show that the standard complex N(k) is K-projective in a certain category. This
will imply that equivariant Zuckerman functors, which we define first on the level
of homotopic categories, actually make sense on the level of equivariant derived
categories.

The property we need depends on certain properties of the cone, which seem to
be interesting in themselves. First we define the notion of a semisplit short exact
sequence (see [Sp]). A short exact sequence

0 → U → V → W → 0

in M(A, K,D) is semisplit if it is split in the category of graded (A, K,D)-modules.
In other words, we can identify V with W ⊕U as a graded module, but the inclusion
of W is not necessarily a morphism of complexes. Clearly, for a morphism f : X →
Y in M(A, K,D), the short exact sequence

0 → Y
if→ Cf

pf→ T (X) → 0

is semisplit. We are going to show that any semisplit sequence arises in this way.
Let 0 → U → V → W → 0 be a semisplit short exact sequence. Then the matrix

of the differential of V with respect to the decomposition V = W ⊕ U is

dV =
(

dW 0
δ dU

)

where δ : W → U is a linear map of degree 1. We denote by the same letter the
corresponding linear map from W into T (U) of degree 0.

2.6.1. Lemma. The map δ : W → T (U) is a morphism in M(A, K,D).

Proof. It is clear that δ is an (A, K)-morphism. To see it is a D-morphism, we first
note that for any x ∈ D,

ωV (x) =
(

ωW (x) 0
0 ωU (x)

)

since V = W ⊕U as a D-module. Let v =
(

w
u

)
∈ V . Since V is a DG module over

D, we have
dV (ωV (x)v) = ωV (dDx)v + (−1)deg xωV (x)dV (v),

which becomes(
dW (ωW (x)w)

δ(ωW (x)w) + dU (ωU (x)u)

)
=

(
ωW (dDx)w + (−1)deg xωW (x)dW (w)

ωU (dDx)u + (−1)deg x(ωU (x)δw + ωU (x)dUu)

)

in the matrix representation. Since W and U are also DG modules over D, this
implies

δωW (x) = (−1)deg xωU (x)δ = ωT (U)(x)δ,
so δ is indeed a D-morphism.
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It remains to show that δ is a morphism of complexes. However, d2
V = 0, i.e.,(

d2
W 0

δdW + dUδ d2
U

)
= 0,

hence
δdW = −dUδ = dT (U)δ.

This finishes the proof. �

Now we see that V is the cone of the morphism T−1(δ) : T−1(W ) → U . Namely,

V = T (T−1(W ))⊕U as a graded module, and its differential is
(

dT (T−1W ) 0
T (T−1δ) dU

)
,

which is equal to dT−1δ. Therefore we have proved the following characterization
of the cone.

2.6.2. Proposition. Let 0 → U → V → W → 0 be a semisplit short exact
sequence in M(A, K,D). Then any choice of a splitting for this sequence exhibits
V as the cone of a morphism from T−1(W ) into U .

This has the following immediate consequences, which are useful for proving that
certain objects are K-projective or K-injective (see 3.2.6).

2.6.3. Corollary. Let 0 → U → V → W → 0 be a semisplit short exact sequence
in M(A, K,D). Let N be a null system in K(A, K,D). Then if any two of the
objects U , V and W are in N , so is the third.

Proof. From 2.6.2 we see that we have a distinguished triangle

T−1(W ) → U → V → W

in K(A, K,D). Therefore the claim follows from the properties (N2) and (N3) in
the definition of a null system ([KS], Definition 1.6.6). �

2.6.4. Corollary. Let N be a null system in K(A, K,D) and let V be an (A, K,D)-
module. Assume

0 = F0V ⊂ F1V ⊂ · · · ⊂ FnV = V

is a finite filtration of V by (A, K,D)-submodules, such that the graded objects

GriV = FiV/Fi−1V, i = 1, . . . , n,

belong to N . Assume further that FiV is isomorphic to Fi−1V ⊕GriV as a graded
(A, K,D)-module. Then V belongs to N .

Proof. Starting from 0 ∈ N and using 2.6.3, we prove inductively that FiV belong
to N for all i. In particular, for i = n we get that V belongs to N . �

It is possible to generalize 2.6.4 to infinite filtrations, both increasing and decreas-
ing (for decreasing filtrations, one needs a finiteness assumption). These generaliza-
tions together with the results of 2.5 lead to constructions of enough K-injectives in
K(A, K,D), and also K-projectives in case K is reductive. The construction of K-
injectives was done in [BL2], 1.15.3, in essentially the same way. Both constructions
are explained in detail in [P1], §5.6.
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3. Equivariant Zuckerman functors

In this section we consider a situation as in Section 1.3: (A, K) is a Harish-
Chandra pair, and γ : T → K is a morphism of algebraic groups. We will assume
that the differential of γ is injective, so that the Lie algebra t of T can be viewed
as a Lie subalgebra of the Lie algebra k of K, and N(t) can be viewed as a DG
subalgebra of N(k). Note that (U(k), T ) is another Harish-Chandra pair in the
obvious way.

We are going to construct the right adjoint Γeq
K,T of the forgetful functor from the

category of equivariant (A, K)-complexes (i.e., (A, K, N(k))-modules) into the cat-
egory of equivariant (A, T )-complexes (i.e., (A, T, N(t))-modules). Γeq

K,T will also
define a functor between the corresponding homotopic categories. Furthermore,
we will show that, in case T is reductive, this functor is “acyclic” (i.e., preserves
acyclic complexes, or equivalently, preserves quasi-isomorphisms). It follows that
this functor defines a functor between the corresponding equivariant derived cat-
egories, denoted again by Γeq

K,T . This is the equivariant analogue of the derived
Zuckerman functor. Finally, Γeq

K,T is given on all levels by the same explicit formula
(not involving resolutions), analogous to the Duflo-Vergne formula from 1.3.3.

We will further show that in case A is a flat U(k)-module for the right multi-
plication, the cohomology modules of Γeq

K,T (V ), for an (A, T )-module V viewed as
an equivariant complex concentrated in degree 0, are equal to the classical derived
Zuckerman functors of V .

One advantage of the equivariant construction over the classical one is the fact
that the equivariant construction is independent of A; in particular, if (g, K) is a
Harish-Chandra pair, then the same formula describes the adjoint for A = U(g)
and for A = Uθ, the quotient of U(g) corresponding to an infinitesimal character.
This leads to a natural way of localizing the Zuckerman construction; see [MP1],
§4, and [MP2].

3.1. Construction of equivariant Zuckerman functors. Let V be an equi-
variant (A, T )-complex, i.e., an (A, T, N(t))-module. Let πV , νV and ωV be the
corresponding actions. We consider V as a complex of weak (A, T )-modules and
apply to it the functor Indw from Section 1.3. In this way we get a complex of weak
(A, K)-modules Indw(V ) = R(K, V ) = R(K) ⊗C V . We denote the corresponding
actions of A and K by πR and νR; recall that νR is just the right translation, and
that for a ∈ A,

(πR(a)F )(k) = πV (φK(k)a)(F (k)), k ∈ K.

Both of these are actions by morphisms of complexes. Note that the differential of
R(K, V ) is induced by the differential of V .

Now we want to construct a (k, T, N(t))-action on R(K, V ). We already con-
structed actions λk of k and λT of T in Section 1.3; they were both given as the ten-
sor product of the left regular action on R(K) with the given action on V . Clearly,
in our present situation when V is a complex, they are actions by morphisms of com-
plexes (namely, the actions πV and νV are by morphisms of complexes). Therefore,
R(K, V ) is a complex of weak (k, T )-modules with respect to λk and λT .

We define an action of N(t) on R(K, V ) by

(λN (n)F )(k) = ωV (n)(F (k)), k ∈ K,
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for n ∈ N(t) and F ∈ R(K, V ). In other words, λN is the tensor product of the
trivial action of N(t) on R(K) with the given action on V . It is clearly a DG action.

The following lemma is straightforward.

3.1.1. Lemma. Let V be an (A, T, N(t))-module. Then
(i) With the above described action λ, Indw(V ) = R(K, V ) is a (k, T, N(t))-

module.
(ii) The actions πR and νR of A and K on R(K, V ) commute with the λ-action.
(iii) Let ϕ : V → W be a morphism of (A, T, N(t))-modules. Since ϕ is a mor-

phism of complexes of weak (A, T )-modules, we can consider the morphism
Indw(ϕ) of complexes of weak (A, K)-modules. Then Indw(ϕ) intertwines
the λ-actions.

Consider now the standard complex N(k) of k as a (k, T, N(t))-module, in the
following way. k acts by πN which is the left multiplication, T acts by the action
νN induced by φ, and N(t) acts by ωN which is the right multiplication twisted to
a left action:

ωN (m)n = (−1)deg m deg nnιm

for m ∈ N(t) and n ∈ N(k). Here ι is the principal anti-automorphism of N(t),
which is the same as the restriction of the principal anti-automorphism of N(k).
See Section 2.2, in particular 2.2.3. It is straightforward to check that in this way
N(k) indeed becomes a (k, T, N(t))-module. We define

Γeq
K,T (V ) = Hom·

(k,T,N(t))(N(k), R(K, V )),

where the (k, T, N(t))-action on R(K, V ) is the λ-action. Γeq
K,T (V ) is a complex of

vector spaces as we saw at the beginning of Section 2.4.
Recall from Section 2.4 that the condition for f : N(k) → R(K, V ) to be an

N(t)-morphism is

f(ωN (m)n) = (−1)deg f deg mλN (m)(f(n)).

We define actions of A, K and N(k) on f ∈ Γeq
K,T (V ) as follows:

πΓ(a)f = πR(a) ◦ f, a ∈ A,

νΓ(k)f = νR(k) ◦ f, k ∈ K,

(ωΓ(n)f)(m)(k) = (−1)deg n deg ff(Ad k(ιn)m)(k)

for a ∈ A, m, n ∈ N(k) and k ∈ K.

3.1.2. Theorem. With the above actions, Γeq
K,T (V ) is an (A, K, N(k))-module.

Furthermore, Γeq
K,T is a functor from M(A, T, N(t)) into M(A, K, N(k)).

Proof. It is clear from 3.1.1 that πΓ and νΓ are well-defined actions by morphisms
of complexes. It is also clear that νΓ is algebraic, and that πΓ is νΓ-equivariant.

Let us prove that the action ωΓ is a well-defined DG action. Let f ∈ Γeq
K,T (V ) and

n ∈ N(k). First, it is obvious that ωΓ(n)f is a linear map of degree deg n + deg f .
We have to prove that ωΓ(n)f is a (k, T, N(t))-morphism; then it will be clear
that ωΓ is a DG action. Namely, it is clear that (fn)(m) = f(nm), n, m ∈ N(k),
f ∈ Γeq

K,T (V ), defines a right DG action of N(k). Hence the same is true for

(fn)(m)(k) = f(Ad k(n)m)(k), k ∈ K,

and so, by 2.2.3, ωΓ is a left DG action of N(k).
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It is straightforward to check that ωΓ(n)f is a T -morphism and an N(t)-
morphism. To see that it is also a k-morphism, let X ∈ k. Then

λ(X)((ωΓ(n)f)(m))(k) = πV (X)((ωΓ(n)f)(m)(k)) + LX((ωΓ(n)f)(m))(k)

= (−1)deg n deg fπV (X)(f(Adk(ιn)m)(k)) +
d

dt
((ωΓ(n)f)(m))(exp(−tX)k)

∣∣
t=0

= (−1)deg n deg f (πV (X)(f(Adk(ιn)m)(k))

+
d

dt
f(Ad(exp(−tX)k)(ιn)m)(exp(−tX)k)

∣∣
t=0

)

= (−1)deg n deg f (πV (X)(f(Adk(ιn)m)(k))

+ f(−[X, Ad k(ιn)]m)(k) +
d

dt
f(Ad k(ιn)m)(exp(−tX)k)

∣∣
t=0

)

= (−1)deg n deg f (f(X Ad k(ιn)m)(k) − f([X, Ad k(ιn)]m)(k))

= (−1)deg n deg ff(Ad k(ιn)Xm)(k) = (ωΓ(n)f)(Xm)(k),

for any m ∈ N(k) and k ∈ K. Here we used the fact that since f is a k-morphism,

πV (X)(f(Adk(ιn)m)(k)) +
d

dt
f(Ad k(ιn)m)(exp(−tX)k)

∣∣
t=0

= f(X Ad k(ιn)m)(k),

for any (fixed) k ∈ K.
The νΓ-equivariance of ωΓ and the commuting of ωΓ and πΓ are straightforward.
It remains to show that νΓ − πΓ = ωΓ on k. This follows from 1.3.1, which says

that for any F ∈ R(K, V ) and X ∈ k we have

(νR(X)F )(k) − (πR(X)F )(k) = (ωR(X)F )(k) = −(λk(Ad k(X))F )(k),

for any k ∈ K.
This shows that Γeq

K,T (V ) is indeed an (A, K, N(k))-module. It is now easy to
check that Γeq

K,T is a functor; its action on a morphism ϕ : V → W of (A, T, N(t))-
modules is given by

(Γeq
K,T (ϕ)(f))(n)(k) = ϕ(f(n)(k)),

for f ∈ Γeq
K,T (V ), n ∈ N(k) and k ∈ K. �

3.1.3. Theorem. The functor Γeq
K,T is right adjoint to the forgetful functor from

the category M(A, K, N(k)) into the category M(A, T, N(t)).

Proof. We will just define the adjunction morphisms and leave the straightfor-
ward checking to the reader. For an (A, K, N(k))-module V , we define ΦV : V →
Γeq

K,T (V ) by
(ΦV (v)(n))(k) = (−1)deg v deg nωV (ιn)νV (k)v,

for v ∈ V , n ∈ N(k) and k ∈ K. For an (A, T, N(t))-module W we define ΨW :
Γeq

K,T (W ) → W by
ΨW (f) = f(1)(1)

for f ∈ Γeq
K,T (W ). �

Now we want to show that Γeq
K,T defines an exact functor on the level of ho-

motopic categories. The proof of this is essentially the same as the proof of 2.4.3.
Namely, the proof of functoriality of Γeq

K,T in 3.1.2 shows also that Γeq
K,T transforms
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graded (A, T, N(t))-morphisms into graded (A, K, N(k))-morphisms. On the other
hand, it was proved in the proof of 2.4.3 that Γeq

K,T satisfies the other conditions
of 2.4.1; namely, these other conditions are independent of the (A, K, N(k))-action
and depend only on the structure of a complex of vector spaces.

So Γeq
K,T indeed defines an exact functor between the homotopic categories, which

we denote again by Γeq
K,T . By 2.4.4 (or 2.4.5), it is still adjoint to the forgetful

functor on the homotopic level. Hence we have proved

3.1.4. Proposition. Γeq
K,T defines an exact functor from the category K(A, T, N(t))

into the category K(A, K, N(k)). This functor is right adjoint to the forgetful func-
tor.

To pass to derived categories, we assume that T is reductive (for the case of
non-reductive T , see [MP1], §2). In that case, we are going to prove that Γeq

K,T

is an acyclic functor, i.e., transforms acyclic equivariant (A, T )-complexes into
acyclic equivariant (A, K)-complexes. This implies that Γeq

K,T also transforms quasi-
isomorphisms into quasi-isomorphisms, and hence defines a functor on the level of
derived categories; this functor is equal to Γeq

K,T on objects, and acts on triples in
the obvious way.

To show that Γeq
K,T is acyclic, note first that if V is an acyclic equivariant (A, T )-

complex, then R(K, V ) is also acyclic, either as a complex of weak (A, K)-modules,
or as a (k, T, N(t))-module. On the other hand, acyclicity of Γeq

K,T (V ) can be
checked on the level of vector spaces. Therefore, it is enough to show that the
functor Hom·

(k,T,N(t))(N(k),−) transforms acyclic (k, T, N(t))-modules into acyclic
complexes of vector spaces.

In other words, we need to show that N(k) is a K-projective (k, T, N(t))-module
(see §2.6). This will be proved in 3.2.6 below. Furthermore, Γeq

K,T (V ) : D(A, T, N(t))
→ D(A, K, N(k)) remains adjoint to the forgetful functor. This is a quite general
fact about deriving adjoint functors (see [M], Chapter 5, Theorem 1.6.1); our situ-
ation with both functors acyclic is comparatively simple. So once we prove 3.2.6,
we will get the following theorem.

3.1.5. Theorem. Assume T is reductive. Then the functor Γeq
K,T is acyclic and

hence defines the same named functor on the level of derived categories, from
D(A, T, N(t)) into D(A, K, N(k)). This functor is right adjoint to the forgetful
functor.

3.2. K-projectivity of N(k). To prove that N(k) is a K-projective (k, T, N(t))-
module, we use the Hochschild-Serre filtration (see [HS]), which we now describe.
To construct this filtration we do not need T to be reductive; this will be required
only in the proof of K-projectivity.

Let p be an integer between 0 and dim k. We consider
⊕p

i=0 N−i(k). This is
clearly a subcomplex and a (k, T )-submodule of N(k); however, it is not an N(t)-
submodule. Therefore we define

FpN(k) = ωN (N(t))(
p⊕

i=0

N−i(k)).

This is now clearly an N(t)-submodule; however, it is also a k-submodule since
πN and ωN commute, and a T -submodule since ωN is T -equivariant and N(t) is
T -invariant. Finally, it is a subcomplex by the DG property of ωN . Hence we have
defined an increasing filtration of N(k) by (k, T, N(t))-submodules.
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In the following lemma we describe FpN(k) more explicitly. In particular, from
this description it will become clear that our filtration is really the Hochschild-Serre
filtration. The proof is straightforward.

3.2.1. Lemma. For k ≤ p, FpN
−k(k) = N−k(k). For k ≥ p,

FpN
−k(k) = N−p(k)

∧k−p(t).

Here the right-hand side is a subspace of N−k(k) via multiplication in N(k).

In this description of the filtration, the containment FpN(k) ⊂ Fp+1N(k) becomes

N−p(k)
∧k−p(t) ⊂ N−p−1(k)

∧k−p−1(t),

the inclusion being given in the obvious way, i.e., by

(u ⊗ ξ)(η1 ∧ · · · ∧ ηk−p) = (u ⊗ ξ ∧ η1)(η2 ∧ · · · ∧ ηk−p).

Furthermore, it is clear that Fdim kN(k) = N(k), while F0N(k) = U(k)
∧

(t) can be
identified with U(k) ⊗C

∧
(t). We define F−1N(k) = 0.

We want to identify the graded object corresponding to this filtration. For this
we need the following lemma about exterior algebras, the proof of which follows
easily from the results in [Bo], III.7.

3.2.2. Lemma. Let k be a finite dimensional vector space and t a subspace of
k. Denote by π the canonical graded map from

∧
(k) into

∧
(k/t) induced by the

projection k → k/t. Then
(i) π is surjective and its kernel is

∧
(k)t, the ideal in

∧
(k) generated by t.

(ii) The bigraded linear map

m :
∧

(k) ⊗C

∧
(t) →

∧
(k)

∧
(t)

given by multiplication is surjective and its kernel is contained in
∧

(k)t⊗C∧
(t).

(iii) The map πi ⊗ 1 :
∧i(k) ⊗C

∧j(t) →
∧i(k/t) ⊗C

∧j(t) defines a map

ϕ :
∧i(k)

∧j(t) →
∧i(k/t) ⊗C

∧j(t)

such that πi ⊗ 1 = ϕ ◦ m. The kernel of ϕ is∧i−1(k)
∧j+1(t) = (

∧i−1(k)t)
∧j(t) ⊂

∧i(k)
∧j(t).

3.2.3. Remark. We are, of course, going to apply 3.2.2 in the case studied above,
of a Lie algebra k and its subalgebra t. In that case, T acts on k, t and k/t, and
hence on the corresponding exterior algebras. It is then obvious that all the maps
considered in 3.2.2 are T -morphisms. It is also clear that the maps m and ϕ from
3.2.2 are morphisms with respect to the action of

∧
(t) via right multiplication.

We are ready now to describe the graded object corresponding to our filtration.
Consider the algebraic T -module

∧p(k/t) as a weak (C, T )-module. We can apply
the functor indU(k),C from Section 1.2 to this module. In this way we get a weak
(k, T )-module

indU(k),C

∧p(k/t) = U(k) ⊗C

∧p(k/t);

recall that k acts on this module via left multiplication in the first factor, while T
acts on both factors. Now we can consider U(k) ⊗C

∧p(k/t)[p]; it is a complex of
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weak (k, T )-modules concentrated in degree −p. We now apply the functor Ct from
2.5.2(i) to this complex. In this way we obtain a (k, T, N(t))-module,

Ct(indU(k),C

∧p(k/t)[p]) = (U(k) ⊗C

∧p(k/t)[p]) ⊗U(t) N(t).

Recall from §2.5 that here the tensor product is taken with respect to the right
action of U(t) on the first factor, which is the ω-action twisted by ι, and the left
multiplication in the second factor. The action of k on the above module is given
by the left multiplication in the first factor, T acts on all three factors, while N(t)
acts on the third factor by right multiplication twisted by ι. The differential is the
tensor product differential, but since U(k)⊗C

∧p(k/t)[p] has zero differential, we see
that

d = (−1)p 1 ⊗ dN ,

where dN denotes the differential of N(t).
Finally, let us note that that the above complex is concentrated in degrees be-

tween −p and −p − dim t.

3.2.4. Proposition. The graded object attached to the Hochschild-Serre filtration
F N(k) is given by the above described modules:

GrpN(k) = Ct(indU(k),C

∧p(k/t)[p]).

Proof. Let us first note that for p ≤ k ≤ p + dim t, Ct(indU(k),C

∧p(k/t)[p])−k can
be identified with

U(k) ⊗C

∧p(k/t) ⊗C

∧k−p(t).

In this interpretation, the actions of k, T and t−1 are given in the obvious way (as
before), while the action of X ∈ t0 is still by right multiplication, but we have to
use the commuting rules as follows:

ω(X)(u ⊗ λ ⊗ µ) = −uX ⊗ λ ⊗ µ + u ⊗ [X, λ] ⊗ µ + u ⊗ λ ⊗ [X, µ].

Let us define a graded linear map f : FpN(k) → Ct(indU(k),C

∧p(k/t)[p]) as follows:
For k < p, f−k = 0, while for k ≥ p,

f−k : U(k) ⊗C

∧p(k)
∧k−p(t) → U(k) ⊗C

∧p(k/t) ⊗C

∧k−p(t)

is 1 ⊗ ϕ, where ϕ :
∧p(k)

∧k−p(t) →
∧p(k/t) ⊗C

∧k−p(t) is the map from 3.2.2(iii).
Here we used the description of FpN(k) given by 3.2.1.

By 3.2.2(iii), f is surjective and its kernel is equal to

U(k) ⊗C

∧p−1(k)
∧k−p+1(t)

in degrees −k, for k ≥ p. It is clear that for k < p, ker f−k = N−k(k). So, by
3.2.1, the kernel of f is exactly Fp−1N(k). Therefore to prove the theorem, it only
remains to show that f is a morphism of (k, T, N(t))-modules.

It is obvious that f intertwines the k-actions. By 3.2.3 it also intertwines the
T -actions and the actions of t−1. To see that it also intertwines the actions of
t0, note that these actions are given on both modules by right multiplication on
U(k) tensored with the adjoint action on the other factor. However, the map ϕ
intertwines the adjoint actions of T , hence also of t.

In particular, we see that if k ≥ p, then for u ⊗ λ ∈ N−p(k) and n ∈ N−k+p(t),
we have

f−k((u ⊗ λ) · n) = f−p(u ⊗ λ) · n,
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where − · n denotes the right multiplication by n on N(k), respectively on the last
factor N(t) in (U(k)⊗C

∧p(k/t)[p])⊗U(t)N(t). Note also that (u⊗λ) ·n ∈ FpN
−k(k),

so f−k can be applied to it. Using this, let us prove that f is a morphism of
complexes.

Let us fix k > p; for k ≤ p there is nothing to prove. Let (u⊗ ξ)η be an element
of FpN

−k−1(k) = N−p(k)
∧k+1−p(t). Then

f−k(dN ((u ⊗ ξ)η)) = f−k(dN (u ⊗ ξ)η + (−1)p(u ⊗ ξ)dN (η))

by the properties of dN . However, dN (u⊗ξ)η is in Fp−1N
−k(k) since η ∈

∧k−p+1(t),
so f−k sends it to 0. Hence the above expression is equal to

(−1)pf−k((u ⊗ ξ)dN (η)) = (−1)pf−p(u ⊗ ξ) · dN (η);

here we used the above remark. Now by 3.2.2(iii),

f−p(u ⊗ ξ) = u ⊗ ϕ(ξ) = u ⊗ ϕ(ξ · 1) = u ⊗ πp(ξ) ⊗ 1,

where πp :
∧p(k) →

∧p(k/t) is induced by the projection k → k/t. So the above
expression is equal to

(−1)pu ⊗ πp(ξ) ⊗ dN (η) = d(u ⊗ πp(ξ) ⊗ η) = d(u ⊗ ϕ(ξη)) = d(f−k−1((u ⊗ ξ)η)).

So f is a morphism of complexes and this finishes the proof. �
Assume now that T is reductive. Then

∧p(k/t) is a projective T -module, and
hence indU(k),C

∧p(k/t) is a projective weak (k, T )-module since indU(k),C is left
adjoint to the forgetful functor from M(k, T )w into M(T ). This implies that
indU(k),C

∧p(k/t)[p] is a K-projective complex of weak (k, T )-modules, since it is a
translate of D(indU(k),C

∧p(k/t)), and D(P ) is a K-projective complex for any pro-
jective object P in an abelian category. Namely, a complex of projectives bounded
above is a basic example of a K-projective complex over an abelian category; this
is a reformulation of a well-known fact that any morphism between a complex of
projectives and an acyclic complex is homotopic to 0. See [Sp] for further discussion.

Now the functor Ct preserves K-projectives since it is left adjoint to the forgetful
functor from equivariant complexes to weak complexes (see 2.5.2(i)). Therefore,
by 3.2.4 we see that GrpN(k) is a K-projective (k, T, N(t))-module. Hence we have
proved

3.2.5. Corollary. If T is reductive, then the graded objects GrpN(k) corresponding
to the Hochschild-Serre filtration are K-projective (k, T, N(t))-modules.

We can now finish the proof of K-projectivity of N(k) and hence also of 3.1.5.

3.2.6. Theorem. If T is reductive, N(k) is a K-projective (k, T, N(t))-module.

Proof. By 2.6.4, the only remaining thing to check is that for any p, FpN(k) is
isomorphic to Fp−1N(k) ⊕ GrpN(k) as a graded (k, T, N(t))-module.

Let p be a T -invariant complement of t in k; p exists since T is reductive. Iden-
tifying k/t with p gives an identification

GrpN(k) ∼= (U(k) ⊗C

∧p(p))[p] ⊗C

∧
(t).

As a graded module, the last module embeds into FpN(k) via the inclusion induced
by the isomorphism ∧

(p) ⊗C

∧
(t) →

∧
(k),

which is given by multiplication. This inclusion clearly gives the required splitting.
�
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Now we will tie this with the well-known construction of the relative standard
complex used to calculate (k, T )-cohomology. Note first that it follows from 2.2.6
that the counit morphism

ε : N(k) → C,

which is well known to be a resolution of C by free U(k)-modules, is also a K-
projective resolution of the trivial (k, T, N(t))-module C. Namely, it is obvious that
ε is a T -morphism and an N(t)-morphism.

However, C is actually a (k, T )-module, and we know from 2.5.2(ii) that the
forgetful functor Q from complexes of (k, T )-modules into (k, T, N(t))-modules has
a left adjoint −⊗N(t)C, that is, the functor of N(t)-coinvariants. Therefore ε factors
through a morphism

δ : N(k) ⊗N(t) C → C

of complexes of (k, T )-modules. Let us show that δ is a quasi-isomorphism. Note
that ε = δ◦p, where p : N(k) → N(k)⊗N(t)C is given by n �→ n⊗1; p is actually the
adjunction morphism. Therefore it is enough to show that p is a quasi-isomorphism.
However, if we identify N(k) with N(k) ⊗N(t) N(t), then p gets identified with

1 ⊗ ε′ : N(k) ⊗N(t) N(t) → N(k) ⊗N(t) C,

where ε′ : N(t) → C is the counit morphism, which is again a quasi-isomorphism.
By Poincaré-Birkhoff-Witt Theorem (2.2.1), N(k) is a free right N(t)-module for
the right multiplication. Therefore, by [BL1], 10.12.4.4, it is a K-flat N(t)-module
and it follows that 1 ⊗ ε′ is a quasi-isomorphism.

On the other hand, since the functor −⊗N(t)C preserves K-projectives, N(k)⊗N(t)

C is a K-projective complex of (k, T )-modules. In fact, its components are easily
seen to be

U(k) ⊗U(t)

∧i(p),

so they are projective (k, T )-modules. Namely,
∧i(p) are projective T -modules,

that is, projective (t, T )-modules, and the above modules are indU(k),U(t)

∧i(p), so
they are projective by 1.2.3.

Note that the above modules are also finitely generated U(k)-modules. To con-
clude

3.2.7. Proposition. If T is reductive, then the morphism

N(k) ⊗N(t) C → C

constructed above is a resolution of the trivial (k, T )-module C by projective (k, T )-
modules, which are finitely generated as U(k)-modules.

Of course, this is just the well-known relative standard complex (see e.g. [BW]).

3.3. Equivariant versus classical Zuckerman functors. In this section we
relate the equivariant construction from Section 3.1 to the classical Zuckerman
construction. Let V be an (A, T )-module. Let D(V ) be the corresponding com-
plex of (A, T )-modules (concentrated in degree 0). Consider the corresponding
(A, T, N(t))-module Q(D(V )) (Q is as in 2.5.2(ii)). This is again a complex con-
centrated in degree 0 and having V as the 0th component; the actions of A and
T are the same as on V , while the action of N(t) is trivial. Let us consider the
module R(K, Q(D(V ))). As a complex of weak (A, K)-modules, with actions πR
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and νR, it is just D(R(K, V )). As a (k, T, N(t))-module, with action λ, it must be
equal to Q(D(R(K, V ))) since it is concentrated in degree 0. It follows that

Γeq
K,T (Q(D(V ))) = Hom·

(k,T,N(t))(N(k), Q(D(R(K, V )))).

As we already mentioned, by 2.5.2(ii), Q : K(M(k, T )) → K(k, T, N(t)) has a left
adjoint, the functor −⊗N(t)C of N(t)-coinvariants. Since both these functors satisfy
the conditions of 2.4.5, the stronger variant of adjunction from 2.4.5 holds, i.e., we
have

Hom·
(k,T,N(t))(N(k), Q(D(R(K, V )))) = Hom·

(k,T )(N(k) ⊗N(t) C, D(R(K, V ))).

The actions of A, K and N(k) are given on the right-hand side in the same way
as on the left-hand side: A and K act on the second variable, while N(k) acts on
the first (by left multiplication). With this definition, it is obvious that the above
equality is an equality of (A, K, N(k))-modules.

However, as we saw in 3.2.7, N(k)⊗N(t) C is a projective resolution of the trivial
module C in the category of (k, T )-modules. It follows that as a complex of weak
(A, K)-modules,

Γeq
K,T (Q(D(V ))) = R Hom(k,T )(D(C), D(R(K, V ))).

In particular, we get

3.3.1. Lemma. Let V be an (A, T )-module. If T is reductive, then the cohomology
modules of Γeq

K,T (Q(D(V ))) are given by

Hp(Γeq
K,T (Q(D(V )))) = Extp

(k,T )(C, R(K, V ))

as (A, K)-modules. Here R(K, V ) is considered as a (k, T )-module with respect to
the λ-action.

Using 1.3.3, we finally get

3.3.2. Theorem. Assume that T is reductive and that A is a flat U(k)-module for
the right multiplication (for example, this is true for A = U(g), where (g, K) is a
Harish-Chandra pair). Let V be an (A, T )-module. Then the cohomology modules
of Γeq

K,T (Q(D(V ))) are equal to the classical derived Zuckerman functors of V .
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