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ALLEE EFFECT AND BISTABILITY
IN A SPATIALLY HETEROGENEOUS

PREDATOR-PREY MODEL

YIHONG DU AND JUNPING SHI

Abstract. A spatially heterogeneous reaction-diffusion system modelling pre-
dator-prey interaction is studied, where the interaction is governed by a Holling
type II functional response. Existence of multiple positive steady states and
global bifurcation branches are examined as well as related dynamical behav-
ior. It is found that while the predator population is not far from a constant
level, the prey population could be extinguished, persist or blow up depending
on the initial population distributions, the various parameters in the system,
and the heterogeneous environment. In particular, our results show that when
the prey growth is strong, the spatial heterogeneity of the environment can
play a dominant role for the presence of the Allee effect. Our mathematical
analysis relies on bifurcation theory, topological methods, various comparison
principles and elliptic estimates. We combine these methods with monotonic-

ity arguments to the system through the use of some new auxiliary scalar
equations, though the system itself does not keep an order structure as the
competition system does. Among other things, this allows us to obtain partial
descriptions of the dynamical behavior of the system.

1. Introduction

A system of differential equations has been used to model the predator-prey
interaction between two populations since the pioneering work of Volterra and Lotka
in the 1920s. When the spatial distributions of the two populations are also of
interest, the passive dispersal of the populations can be modelled by a diffusion
operator. Combining the growth, interaction and dispersal of the predator and
prey, a natural mathematical model for their spatiotemporal behavior is a reaction-
diffusion system of the form

(1.1)

{
ut − d1∆u = λu − au2 − bφ(u)v,

vt − d2∆v = µv − dv2 + cφ(u)v.

Here we assume that both the predator and prey populations have a logistic growth
rate. The function φ(u) represents the functional response of the predator. The
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classical Lotka-Volterra model assumes that φ(u) = u. If the handling time of each
prey is also considered, then a more reasonable response function is the Holling
type II response φ(u) = u/(1 + mu) for some m > 0 [H].

In the spatial predator-prey model (1.1), the parameters are traditionally as-
sumed to be constant. However, it is more realistic to assume that the growth rate,
the crowding effect, and the predator-prey interaction rates are spatially dependent,
due to the heterogeneity of the environment. Hence we consider a reaction-diffusion
system

(1.2)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ut − d1∆u = λ(x)u − a(x)u2 − b(x)uv

1 + m(x)u
, x ∈ Ω, t > 0,

vt − d2∆v = µ(x)v − d(x)v2 +
c(x)uv

1 + m(x)u
, x ∈ Ω, t > 0,

∂νu = ∂νv = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ Ω.

Here Ω is a bounded domain in Rn with smooth boundary and n ≥ 1, the parameter
functions are assumed to be nonnegative and continuous in Ω (except µ(x), which
can take negative values). ∂νu = ∇u(x) · ν(x) is the out-flux of u, and ν(x) is the
outer unit normal vector of ∂Ω at x. Thus the zero-flux boundary condition used
in the system indicates it is a closed ecosystem in the habitat Ω.

In this article, we are interested in the set of steady state solutions of (1.2) and
the associated asymptotic dynamical behavior. In particular we are interested in
the impact of a Holling type II response, instead of the more traditional Lotka-
Volterra model, and the effect of the spatial heterogeneity. In our mathematical
analysis, we will make use of an interesting observation; namely, some monotonic-
ity arguments can be applied to this kind of predator-prey system through some
auxiliary scalar equations (see (3.12), (3.29), (4.22) and (4.36)). This observation
will play a crucial role in our analysis; among other things, it enables us to obtain
some descriptions of the dynamical behavior of the system, which seem difficult to
get by other techniques.

To focus our interest, we shall only consider a more special model (see (2.1)
below) with all parameter functions in (1.2) being constant except a(x), which
represents the crowding effect on the prey population. The function a(x) is assumed
to be degenerate on a subregion Ω0 of Ω, i.e., a(x) = 0 for x ∈ Ω0, and a(x) > 0
otherwise. Biologically Ω0 is a more favorable subregion for the prey where its
growth can be unbounded. Then an interesting question is whether an introduction
of a predator will control the otherwise possibly unbounded growth of the prey
population. The answer to this question is not intuitively obvious because we
assume the prey-consumption ability of the predator is limited, obeying a Holling
type II response.

We will show that there is a threshold prey growth rate λ∗, and the dynamics
of the system undergoes a drastic change when λ crosses this value. We shall call
λ < λ∗ the weak prey growth, and λ > λ∗ the strong prey growth. In the weak
prey growth case, the degeneracy of a(x) does not seem to have a significant effect
on the asymptotic behavior, which is similar to the case that a(x) is positive in Ω.
In particular, when µ is large, there is no positive steady-state, and the semitrivial
steady state (0, µ) is globally asymptotically stable. Thus the prey population
cannot evade extinction while the predator population stabilizes at the level µ.
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When µ is positive and small, an Allee effect is observed. If the initial population
of prey u0 is large enough, a coexistence state can be reached eventually, but if u0 is
small, then the prey will become extinct; on the other hand, regardless of its initial
(nontrivial) state, the population of the predator will always be no less than µ in the
long time. We notice that the prey population does not blow up, although there is
a region where it can grow without bound. We are able to partially characterize the
long time dynamical behavior and its bistable property in certain parameter ranges
(see Theorem 3.8). Moreover, we will examine the effect of m on the bistability of
the system and show that when m is large, the bistable range of µ always exists,
but as m decreases, the bistable range of µ may shrink to empty.

A drastic change occurs when the prey growth rate λ increases across the thresh-
old value λ∗. In the strong prey growth case, the system has a positive steady-state
for all µ > λ/b, and the Allee effect can be observed for all positive m and almost
all predator growth rates µ. Therefore even when m is small (thus the predator’s
consumption ability is strong) and µ is large (the predator also grows fast), the
prey population can still be out of control. Indeed we will show that if u0 is large
enough, then the prey population goes to infinity in Ω0 when t → ∞, and when u0

is small, the prey will become extinct as t → ∞. This suggests that in the strong
prey growth case, the degeneracy of the crowding effect function a(x) plays a dom-
inant role for the presence of the Allee effect. This is in sharp contrast to the weak
prey growth case mentioned in the last paragraph, where the rate of saturation,
namely the value of m, determines whether or not the Allee effect can be observed.
However, we should be cautious that in the strong prey growth case, though domi-
nating, the degeneracy of a(x) alone does not generate the Allee effect; the presence
of saturation (i.e., m > 0) is important, though the rate of saturation is not (for
the Allee effect). Indeed when m = 0 (no saturation, classical Lotka-Volterra case),
the system possesses a positive steady-state for all µ < λ/b, and it has no positive
steady-state when µ ≥ λ/b (the predator only state is globally stable). Such re-
sults for classical Lotka-Volterra equations were obtained in [DD] for the Dirichlet
boundary value problem, but they carry over to the Neumann problem as well.
A more comprehensive comparison of the dynamics of the classical Lotka-Volterra
and that of Holling type II predations can be found in our recent survey [DS2].

It is arguable whether such degeneracy (a(x) = 0) is realistic. However, the phe-
nomena in the last paragraph largely remain if we replace the degenerate function
a(x) by a(x) + ε for a small positive constant ε. Now in Ω0, unbounded growth
of the prey is impossible, but the prey will have a rather large carrying capacity.
We will show that for any fixed m > 0 and µ > 0, the Allee effect exists if ε is
small enough. Thus, in this situation, the Allee effect is again mainly caused by the
strong spatial heterogeneity of the environment (namely, the “near degeneracy” of
the prey crowding effect) though the presence of saturation in the functional re-
sponse is also important. We would like to remark that µ > 0 is possible if the
predator has other food sources apart from the prey u. In Figure 1, an indication
of the behavior of the global bifurcation branches of the positive steady-states is
shown, where drastic changes can be observed between the cases λ < λ∗ and λ > λ∗.
As will become clear later, the multiplicity of steady state solutions depends further
on the parameters m and µ.

Diffusive predator-prey systems have received much attention from ecologists and
mathematicians since the 1970s; see, for example, [SJ, SL, dMR, Co, Da2, BB] for
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Figure 1. Possible bifurcation diagram of positive steady state
solutions; solid line: λ < λ∗, dashed line: λ > λ∗.

some of the early research, where a homogeneous spatial environment was always
assumed. Travelling wave solutions and pattern formation of predator-prey systems
with type II predation but again in a spatially homogeneous environment have been
studied in [HLR, MP, OL] (see also the references therein for related problems).
Recently, the impact of degeneracy and heterogeneity of the environment has been
studied in [D1, D2, D3] for the Lotka-Volterra competition model, and in [DD] for
the Lotka-Volterra predator-prey model. More recently, a diffusive Holling-Tanner
type predator-prey model was considered in [DHs]. In both [DD] and [DHs], only
one attracting state seems possible, contrasting the possible bistability for (1.2).
On the other hand, when the environment is homogeneous (a(x) ≡ a), the set of
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steady state solutions of (1.2) was studied in [DL3] for the large m case (see also
[BB, CEL, DL1, DL2] for Dirichlet problems), and for small m, it follows from
results in [dMR] that the system has at most one positive steady-state, and it is
a constant solution and is globally attracting (when it exists). In this paper, we
consider a general m > 0, and most of our results holds for all positive m. In
particular we show that for intermediate m (neither small nor large), (1.2) may
have a global branch of steady state solutions whose shape is roughly a reversed S
(see Figure 1 (b)). In a related recent paper [DS1], we also consider the impact of
a protect zone for the prey species on the dynamics. It is interesting that in that
case, a unique globally stable positive steady-state exists for strong prey growth
and strong predator growth although we still have a saturation on the predator
functional, in contrast to the bistability we show in the current paper.

Allee effects and bistability in scalar reaction-diffusion equations were studied in
[KS, OS1, OS2, SS2]. In particular, the Allee effect appears in a scalar reaction-
diffusion equation with logistic growth and Holling type II functional response pre-
dation. Compared to the results in [SS2], the dynamical behavior of (1.2) for weak
prey growth is similar to the weak Allee effect in which bistability only exists for
a bounded parameter range, and the behavior of (1.2) with strong prey growth is
similar to the strong Allee effect where bistability exists for an unbounded param-
eter range. The bifurcation parameter in [SS2] is the diffusion coefficient, and here
we use the predator growth rate, but most of our results remain true if we use the
diffusion coefficient as the bifurcation parameter (with suitable rescaling).

Our mathematical approach is based on bifurcation theory, topological methods,
elliptic and parabolic comparison principles and various elliptic estimates. We
will introduce the basic mathematical setup and recall some preliminary results
in Section 2. We consider the weak and strong prey growth cases in Sections 3
and 4 respectively, and in Section 5, we consider the perturbed case when a(x)
is replaced by a(x) + ε. Though our predator-prey system has no monotonicity
property (in contrast to the competition systems), we are able to make extensive use
of some scalar equations (see (3.12), (3.29), (4.22) and (4.36)), where monotonicity
arguments apply, to obtain various results on the global bifurcation branches of
the steady-state solutions of our system and its dynamical behavior. Our main
mathematical results are further explained in biological terms in subsections 3.4,
4.5 and 5.2.

2. Basic setup and preliminaries

To concentrate on the impact of the degeneracy of a(x) on the dynamics of (1.2),
we assume that the other parameters in the equations are spatially homogeneous.
Moreover, for the convenience of notation, we assume that the diffusion constants
d1 = d2 = 1. Thus (1.2) becomes

(2.1)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ut − ∆u = λu − a(x)u2 − buv

1 + mu
, x ∈ Ω, t > 0,

vt − ∆v = µv − v2 +
cuv

1 + mu
, x ∈ Ω, t > 0,

∂νu = ∂νv = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ Ω,



4562 YIHONG DU AND JUNPING SHI

and for the equation of steady state solutions, now we have

(2.2)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−∆u = λu − a(x)u2 − buv

1 + mu
, x ∈ Ω,

−∆v = µv − v2 +
cuv

1 + mu
, x ∈ Ω,

∂νu = ∂νv = 0, x ∈ ∂Ω.

Here λ, µ, b, c, m are constants, all positive except µ, which may take negative values;
a(x) is a nonnegative continuous function on Ω. Moreover there exists a subregion
Ω0 such that Ω0 ⊂ Ω, and

(2.3) a(x) ≡ 0, x ∈ Ω0, and a(x) > 0, x ∈ Ω\Ω0.

We assume that Ω0 is an open and connected subset of Ω, and it has C2 boundary
∂Ω0.

Linear eigenvalue problems will play important roles in our analysis. We define
λD

1 (φ, O) and λN
1 (φ, O) to be the principal eigenvalues of −∆ + φ over the region

O, with Dirichlet or Neumann boundary conditions respectively. If the region O is
omitted in the notation, then we understand that O = Ω. If the potential function
φ is omitted, then we understand that φ = 0. We recall some well-known properties
of λD

1 (φ, O) and λN
1 (φ, O):

(1) λD
1 (φ, O) > λN

1 (φ, O);
(2) λB

1 (φ1, O) > λB
1 (φ2, O) if φ1 ≥ φ2 and φ1 �≡ φ2, for B = D, N ;

(3) λD
1 (φ, O1) ≥ λD

1 (φ, O2) if O1 ⊂ O2.
When describing the properties of solutions to (2.1), we will often need the

knowledge of the scalar equation:

(2.4)

⎧⎪⎨⎪⎩
ut − ∆u = λu − a(x)u2, x ∈ Ω, t > 0,

∂νu = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ 0, x ∈ Ω.

The corresponding steady state problem is

(2.5) −∆u = λu − a(x)u2, x ∈ Ω, ∂νu = 0, x ∈ ∂Ω.

It is well known (see [O]) that the eigenvalue λD
1 (Ω0) = λD

1 (0, Ω0) > 0 plays an
important role in the dynamics of (2.4); it is also known that to fully describe the
behavior of (2.4) one needs the boundary blow-up problem (see [DHu]):

(2.6) −∆u = λu − a(x)u2, x ∈ Ω\Ω0, ∂νu = 0, x ∈ ∂Ω, u = ∞, x ∈ ∂Ω0.

The main results on (2.6), (2.5) and (2.4) can be summarized as follows (see [DHu]):

Theorem 2.1 (Boundary blow-up problem). (1) For any λ ∈ R, (2.6) has a
minimal positive solution Uλ and a maximal positive solution U

λ
.

(2) If there exist positive constants γ and β such that limx→∂Ω0 a(x)/[d(x, ∂Ω)]γ

= β, then (2.6) has a unique positive solution Uλ.

Theorem 2.2 (Steady state solutions). (1) (2.5) has a unique positive solu-
tion uλ(x) when 0 < λ < λD

1 (Ω0), and it has no positive solution when
λ ≥ λD

1 (Ω0).
(2) uλ → 0 uniformly in Ω as λ → 0+, and uλ → ∞ uniformly on Ω0 as

λ → [λD
1 (Ω0)]−, and uλ → Uλ uniformly on any compact subset of Ω\Ω0

as λ → [λD
1 (Ω0)]−.
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Theorem 2.3 (Dynamical behavior). (1) When 0 < λ < λD
1 (Ω0), uλ is glob-

ally asymptotically stable for (2.4).
(2) When λ ≥ λD

1 (Ω0), u(x, t) → ∞ for x ∈ Ω0 as t → ∞, and Uλ(x) ≤
limt→∞u(x, t) ≤ limt→∞u(x, t) ≤ U

λ
(x) for x ∈ Ω\Ω0.

Remark 2.4. The uniqueness result in Part 2 of Theorem 2.1 holds under weaker
conditions; by [D6], the uniqueness holds if β1 ≤ a(x)/[d(x, ∂Ω)]γ ≤ β2 for some
β1, β2, γ > 0 and all x near ∂Ω.

In the following analysis we will fix λ for the two distinctive cases:

(a) weak prey growth: 0 < λ < λD
1 (Ω0), (b) strong prey growth: λ > λD

1 (Ω0),

and we will use the predator growth rate µ as a bifurcation parameter. We also fix
the parameters b, c, m > 0 unless otherwise stated. In the following, for simplicity
of the notation, we will write p(u) = u/(1 + mu). It is easy to see that

(2.7) p(u) =
u

1 + mu
, p′(u) =

1
(1 + mu)2

, p′′(u) =
−2m

(1 + mu)3
.

3. Weak prey growth rate

In this section we assume that 0 < λ < λD
1 (Ω0), and we will consider the

structure of the set of nonnegative steady state solutions of (2.1) and its underlying
dynamical behavior.

3.1. Steady state solutions: bifurcation analysis. For any µ > 0, (2.2) has two
semi-trivial solutions: (uλ, 0) and (0, µ). So we have two curves of these solutions
in the space of (µ, u, v):

(3.1) Γu = {(µ, uλ, 0) : −∞ < µ < ∞}, Γv = {(µ, 0, µ) : 0 < µ < ∞}.

By the strong maximum principle, any nonnegative solution (u, v) of (2.2) is either
(0, 0), or a semi-trivial one, or a positive one.

From standard local bifurcation analysis, there is a bifurcation point µ1 =
λN

1 (−cp(uλ)) such that a smooth curve Γ′
1 of positive solutions to (2.2) bifurcates

from Γu at (µ, u, v) = (µ1, uλ, 0). Similarly, there is another bifurcation point
µ2 = λ/b such that a smooth curve of positive solutions Γ′

2 to (2.2) bifurcates from
Γv at (µ, u, v) = (µ2, 0, µ2). From global bifurcation theory, each of Γ′

1 and Γ′
2 is

contained in a global branch of positive solutions to (2.2). We call these branches
Γ1 (⊃ Γ′

1) and Γ2 (⊃ Γ′
2) respectively. Then, as in [BB] either Γ1 and Γ2 are both

unbounded, or Γ1 = Γ2. To show that the latter is the case, we prove the following
lemma:

Lemma 3.1. Suppose that 0 < λ < λD
1 (Ω0) is fixed, and (u, v) is a positive solution

of (2.2). Then the following hold:

(1) 0 < u(x) < uλ(x), and µ+c/m > v(x) > max{µ, 0}, where uλ is the unique
positive solution of (2.5).

(2) The parameter µ must satisfy

(3.2) − c

m
< λN

1 (−cp(uλ)) < µ <
λ(1 + m||uλ||∞)

b
.
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Proof. Part 1 is a simple consequence of a standard comparison argument. For
Part 2, from Part 1 and the equations, we have

λ = λN
1 (a(x)u +

bv

1 + mu
) > λN

1 (
b max{µ, 0}
1 + m||uλ||∞

) =
b max{µ, 0}
1 + m||uλ||∞

,

and since p(u) is increasing,

µ = λN
1 (v − cu

1 + mu
) > λN

1 (− cuλ

1 + muλ
) > λN

1 (− c

m
) = − c

m
.

�

From Lemma 3.1, we conclude that (2.2) has no unbounded branches of positive
solutions when 0 < λ < λD

1 (Ω0) is fixed. Thus the two local branches must be
connected. To obtain a more precise local picture of Γ ≡ Γ1 = Γ2, we give more
details on the bifurcation analysis. We apply the bifurcation result of Crandall-
Rabinowitz [CR1], and we use a change of variables v = µ+w (so that (u, w) = (0, 0)
is the trivial solution). For p > 1, let X = {u ∈ W 2,p(Ω) : ∂νu = 0}, and let
Y = Lp(Ω). Define F : R × X × X → Y × Y by

(3.3) F (µ, u, w) =
(

∆u + λu − a(x)u2 − bp(u)(µ + w)
∆w − µw − w2 + cp(u)(µ + w)

)
.

We consider the bifurcation at (µ, u, w) = (λ/b, 0, 0). From calculations,

F(u,w)(µ, u, w)[φ, ψ] =
(

∆φ + λφ − 2a(x)uφ − bp′(u)(µ + w)φ − bp(u)ψ
∆ψ − µψ − 2wψ + cp′(u)(µ + w)φ + cp(u)ψ

)
,

Fµ(µ, u, w) =
(

−bp(u)
−w + cp(u)

)
, Fµ(u,w)(µ, u, w)[φ, ψ] =

(
−bp′(u)φ

−ψ + cp′(u)φ

)
,

F(u,w)(u,w)(µ, u, w)[φ, ψ]2 =
(

−2a(x)φ2 − 2bp′(u)φψ − bp′′(u)(µ + w)φ2

−2ψ2 + 2cp′(u)φψ + cp′′(u)(µ + w)φ2

)
.

At (µ, u, w) = (λ/b, 0, 0), it is easy to verify that the kernel N (F(u,w)(λ/b, 0, 0)) =
span{(1, c)}, the range R(F(u,w)(λ/b, 0, 0)) = {(f, g) ∈ Y 2 :

∫
Ω

f(x)dx = 0}, and
Fµ(u,w)(λ/b, 0, 0)[1, c] = [−b, 0] �∈ R(F(u,w)(λ/b, 0, 0)). Thus we can apply the result
of [CR1] to conclude that the set of positive solutions to (2.2) near (λ/b, 0, µ) is a
smooth curve

(3.4) Γ2 = {(µ2(s), u2(s), µ + w2(s)) : s ∈ (0, δ)},
such that µ2(0) = λ/b, u2(s) = s + o(|s|), w2(s) = cs + o(|s|). Moreover µ′

2(0) can
be calculated (see for example [S1]):

µ′
2(0) = −

〈F(u,w)(u,w)(λ/b, 0, 0)[1, c]2, l2〉
2〈Fµ(u,w)(λ/b, 0, 0)[1, c], l2〉

= −
∫
Ω

a(x)dx

b|Ω| − c + mµ =
−a − bc + mλ

b
,

(3.5)

where a = |Ω|−1
∫
Ω

a(x)dx, and l2 is a linear functional on Y 2 defined as 〈[f, g], l2〉 =∫
Ω

f(x)dx.
We can do a similar analysis at (µ1, uλ, 0), where µ1 = λN

1 (−cp(uλ)). We change
the variables w = uλ − u. Define

(3.6) G(µ, u, v) =
(

∆w + λw − 2auλw + aw2 + bp(uλ − w)v
∆v + µv − v2 + cp(uλ − w)v

)
.
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Then
G(w,v)(µ, w, v)[φ, ψ]

=
(

∆φ + λφ − 2auλφ + 2awφ − bp′(uλ − w)vφ + bp(uλ − w)ψ
∆ψ + µψ − 2vψ − cp′(uλ − w)vφ + cp(uλ − w)ψ

)
,

Gµ(µ, w, v) =
(

0
v

)
, Gµ(w,v)(µ, u, w)[φ, ψ] =

(
0
ψ

)
,

G(w,v)(w,v)(µ, w, v)[φ, ψ]2 =
(

2aφ2 − 2bp′(uλ − w)φψ + bp′′(uλ − w)vφ2

−2ψ2 − 2cp′(uλ − w)φψ + cp′′(uλ − w)vψ2

)
.

At (µ, u, w) = (µ1, 0, 0), it is easy to verify that the kernel N (G(w,v)(µ1, 0, 0)) =
span{(ϕ1, ϕ2)}, where (ϕ1, ϕ2) satisfies

(3.7)

⎧⎪⎨⎪⎩
∆φ + λφ − 2a(x)uλφ + bp(uλ)ψ = 0, x ∈ Ω,

∆ψ + µψ + cp(uλ)ψ = 0, x ∈ Ω,

∂νφ = ∂νψ = 0, x ∈ ∂Ω.

Since µ = µN
1 (−cp(uλ)), then we can choose ϕ2 > 0. On the other hand, uλ is a

stable solution of (2.5); thus the inverse of L(uλ) = ∆ + λ − 2a(x)uλ is a negative
operator, and ϕ1 = [L(uλ)]−1(−bp(uλ)ϕ2) > 0. The range R(G(w,v)(µ1, 0, 0)) =
{(f, g) ∈ Y 2 :

∫
Ω

g(x)ϕ2(x)dx = 0}, and Gµ(w,v)(µ1, 0, 0)[ϕ1, ϕ2] = [0, ϕ2] �∈
R(G(w,v)(µ1, 0, 0)) since

∫
Ω

ϕ2
2dx > 0. Thus we can apply the result of [CR1]

to conclude that the set of positive solutions to (2.2) near (µ1, uλ, 0) is a smooth
curve

(3.8) Γ1 = {(µ1(s), uλ(x) − u1(s), v1(s)) : s ∈ [0, δ)},
with µ1(0) = µN

1 (−cp(uλ)), u1(s) = sϕ1(x) + o(|s|), w(s) = sϕ2(x) + o(|s|). More-
over,

µ′
1(0) = −

〈G(w,v)(w,v)(µ1, 0, 0)[ϕ1, ϕ2]2, l1〉
2〈Gµ(w,v)(µ1, 0, 0)[ϕ1, ϕ2], l1〉

=

∫
Ω

ϕ3
2(x)dx + c

∫
Ω
(1 + muλ(x))−2ϕ2

2(x)ϕ1(x)dx∫
Ω

ϕ2
2(x)dx

> 0,

(3.9)

where l1 is a linear functional on Y 2 defined as 〈[f, g], l1〉 =
∫
Ω

g(x)ϕ2(x)dx.
We summarize the above results on global bifurcation in the following theorem:

Theorem 3.2. Suppose that 0 < λ < λD
1 (Ω0) is fixed. Then there exists a contin-

uum Γ of positive solutions of (2.2) satisfying

(3.10) projµΓ = (µ∗, µ
∗] or (µ∗, µ

∗),

where
µ∗ = λN

1 (−cp(uλ)), λ/b ≤ µ∗ ≤ λb−1(1 + m||uλ||∞),

and Γ contains Γ1 (defined in (3.8)) and Γ2 (defined in (3.4)). Moreover, the bifur-
cation of Γ1 at (µN

1 (−cp(uλ)), uλ, 0) is supercritical (µ′
1(0) > 0), and the bifurcation

of Γ2 at (λ/b, 0, λ/b) is supercritical (µ′
2(0) > 0) if m > m0 and it is subcritical

(µ′
2(0) < 0) if 0 ≤ m < m0, where m0 is defined as

(3.11) m0 = λ−1 [a + bc] , where a =
1
|Ω|

∫
Ω

a(x)dx.
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3.2. Steady state solutions: multiplicity. In this subsection, we investigate in
more detail the global bifurcation branch Γ obtained above. It is well known that
a predator-prey system does not possess an order structure to which a standard
monotone method can be applied. However we will study an auxiliary scalar equa-
tion which has an order structure, and apply the results on the scalar equation to
the original predator-prey system. Consider

(3.12) −∆u = λu − a(x)u2 − bµ
u

1 + mu
, x ∈ Ω, ∂νu = 0, x ∈ ∂Ω.

Proposition 3.3. Suppose that 0 < λ < λD
1 (Ω0) and that b, m > 0 are fixed. Then

µ = λ/b is a bifurcation point for (3.12) such that a global unbounded continuum Σ
of positive solutions of (3.12) emanates from (µ, u) = (λ/b, 0), and

(3.13) projµΣ = (−∞, µ̂∗] or (−∞, µ̂∗),

where µ̂∗ = sup{µ > 0 : (3.12) has a positive solution} ≥ λ/b. Moreover Σ satis-
fies the following:

(1) Near (µ, u) = (λ/b, 0), Σ is a curve.
(2) When µ ≤ 0, (3.12) has a unique positive solution Uµ(x), and {(µ, Uµ) :

µ ≤ 0} is a smooth curve.
(3) For µ ∈ (−∞, µ̂∗), (3.12) has a maximal positive solution Uµ(x), and Uµ

is strictly decreasing with respect to µ.
(4) For µ ∈ (−∞, λ/b), (3.12) has a minimal positive solution Uµ(x), and

Uµ(x) ≡ Uµ(x) when µ ≤ 0, and Uµ is strictly decreasing with respect to
µ.

(5) If µ̂∗ > λ/b, then (3.12) has a maximal positive solution for µ = µ̂∗ and
has at least two positive solutions for µ ∈ (λ/b, µ̂∗).

(6) If µ̂∗ > λ/b and 0 < m < m0, then there exists µ̂∗ ∈ (0, λ/b) such that
(3.12) has at least three positive solutions for µ ∈ (µ̂∗, λ/b) and Uµ(x) <

Uµ(x) for µ ∈ [µ̂∗, λ/b). Moreover, limµ→(λ/b)− Uµ = 0 uniformly for
x ∈ Ω.

All these solutions mentioned above can be chosen from the unbounded continuum
Σ.

Proof. The local bifurcation analysis is similar to the one in subsection 3.1. For
µ ≤ 0, f(x, u) = λu − a(x)u2 − bµu/(1 + mu) is a concave function in U such that
f(x, 0) = 0 and fu(x, 0) > 0; thus (3.12) is a logistic type equation. Existence and
uniqueness of a positive solution is well known in that case (see [CC1, CC2, SS2]).
It is also easy to see that the unique solution Uµ is globally asymptotically stable
for the corresponding parabolic equation when µ ≤ 0. In particular, Uµ is non-
degenerate, so {(µ, Uµ) : µ ≤ 0} is a smooth curve. Note that when µ = 0,
Uµ ≡ uλ, the unique positive solution of (2.5). On the other hand, as in the proof
of Lemma 3.1, if (µ, u) is a solution of (3.12), then µ < λb−1(1 + m||uλ||∞). Hence
the projection of Σ on the µ-axis is bounded from above, and we denote the upper
bound by µ̂∗.

Define

(3.14) µ̃∗ = sup{µ > 0 : (3.12) has a positive solution}.
We will later make use of a monotonicity argument to show that µ̃∗ = µ̂∗. If
0 < µ < µ̃∗, for any positive solution ũµ of (3.12), we have ũµ < uλ from a
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well-known lemma for logistic type equations (see, for example, [DM, Lemma 2.1]
or [SY, Lemma 2.3]). So if we use ũµ as a subsolution, uλ as a supersolution,
and take the iteration sequence in a standard monotone method with uλ as the
initial point, then the limit of the iteration is a positive solution Uµ of (3.12), and
Uµ ≥ ũµ. Since ũµ can be chosen as any positive solution of (3.12), Uµ is the
maximal positive solution of (3.12). The monotonicity of Uµ in µ can be shown by
using the maximality of Uµ and the sub-supersolution method (for details see, for
example, [SS1]).

We shall show that if µ̃∗ > λ/b, then (3.12) still has a positive solution at
µ = µ̃∗. Indeed from the decreasing property of Uµ, U µ̃∗ = limµ→(µ̃∗)− Uµ exists
and U µ̃∗ ≥ 0 is a solution of (3.12). Uµ̃∗ �≡ 0 since µ̃∗ > λ/b, and µ = λ/b is
the only bifurcation point for positive solutions. Thus U µ̃∗ > 0 from the strong
maximum principle.

Next we prove that all the maximal solutions Uµ must be on the unbounded
branch Σ, and thus µ̃∗ = µ̂∗. Since Uµ is the unique positive solution and it is
nondegenerate when µ ≤ 0, we find that {(µ, Uµ) : −∞ < µ ≤ δ} for some δ > 0 is
a smooth curve contained in Σ. For any µ0 ∈ (δ, µ̃∗), define

(3.15) Iµ0 = {u ∈ C(Ω) : U0(x) ≥ u(x) ≥ Uµ0(x)}.
Then the projection of {(µ, Uµ) : 0 < µ ≤ δ} onto C(Ω) is in Iµ0 from the mono-
tonicity of Uµ. On the other hand, since Σδ := Σ \ {(µ, Uµ) : µ ≤ δ} is connected,
and its closure contains (λ/b, 0) �∈ [0, µ0]×Iµ0 , we must have Σδ∩∂([0, µ0]×Iµ0) �= ∅.
Let (µ∗, u∗) ∈ Σδ∩∂([0, µ0]×Iµ0); then (µ∗, u∗) is a solution of (3.12). First, µ∗ ≤ δ

is impossible since for such µ∗, we necessarily have u∗ = Uµ∗ .
To consider the possibility of µ∗ ∈ (δ, µ0), we define an operator

B(µ, u) = (−∆ + K)−1((K + λ)u − a(x)u2 − bµu/(1 + mu))

for µ ∈ R and u ∈ Iµ0 , where K > 0 is a constant such that f1(x, u) = (K + λ)u−
a(x)u2 − bµu/(1 + mu) is a positive increasing function for all 0 ≤ u ≤ max U0(x)
and 0 ≤ µ ≤ µ0. Thus B(µ, u) is a compact positive operator on [0, µ]×Iµ, B(µ, u)
is increasing with respect to u, and B(µ, u) = u if and only if (µ, u) is a solution of
(3.12). Now if µ∗ ∈ (δ, µ0), then u∗ ≥ Uµ0 , and

(3.16) u∗ = B(µ∗, u∗) > B(µ0, u∗) ≥ B(µ0, Uµ0) = Uµ0 .

Similarly, u∗ < U0. Thus u∗ is in the interior of Iµ0 , which contradicts with the
definition of (µ∗, u∗). Therefore µ∗ = µ0, and u∗ ≥ Uµ0 . But Uµ0 is maximal,
and hence u∗ = Uµ0 . In particular (µ0, Uµ0) ∈ Σδ for any µ0 ∈ (δ, µ̃∗). Therefore
µ̃∗ = µ̂∗. This finishes the proof of Parts 1-3.

For each fixed µ ∈ (−∞, λ/b), u(x) = k is a subsolution of (3.12) for all small
constant k > 0, and we can assume Uµ > k. So if we use Uµ as a supersolution,
and k as a subsolution, we can find a minimal solution Uk

µ such that k < Uk
µ ≤ Uµ.

Clearly Uk
µ is nonincreasing with respect to k, and Uµ := limk→0 Uk

µ is a non-
negative solution of (3.12). Since 0 is an isolated nonnegative solution, Uµ must
be a positive solution, and by its definition, it is the minimal positive solution.

Now we assume µ̂∗ > λ/b and prove Parts 5 and 6. Note that by the argument
before the last paragraph, we have that Σδ∩∂([0, µ̂∗]×Iµ̂∗) = {(µ̂∗, U µ̂∗)}. Moreover
from the saddle-node bifurcation theorem of Crandall and Rabinowitz [CR2], near
(µ̂∗, U µ̂∗), Σδ is a curve. Thus Σδ\([0, µ̂∗] × Iµ̂∗) is connected (we can also use
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Lemma 3.1 in [BD] to reach this conclusion), and its closure contains both (λ/b, 0)
and (µ̂∗, U µ̂∗). Let Σ0 = Σδ\([0, µ̂∗] × Iµ̂∗) and define

(3.17) µ̂∗ = inf{µ > 0 : (3.12) has a positive solution on Σ0}.
Then µ̂∗ ≤ λ/b; thus µ̂∗ < µ̂∗ and for any µ ∈ (µ̂∗, µ̂

∗), (3.12) has a second positive
solution other than Uµ. This completes the proof of Part 5.

For Part 6, we only need to show that (3.12) has at least two positive solutions
on Σ0 for µ ∈ (µ̂∗, λ/b) when m < m0. From the bifurcation analysis in subsection
3.1, the bifurcation at (λ/b, 0) is subcritical if m < m0; thus µ̂∗ < λ/b. First,
similar to the above, we can show that (3.12) still has a positive solution in Σ0 at
µ̂∗. This also shows that µ̂∗ > 0 since (3.12) has a unique positive solution when
µ = 0. Similar to the proof for maximal solutions, we can show that all the minimal
solutions with µ ≥ µ̂∗ are on Σ0, and Σ0 ∩ ([µ̂∗, λ/b) × Ĩµ̂∗) = {(µ̂∗, U µ̂∗)}, where

(3.18) Ĩµ̂∗ = {u ∈ C(Ω) : 0 ≤ u(x) ≤ U µ̂∗(x)}.

From the connectedness of Σ0, Σ0\([µ̂∗, λ/b) × Ĩµ̂∗) is connected, and its closure
contains both (µ̂∗, U µ̂∗) and (µ̂∗, U µ̂∗). Thus (3.12) has at least two solutions on
Σ0 for µ ∈ (µ̂∗, λ/b). Moreover, when µ → (λ/b)−, Uµ is necessarily the solution
bifurcating from the zero solution. This proves Part 6. �

In Proposition 3.3, it is assumed that µ̂∗ > λ/b in Parts 5 and 6. One condition
to guarantee that is m > m0. Here we give a more precise estimate of µ̂∗ in terms
of the parameter m. To emphasize the dependence of µ̂∗ and µ̂∗ on m, we denote
them by µ̂∗(m) and µ̂∗(m), respectively.

Proposition 3.4. Let Ma = maxx∈Ω a(x) and a = |Ω|−1
∫
Ω

a(x)dx. Then

(1) µ̂∗(m) ≥ λMa + mλ2

4bMa
, and in particular, lim

m→∞
µ̂∗(m) = ∞,

(2) µ̂∗(m) > λ/b if m > 3Ma/λ; µ̂∗(m) < λ/b if m <
a

λ
.

Proof. The function uλ is always a supersolution of (3.12) when µ > 0; thus we
only need to find a positive subsolution lying below uλ. Then there exists a positive
solution of (3.12) for that µ. The constant function u = k is a subsolution if

(3.19) λ − bµ

1 + mk
− a(x)k ≥ 0, x ∈ Ω,

which is satisfied if

(3.20) k =
λ

2Ma
and µ <

λ

b
· 2Ma + mλ

4Ma
.

Since uλ ≥ λ

Ma
, we thus deduce µ̂∗(m) ≥ λMa + mλ2

4bMa
. Now Part 2 is a simple

consequence of Part 1 and the fact that m0 = a/λ (note that solutions of (3.12)
are solutions of (2.2) with c = 0). �

Though Proposition 3.4 gives better bounds of µ̂∗(m) and µ̂∗(m), it is difficult to
see from these bounds whether it is possible to have µ̂∗(m) > λ/b > µ̂∗(m), which
suggests a reversed S-shaped bifurcation diagram as in Figure 2 (b). We will show
that this is possible if we choose a(x) suitably. More precisely, we can construct such
an a(x) as follows: we assume that λ > λD

1 (Ω) and that m is any fixed constant;
since 0 < λ < λD

1 (Ω0), there exists a smooth region Ω2 such that Ω ⊃ Ω2 ⊃ Ω0 and
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Figure 2. Possible bifurcation diagrams for (3.12)

λD
1 (Ω2) < λ, and |Ω\Ω2| > 0. We define aε(x) = a1(x)+εa2(x), where a1(x) > 0 for

x ∈ Ω\Ω2 and a1(x) = 0 on Ω2, while a2(x) > 0 for x ∈ Ω\Ω0 and a2(x) = 0 on Ω0.
Moreover the value of a1(x) on Ω\Ω2 is chosen so that a1 = |Ω|−1

∫
Ω

a1(x)dx > λm.
Then for positive ε > 0, a = |Ω|−1

∫
Ω

a(x)dx > |Ω|−1
∫
Ω

a1(x)dx > λm. Thus from
Proposition 3.4, the bifurcation at (µ, u) = (λ/b, 0) is subcritical. If we can show
that (3.12) has a positive solution for some µ > λ/b, then µ̂∗(m) > λ/b > µ̂∗(m)
holds. When ε > 0 is small, this can be easily proved by using some results
developed in Sections 4 and 5; so we will give a proof of this fact at the end of
subsection 5.2. When µ̂∗(m) > λ/b > µ̂∗(m) holds, Figure 2 (b) shows a possible
bifurcation diagram. Figures 2 (a) and 2 (c) show some other possibilities.

We notice that in (2.2), if c = 0, then v(x) ≡ 0 or v(x) ≡ µ. Thus any positive
solution (u, v) satisfies v = µ and u is a solution of (3.12) when µ ≥ 0. Hence
Propositions 3.3 and 3.4 give a rather clear description of the set of positive solutions
of (2.2) when c = 0. Now we show that this picture largely remains for positive c,
in particular for small c > 0.

Theorem 3.5. Suppose that 0 < λ < λD
1 (Ω0) and that b, c, m > 0 are fixed. Let

µ̂∗ and µ̂∗ be the critical points defined as in Proposition 3.3. Then the following
hold:

(1) Define

(3.21) µ∗ = sup{µ > 0 : (2.2) has a positive solution}
and

(3.22) µ∗ = inf{µ > 0 : (2.2) has a positive solution (u, v), and u �≥ U µ̂∗}.
Then µ̂∗ − c/m ≤ µ∗ ≤ µ̂∗ and µ̂∗ ≤ µ∗ ≤ µ̂∗ + c/m.

(2) If λN
1 (−cp(uλ)) < µ̂∗ − c/m, then for µ ∈ (λN

1 (−cp(uλ)), µ̂∗ − c/m], (2.2)
has a positive solution (u1

µ, v1
µ) satisfying

min{Uµ(x), U0(x)} > u1
µ(x) > Uµ+c/m(x), x ∈ Ω,

µ +
c

m
> v1

µ(x) > max{µ, 0}, x ∈ Ω.
(3.23)

(3) If µ̂∗+c/m < λ/b, then for µ ∈ [µ̂∗+c/m, λ/b), (2.2) has a positive solution
(u2

µ, v2
µ) satisfying

Uµ(x) > u2
µ(x) > max{Uµ+c/m(x), 0}, x ∈ Ω,

µ +
c

m
> v2

µ(x) > µ, x ∈ Ω.
(3.24)
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(4) If µ̂∗ > λ/b + c/m, then (2.2) has at least two positive solutions for λ/b <
µ ≤ µ̂∗ − c/m.

(5) If µ̂∗ > λ/b+c/m and µ̂∗ < λ/b−c/m, then (2.2) has at least three positive
solutions for µ̂∗ + c/m < µ < λ/b.

All these solutions above can be chosen from the continuum Γ.

(Notice that Uµ+c/m is not always defined in Part 3. In that case we assume
Uµ+c/m = 0. Similarly, if U µ̂∗ is not defined, we understand that it equals 0.)

Proof. If (2.2) has a solution (µ, u, v), then from Lemma 3.1, µ < v < µ + c/m.
Thus u is a subsolution of (3.12), and uλ > u is always a supersolution of (3.12),
so (3.12) has a positive solution for this µ. Hence µ∗ ≤ µ̂∗. Similarly µ̂∗ ≤ µ∗. The
proofs of µ̂∗ − c/m ≤ µ∗ and µ∗ ≤ µ̂∗ + c/m are apparent from Parts 2 and 3 to be
proved below.

To show the existence of (u1
µ, v1

µ), we first consider the case of 0 < µ ≤ µ̂∗−c/m.
Let E = C(Ω), and let P = {u ∈ E : u(x) ≥ 0, x ∈ Ω}. Define an order interval in
P 2 ≡ P × P :

(3.25) J1 = [Uµ+c/m, Uµ] × [µ, µ + c/m],

where [u1, u2] = {u ∈ E : u1(x) ≤ u(x) ≤ u2(x)}. We define an operator

(3.26) A(u, v) =

⎛⎜⎜⎝ (−∆ + K)−1

(
(λ + K)u − a(x)u2 − buv

1 + mu

)
(−∆ + K)−1

(
(µ + K)v − v2 +

cuv

1 + mu

)
⎞⎟⎟⎠ ,

where (u, v) ∈ J1, and K is a positive constant. It is easy to see that a fixed point
of A is a solution of (2.2). We claim that when K is large enough, then A(u, v) ∈ J1

for each (u, v) ∈ J1. Let (u, v) ∈ J1, and let A(u, v) = (u1, v1). We choose K large
enough so that fK(x, u, v) = (λ+K)u−a(x)u2−buv/(1+mu) is strictly increasing
in u and gK(u, v) = (µ + K)v − v2 + cuv/(1 + mu) is strictly increasing in v, for
any u ∈ [minx Uµ+c/m(x), maxx Uµ(x)] and v ∈ [µ, µ + c/m]. Then

u1 = (−∆ + K)−1

[
(λ + K)u − a(x)u2 − buv

1 + mu

]
≥ (−∆ + K)−1

[
(λ + K)Uµ+c/m − a(x)U

2

µ+c/m −
bUµ+c/m

1 + mUµ+c/m

(
µ +

c

m

)]
= Uµ+c/m,

and similarly,

u1 = (−∆ + K)−1

[
(λ + K)u − a(x)u2 − buv

1 + mu

]
≤ (−∆ + K)−1

[
(λ + K)Uµ − a(x)U

2

µ − bUµ

1 + mUµ

µ

]
= Uµ.



HETEROGENEOUS PREDATOR-PREY MODEL 4571

On the other hand,

v1 = (−∆ + K)−1

[
(µ + K)v − v2 +

cuv

1 + mu

]
≥ (−∆ + K)−1

[
(µ + K)v − v2

]
≥ (−∆ + K)−1(Kµ) = µ,

since the minimum of f1(v) = (µ + K)v − v2 on [µ, µ + c/m] is achieved at v = µ;
and

v1 = (−∆ + K)−1

[
(µ + K)v − v2 +

cuv

1 + mu

]
< (−∆ + K)−1

[
(µ + K)v − v2 +

c

m
v
]

≤ (−∆ + K)−1
[
K(µ +

c

m
)
]

= µ +
c

m
,

since the maximum of f2(v) = (µ + K + (c/m))v − v2 on [µ, µ + c/m] is achieved
at v = µ + c/m. Therefore (u1, v1) = A(u, v) ∈ J1. Since A is a compact operator
from the convex set J1 to J1, A has a fixed point in J1 by the Schauder fixed point
theorem.

Now we modify the above proof for µ ∈ (λN
1 (−cp(uλ)), 0]. In this case, we define

(3.27) J2 = [Uµ+c/m, U0] × [0, µ + c/m];

then from the same proof as above, we still have u1 ≥ Uµ, and v1 ≤ µ + c/m. By
using v ≥ 0 and u ≤ U0, we obtain u1 ≤ U0. Similarly, by using v ≥ 0 and the fact
that the minimum of f1(v) = (µ + K)v − v2 on [0, µ + c/m] is achieved at v = 0,
we obtain v1 ≥ 0. Therefore A is invariant on J2, and again we have a fixed point
of A in J2. However, (U0, 0) is already a fixed point of A in J2. To show that A
has a fixed point in J2 with both components positive, we make use of the fixed
point index with respect to the convex set J2. By definition, ind(A, J2) = 1. Since
µ > λN

1 (−cp(uλ)), we find that (U0, 0) = (uλ, 0) is an isolated fixed point of A in
J2. Moreover, by applying the fixed point index calculation result in [Da1], we find
that ind(A, (U0, 0)) = 0; that is, there exists a small neighborhood N0 of (U0, 0)
in J2 such that ind(A, N0) = 0. Therefore, ind(A, J2 \ N0) = 1 − 0 = 1 and A
has a fixed point in J2 \ N0, which is necessarily a positive solution of (2.2). This
completes the proof of Part 2, and the proof of Part 3 is similar.

We define a subset of R × P 2 for each µ̃ ∈ (λN
1 (−cp(uλ)), µ̂∗ − c/m]:

(3.28) Jµ̃ = [λN
1 (−cp(uλ)), µ̃] × [U µ̃+c/m, U0] × [0, µ̃ + c/m].

We notice that {µ}× J1 ⊂ Jµ̃ if µ ∈ (0, µ̂∗ − c/m] and µ ≤ µ̃, and {µ}× J2 ⊂ Jµ if
µ ∈ (λN

1 (−cp(uλ)), 0] and µ ≤ µ̃. Thus (µ, u1
µ, v1

µ) ∈ Jµ̃ for λN
1 (−cp(uλ)) < µ ≤ µ̃.

If (µ, u, v) ∈ ∂Jµ̃ and µ ∈ (λN
1 (−cp(uλ)), µ̃), then from the above calculation of

(u1, v1) = A(u, v), we can see that either (µ, u1, v1) = (µ, U0, 0) or (µ, u1, v1) ∈
int(Jµ̃). Hence (µ, u, v) cannot be a positive fixed point of A.

Let Γ be the continuum of positive solutions of (2.2) obtained in Theorem 3.2.
Then Γ ∩ Jµ̃ �= ∅ since the bifurcation at (λN

1 (−cp(uλ)), U0, 0) is supercritical.
From the arguments above, if (µ, u, v) ∈ Γ ∩ ∂Jµ̃, then either µ = λN

1 (−cp(uλ))
or µ = µ̃. The latter case must happen since (2.2) has no positive solution when
µ = λN

1 (−cp(uλ)). From the connectedness of Γ, we see that Γ ∩ ∂Jµ̂∗−c/m �=
∅. Therefore, Γ\Jµ̂∗−c/m has a component connecting (λ/b, 0, λ/b) to a solution
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(µ, u, v) ∈ Γ∩∂Jµ̂∗−c/m, and by the above discussion, we must have µ = µ̂∗− c/m.
Therefore (2.2) has at least one positive solution for λ/b < µ ≤ µ̂∗ − c/m which is
on Γ\Jµ̂∗−c/m. This proves Part 4.

For Part 5, we use the minimal positive solutions to define a set J similar to
Jµ̂∗−2/m and then show that Γ \ Jµ̂∗−2/m contains a positive solution in J and
another one outside J . Since the arguments are analogous, we omit the details. �
3.3. Dynamical behavior. First we consider the dynamics of the auxiliary equa-
tion:

(3.29)

⎧⎪⎪⎨⎪⎪⎩
ut − ∆u = λu − a(x)u2 − bµ

u

1 + mu
, x ∈ Ω, t > 0,

∂νu = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ 0, x ∈ Ω.

Theorem 3.6. Suppose that 0 < λ < λD
1 (Ω0) and that b, c, m > 0 are fixed. Then

all solutions u(x, t) of (3.29) are globally bounded, and the following hold:
(1) If µ ≤ 0, then Uµ is globally asymptotically stable.
(2) If µ > µ̂∗, then 0 is globally asymptotically stable.
(3) If 0 < µ < λ/b, then for any u0, limt→∞u(x, t) ≥ Uµ(x).
(4) If 0 < µ ≤ µ̂∗, then for any u0, limt→∞u(x, t) ≤ Uµ(x), and if u0(x) ≥

Uµ(x), then limt→∞ u(x, t) = Uµ(x); if u0(x) ≥ U µ̂∗(x), then

(3.30) Vµ,1(x) ≤ limt→∞u(x, t) ≤ limt→∞u(x, t) ≤ Uµ(x),

where Vµ,1(x) is the unique positive solution of

(3.31) −∆u =
(

λ − bµ

1 + mU

)
u − a(x)u2, x ∈ Ω, ∂νu = 0, x ∈ ∂Ω,

with U = U µ̂∗ .
(5) If µ̂∗ < λ/b, µ̂∗ < µ < λ/b, and u0(x) ≤ Uµ(x), then

lim
t→∞

u(x, t) = Uµ(x);

if u0(x) ≤ U µ̂∗(x), then

(3.32) Uµ(x) ≤ limt→∞u(x, t) ≤ limt→∞u(x, t) ≤ Vµ,2(x),

where Vµ,2 is the unique positive solution of (3.31) with U = U µ̂∗ .
(6) If µ̂∗ < λ/b, then there exists µ̂� ∈ (λ/b, µ̂∗) such that λ =

λN
1 (bµ̂�/(1 + mU µ̂∗)), and for λ/b ≤ µ < µ̂�, if u0(x) ≤ U µ̂∗(x), then

(3.33) 0 ≤ limt→∞u(x, t) ≤ limt→∞u(x, t) ≤ Vµ,2(x).

For µ ≥ µ̂�, if u0(x) ≤ U µ̂∗(x), then limt→∞ u(x, t) = 0.

Proof. For Part 1, the global asymptotical stability of Uµ is well known since the
nonlinearity is concave. For µ > 0, from Theorem 2.3, uλ is globally asymptotically
stable for (2.4). Let u1(x, t) be the solution of (2.4) with the same initial value u0;
then u1(x, t) > u(x, t) for t > 0 if µ > 0. On the other hand, from the maximum
principle u(x, t) ≥ 0 for all t ≥ 0. Thus u(x, t) is globally bounded in C(Ω), and
limt→∞u(x, t) ≤ uλ(x) if µ > 0.

It is well known that the ω-limit set of {u(·, t)} is the union of the steady state
solutions. Thus in Part 2, the unique steady state must be globally asymptotically
stable. For Part 3, since the trivial steady-state u = 0 is linearly unstable for
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µ < λ/b, the ω-limit set of u(·, t) can only consist of positive steady state solutions,
which implies limt→∞u(x, t) ≥ Uµ. The first conclusion in Part 4 also follows from
this line of reasoning. For the other conclusions in Part 4, we compare u(x, t) with
the solution u2(x, t) of

(3.34)

⎧⎪⎪⎨⎪⎪⎩
ut − ∆u =

(
λ − bµ

1 + mU

)
u − a(x)u2, x ∈ Ω, t > 0,

∂νu = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = U(x) ≥ 0, x ∈ Ω,

with U = U µ̂∗ . Then u(x, t) > u2(x, t) ≥ U for t > 0. Hence (3.30) can be obtained
since limt→∞ u2(x, t) = Vµ,1(x). If u0 ≥ Uµ, then u(x, t) ≥ Uµ for all t > 0 and
hence, by (3.30), u(x, t) → Uµ as t → ∞. The proof of Part 5 is similar. For Part
6, notice that µ̂� is the critical value so that Vµ,2 does not exist if µ ≥ µ̂�. Then
the proof is also similar to that of Part 4. �
Remark 3.7. (1) Similar to (2.5), (3.31) has a unique positive solution Vµ(x) which
is strictly decreasing in µ for any given U as long as λN

1 (λ − bµ/(1 + mU)) =
λ − λN

1 (bµ/(1 + mU)) > 0. Moreover, Vµ is globally asymptotically stable as a
steady state solution of (3.34), and limµ→0+ Vµ,1 = uλ, Vµ̂∗,1 = U µ̂∗ . Similar
remarks apply to Vµ,2.

(2) Since the right hand side of (3.29) is analytic in u for nonnegative u, by
a well-known result of L. Simon [Si], any solution of (3.29) converges to a single
steady state solution as t → ∞. Therefore some of the statements in Theorem 3.6
can be improved.

Now we turn to the dynamics of (2.1).

Theorem 3.8. Suppose that 0 < λ < λD
1 (Ω0) and that b, c, m > 0 are fixed. Then

all solutions (u(x, t), v(x, t)) of (2.1) are globally bounded, and v(x, t) satisfies

(3.35) max{µ, 0} ≤ limt→∞v(x, t) ≤ limt→∞v(x, t) ≤ max{µ +
c

m
, 0},

and the asymptotic behavior of u(x, t) is as follows:
(1) If µ < λN

1 (−cp(uλ)), then limt→∞ u(x, t) = uλ(x) and limt→∞ v(x, t) = 0
uniformly for x ∈ Ω.

(2) If µ > µ̂∗, then limt→∞ u(x, t) = 0 and limt→∞ v(x, t) = µ uniformly for
x ∈ Ω.

(3) If λN
1 (−cp(uλ)) < µ < µ̂∗ − c/m, and u0(x) ≥ U µ̂∗(x), then

(3.36) Vµ+c/m,1(x) ≤ limt→∞u(x, t) ≤ limt→∞u(x, t) ≤ min{Uµ(x), U0(x)},
where Vµ,1 is defined in Theorem 3.6.

(4) Suppose that µ̂∗ < λ/b. Let µ̂� be the constant defined in Theorem 3.6.
Then for µ̂∗ + c/m ≤ µ < µ̂�, if u0(x) ≤ U µ̂∗(x), then

(3.37) max{Uµ+c/m(x), 0} ≤ limt→∞u(x, t) ≤ limt→∞u(x, t) ≤ Vµ,2(x),

where Vµ,2 is defined in Theorem 3.6, and for µ ≥ µ̂�, if u0(x) ≤ U µ̂∗(x),
then limt→∞ u(x, t) = 0 and limt→∞ v(x, t) = µ uniformly for x ∈ Ω.

Proof. By the comparison principle, we have 0 ≤ limt→∞u(x, t) ≤ limt→∞u(x, t) ≤
uλ(x) and µ ≤ limt→∞v(x, t) ≤ limt→∞v(x, t) ≤ µ + c/m. Thus all solutions are
globally bounded.
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We prove Part 1. If µ < λN
1 (−cp(uλ)), then there exists δ1 > 0 such that

λN
1 (µ + cp(uλ + δ1)) < 0. Since limt→∞u(x, t) ≤ uλ(x), there exists T1 > 0 such

that when t ≥ T1, then u(x, t) ≤ uλ(x) + δ1. Then

(3.38) vt − ∆v = µv − v2 +
cuv

1 + mu
≤ (µ + cp(uλ + δ1)) v − v2, t ≥ T1.

Since λN
1 (µ + cp(uλ + δ1)) < 0, then v = 0 is globally asymptotically stable for the

dynamics of vt−∆v = (µ + cp(uλ + δ1)) v−v2 with Neumann boundary condition.
Thus v(x, t) → 0 as t → ∞. Hence for any small δ2 > 0 which satisfies λ− bδ2 > 0,
there exists T2 > T1 such that v(x, t) ≤ δ2 for t ≥ T2. Then
(3.39)

ut − ∆u = λu − a(x)u2 − buv

1 + mu
≥ λu − a(x)u2 − bδ2p(u) ≥ (λ − bδ2)u − a(x)u2.

Since λ − bδ2 > 0, then u = uλ−bδ2 is globally asymptotically stable for the dy-
namics of ut −∆u = (λ− bδ2)u−a(x)u2 with Neumann boundary condition. Thus
limt→∞u(x, t) ≥ uλ−bδ2(x). As δ2 → 0, we obtain limt→∞ u(x, t) = uλ(x). The
proof of Part 2 is similar since u = 0 is globally asymptotically stable for the
dynamics of (3.29).

Next we prove Part 3. By the estimate for v(x, t) in (3.35), for any δ3 > 0, there
exists T3 > 0 such that for t > T3,

(3.40) max{0, µ} − δ3 < v(x, t) < max{0, µ +
c

m
} + δ3.

Then the estimate for u(x, t) can be obtained by using Part 4 of Theorem 3.6 and
letting δ3 → 0. The proof of Part 4 is similar. �

3.4. Discussion. To conclude this section, we discuss some biological implications
of Theorem 3.8. In this section the prey has a weak growth rate λ < λD

1 (Ω0). The
main impact of the weak prey growth rate is that both populations stay bounded,
and the dynamics of (2.1) has three possibilities according to the predator growth
rate µ:

(1) (Weak predator growth rate) When µ < λN
1 (−cp(uλ)) < 0, the predator

will become extinct, while the prey will reach its carrying capacity. Thus
we have unconditional persistence for the prey and unconditional extinction
for the predator.

(2) (Strong predator growth rate) This is when µ > µ̂∗. Opposite to the
previous case, the prey will become extinct while the predator will persist
unconditionally for any initial population distribution.

(3) (Intermediate predator growth rate) If µ̂∗ + c/m < µ < µ̂∗ − c/m with all
these constants well defined and well ordered, then a bistable phenomenon
appears, where two attracting regions exist: one is defined in (3.36) for u
and (3.35) for v, and the other is defined in (3.37) for u and (3.35) for v. The
former one contains a coexistence steady state, but it is unclear whether
that coexistence steady state is the global attractor; the latter attracting
region contains a coexistence steady state with a smaller u component when
µ̂∗+c/m < µ < λ/b, but that coexistence steady state becomes (0, µ) (prey
extinction and predator persistence) when µ > µ̂�. Though the predator
population will settle in between µ and µ + c/m, the fate of the prey will
depend on its initial population. We notice that it is possible that µ̂∗ =
µ̂∗ = λ/b. Then a coexistence steady state exists for λN

1 (−cp(uλ)) < µ <
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λ/b, and this is a case in which the system exhibits permanence. However,
our discussion before Theorem 3.5 shows that bistability can happen for
certain ranges of the parameters if a(x) is chosen properly.

Thus Theorem 3.8 gives some criteria of persistence or extinction of the prey
population. Other criteria will be discussed in the next section, and some of them
can also be adapted to the weak prey growth case (see Theorem 4.11).

4. Strong prey growth rate

In this section we assume that λ > λD
1 (Ω0), and we will consider the structure of

the set of nonnegative steady state solutions of (2.1) and the underlying dynamical
behavior.

4.1. Steady state solutions. Compared to the weak prey growth case, there is
only one semi-trivial branch Γv, and there is still a bifurcation point µ2 = λ/b such
that a smooth curve of positive solutions Γ′

2 (contained in a global branch Γ2) to
(2.2) bifurcates from Γv at (µ, u, v) = (µ2, 0, µ2). Since this is the only possible
bifurcation point for positive solutions, Γ2 is unbounded in the space of (µ, u, v).
Using Lemma 3.1, we can still show that µ > −c/m for any positive solution
(µ, u, v). Thus if all the positive solutions (u, v) of (2.2) are a priori bounded for
bounded µ, then

(4.1) projµΓ2 ⊃ (λ/b,∞).

Here we prove that such an a priori bound does exist.

Proposition 4.1. Let λ > λD
1 (Ω0) be fixed and µn ≤ M . Then there exists a

positive constant C independent of n such that any positive solution (un, vn) of
(2.2) (with µ = µn) satisfies

(4.2) ||un||∞ + ||vn||∞ ≤ C.

Proof. Since µn ≤ M , we have

(4.3) −∆vn ≤
(
M +

c

m

)
vn − v2

n.

Thus ||vn||∞ ≤ M + c/m. Suppose that the proposition is not true; then there
exists a sequence {(un, vn)} satisfying (2.2) with µ = µn such that ||un||∞ → ∞ as
n → ∞.

Denote ûn = un/||un||∞. Then −∆ûn ≤ λûn, and

(4.4)
∫

Ω

|∇ûn|2dx +
∫

Ω

ûn
2
dx ≤ (λ + 1)

∫
Ω

ûn
2
dx ≤ (λ + 1)|Ω|.

Hence {ûn} is bounded in H1(Ω), and there is a subsequence (which we still denote
by {ûn}) converging to some û weakly in H1(Ω) and strongly in L2(Ω). Since
||ûn||∞ = 1, we can also assume that ûn → û in Lp(Ω) for any p > 1, and 0 ≤ û ≤ 1.
We claim that û �≡ 0. Suppose that û ≡ 0. Then ûn → 0 in Lp(Ω) for any p > 1,
and from elliptic regularity, (−∆ + I)−1ûn → 0 in C1(Ω). But on the other hand,
(−∆ + I)ûn ≤ (λ + 1)ûn; thus 0 ≤ ûn ≤ (λ + 1)(−∆ + I)−1ûn, and it follows that
ûn → 0 in L∞(Ω). That is a contradiction with ||ûn||∞ = 1. Therefore û �≡ 0.
Similarly we define v̂n = vn/||vn||∞; then subject to a subsequence, v̂n → v̂ weakly
in H1(Ω) and strongly in Lp(Ω) for any p > 1, and v̂ �≡ 0.
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Moreover, ûn satisfies

(4.5) −∆ûn = λûn − a(x)||un||∞ûn
2 − bûn

1 + m||un||∞ûn
vn.

We multiply this equation by a smooth function φ whose support is in Ω0, and
integrate over Ω0. Then

(4.6)
∫

Ω0

∇ûn∇φdx = λ

∫
Ω0

ûnφdx −
∫

Ω0

bûn

1 + m||un||∞ûn
vnφdx.

For the last integral,

(4.7)
∣∣∣∣∫

Ω0

ûn

1 + m||un||∞ûn
vnφdx

∣∣∣∣ ≤ ||vn||∞
m||un||∞

||φ||L1(Ω) → 0, as n → ∞.

Hence when n → ∞, we have

(4.8)
∫

Ω0

∇û∇φdx = λ

∫
Ω0

ûφdx,

which implies that û ≥ 0 is a weak solution of

(4.9) −∆û = λû, x ∈ Ω0.

From the maximum principle, either û > 0 in Ω0 or û ≡ 0 in Ω0. But if the former is
true, then from a well-known variant of the maximum principle (see [BNV]), we have
λD

1 (−λ, Ω0) ≥ 0, which contradicts the fact that λD
1 (−λ, Ω0) = −λ+λD

1 (0, Ω0) < 0
from the assumption. Hence we must have û ≡ 0 in Ω0.

Next we multiply (4.5) by (1 + m||un||∞ûn)/‖un‖2
∞ and integrate over Ω. Then

m

||un||∞

∫
Ω

|∇ûn|2dx =
λ

||un||2∞

∫
Ω

ûndx +
λm

||un||∞

∫
Ω

ûn
2dx

− 1
||un||∞

∫
Ω

a(x)ûn
2
dx − m

∫
Ω

a(x)ûn
3
dx

− b

||un||2∞

∫
Ω

ûnvndx.

(4.10)

When n → ∞, we obtain

(4.11) 0 = −m

∫
Ω\Ω0

a(x)û3dx.

Since a(x) > 0 on Ω\Ω0, we find û = 0 almost everywhere in Ω\Ω0. Combined with
the arguments in the last paragraph, we have û ≡ 0 in Ω, which is a contradiction.
Therefore (4.2) holds. �

Combining the bifurcation analysis and the above a priori estimate, we have

Theorem 4.2. Suppose that λ > λD
1 (Ω0) is fixed. Then there exists a continuum

Γ of positive solutions of (2.2) such that

(4.12) projµΓ = [µ∗,∞) or (µ∗,∞), − c

m
< µ∗ ≤ λ

b
and satisfies the following:

(1) Γ bifurcates from (µ, u, v) = (λ/b, 0, λ/b), and the bifurcation of Γ at (λ/b, 0,
λ/b) is supercritical (µ′

2(0) > 0) if m > m0 and it is subcritical (µ′
2(0) < 0)

if 0 ≤ m < m0, where m0 is defined by (3.11).
(2) For any µ > µ∗, (2.2) has at least one positive solution.



HETEROGENEOUS PREDATOR-PREY MODEL 4577

(3) If µ∗ < λ/b, then for µ = µ∗, (2.2) has a positive solution, and thus
projµΓ = [µ∗,∞).

(4) All these solutions mentioned above can be chosen from the unbounded con-
tinuum Γ.

Proof. The local bifurcation analysis is the same as that in subsection 3.1, and from
Proposition 4.1, we obtain (4.12). The proof for the other parts is standard and
hence is omitted. �

4.2. The scalar equation and its perturbation. A better understanding of
the set of steady state solutions and the dynamics of the system (2.1) will rely on
a better understanding of the scalar equation (3.12). In this subsection we will
consider the scalar equation (3.12) again, but now we assume λ > λD

1 (Ω0). As
can be seen from our next result, the behavior of the global bifurcation branch of
the positive solutions of (3.12) is now drastically different from that for the case
λ < λD

1 (Ω0) discussed in Proposition 3.3.

Proposition 4.3. Suppose that λ > λD
1 (Ω0) and that b, m > 0 are fixed. Then

µ = λ/b is a bifurcation point for (3.12) such that a global continuum Σ0 of positive
solutions of (3.12) emanates from (µ, u) = (λ/b, 0), and

(4.13) projµΣ0 = [µ0
∗,∞) or (µ0

∗,∞), 0 < µ0
∗ ≤ λ

b
.

Moreover the conclusions in Parts 1-4 of Theorem 4.2 hold with Γ replaced by Σ0

and µ∗ replaced by µ0
∗. Furthermore, the following hold:

(1) µ0
∗ = inf{µ : (3.12) has a positive solution}.

(2) If µ0
∗ < λ/b, then for µ ∈ [µ0

∗, λ/b), (2.2) has a minimal solution Uµ, which
is strictly decreasing with respect to µ, and for µ ∈ (µ0

∗, λ/b), (2.2) has at
least two positive solutions.

Proof. The conclusions in the first half directly follow from Theorem 4.2 by letting
c = 0, since in this case the equation of v becomes −∆v = µv−v2, and the equation
of u becomes (3.12) with v = µ, and the a priori estimates in Proposition 4.1 still
hold. Parts 1 and 2 can be proved as in the proof of Proposition 3.3, since (3.12)
has the monotonicity property. �

The next proposition gives the asymptotic limit of the positive solutions of (3.12)
as µ → ∞, which will be used in later discussions.

Proposition 4.4. Suppose that λ > λD
1 (Ω0) and that b, m > 0 are fixed. Let

(µn, un) be a sequence of positive solutions of (3.12) and µn → ∞ as n → ∞.
Then subject to a subsequence,

(4.14) lim
n→∞

µn||un||−1
∞ = σ ∈

(
0,

mλ

b

)
,

and σun/µn → û weakly in H1(Ω) and strongly in Lp(Ω0) for any p > 1, where û
is a nonnegative function satisfying û(x) = 0 for x ∈ Ω\Ω0, and û|Ω0 ∈ H1

0 (Ω0) is
a weak solution of the (free boundary) problem

(4.15) −∆u =
(

λu − bσ

m

)
χ{u>0}, x ∈ Ω0, u(x) = 0, x ∈ ∂Ω0, ||u||∞ = 1.
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Proof. Let (µn, un) be a sequence of positive solutions of (3.12) and µn → ∞ as n →
∞. From a simple comparison argument, we easily deduce λ > bµn/(1+m‖un‖∞).
Thus

(4.16) ||un||∞ ≥ bµn − λ

mλ
.

Let ûn = un/||un||∞. Then −∆ûn ≤ λûn. From the proof of Proposition 4.1, we
can assume that ûn → û weakly in H1(Ω) and strongly in Lp(Ω) for any p > 1 as
n → ∞, û �≡ 0. From Lemma 2.2 of [DD], we also have ||û||∞ = 1. From (4.16),
µn||un||−1

∞ is bounded from above, then from (4.10) with vn replaced by µn, we
obtain

m

||un||∞

∫
Ω

|∇ûn|2dx =
λ − bµn

||un||2∞

∫
Ω

ûndx +
λm

||un||∞

∫
Ω

ûn
2
dx

− 1
||un||∞

∫
Ω

a(x)ûn
2
dx − m

∫
Ω

a(x)ûn
3
dx.

(4.17)

Letting n → ∞, we again obtain (4.11). Hence û = 0 almost everywhere in Ω\Ω0.
From (4.16), we have

(4.18) limn→∞µn||un||−1
∞ ≤ mλ

b
.

We claim that limn→∞µn||un||−1
∞ > 0. Otherwise, there exists a subsequence (still

denoted by {µn}) such that limn→∞ µn||un||−1
∞ = 0. Then from (4.6) and (4.7)

with vn replaced by µn, we find that û satisfies (4.9), which contradicts with λ >
λD

1 (Ω0). Thus limn→∞µn||un||−1
∞ > 0. On the other hand, from (4.17) we deduce

limn→∞µn||un||−1
∞ < mλ/b; for otherwise, we will have

(4.19) m

∫
Ω0

|∇û|2dx ≤ 0,

and hence û ≡ 0 in Ω. Therefore by taking a subsequence, we assume that
limn→∞ µn||un||−1

∞ = σ ∈ (0, mλ/b).
In Ω0, ûn satisfies

(4.20) −∆ûn = λûn − bµnûn

1 + m||un||∞ûn
.

Since the right side of (4.20) is bounded in L∞(Ω0), we find that û ∈ C1(D)
for any compact subset D of Ω0. We define Ω0,+ = {x ∈ Ω0 : û > 0}, and
Ω0,0 = {x ∈ Ω0 : û = 0}. Then in Ω0,+, from (4.20), and the convergence of ûn, we
obtain

(4.21) −∆û = λû − bσ

m
.

Clearly ∆û = 0 a.e. in Ω0,0. This completes the proof of Proposition 4.4. �
Remark 4.5. In the one dimensional case, the free boundary problem (4.15) can be
completely solved; see the discussion at the end of subsection 4.3 below.

We will also need information on the following perturbed equation:

(4.22) −∆u = λu − [a(x) + ε]u2 − bµ
u

1 + mu
, x ∈ Ω, ∂νu = 0, x ∈ ∂Ω.

With the perturbation, the logistic problem

(4.23) −∆u = λu − [a(x) + ε]u2, x ∈ Ω, ∂νu = 0, x ∈ ∂Ω,
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has a unique positive solution uλ,ε(x) for any λ > 0 and ε > 0. Moreover, we can see
from the following result that the behavior of the global bifurcation branch of the
perturbed problem (4.22) is similar to the unperturbed case but with λ < λD

1 (Ω0)
(see Proposition 3.3).

Proposition 4.6. Suppose that ε > 0, λ > λD
1 (Ω0), and b, m > 0 are fixed. Then

µ = λ/b is a bifurcation point for (4.22) such that a global continuum Σε of positive
solutions of (4.22) emanates from (µ, u) = (λ/b, 0), and

(4.24) projµΣε = (−∞, µ̂∗
ε] or (−∞, µ̂∗

ε),

where µ̂∗
ε = sup{µ > 0 : (4.22) has a positive solution} ≥ λ/b. Moreover Σε

satisfies:

(1) Near (µ, u) = (λ/b, 0), Σε is a curve.
(2) For µ ≤ 0, Σε is a smooth curve, and (4.22) has a unique positive solution

Uµ,ε(x) for µ ≤ 0.
(3) For µ ∈ (−∞, µ̂∗

ε), (4.22) has a maximal positive solution Uµ,ε(x), and Uµ,ε

is strictly decreasing with respect to µ and ε.
(4) For µ ∈ (−∞, λ/b), (4.22) has a minimal positive solution Uµ,ε(x), and

Uµ,ε is strictly decreasing with respect to µ and ε.
(5) If µ̂∗

ε > λ/b, then (4.22) has a maximal positive solution for µ = µ̂∗
ε and

has at least two positive solutions for µ ∈ (λ/b, µ̂∗
ε).

(6) If µ̂∗
ε > λ/b and 0 < m < m0, then there exists µ̂∗,ε ∈ (0, λ/b) such

that (4.22) has at least three positive solutions for µ̂∗,ε < µ < λ/b. For
µ ∈ [µ̂∗,ε, λ/b), Uµ,ε < Uµ,ε, and Uµ,ε → 0 as µ → λ/b.

(7) µ̂∗
ε and µ̂∗,ε are both nonincreasing with respect to ε.

All these solutions mentioned above can be chosen from the unbounded continuum
Σε.

Proof. The local bifurcation analysis again is similar to previous ones. The bifur-
cation diagram of (4.22) cannot be extended to µ = ∞ since, similar to the proof
of (3.2), we have, for µ > 0,

λ = λN
1 ((a(x) + ε)u +

bv

1 + mu
) > λN

1 (
bµ

1 + m||uλ,ε||∞
) =

bµ

1 + m||uλ,ε||∞
,

where uλ,ε is the unique solution of (4.23). Hence the projection of Σε on the µ-axis
is bounded from above, and we denote the upper bound by µ̂∗

ε . On the other hand,
from the maximum principle, any positive solution u of (4.22) satisfies

(4.25) ||u||∞ ≤ λ

ε
if µ ≥ 0, and ||u||∞ ≤ λ − bµ

ε
if µ < 0.

Thus the projection of Σε must cover up to −∞. The proofs for the other parts
(except Part 7) are the same as that of Proposition 3.3; thus we omit them here.

For Part 7, to see that µ̂∗
ε is nonincreasing with respect to ε, we note that if

ε1 < ε2 and µ̂∗
ε2

= λ/b, then µ̂∗
ε1

≥ µ̂∗
ε2

follows trivially from the fact that µ̂∗
ε ≥ λ/b;

if µ̂∗
ε2

> λ/b, then (4.22) with ε = ε2 and µ = µ̂∗
ε2

has a maximal solution U , which
is a subsolution for (4.22) with ε = ε1 and µ = µ̂∗

ε2
+ δ if δ is sufficiently small.

Since uλ,ε1 is a supersolution above U , (4.22) has a positive solution with ε = ε1

and µ = µ̂∗
ε2

+ δ. Therefore, µ̂∗
ε1

≥ µ̂∗
ε2

+ δ. The proof for µ̂∗,ε is similar. �
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We will show in the following that as ε → 0, µ̂∗
ε → ∞. This helps us to un-

derstand how Σε in Proposition 4.6 is related to Σ0 in Proposition 4.3. Roughly
speaking, as ε → 0, the part of Σε containing the maximal solutions blows up, and
the remaining part converges to Σ0.

Proposition 4.7. Suppose that λ > λD
1 (Ω0). Then µ̂∗

ε → ∞ as ε → 0, and for any
given µ, limε→0 ‖Uµ,ε‖∞ → ∞. Moreover, let (µn, εn, un) be a sequence of positive
solutions of (4.22) with µn → µ0 and limn→∞ ||un||∞ = ∞. Then, subject to a
subsequence,

un → ∞ uniformly on Ω0 as εn → 0,

εnun → φλ uniformly on Ω0 as εn → 0,

un → Uλ
µ0

uniformly on any compact subset of Ω\Ω0 as εn → 0,

(4.26)

where φλ is the unique positive solution of

(4.27) −∆u = λu − u2, x ∈ Ω0; u = 0, x ∈ ∂Ω0,

and Uλ
µ0

is a positive solution of the boundary blow-up problem
(4.28)
−∆u = λu−a(x)u2 − bµ0

u

1 + mu
, x ∈ Ω \Ω0; ∂νu = 0, x ∈ ∂Ω; u = ∞, x ∈ ∂Ω0.

Proof. By the anti-maximum principle [CP], the equation

(4.29) −∆Z = λaZ − b

m
, x ∈ Ω0, u = 0, x ∈ ∂Ω0,

has a unique positive solution Z for any fixed λa ∈ (λD
1 (Ω0), λD

1 (Ω0) + δ) with
a small δ > 0. Since λ > λD

1 (Ω0), we can choose λa so that the anti-maximum
principle holds and λ − λa = η > 0. Then for any given µ > 0, σ > µ and x ∈ Ω0,
we have

∆(σZ) + λ(σZ) − bµσZ

1 + mσZ
− [a(x) + ε](σZ)2

= (λ − λa − εσZ)σZ + bσ

(
1
m

− µZ

1 + mσZ

)
≥ (η − εσZ)σZ.

(4.30)

For any compact subset P ⊂⊂ Ω0, Zm = minx∈P Z(x) > 0. For any M > 0, we
can choose σ > 0 such that σZm ≥ M ; thus σZ(x) ≥ M on P . On the other hand
if we choose ε < η/(2σZm), then η − εσZ ≥ 0 for x ∈ Ω0, and σZ extended to be
zero outside Ω0 is a weak subsolution of (4.22) (see [BL]). Clearly it is also a weak
subsolution of (4.23). It follows that uλ,ε ≥ σZ. Moreover, uλ,ε is a supersolution
of (4.22). Therefore (4.22) has a positive solution with this µ and Uµ,ε ≥ σZ ≥ M

on P . This implies that µ̂∗
ε → ∞ as ε → 0 and ‖Uµ,ε‖∞ → ∞ as ε → 0 for

any µ > 0. By the monotonicity of Uµ,ε with respect to µ, the above limit also
holds for µ ≤ 0. This proves the first part of the proposition. We remark that the
anti-maximum principle was used in [OSS] to construct a subsolution in a similar
way.

To prove the conclusions on un, similar to the proof of Proposition 4.1, we define
ûn = un/||un||∞. Then again −∆ûn ≤ λûn, and we can assume that ûn → û
weakly in H1(Ω) and strongly in Lp(Ω) for any p > 1 as n → ∞, û �≡ 0, and
||û||∞ = 1. From (4.25), εn||un||∞ ≤ λ. Arguing the same way as in the proof of
Proposition 4.4, we obtain that û = 0 almost everywhere in Ω\Ω0.
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Since εn||un||∞ ≤ λ, we can assume (subject to a subsequence) limn→∞ εn||un||∞
= L ≤ λ. We claim that L > 0. Suppose this is not true; then limn→∞ εn||un||∞ =
0 along a subsequence. For any φ ∈ H1

0 (Ω0), we have the obvious variations of (4.6)
and (4.7) with vn replaced by µn. If L = 0, then we can similarly obtain (4.8) and
(4.9) and we again get û ≡ 0, which contradicts ||û||∞ = 1. Thus L > 0. We can
now easily see that û|Ω0 is the unique positive solution of

(4.31) −∆u = λu − Lu2, x ∈ Ω0, u(x) = 0, x ∈ ∂Ω0.

Hence εnun = (εn‖un‖∞)ûn → Lû = φλ in Lp(Ω0) for any p > 1. Moreover,
we can use standard interior estimates of elliptic operators to conclude that this
convergence is uniform for x in any compact subset of Ω0.

It is known (see [D5], Theorem 2.7) that εuλ,ε → φλ uniformly in Ω0. By a
simple comparison argument we find un ≤ uλ,εn

and therefore 0 ≤ εnun ≤ εnuλ,εn
.

It follows that for all large n, εnun is uniformly close to 0 near ∂Ω0. Together with
our earlier conclusion, we find that εnun → φλ uniformly on Ω0.

Now for large enough n, un(x) ≥ ε−1
n ϕλ(x)− 1/(2m) for x ∈ Ω0. It follows that

bµn

1 + mun
≤ Φn :=

b|µ0| + 1
1/2 + mε−1

n φλ

→ 0

in Lp(Ω0) for any p > 1.
Let ψ1 be the positive eigenfunction of

(4.32) −∆ψ = λD
1 (Ω0)ψ, x ∈ Ω0, ψ(x) = 0, x ∈ ∂Ω0,

such that ||ψ1||L2(Ω0) = 1. Then for all large n,

λD
1 (Ω0) ≤ λD

1 (Φn, Ω0) = min
ψ∈H1

0 (Ω0),||ψ||L2(Ω0)=1

∫
Ω0

[
|∇ψ|2 + Φnψ2

]
dx

≤
∫

Ω0

[
|∇ψ1|2 + Φnψ2

1

]
dx = λD

1 (Ω0) +
∫

Ω0

Φnψ2
1dx

≤ λD
1 (Ω0) + ‖Φn‖p‖ψ1‖2

q → λD
1 (Ω0),

(4.33)

where q > 2 is such that H1
0 (Ω0) imbeds continuously into Lq(Ω0) and p = q/(q−1).

Therefore
λD

1 (Ω0) = lim
n→∞

λD
1 (Φn, Ω0).

It follows that, for all large n, λ > λD
1 (Φn, Ω0). Let Vn be the unique solution of

(4.34) −∆u =
(

λ − b|µ0| + 1
1 + mU

)
u − [a(x) + εn]u2, x ∈ Ω, ∂νu = 0, x ∈ ∂Ω,

where U = ε−1
n1

φλ − 1/(2m) in Ω0 and is extended to be −1/(2m) outside Ω0, and
n1 is large but fixed. Then for n ≥ n1, un ≥ Vn from the comparison principle and
the uniqueness of a positive solution of (4.34). Now from Theorem 2.1 of [D2], we
find

(4.35) Vn → ∞ uniformly on Ω0 as ε → 0.

It follows from un ≥ Vn that un → ∞ uniformly on Ω0. The last conclusion in
(4.26) follows from a standard compactness argument. �
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4.3. Dynamical behavior of the scalar equations. In this subsection, we will
first consider the dynamics of the perturbed scalar equation:

(4.36)

⎧⎪⎪⎨⎪⎪⎩
ut − ∆u = λu − [a(x) + ε]u2 − bµ

u

1 + mu
, x ∈ Ω, t > 0,

∂νu = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ 0, x ∈ Ω.

Then we will use the results of (4.36) to study the dynamics of the unperturbed
scalar equation (3.29), and finally we will consider the dynamics of the full system
(2.1) in the next subsection.

Theorem 4.8. Suppose that ε > 0, λ > λD
1 (Ω0), and b, m > 0 are fixed. Let µ̂∗

ε

and µ̂ε,∗ be defined as in Proposition 4.6. Then all solutions u(x, t) of (4.36) are
globally bounded, and the following hold true:

(1) If µ ≤ 0, then Uµ,ε is globally asymptotically stable.
(2) If µ > µ̂∗

ε, then 0 is globally asymptotically stable.
(3) If 0 < µ < λ/b, then for any nontrivial u0, limt→∞u(x, t) ≥ Uµ,ε(x).
(4) If 0 < µ ≤ µ̂∗

ε, then for any nontrivial u0, limt→∞u(x, t) ≤ Uµ,ε(x),
and if u0(x) ≥ Uµ,ε(x), then limt→∞ u(x, t) = Uµ,ε(x); if u0(x) ≥ U µ̂∗

ε ,ε(x),
then

(4.37) Vµ,3(x) ≤ limt→∞u(x, t) ≤ limt→∞u(x, t) ≤ Uµ,ε(x),

where Vµ,3(x) is the unique positive solution of (3.31) with U = U µ̂∗
ε ,ε.

(5) If µ̂∗,ε < λ/b, µ̂∗,ε < µ < λ/b, and u0(x) ≤ Uµ,ε(x), then limt→∞ u(x, t) =
Uµ,ε(x), and if u0(x) ≤ U µ̂∗,ε,ε(x), then

(4.38) Uµ,ε(x) ≤ limt→∞u(x, t) ≤ limt→∞u(x, t) ≤ Vµ,4(x),

where Vµ,4 is the unique positive solution of (3.31) with U = U µ̂∗,ε,ε.
(6) If µ̂∗,ε < λ/b, then there exists µ̂�

ε ∈ (λ/b, µ̂∗
ε) such that λ =

λN
1 (bµ̂�

ε/(1 + mU µ̂∗,ε,ε)), and for λ/b ≤ µ < µ̂�
ε, if u0(x) ≤ U µ̂∗,ε,ε(x),

then

(4.39) 0 ≤ limt→∞u(x, t) ≤ limt→∞u(x, t) ≤ Vµ,4(x).

For µ ≥ µ̂�
ε, if u0(x) ≤ U µ̂∗,ε,ε(x), then limt→∞ u(x, t) = 0.

The proof of Theorem 4.8 is exactly the same as that of Theorem 3.6; thus we
omit it. Now we consider the dynamics of the unperturbed scalar equation (3.29).

Theorem 4.9. Suppose that λ > λD
1 (Ω0) and that b, m > 0 are fixed. Let u(x, t)

be a solution of (3.29). Then the following hold:
(1) If µ < µ0

∗, then for any u0, u(x, t) → ∞ uniformly for x ∈ Ω0, and
limt→∞u(x, t) ≤ U

λ
(x) for x ∈ Ω\Ω0, where U

λ
is the maximum solu-

tion of (2.6).
(2) If µ0

∗ < λ/b, and u0(x) ≤ Uµ0
∗
(x), then for µ ∈ [µ0

∗, λ/b),

(4.40) Uµ(x) ≤ limt→∞u(x, t) ≤ limt→∞u(x, t) ≤ Vµ,5(x),

where Vµ,5 is the solution of (3.31) with U = Uµ0
∗
, and for µ ≥ λ/b,

(4.41) 0 ≤ limt→∞u(x, t) ≤ limt→∞u(x, t) ≤ max{Vµ,5(x), 0}.
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(3) For any given µ̂ > 0 we define

(4.42) Cµ̂ = sup{||u||∞ : u is a positive solution of (3.12) with µ ≤ µ̂}
(the supremum exists from Proposition 4.1). Let µ0 > µ̂ be such that

Cµ̂ < (bµ0 − λ)/(mλ)

and let Uµ0(x) be a positive solution of (3.12) with µ = µ0. Then for µ ≤ µ̂

and u0(x) ≥ Uµ0(x), the solution u(x, t) → ∞ uniformly for x ∈ Ω0, and
limt→∞u(x, t) ≤ U

λ
(x) for x ∈ Ω\Ω0.

(4) Let Uµ0(x) be a positive solution of (3.12) with µ = µ0 > 0. Define µ̃∗ to
be the unique positive number such that λ = λN

1 (bµ̃∗/(1 + mUµ0)). Then
for µ > µ̃∗ and u0(x) ≤ Uµ0(x), limt→∞ u(x, t) = 0 uniformly for x ∈ Ω.

Proof. First we assume that µ < µ0
∗. Let uε(x, t) be the solution of (4.36) with

the same initial condition u0(x). Then u(x, t) ≥ uε(x, t) for any ε > 0 from
the comparison principle. From Theorem 4.8, uε(x, t) is globally bounded, and
limt→∞uε(x, t) ≥ Uµ,ε(x). We claim that ||Uµ,ε||∞ → ∞ as ε → 0. If not, due to
the monotonicity of Uµ,ε with respect to ε, it converges to a positive solution of
(3.12) as ε → 0, which contradicts µ < µ0

∗. Using Proposition 4.7, Uµ,ε satisfies
(4.26) as ε → 0, which implies u(x, t) ≥ uε(x, t) → ∞ uniformly for x ∈ Ω0. On
the other hand, comparing u(x, t) to the solution of (2.4) with the same initial
condition, we obtain limt→∞u(x, t) ≤ U

λ
(x) for x ∈ Ω\Ω0. This completes the

proof of Part 1, and the proof of Part 2 is similar to that of Theorem 3.6.
For Part 3, when µ ≤ µ̂, ||u||∞ ≤ Cµ̂ < (bµ0 −λ)/(mλ) for any positive solution

u of (3.12), but by (4.16), ||Uµ0 ||∞ ≥ (bµ0 − λ)/(mλ). Hence for such a µ, there
is no steady state solution u such that u ≥ Uµ0 . On the other hand, since Uµ0 is
a steady state and µ0 > µ̂ ≥ µ, we find that Uµ0 is a subsolution of (3.29); thus
the solution u1(x, t) of (3.29) with initial value Uµ0 is strictly increasing in t. Since
u0 ≥ Uµ0 , we have u(x, t) ≥ u1(x, t); thus we only need to show that u1 blows
up as t → ∞. To prove that, we compare u1(x, t) with u1,ε(x, t), the solution of
(4.36) with initial value Uµ0 . Since Uµ0 is also a subsolution of (4.36), u1,ε(x, t)
increases in t, and wε(x) := limt→∞u1,ε(x, t) is a positive steady state solution and
wε ≥ Uµ0 . We must have ‖wε‖∞ → ∞ as ε → 0; for otherwise along a subsequence,
wε converges to a positive solution w of (3.12) and w ≥ Uµ0 , a contradiction to
our earlier observation. Therefore ‖wε‖∞ → ∞ and by Proposition 4.7, we deduce
wε → ∞ uniformly in Ω0, which implies limt→∞u(x, t) = ∞ uniformly on Ω0. The
last conclusion in Part 3 can be proved in the same way as in Part 1.

For Part 4, we compare u(x, t) with u2(x, t), the solution of (3.34) with U = Uµ0

and the same initial value. The function µ �→ λN
1 (bµ/(1 + mUµ0)) is increasing in

µ. So when µ > µ̃∗, λ < λN
1 (bµ/(1 + mUµ0)), and the zero steady state solution of

(3.34) is globally asymptotically stable; thus u2(x, t) → 0 as t → ∞. On the other
hand, from

λ = λN
1 (aUµ0 +

bµ0

1 + mUµ0

) > λN
1 (

bµ0

1 + mUµ0

)

we deduce µ̃∗ > µ0, and hence Uµ0 is a supersolution of (3.29). It follows that
0 ≤ u(x, t) ≤ u2(x, t) → 0 as t → ∞ uniformly for x ∈ Ω. �

In the next proposition, we use a different subsolution to show the blow-up of
u(x, t).



4584 YIHONG DU AND JUNPING SHI

Proposition 4.10. Suppose that λ > λD
1 (Ω0) and that b, m > 0 are fixed. Suppose

that U0(x) is a nontrivial solution of

(4.43) −∆u =
(

λau − b

m

)
χ{u>0}, x ∈ Ω0, u(x) = 0, x ∈ ∂Ω0,

where λD
1 (Ω0) < λa < λ. We extend U0 by U0(x) ≡ 0 for x ∈ Ω\Ω0. Then

there exists σ > 0 such that for u0(x) ≥ σU0(x), the solution of (3.29) satisfies
u(x, t) → ∞ uniformly for x ∈ Ω0, and limt→∞u(x, t) ≤ U

λ
(x) for x ∈ Ω\Ω0.

Proof. Define Ω0,+ = {x ∈ Ω0 : U0(x) > 0} and Ω0,0 = {x ∈ Ω0 : U0(x) = 0}.
Then for x ∈ Ω0,+ and σ > µ,

(4.44) −∆(σU0) = λaσU0 −
bσ

m
≤ λσU0 −

bσµU0

1 + mσU0
.

Thus σU0 is a subsolution of (3.12) in Ω0,+. On the other hand U0 = 0 is
also a subsolution of (3.12) in Ω0,0 ∪ (Ω\Ω0). Therefore σU0 is a subsolution of
(3.12) in Ω0. Let Cµ be the constant defined in (4.42). We may assume that
σ‖U0‖∞ > Cµ also holds. Then similar to the proof of Theorem 4.9, we can deduce
limt→∞u(x, t) ≥ limt→∞uε(x, t) = wε(x) ≥ σU0(x). But since σ‖U0‖∞ > Cµ, we
must have ||wε||∞ → ∞ as ε → 0, and the remaining part of the proof is the same
as that of Theorem 4.9. �

To conclude this subsection, we give a complete solution to the free boundary
problem (4.43) when the space dimension is one, that is, when Ω0 is a finite interval.
This sheds lights on the applications of Proposition 4.10 to the original predator-
prey system, especially concerning the problem of biological invasion (see subsection
4.5 below).

For definiteness, we assume that Ω0 = (−π, π). Moreover, we replace λa by λ
for convenience of notation. Then λD

i (Ω0) = (i/2)2, and if u is a solution and [α, β]
is a component of its supporting set, then v = u − b/(λm) solves −v′′ = λv over
(α, β). It follows that v = σ cos(s +

√
λx) for some σ and s. Thus

u = σ cos(s +
√

λx) + b/(λm).

From this expression and the assumption that [α, β] is a component of the support-
ing set of u, we see that u(x) is symmetric in [α, β] about x = (α + β)/2, and it is
increasing over (α, (α + β)/2).

If [α, β] = [−π, π], then from the boundary conditions and the symmetry, we
necessarily have s = 0 and 1/4 < λ ≤ 1, and σ > 0 is uniquely determined by

σ cos(
√

λπ) + b/(λm) = 0.

Thus there is a unique solution when λ ∈ (1/4, 1].
The case [α, β] �= [−π, π] is more complicated. In this situation, u′ and u both

vanish at an endpoint of the interval [α, β], and by symmetry, they vanish at both
endpoints, namely u(α) = u(β) = u′(α) = u′(β) = 0. In view of the monotonicity
property of u and the formula for u given above, we must have

s +
√

λα = −π + 2kπ, s +
√

λβ = π + 2kπ

for some integer k, and hence λ = [2π/(β − α)]2 > 1. Now from u(α) = u(β) = 0
we find σ cos(π) + b/(λm) = 0, that is,

σ = b/(λm).
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Therefore, over each component of its supporting set, u(x) is a shift of

φλ(x) =
b

λm
[cos(

√
λx) + 1], x ∈ [−π/

√
λ, π/

√
λ].

This implies that if φλ is extended to be zero outside its supporting set [−π/
√

λ,

π/
√

λ], then any solution of (4.43) with λ > 1 can be expressed as

u(x) =
k∑

i=1

φλ(xi + x), 1 ≤ k ≤ [
√

λ ],

for some {xi}k
i=1 satisfying

(4.45) 2|xi − π|, 2|xi + π|, |xi − xj | ≥
2π√

λ
,

where [
√

λ ] denotes the largest positive integer no greater than
√

λ. Conversely,
it is clear that any function u(x) given by the above formula is a solution of (4.43)
with λ > 1.

For later discussions in subsection 4.5, let us note that when λ is large, some
solutions of (4.43) have very narrow supporting sets; for example, there is always
a solution with supporting set (x0 − π/

√
λ, x0 + π/

√
λ) ⊂ (−π, π).

From the above discussion, we find that, when Ω0 = (−π, π) and 1/4 < λ ≤ 1,
for problem (4.15) to have a solution, necessarily

σ =
λm

b

(
1 − 1

cos(
√

λπ)

)−1
,

and in this case, there is a unique solution:

u(x) =
bσ

λm

(
1 − cos(

√
λ x)

cos(
√

λ π)

)
.

If λ > 1, then necessarily σ = (λm)/(2b) and the solutions are given by

u(x) =
k∑

i=1

λm

2b
φλ(xi + x), 1 ≤ k ≤ [

√
λ ],

with xi satisfying (4.45).

4.4. Dynamical behavior of the predator-prey system. Finally we consider
the dynamics of (2.1) under the assumption λ > λD

1 (Ω0).

Theorem 4.11. Suppose that λ > λD
1 (Ω0) and that b, c, m > 0 are fixed. Let

(u(x, t), v(x, t)) be the solution of (2.1). Then for any nonnegative (u0, v0) with
u0, v0 �≡ 0 and any µ ∈ R, v(x, t) satisfies

(4.46) max{µ, 0} ≤ limt→∞v(x, t) ≤ limt→∞v(x, t) ≤ max{µ +
c

m
, 0},
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and the asymptotic behavior of u(x, t) is as follows:
(1) If µ < µ0

∗ − c/m, then u(x, t) satisfies

lim
t→∞

u(x, t) = ∞ uniformly on Ω0,

U
λ
(x) ≥ limt→∞u(x, t) ≥ limt→∞u(x, t) ≥ 0, x ∈ Ω\Ω0.

(4.47)

If in addition, µ < −c/m, then limt→∞ v(x, t) = 0 uniformly on Ω.
(2) If µ0

∗ + c/m < λ/b, and u0(x) ≤ Uµ0
∗
(x), then for µ ∈ [µ0

∗ + c/m, λ/b],

(4.48) Uµ+c/m(x) ≤ limt→∞u(x, t) ≤ limt→∞u(x, t) ≤ Vµ,5(x),

where Vµ,5 is the solution of (3.31) with U = Uµ0
∗
, and for µ > λ/b,

(4.49) 0 ≤ limt→∞u(x, t) ≤ limt→∞u(x, t) ≤ max{Vµ,5(x), 0}.
(3) For any given µ̂ > 0, let Cµ̂, µ0 and Uµ0 be as in Part 3 of Theorem 4.9.

Then for µ < µ̂ − c/m and u0(x) ≥ Uµ0(x), (4.47) holds.
(4) Let Uµ0(x) be a positive solution of (3.12) with µ = µ0 > 0, and let

µ̃∗ be defined as in Theorem 4.9. Then for µ > µ̃∗, if u0(x) ≤ Uµ0(x),
limt→∞ u(x, t) = 0 and limt→∞ v(x, t) = µ uniformly for x ∈ Ω.

(5) Suppose that Cµ is given by (4.42) and U0(x) is as defined in Proposition
4.10. Then for u0(x) ≥ σ′U0(x), where σ′=max{µ+c/m, Cµ+c/m/‖U0‖∞},
(4.47) holds.

Proof. The estimate of v(x, t) in (4.46) is the same as before. For Part 1, let u1(x, t)
be the solution of (3.29) with the same u0 but with µ replaced by µ + c/m. Then
u(x, t) > u1(x, t) for t > 0 from the comparison principle. Thus the blow-up of
u(x, t) follows from Theorem 4.9. When µ < −c/m, v(x, t) → 0 can be seen from
(4.46). The proof of Part 2 is similar to that of Theorem 3.8. The proofs of Parts
3–5 are simple applications of the comparison principle, (4.46), Theorem 4.9 and
Proposition 4.10. �

4.5. Discussions. In this section, a strong prey growth rate λ > λD
1 (Ω0) is im-

posed. As a result, unbounded growth of the prey inside Ω0 becomes possible for
any given predator growth rate µ:

(1) If µ ≤ µ0
∗− c/m, then this happens for any given initial prey population u0

(see Part 1 of Theorem 4.11).
(2) For µ > µ0

∗ − c/m, if u0(x) ≥ Uµ0(x) (Part 3 of Theorem 4.11) or if
u0(x) ≥ σ′U0(x) (Part 5 of Theorem 4.11), then u(x, t) also blows up in
Ω0.

The second case above means that no matter how large the predator growth
rate is, the prey population can blow up for certain initial population distributions.
Moreover, by our discussion on the free boundary problem at the end of subsection
4.3, and by Part 5 in Theorem 4.11 and Proposition 4.10, even if the introduction of
a new prey is initially restricted to a very narrow region in the habitat (but perhaps
with a high density), unbounded growth of this prey population is still possible if
its growth rate λ is high enough. This is of particular interest for understanding
the biological invasion of a new species, since it shows that the presence of a very
strong predator cannot stop the invasion if there exists an ideal environment Ω0

which sufficiently nutrients the growth of the new prey population. This contrasts
with the studies in [OL], in which predation can slow, stall or reverse the invasion
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of the prey population; but they use rather different reaction functions from our
model.

On the other hand, when m is large, there exists an intermediate µ such that
the prey population is persistent and stays bounded if its initial size u0 is relatively
small (Part 2 of Theorem 4.11). Thus, in view of case 2 above, for such a µ, the
system exhibits an Allee effect. Furthermore, if µ is large, the prey will die out if
its initial population is small (Part 4 of Theorem 4.11). Thus, for large µ, the prey
population can either blow up (if u0 is large) or die out (if u0 is small).

Parts 3 and 4 of Theorem 4.11 also have other interesting biological explana-
tions. These results show that for the initial population distribution u0 = Uµ0

(determined by Part 3 of Theorem 4.11), the prey population will become extinct
when the predator is strong (µ > µ̃∗), but for the same initial distribution, the
prey population can also blow up if the predator is weak (µ < µ̂ − c/m). Hence
no initial distribution is guaranteed to predict extinction or blow-up of the prey
population. We remark that this idea can also be applied to the weak prey growth
case considered in Section 3, to show that the same initial distribution can lead to
either extinction or persistence depending on the predator growth rate.

Finally we notice that in the weak prey growth case, the possibility of an Allee
effect depends on the value of m, the handling time of the predator on each prey.
When m is large, two attracting regions exist for the system, but when m is small,
a unique attracting region will absorb all initial values. In sharp contrast, in the
strong prey growth case, bistability is always possible no matter how small m is.
Hence in the latter case the Allee effect is mainly caused by the degeneracy of a(x),
not the rate of saturation of the predation. In Section 5, we shall show that for
any m, strong but bounded growth is still possible if a(x) is nearly degenerate in a
subregion Ω0.

5. Perturbed system

In this section we consider a perturbation of (2.1) and (2.2):

(5.1)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ut − ∆u = λu − [a(x) + ε]u2 − buv

1 + mu
, x ∈ Ω, t > 0,

vt − ∆v = µv − v2 +
cuv

1 + mu
, x ∈ Ω, t > 0,

∂νu = ∂νv = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ Ω,

and

(5.2)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−∆u = λu − [a(x) + ε]u2 − buv

1 + mu
, x ∈ Ω,

−∆v = µv − v2 +
cuv

1 + mu
, x ∈ Ω,

∂νu = ∂νv = 0, x ∈ ∂Ω.

We are interested in the spatial pattern of steady state solutions when ε → 0
and related dynamics. Throughout the section, we assume the strong prey growth
λ > λD

1 (Ω0).

5.1. Steady state solutions. First we use degree theory to study the steady state
solutions of (5.2) for small ε.
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Proposition 5.1. Suppose that λ > λD
1 (Ω0) and that b, c, m > 0 are fixed. Then

for any large constant M > 0, there exists ε0 > 0 such that for ε ∈ (0, ε0), (5.2)
has a positive solution (u2

µ,ε, v
2
µ,ε) when µ ∈ (λ/b, M ]. Moreover, for any sequence

εn → 0, subject to choosing a subsequence,

(5.3) u2
µ,εn

→ uµ(x), v2
µ,εn

→ vµ(x), uniformly for x ∈ Ω,

where (uµ, vµ) is a positive solution of (2.2).

Proof. Recall the definitions E = C(Ω) and P = {u ∈ E : u(x) ≥ 0, x ∈ Ω}. From
Proposition 4.1, when µ ≤ M , there exists C > 0 such that any nonnegative solution
(u, v) of (2.2) satisfies ||u||∞ + ||v||∞ < C. Let T = {(u, v) ∈ P 2 : u ≤ C, v ≤ C}.
We define Aµ,ε(u, v) : T → P 2 by

(5.4) Aµ,ε(u, v) =

⎛⎜⎜⎝ (−∆ + α)−1

(
(λ + α)u − (a(x) + ε)u2 − buv

1 + mu

)
(−∆ + α)−1

(
(µ + α)v − v2 +

cuv

1 + mu

)
⎞⎟⎟⎠ ,

where α > 0 is large enough such that Aµ,ε maps T into P 2 for all µ ∈ [−c/m−1, M ]
and ε ∈ [0, 1]. It is well known that Aµ,ε is completely continuous and differentiable.
For fixed (µ, ε), the fixed points of Aµ,ε(u, v) in T are the nonnegative solutions of
(5.2) (or (2.2) if ε = 0).

By our choice of T , Aµ,0(u, v) �= (u, v) if µ ∈ [−c/m−1, M ] and (u, v) ∈ ∂T (the
relative boundary of T in P 2). By a standard compactness argument we can find
some ε0 > 0 such that

Aµ,ε(u, v) �= (u, v) for ε ∈ (0, ε0], µ ∈ [−c/m − 1, M ], (u, v) ∈ ∂T.

Therefore the fixed point index (relative to the cone P 2) ind(Aµ,ε, T ) is well defined
and is independent of (ε, µ) in the range given above.

Now we use the invariance of the fixed point index to show that for ε ∈ (0, ε0] and
µ ∈ (λ/b, M ], (5.2) has a positive solution. For µ < 0, (5.2) has a constant solution
(0, 0), and for any µ > 0, (5.2) has two constant solutions (0, 0) and (0, µ) in T . By
the fixed point index calculation result of E. N. Dancer (see [Da1] and [Da2]), the
index of (0, 0) (as an isolated fixed point in T ) is always 0. The index of (0, µ) is
0 when µ < λ/b, and it is 1 when µ > λ/b. On the other hand, when µ < −c/m,
the only solution of (5.2) in T is (0, 0) for any ε ∈ (0, ε0]; thus ind(Aµ,ε, T ) = 0
when µ < −c/m. From the invariance of the fixed point index with respect to µ,
for µ1 < −c/m and µ ∈ (λ/b, M ],

(5.5) 0 = ind(Aµ1,ε, T ) = ind(Aµ,ε, T ).

If at µ ∈ (λ/b, M ], (5.2) has no solutions other than (0, 0) and (0, µ) in T , then

(5.6) deg(Aµ,ε, T ) = ind(Aµ,ε, (0, 0)) + ind(Aµ,ε, (0, µ)) = 0 + 1 = 1,

which is a contradiction with (5.5). Therefore (5.2) has another solution (u2
µ,ε, v

2
µ,ε)

in T , which is necessarily a positive solution. Finally since any positive solution
satisfies v > µ, and (0, µ) is an isolated solution of (5.2) and (2.2), when εn → 0,
by a standard compactness argument, subject to a subsequence, {(u2

µ,εn
, v2

µ,εn
)}

converges to a positive solution of (2.2). �

Now we are ready for the main result on the steady state solutions:
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Theorem 5.2. Suppose that λ > λD
1 (Ω0) and that b, c, m > 0 are fixed. Then for

any large constant M > 0 and small constant δ > 0, there exists ε0 > 0 such that
for any ε ∈ (0, ε0), (5.2) has a positive solution (u1

µ,ε, v
1
µ,ε) when µ ∈ [µ∗ + δ, M ],

which satisfies

min{Uµ,ε(x), U0,ε(x)} > u1
µ,ε(x) > Uµ+c/m,ε(x), x ∈ Ω,

µ +
c

m
> v1

µ,ε(x) > max{µ, 0}, x ∈ Ω,
(5.7)

where Uµ,ε is the maximal solution of (4.22) and

µ∗ = λN
1 (−Φ0), Φ0|Ω0

= c/m, Φ0|Ω\Ω0
= cUλ/(1 + mUλ).

Moreover, (5.2) has another positive solution (u2
µ,ε, v

2
µ,ε) when µ ∈ (λ/b, M ]. Fur-

thermore, for any sequence εn → 0, subject to choosing a subsequence,

u1
µ,εn

→ ∞ uniformly in Ω0, v1
µ,εn

→ V uniformly in Ω,

u1
µ,εn

→ U uniformly on any compact subset of Ω\Ω0,
(5.8)

where (U, V ) is a positive solution of the problem

(5.9)

⎧⎨⎩ − ∆U = λU − a(x)U2 − bUV

1 + mU
in Ω \ Ω0; U |∂Ω0 = ∞, ∂νU |∂Ω = 0,

− ∆V = (µ + Φ(x))V − V 2 in Ω, ∂νV |∂Ω = 0,

with Φ(x) = c/m in Ω0 and Φ(x) = CU/(1 + mU) in Ω \ Ω0, and

(5.10) u2
µ,εn

→ uµ, v2
µ,εn

→ vµ uniformly in Ω,

where (uµ, vµ) is a positive solution of (2.2).

Proof. Recall that µ̂∗
ε = sup{µ > 0 : (4.22) has a positive solution}, and define

µ̃∗
ε = sup{µ > 0 : (5.2) has a positive solution}. Then from the proof of Theorem

3.5, Part 1, we have µ̃∗
ε ≤ µ̂∗

ε . Now we can follow the same proof as that of Theorem
3.5 to show that when µ ∈ (λN

1 (−cp(uλ,ε)), µ̂∗
ε − c/m], (5.2) has a positive solution

(u1
µ,ε, v

1
µ,ε) satisfying (5.7). We notice that when ε → 0, λN

1 (−cp(uλ,ε)) → µ∗ as
ε → 0 since uλ,ε → ∞ uniformly for x ∈ Ω0, and uλ,ε → Uλ locally uniformly on
Ω \ Ω0; thus the lower bound of the µ-range for the existence of (u1

µ,ε, v
1
µ,ε) can be

smaller than any µ∗ + δ if ε is small enough. By Proposition 5.1, the upper bound
µ̃∗

ε can be chosen as large as possible if ε is small enough. Thus we may assume
µ̃∗

ε > M + c/m, and the upper bound of the µ-range for the existence of (u1
µ,ε, v

1
µ,ε)

is then at least M . The estimate of u1
µ,ε in (5.8) for x ∈ Ω0 follows from Proposition

4.7, and the other estimate for u1
µ,ε and v1

µ,ε can be shown in the following way.
Denote Φn = cu1

µ,εn
/(1 + mu1

µ,εn
). Then Φn is bounded in L∞(Ω), and by

passing to a subsequence, we may assume that Φn → Φ weakly in L2(Ω). Now
from the equation for v1

µ,εn
we see that it is a bounded sequence in W 2,p(Ω) for any

p > 1 and hence, by passing to a subsequence, v1
µ,εn

→ V in C1(Ω), where V is a
positive solution of

−∆V = (µ + Φ)v − v2 in Ω, ∂νV |∂Ω = 0.

Coming back to the equation for u1
µ,εn

over Ω\Ω0, since u1
µ,εn

≤ uλ,ε, by a standard
compactness argument, we can show that, subject to passing to a subsequence,
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u1
µ,ε → U uniformly in any compact subset of Ω\Ω0, where U is a positive solution

of

−∆U = λU − a(x)U2 − bUV

1 + mU
in Ω \ Ω0; U |∂Ω0 = ∞, ∂νU |∂Ω = 0.

It follows that Φ(x) = cU/(1 + mU) in Ω \ Ω0. Since uµ,εn
→ ∞ in Ω0, we must

have Φ(x) = c/m in Ω0.
Finally the existence and estimate of (u2

µ,ε, v
2
µ,ε) follows from Proposition 5.1. �

The corresponding dynamical behavior can be formulated following the pattern
in Theorem 3.8, where Theorem 3.6 was used to understand (3.29); here we make
use of Theorem 4.8 instead. We leave the details to the interested reader. We also
comment that the existence of three positive solutions of (5.2) for certain µ can be
proved if m < m0, in a similar fashion as in Theorem 3.5.

5.2. Discussion. Theorem 5.2 implies that the range of the predator growth rate
µ for which the system (5.1) has a bistable dynamical structure can be very large
if the parameter ε is small enough. At the same time, the coexistence steady state
(u1

µ,ε, v
1
µ,ε) shows a clear spatial pattern when ε → 0, where the prey population

reaches a carrying capacity in the order of O(ε−1) uniformly on Ω0, the favorable
subregion for the prey. We remark that similar results can also be proved if Ω0

is replaced by finitely many disjoint subregions Ωi (i = 1, 2, · · · , k), following the
methods in [DHs, DLi]. On the other hand, our studies show that if we design a
certain subregion Ω0 so that the crowding effect of the prey is small there, then
abundance of the prey population can be achieved, and this is of interest for com-
mercially valuable prey species. Designing the best subregion Ω0 is also of recent
interest; see [KuS].

Finally we prove the statement after Proposition 3.4 about the possibility of
a reversed S-shaped bifurcation diagram and existence of three positive solutions.
Indeed from the construction there, when ε = 0, the global continuum Σ̃0 of positive
solutions to (3.12) is unbounded from Theorem 4.2 since λ > λD

1 (Ω2) and a0(x) = 0
on Ω2. Next we use the proof of Proposition 5.1 to show that when ε > 0 is
small, the global continuum Σ̃ε of positive solutions to (3.12) can be extended to
any M > 0 as long as ε is small. In particular when ε > 0 is small, we have
µ̂∗(m) > λ/b > µ̂∗(m), and this can be achieved for any m > 0 and λ > λD

1 (Ω).
This construction shows that when a(x) is defined roughly by

(5.11) a(x) =

⎧⎪⎨⎪⎩
0, x ∈ Ω0,

small, x ∈ Ω2\Ω0,

large, x ∈ Ω\Ω2,

then a reversed S-shaped bifurcation diagram is possible, and the complexity of
the dynamics is caused not only by the degeneracy on Ω0, but also by the near
degeneracy on Ω2\Ω0.
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