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EXISTENCE OF OSCILLATING SOLUTIONS OF EINSTEIN
SU(2) YANG-MILLS EQUATIONS

ALEXANDER N. LINDEN

Abstract. We give a rigorous proof that for small positive values of the cos-
mological constant the Einstein equations coupled to an SU(2) Yang-Mills con-
nection yield oscillating spacetimes. These are static, spherically symmetric
spacetimes that have the same topology as particle-like spacetimes but differ
in geometry. We also give a strict upper bound on values of the cosmological
constant that admit such spacetimes.

1. Introduction

1.1. Background. Ever since Schwarzschild found his solution of Einstein’s equa-
tions in 1916 it has been known that Einstein’s equations in vacuum yield no spher-
ically symmetric static solutions that are smooth at the origin. Nor do Einstein’s
equations coupled to Maxwell’s equations. Moreover, in both these systems the sin-
gularity at the origin is a true geometric singularity; one that cannot be removed
by a change in coordinates. Thus, it came as a great surprise in the late 1980s
when Bartnik and McKinnon discovered static spherically symmetric solutions of
the Einstein SU(2) Yang-Mills equations that are not only smooth at the origin,
but are globally smooth [1].

Smoller, Wasserman, Yau, and McLeod gave the first rigorous existence proof
of these solutions [8]. They analyzed the equations in Schwarzschild coordinates
(t, r, φ, θ); coordinates in which a static spherically symmetric metric assumes the
following form:

(1) ds2 = −c2C2(r)A(r)dt2 +
1

A(r)
dr2 + r2(dφ2 + sin2 φdθ2),

where c is constant (the speed of light). They proved that solutions exist in which
the metric (1) is smooth for all r ∈ [0,∞).

In the same paper they proved the existence of a 1-parameter family of solutions
that are smooth at r = 0. Smoller and Wasserman subsequently proved that this
family contains a countable subfamily of global smooth solutions [9]. Brietenlohner,
Forgács, and Maison later classified all solutions in the 1-parameter family [3]. In
particular, they proved that each solution must be one of three types.

Generic: The underlying spacetime has the topology of R × S3. In appropri-
ate coordinates one pole of each constant-time spacelike 3-sphere is the center of
spherical symmetry and the opposite pole has a Reissner-Nordström-like singular-
ity. There is a horizon at the equator where the radius is maximum. Such solutions
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are generic in the sense that their qualitative behavior does not change with small
static spherically symmetric perturbations.

Particle-like: These are the aforementioned global smooth solutions. A parti-
cle-like solution is defined to be a solution that is global and smooth in Schwarzschild
coordinates; i.e., A(r) and C(r) of metric (1) are smooth and nonzero for all r ≥ 0.
Particle-like solutions also have the property that as r ↗ ∞, the metric approaches
that of Minkowski space and the Yang-Mills field vanishes [8].

Oscillating: As with particle-like solutions, each constant-time hypersurface
has the topology of R3. However, the coordinate r of the Schwarzschild coordinate
system cannot be extended to infinity. Rather, any radial geodesic parameterized
by r has infinite length over a finite range of r. More importantly, whereas particle-
like spacetimes are asymptotically flat, oscillating spacetimes are not. Oscillating
solutions also exhibit a different behavior in the Yang-Mills potential. They are
called oscillating because of the asymptotic behavior of the Yang-Mills potential.

The analyses [8], [9], and [3] all presupposed the absence of a cosmological con-
stant. The addition of a cosmological term to Einstein’s equations in the static
spherically symmetric Einstein SU(2) Yang-Mills system does not affect the be-
havior of solutions for small r [6]. In particular, there still exists a 1-parameter
family of solutions that are smooth at the origin. However, a positive cosmological
term precludes the existence of particle-like solutions. Specifically, for any solution
expressed in Schwarzschild coordinates that is smooth at the origin, there exists
a finite rc (which depends on the solution) such that limr↗rc

A(r) = 0 [4]. This
causes the metric to become singular, at least in Schwarzschild coordinates.

The question arises as to the nature of this singularity. Is it a true geometric
singularity or only due to the choice of coordinates? Reference [7] examines all of
the types of singularities at rc that are possible. In the case of positive cosmological
constant they are as follows:

Generic singularity. A solution has a generic singularity if there exists a
change in coordinates from Schwarzschild coordinates (t, r, φ, θ) to new coordinates
(t, τ, φ, θ), such that in the new coordinates

(1) the metric is smooth at (t, τc = τ (rc), φ, θ), and
(2) for each (t, φ, θ) there exists a neighborhood U of the set {(t, τc, φ, θ)} such

that rc is a unique maximum of r on U .

This is similar to the singularity that occurs in the metric on R described by ds2 =
(1 − r2)−1dr2 at r = 1. Indeed, the coordinate change τ = sin−1 r removes the
singularity.

Oscillating singularity. A solution has an oscillating singularity whenever the
singularity at rc is not a singularity of the metric but apparent only because a finite
range of the coordinate r covers the entire manifold. The metric ds2 = sec4 rdr2 on
R has similar “singularities” at r = ±π/2. Indeed, the coordinate change τ = tan r
transforms the metric to ds2 = dτ2.

Noncompact singularity. A solution has a noncompact singularity whenever
the singularity can be removed by a Kruskal-like change in coordinates; i.e., the
singularity is of the same nature as the coordinate singularity of the Schwarzschild
solution of Einstein’s equations in vacuum.

This classification of singularities does not require solutions to be smooth at the
origin. Thus, the inevitable question is which of these singularities can be realized
by solutions that are smooth at the origin. Reference [4] contains a proof that
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noncompact singularities are realized. The analysis of Brietenlohner, Forgács, and
Maison together with simple perturbation techniques establishes the existence of
solutions that are smooth at the origin and have a generic singularity at rc. In
this paper we prove that, provided the cosmological constant is small, there exist
solutions that are smooth at the origin and have an oscillating singularity at rc.
We also provide a sharp bound on the values of Λ that admit such solutions.

1.2. Equations, scaling, and units. We consider initially classical physical co-
ordinates of time measured in units of T and length measured in units of L. Grav-
itational mass is measured in units of M . Einstein’s equations with positive cos-
mological constant Λ written in coordinates (x0, x1, x2, x3) are as follows:

(2) Rij −
1
2
Rgij + Λgij =

8πG

c4
Tij .

System (2) is to be solved for the metric coefficients gij = ds2(∂/∂xi, ∂/∂xj). Rij

and R are respectively the Ricci curvature and scalar curvature tensors that are
induced by the Riemannian connection. G is Newton’s gravitational constant and
has units of L3/(MT 2), c is the speed of light in vacuum and has units of L/T , and
Tij is the covariant stress energy tensor and has units of ML/T 2. Thus, provided
the gij have units of L2 and Λ units of 1/L2, equations (2) are invariant under
scalings of L, T , and M .

To account for the effects of scaling mathematically, corresponding to coordi-
nates (t, r, φ, θ), we consider scaled coordinates (σtt, σrr, φ, θ), where σt and σr are
arbitrary positive constants. Given another arbitrary positive constant σm, we
define any function X(t, r, φ, θ, m) to have dimension TαLβMγ whenever

X(σtt, σrr, φ, θ, σmM) = σα
t σβ

r σγ
mX(t, r, φ, θ, m).

σt, σr, and σm should be thought of as time, length, and mass scaling constants
respectively.

Next, we write a spherically symmetric metric in scaled coordinates as

ds2
scaled = −c2C2(σrr)A(σrr)d(σtt)2 +

1
A(σrr)

d(σrr)2

+ (σrr)2(dφ2 + sin2 φdθ2).
(3)

Comparing the metric (3) to the metric (1) (which we view as an unscaled metric)
makes evident that the coordinate t has units of T and the coordinate r has units
of L whereas C and A are unitless. We always scale so that σt = σr and denote this
metric scaling factor by σg. Now c, being physically measurable, has units L/T .
By assumption it is independent of σg. G, also being physically measurable, has
units L3/(MT 2).

In su(2), the lie algebra of SU(2), without loss of generality, we take as a basis

τ1 =
i

2

(
0 −1
1 0

)
, τ2 =

i

2

(
0 i
i 0

)
, τ3 =

i

2

(
−1 0
0 1

)
.

τ1, τ2, τ3 satisfy
[τ1 τ2] = τ3, [τ2 τ3] = τ1, [τ3 τ1] = τ2,

where [x y] = xy − yx by ordinary matrix multiplication. We also take a Killing
inner product

(4) 〈xy〉s = −2σ2
se

G
trace(adx ad y),
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where adx ∈ gl(2, C) is defined by adx(y) = [x y]. σs is an arbitrary positive
scaling constant, e is an arbitrary positive constant (the coupling constant), and G
is, as before, Newton’s gravitational constant.

We consider a general spherically symmetric Yang-Mills magnetic only poten-
tial on the yet to be determined manifold with scaled metric (3). In coordinates
(σgt, σgr, φ, θ) this connection is as follows:

(5) ωY M = w(σgr)τ2dφ + (cosφτ3 − w(σgr) sinφτ1)dθ.

It is clear that w has no dimension of time or length. We assume it to have no
dependence on mass so that w is dimensionless. We also assume elements of su(2)
to have no dependence on mass. Thus, the τi are also dimensionless. We assume σs

to be a length scale. Then, since an inner product scales by L2, equation (4) shows
that e must have dimension L2 times the dimension of G; i.e., e has dimension
L5/MT 2.

We define
F = DωY M ,

where D is the covariant derivative with respect to the Yang-Mills connection. The
Yang-Mills equations are

(6) D ∗F = 0

where ∗ is the Hodge star operator induced by the metric on the spacetime manifold.
This metric and the metric (4) on su(2) yield a product metric 〈 , 〉x = ds2 ·
〈 , 〉s on the product manifold constructed from the space of two forms on the
spacetime manifold and su(2). The stress energy tensor, expressed in coordinates
that diagonalize the metric (3) at a point, is then determined by

(7) Tij =
∂

∂gij
(〈F, F 〉x) − gij

2
〈F, F 〉x.

The coupled Einstein SU(2) Yang-Mills equations become

(σgr)A′ + 2
e

G
σ2

sAw′2 = 1 − A − e

G
σ2

s

(1 − w2)2

(σgr)2
− Λg(σgr)2,(8)

(σgr)2Aw′′ + (σgr)w′
(

1 − A − e

G
σ2

s

(1 − w2)2

(σgr)2
− Λg(σgr)2

)
+ w(1 − w2) = 0,

(9)

C ′

C
=

e

G

2σ2
sw′2

σgr
,(10)

where ′ denotes d
d(σgr) = 1

σg

d
dr and Λg is arbitrary. If σg = σs, then these equations

simplify to

rA′ +
e

G
2Aw′2 = 1 − A − e

G

(1 − w2)2

r2
− Λr2,(11)

r2Aw′′ + rw′
(

1 − A − e

G

(1 − w2)2

r2
− Λr2

)
+ w(1 − w2) = 0,(12)

C ′

C
=

e

G

2w′2

r
,(13)
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where Λ = Λg/σ2
g and ′ denotes d

dr ; i.e., the system of equations (8), (9), (10) is
scale invariant provided the Yang-Mills metric and spacetime metric scale by the
same factor.

To geometrize the units we set c = G = 1. This forces units of T and M which
are determined by units of L. We then set e = 1 which forces units of L which
depend only on the relative strength of the gravitational and Yang-Mills forces; i.e.,
one unit of length equals

√
e/G.

Throughout the rest of this paper, we assume that r and Λ are measured in these
units. Consequently, we analyze the following equations that are satisfied by the
dimensionless A(r), C(r) and w(r) defined by metric (1) and Yang-Mills connection
(5):

rA′ + 2Aw′2 = Φ,(14a)

r2Aw′′ + rw′Φ + w(1 − w2) = 0,(14b)

C ′

C
=

2w′2

r
,(14c)

where

(15) Φ = 1 − A =
(1 − w2)2

r2
− Λr2.

Because equation (14c) separates from equations (14a) and (14b), we neglect it.

2. Outline

We consider solutions of equations (14a)–(14b) that are members of the 1-
parameter family of solutions that are smooth at the origin. For any such solution,
we have

(16) (A(0), w(0), w′(0), w′′(0)) = (1, 1, 0,−λ);

λ being the parameter of the family [8], [6]. Our goal is to establish the existence
of solutions in this family that have an oscillating singularity. To be rigorous, we
define an oscillating solution independently of Λ precisely as follows:

Definition. A solution (A(r), w(r)) of the Einstein SU(2) Yang-Mills equations
(14a)–(14b) is called an oscillating solution if the following hold:

(1) (A(r), w(r)) satisfies the conditions of equation (16),
(2) w has an infinite number of zeros in a finite interval (0, rc),
(3) with the solution (A, w), equations (14a)–(14b) are nonsingular for all r ∈

(0, rc).

We shall introduce a new parameter τ to replace the coordinate r and, with τ ,
some new variables. Oscillating solutions will then be shown to have a nice char-
acterization in terms of the behavior of these new variables. This characterization
is the content of Theorem 1. Theorem 1 and perturbation arguments will then be
used to prove the existence of oscillating solutions when Λ is small. This is the
content of Theorem 3.
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3. Existence proofs

Given any (Λ, λ) ∈ R2, we write x(Λ, λ) or x(Λ, λ, r) for any variable x derived
from the solution of equations (14a)–(14b) with cosmological constant Λ that sat-
isfies the conditions of equation (16) with λ = −w′′(0). For any such solution,
(A(Λ, λ), w(Λ, λ)), the crash point rc(Λ, λ) is defined as follows:

rc(Λ, λ) = ∞ whenever (A(Λ, λ), w(Λ, λ)) is particle-like,

rc(Λ, λ) = min{r̃ > 0: A(Λ, λ, r̃) = 0} otherwise.
(17)

Results in [7], [4], and [8] imply that rc is well defined for all Λ ≥ 0 and all λ. In
particular, rc(Λ, λ) = ∞ only for particle-like solutions. Moreover, for each (Λ, λ),
equations (14a)–(14b) are nonsingular for all r ∈ (0, rc(Λ, λ)). To simplify notation,
given(Λ, λ), whenever a limit is established for a variable x(Λ, λ, r) as r ↗ rc, we
denote this limit by xc(Λ, λ) or, when the choice of Λ is clear, by x(λ).

As in [3], we introduce the new variables

N =
√

A,(18)

U = Nw′,(19)

κ =
1

2N
(Φ + 2U2 + 2N2),(20)

and define a new parameter τ by dr/dτ = rN . Equations (14a)–(14c) transform
into

ṙ = rN,(21a)

ẇ = rU,(21b)

Ṅ = (κ − N)N − 2U2,(21c)

U̇ = −w(1 − w2)
r

− (κ − N)U,(21d)

ĊN = (κ − N)CN,(21e)

where the dot (̇) here and elsewhere denotes d/dτ . We also have the auxiliary
equation

(21f) κ̇ = 1 + 2U2 − κ2 − 2Λr2.

The metric transforms into

(22) ds2 = −c2C2(τ )N2(τ )dt2 + r2(τ )(dτ2 + dφ2 + sin2 φdθ2).

Solutions of equations (14a)–(14b) that satisfy initial conditions (16) in the region
r ∈ (0, rc) are equivalent to solutions of equations (21a)–(21f) that satisfy

r(−∞) = 0,

N(−∞) = 1,

w(−∞) = 1,

U(−∞) = 0,

κ(−∞) = 1,

U̇(−∞) = −λ

(23)

in a corresponding region τ ∈ (−∞, τc). As expected, equation (21e) separates
from the others. Therefore, it can be ignored. Throughout this analysis we make no



OSCILLATING SOLUTIONS 5131

distinction between solutions (A, w) of equations (14a)–(14b) with initial conditions
(16) and solutions (r, N, w, U) of equations (21a)–(21f) with initial conditions (23).
For any such solution, we define

τc = min{τ ∈ R | r(τ ) = rc}
whenever such τ exist. Otherwise, we define τc = ∞.

Whereas rc = ∞ is a sufficient condition for a solution to be particle-like, τc = ∞
is not. Specifically, we have the following:

Theorem 1. Suppose (r, N, w, U) is a solution of equations (21a)–(21f) with Λ ≥ 0
that satisfies the conditions of equations (23). Then the following are equivalent:

I: (r, N, w, U) is oscillating.
II: (a) rc is finite,

(b) τc = ∞.
III: (a) Φc = 0,

(b) wc = 0,
(c) κc = +

√
1 − 2Λr2

c .

Proof. (II ⇒ III). Since limr↗rc
A(r) and limr↗rc

w(r) are both well defined
[7], Φc = limr↗rc

Φ(r) is well defined also. If Φc < 0, then equation (14a)
gives limr↗rc

A′(r) < 0. Consequently, there exist ε > 0 and δ > 0 such that√
A(r) > ε

√
r − rc whenever r ∈ (rc − δ, rc). Substituting this into equation (21a)

and integrating gives τc < ∞, contrary to hypothesis. Therefore, Φc ≥ 0. It follows
easily from equation (14b) that, if Φc > 0, then limr↗rc

w′2(r) < ∞ which in turn
implies that (Aw′2)c = 0. Since A ↘ 0 as r ↗ rc, equation (14a) then gives Φc ≤ 0.
This establishes III(a).

To establish III(c), we notice that for any solution (r, N, w, U) of equations (21a)–
(21f), κ + N satisfies

(24)
d
dτ

(κ + N) = −3
4
(κ − N)2 − 1

4
(κ + N)2 + 1 − 2Λr2 ≤ 1 − 2Λr2.

If, for any ε > 0, 2Λr2
c = 1 + 2ε2, then there exist τ̃ such that for all τ > τ̃ ,

κ̇ + Ṅ < −ε2. Since τc = ∞, limτ↗∞(κ + N)(τ ) = −∞. Also, since N > 0 for all
τ ∈ R, it follows that

lim
τ↗∞

κ(τ ) ≤ lim
τ↗∞

(κ + N)(τ ) − lim
τ↗∞

N(τ ) = −∞;

i.e., limτ↗∞ κ(τ ) = −∞. However, limτ↗τc
κ(τ ) = −∞ implies τc < ∞ [7]. Thus,

2Λr2
c ≤ 1.

It follows immediately from equation (21f) that limτ↗τc
κ(τ ) ≥ 0 since κ̇(τ̃) > 0

for any τ̃ that satisfies κ(τ̃) = 0. Φc = 0 and the definition of κ (equation (20))
give Uc = 0. To complete the proof that κ has a limit as τ ↗ ∞, we define
κc =

√
1 − 2Λr2

c . For any κ > κc there exist ε > 0 such that κ2 > κ2
c + 2ε.

Consequently, whenever κ(τ ) ≥ κ and τ is sufficiently large, κ̇(τ ) < −ε. Therefore,
limτ↗∞ κ(τ ) ≤ κc. Similarly, limτ↗∞ κ(τ ) ≥ κc. III(c) follows.

To establish III(b) we prove that whenever Φc = 0 and (1−w2
c)wc �= 0, then τc <

∞. Indeed, equation (14b) implies that w′ has only one sign near rc. Consequently,
so does U . Since Uc = 0, equation (21d) yields

(25) wcw′
c(1 − w2

c) > 0.
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Without loss of generality we assume w′ to be positive near rc. Now, for any
solution of equations (14a)–(14b), Aw′ satisfies

(26) r2(Aw′)′ + 2rw′2(Aw′) + w(1 − w2) = 0.

Equation (26) gives, for r near rc,

(27) A =
Aw′

w′ >
wc(1 − w2

c)(rc − r)
2r2

cw′ .

Since A′
c = 0, it follows that limr↗rc

w′(r) = ∞.
Differentiating equation (14a) gives

(28) A′′ = w′
[
−2A′

rw′ +
2w′z

r
+

2(1 − w2)2

r4w′ − 2Λ
w′ +

8w(1 − w2)
r3

]
,

where z = (Φ + 2Aw′2)/r. Multiplying and dividing equation (20) by w′ gives

(29) lim
r↗rc

w′z(r) = 0

which, when substituted into equation (28), gives immediately that as r ↗ rc,

(30) A′′(r) ∼ 8ww′(1 − w2)
r3

.

Because w′
c = ∞, differentiating equation (14b) yields w′′′(r̂) < 0 for any r̂ near

rc that satisfies w′′(r̂) = 0. Therefore, for all r near rc,

(31) w′′(r) ≥ 0.

Adding rAw′3 and −rAw′3 to equation (14b) and substituting equations (29) and
(31) yield the existence of positive η that satisfy

(32) lim
r↗rc

Aw′3(r) > η.

Consequently, for arbitrarily small positive ε and r sufficiently close to rc,

(33) w′3 =
Aw′3

A
>

η

ε(rc − r)
.

It follows from equations (30) and (33) that near rc,

(34) A′′ >
1

(rc − r)1/3
.

Integrating equation (34) twice gives, for r near rc,

(35)
√

A >
3√
10

(rc − r)5/6.

Upon integrating equation (21a) near rc it now follows that τc < ∞.
Therefore, whenever τc = ∞, either wc = 0 or w2

c = 1. If w2
c = 1 and Λ = 0,

then, because Φc = 0, limr↗rc
A(r) = 1. Thus, the equations cannot be singular at

any finite rc. This situation describes particle-like solutions. If w2
c = 1 and Λ > 0,

then, because Φc = 0, Λr2
c = 1. But in this case, 2Λr2

c > 1 which violates III(c).
The only remaining possibility is the desired result; namely that wc = 0.

(III ⇒ II). If Φc = 0 and κ is bounded, then, as above, equation (20) gives
Uc = 0. If, in addition, wc = 0, then all derivatives of equations (21a) vanish at τc.
Because equations (21a)–(21f) are analytic at any finite τc, it follows that τc = ∞.
Now II(a) fails to hold only for particle-like solutions. But all such solutions satisfy
limr↗∞ w2(r) = 1 which is contrary to the hypotheses.
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(II and III ⇒ I). Equation (21f) yields limτ↗∞ κ̇(τ ) = 0.
We define

(36) Θ(τ ) = Arctan
ẇ
w

.

For any solution of equations (21a)–(21f), Θ satisfies the following equation:

(37) Θ̇ = −1 + w2 cos2 Θ + (2N − κ) sin Θ cosΘ,

where

cosΘ =
w√

w2 + r2U2
and sin Θ =

rU√
w2 + r2U2

.

Standard uniqueness theorems preclude the possibility of a solution smooth at r = 0
that satisfies, for some r > 0, w(r) = w′(r) = 0 and A(r) > 0. Indeed, any such
solution must be an extreme Reissner Nordström solution

(38) A = 1 − c

r
+

1
r2

, w ≡ 0

which is not smooth at r = 0.
II(b), III(c), and equation (37) give

lim
τ↗∞

κ̇(τ ) = −1 +
√

1 − 2Λr2
c < 0

in the case Λ > 0. For a proof in the case Λ = 0, see [3]. I follows.
(I ⇒ II). Since limr↗rc

w(r) = wc exists for all solutions, equation (14b) easily
yields wc = 0 for oscillating solutions. Since w2

c = 1 for particle-like solutions,
an oscillating solution cannot be particle-like. Since rc = ∞ only for particle-like
solutions, rc must be finite for oscillating solutions. This establishes II(a).

To establish II(b) we note that limτ↗τc
κ(τ ) < ∞ [7] (or easily from equation

(24)) and recall that limτ↗τc
κ(τ ) = −∞ whenever limτ↗τc

κ(τ ) = −∞. When
this is the case, there exist τ̂ ∈ (−∞, τc) such that w(τ̂) > 0, ẇ(τ̂) = 0, and for
all τ ∈ [τ̂ , τc), κ(τ ) < −4. It follows from equation (37) that Θ(τ ) ∈ (0, π/4)
throughout the interval (τ̂ , τc); i.e., w has no zeros in this interval. Since w is
oscillating and analytic for all τ ∈ (−∞, τc), this is impossible.

Therefore, κ is bounded throughout the interval (−∞, τc). If {τn}∞n=0 is an
increasing sequence that satisfies Θ(τn) = nπ − π/2, then there exists a sequence
τ̃n such that Θ(τ̃n) = nπ and τn < τ̃n < τn+1. Since every term on the right side
of equation (37) is bounded, (r, N, w, U) can be oscillating only if limn↗∞ τn = ∞;
i.e., only if τc = ∞.

Alternatively, since w and κ are bounded, limτ↗τc
U(τ ) is well defined if τc is

finite. Because the solution is oscillating, there exists a sequence {τn} ↗ τc that
satisfies U(τn) = ẇ/r = 0; i.e., Uc = 0. Differentiating equation (21a) indefinitely
then gives (since r(τ ) is analytic) r(τ ) ≡ constant which is clearly not the case. It
follows that τc = ∞. �

Corollary 1. If Λ > 1/4, then for no λ is the solution (A(Λ, λ), w(Λ, λ)) oscillat-
ing.

Proof. When Λ > 1/4, III cannot hold. Specifically, neither III(c) nor both III(a)
and III(b) can hold. �
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Corollary 2. If Λ ∈ (0, 1/4) and (A(Λ, λosc), w(Λ, λosc)) is an oscillating solution,
then

r2
c (Λ, λosc) =

1 −
√

1 − 4Λ
2Λ

.

Proof. Φc = wc = 0 implies rc satisfies 1 − 1/r2 − Λr2 = 0. Therefore, 2Λr2
c =

1 ±
√

1 − 4Λ. However, Theorem 1 implies 2Λr2
c ≤ 1. The result follows. �

It remains to prove the existence of oscillating solutions. We do so by finding
discontinuities in either rc(Λ, λ) or wc(Λ, λ) which we prove can only occur at
oscillating solutions. To carry out the proof we first need to establish uniform
bounds on wc for large values of λ.

As in [8], we define

(39) h(r) = A(r) − w2(r)

and

(40) g(r) = 2r2 − 1 + w2(r).

The next two lemmas and next theorem are adapted from [8].

Lemma 1. Suppose (A, w) is a solution of equations (14a)–(14b) with Λ ≥ 0 that
satisfies the conditions of equation (16) and the condition −w′′(0) − λ > 2. Then
h(r) < 0 as long as g(r) < 0.

Proof. Simple calculations give h(0) = 0 = h′(0) = 0, and h′′(0) = 2λ(1−λ)−2Λ/3;
hence

h(r) < 0 for r near 0, if λ > 1.

Moreover, g(0) = g′(0) = 0 and g′′(0) = (2 − λ); thus

g(r) < 0 for r near 0, if λ > 2.

If λ > 1 and if r̃ is the smallest r > 0 that satisfies h(r̃) = 0, then

(41) h′(r̃) =
Φ
r
− −2(ww′)2

r
− 2ww′.

Considering the right side of equation (41) as a quadratic form in s = (ww′) gives
discriminant at r̃

∆ = 4
(

1 +
2Φ
r2

)
= 4

[
1 +

2(1 − A)
r2

− 2(1 − w2)2

r4
− 2Λ

]

= 4
[
1 +

2(1 − w2)
r2

− 2(1 − w2)2

r4
− 2Λ

]

= 4
[
1 +

2(1 − w2)
r2

(
1 − 1 − w2

r2

)
− 2Λ

]

< 4
[
1 − 2(1 − w2)

r2
− 2Λ

]
< 4(1 − 4 − 2Λ) < 0

(42)

whenever g(r̃) < 0. Since −(2/r̃)s2 − 2s + Φ/r̃ < 0 for large negative s, it follows
that h(r) < 0 as long as g(r) < 0. �

Lemma 2. Suppose (A, w) is a solution of equations (14a)–(14b) with Λ ≥ 0 that
satisfies the conditions of equation (16) and the condition −w′′(0) = λ > 2. Then
g′(r) < 0 as long as h(r) < 0.
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Proof. For any solution (A, w) of equations (14a)–(14b), g satisfies the following
equation:

(43) g′′(r) = − Φ
rA

g′ +
2

r2A
[r2Aw′2 − (1 − w2)2 − 2Λr4 + g].

If λ > 2 and r̃ is the smallest r that satisfies g′(r) = 0, then

g′′(r̃) =
2

r̃2A
[r2Aw′2 − (1 − w2)2 − 2Λr4 + g]r=r̃

≤ 2
r̃2A

[r2w2w′2 − (1 − w2)2 − 2Λr4 + g]r=r̃

=
2

r̃2A
[4r̃4 − (1 − w2)2 − 2Λr4 + g]r=r̃

=
2

r̃2A
[g(1 + 2r̃2 + (1 − w2)) − 2Λr4]r=r̃ < 0

(44)

whenever h(r̃) and g(r̃) are negative. The result follows. �

Theorem 2. Suppose (A, w) is a solution of equations (14a)–(14b) with Λ ≥ 0 that
satisfies the conditions of equation (16) and the condition −w′′(0) = λ > 2. Then
0 < w(r) < 1 for all r ∈ [0, rc).

Proof. h and g are both negative near 0. Therefore, if there exists some r̂ ∈ (0, rc)
that satisfies w(r̂) = 0, then h(r̂) > 0. In this case, there exists a smallest r, say r1,
that satisfies h(r1) = 0. Similarly, w(r̂) gives g′(r̂) > 0. Consequently, there exists
a smallest r, say r2, that satisfies g′(r2) = 0. Now, Lemma 1 gives r1 < r2. Also,
Lemma 2 gives r1 > r2. Both cannot hold. The result follows. �

The following corollary, besides being used to prove Theorem 3, is interesting in
its own right.

Corollary 3. Suppose (A, w) is a solution of equations (14a)–(14b) with Λ ≥ 0
that satisfies the conditions of equation (16) and the condition −w′′(0) = λ > 2.
Then rc < 1/

√
2.

Proof. If rc ≥ 1/
√

2, then g(rc) > 0. It follows that there exists a smallest r2 that
satisfies g′(r2) = 0. Lemma 1 gives h(r) < 0 for all r < r2 + δ1 for some small
positive δ1. Lemma 2 then gives g′(r) < 0 for all r < r2 +δ2 for some small positive
δ2, contradicting the fact that g′(r2) = 0. The result follows. �

Lemma 3. Suppose (Λ̃, λ̃) is such that τc(Λ̃, λ̃) < ∞ and κ2
c(Λ̃, λ̃) < ∞ both hold.

Then τc(Λ, λ), rc(Λ, λ), and wc(Λ, λ) are continuous at (Λ̃, λ̃).

Proof. For all solutions of equations (21a)–(21f), w2
c < ∞ [7]. Therefore, for the so-

lution corresponding to (Λ̃, λ̃), equations (21a)–(21f) are nonsingular at τc. There-
fore, the solution (r, N, w, U)(τ ) is analytic in τ ∈ (−∞, τc + δ) for some δ > 0. In
particular, all variables have finite limits at τc.

We consider first the case Uc = 0. If wc(1 − w2
c) = 0, then dnr(τc)/dτn = 0 for

all n > 0. Since r(τ ) is analytic, this implies r(τ ) = rc for all τ ∈ (−∞, τc), which
is clearly false. Therefore, wc(1 − w2

c) �= 0. Now, differentiating equation (21c)
twice yields Ṅ = N̈ = 0 whereas d3

dτ3 N(τc) = −[w(1 − w2)]2/r2 < 0. Therefore,
N(τ ) < 0 in a neighborhood (τc(Λ̃, λ̃), τc(Λ̃, λ̃)+ε), where ε < δ is arbitrarily small.
By continuous dependence of solutions on parameters, there exists a neighborhood
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V ⊂ [0,∞) × R of (Λ̃, λ̃) such that for all (Λ, λ) ∈ V, N(Λ, λ, τ ) > 0 for all
τ ∈ (−∞, τc(Λ̃, λ̃) − ε) and N(Λ, λ, τ ) < 0 for all τ > τc(Λ̃, λ̃) + ε. N(Λ, λ, τ )
continuous gives τc(Λ, λ) ∈ (τc(Λ̃, λ̃)− ε, τc(Λ̃, λ̃)+ ε). Since ε is arbitrary, it follows
that τc(Λ, λ) is continuous.

A similar argument gives the continuity of τc in the case Uc �= 0. Alternatively,
continuity of τc in the case Uc �= 0 follows from the Implicit Function Theorem
applied to N(Λ, λ, τ ).

If x(Λ, λ, τ ) = y(τ, r(Λ, λ, τ ), N(Λ, λ, τ ), w(Λ, λ, τ ), U(Λ, λ, τ )), where y : R5 → R

is smooth but otherwise arbitrary, then

xc(Λ, λ) = y(τc(Λ, λ), r(Λ, λ, τc(Λ, λ)), 0, w(Λ, λ, τc(Λ, λ)), U(Λ, λ, τc(Λ, λ))).

Continuous dependence on parameters and the continuity of τc give xc(Λ, λ) is
continuous. In particular, rc and wc are continuous. �

Lemma 4. For any α > 0 and β > 1, the sets {(Λ, λ) ∈ [0,∞)×R | rc(λ, λ) > α}
and {(Λ, λ) ∈ [0,∞) × R | w2

c(Λ, λ) > β} are open.

Proof. Continuous dependence on parameters implies {(Λ, λ) ∈ [0,∞)×R | rc(Λ, λ)
> α} is open. It follows easily from equation (14b) that whenever w2(r) > 1 and
w′(r) = 0, then ww′′(r) > 0. This and continuous dependence give {(Λ, λ) ∈
[0,∞) × R | w2

c(Λ, λ) > β} is open. �

Theorem 3. For each Λ ∈ [0, 1/4), there exists at least one λosc(Λ) ∈ [0, 2] such
that the solution (A(Λ, λosc), w(Λ, λosc)) of equations (14a)–(14b) is an oscillating
solution.

Proof. We define the set G ⊂ R
2 as follows: (Λ, λ) ∈ G whenever the corresponding

solution of equations (14a)–(14b) (or the equivalent equations (21a)–(21f)) satisfies
the following:

(1) rc < ∞,
(2) κ(τ ) > −1 for all τ ∈ (−∞, τc),
(3) w2(r) < 2 for all r ∈ (0, rc).

If, for any (Λ, λ) ∈ G, τc < ∞, then the conditions of Lemma 3 are satisfied.
Lemma 3 and continuous dependence on parameters then yield an open neighbor-
hood V ⊂ G of (Λ, λ) such that rc and wc are continuous in V . Considering the
contrapositive, we have τc(Λosc, λosc) = ∞ at any (λosc, λosc) in G where either rc

or wc is discontinuous. In light of Theorem 1, to complete the proof we need only
to find such (Λ, λ).

First, we note that {(Λ, λ) ∈ G | τc(Λ, λ) < ∞} is nonempty. Indeed, it follows
from equation (21f) and Corollary 3 that if Λ ∈ [0, 1) and λ > 2, then (Λ, λ) ∈ G.
Furthermore, Theorem 2 states that for any such (Λ, λ), the corresponding solution
(A(λ, r), w(λ, r)) satisfies 0 < w(r) < 1 for all r ∈ (0, rc]. Corollary 3 gives rc < 1.
Theorem 1 gives τc < ∞. Indeed, τc = ∞ implies wc = 0 or wc = 1; neither of
which is the case.

This establishes that for any (Λ, λ) ∈ [0, 1) × (2,∞), the following hold:
(1) rc(Λ, λ) < 1,
(2) wc(Λ, λ) ∈ (0, 1),
(3) κc(Λ, λ) ≥ 0,
(4) τc(Λ, λ) < ∞.
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For any Λ < 1/4, we define

λr
discont = inf{λ ∈ (0,∞) | rc(Λ, µ) is continuous for all µ ∈ (λ,∞)},

λw
discont = inf{λ ∈ (0,∞) | wc(Λ, µ) is continuous for all µ ∈ (λ,∞)},

and
λosc = max{λr

discont, λ
w
discont}.

Both λr
discont and λw

discont are well defined because of Lemma 3 and the four state-
ments satisfied by (Λ, λ) ∈ [0, 1)× (2,∞). We now assume that λosc = 0 and arrive
at a contradiction. We define

λr = sup{λ ∈ (0,∞) | rc(Λ, λ) =
√

2},
λw = sup{λ ∈ (0,∞) | w2

c(Λ, λ) = 1}.

The unique solution (A(Λ, 0), w(Λ, 0)) is that of deSitter space

A = 1 − Λr2

3
, w ≡ 1

in the case Λ > 0 or Minkowski space

A ≡ 1, w ≡ 1

in the case Λ = 0. In either case, because Λ < 1/4, rc(Λ, 0) >
√

2. Lemma 4 gives,
for small λ, rc(Λ, λ) >

√
2. Therefore, because by assumption λr

discont = 0, λr is
well defined.

(45) Φc(Λ, λr) = 1 − (1 − w2
c)2

r2
c

− Λr2
c > 1 − (1 − w2

c)2

2
− 1

2
.

Φc ≤ 0 for any solution forces w2
c(Λ, λr) > 2. Since by assumption wc(Λ, λ) is

continuous for all λ and w2
c(Λ, 3) < 1, it follows that λw is well defined. Now

on one hand equation (45) gives λw > λr. But on the other hand, since λw >

λr, rc(Λ, λw) <
√

2 from which it follows that

Φc(Λ, λw) = 1 − (1 − w2
c)

2

r2
c

− Λr2
c > 1 − 1

2
> 0.

However, Φc ≤ 0. This is a contradiction. We conclude that λosc > 0. By con-
struction, one of rc or wc is discontinuous at (Λ, λosc). It remains to prove that
(Λ, λosc) ∈ G.

The definition of λosc and Lemma 4 give w2
c(Λ, λosc) ≤ 1 and rc(Λ, λosc) ≤

√
2.

Λ < 1/4 then gives 2Λr2
c (Λ, λosc) < 1. Equation (21f) easily yields κc(Λ, λosc) ≥ 0.

This completes the proof. �
Corollary 4. There exists at least one λosc ∈ [0, 2] such that the solution of equa-
tions (14a)–(14b) with Λ = 1/4 that satisfies the conditions of equation (16) with
w′′(0) = −λosc is an oscillating solution. Moreover, for this solution, rc =

√
2.

Proof. We define O ⊂ R2 by

O = {(Λ, λ) ∈ [0, 1/4) × [0,∞) | (A(Λ, λ), w(Λ, λ)) is oscillating}.
Because of Theorem 1 and Theorem 2, O ⊂ [0, 1/4) × [0, 2]. We define F ⊂ G by

F = {(Λ, λ) ∈ G | τc(Λ, λ) < ∞}.
Now, Lemma 3 gives F is open in R2. Theorem 1 gives O ⊂ F ′ (the complement
of F in R2). Therefore, O (the closure of O in R2) satisfies O ∩ F is empty.
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Invoking Theorem 3, we consider a sequence {(Λn, λn)}∞n=0 such that Λn ↗ 1/4
and, for each n, (Λn, λn) is oscillating. Since {(Λn, λn)}∞n=0 ⊂ [0, 1/4] × [0, 2] and
[0, 1/4] × [0, 2] is compact, it follows that ({1/4} × [0, 2]) ∩ O is nonempty. We
denote any point in this intersection by (1/4, λosc). Corollary 2 and Lemma 4
imply rc(1/4, λosc) ≤

√
2. Equation (21f) yields κc(1/4, λosc) ≥ 0. Lemma 3 then

gives τc(1/4, λosc) = ∞. Theorem 1 gives (A(1/4, λosc), w(1/4, λosc)) is oscillating.
Since Φc(1/4, λosc) = wc(1/4, λosc) = 0, it follows that rc(1/4, λosc) =

√
2. �

4. Concluding remarks

We conclude with the following remarks:
(1) Since an oscillating spacetime is static and spherically symmetric, it is

geodesically complete if and only if, for arbitrary t0, φ0, and θ0, the curve γ(τ ) =
(t0, r(τ ), φ0, θ0), τ ∈ (−∞,∞), has infinite length. It follows easily from metric (22)
that this is the case. Therefore, the spacetime covered by the single chart described
by R× [0, rc)× S2 with {0} × S2 identified should be viewed as consisting of all of
spacetime.

(2) As emphasized in the introduction, the difference between oscillating space-
times and particle-like spacetimes is geometric. Indeed, oscillating spacetimes are
not asymptotically flat. This can be seen in many ways. For example, we take the
orthonormal frame

e0 =
1

cC
√

A

∂

∂t
, e1 =

√
A

∂

∂r
, e2 =

1
r

∂

∂φ
, e3 =

1
r sin φ

∂

∂θ
.

The sectional curvature K23 in the plane determined by e2 and e3 satisfies

K23 =
(1 − A)

r2

which approaches 1/r2
c as r ↗ rc. limr↗rc

K23 �= 0 as it must for an asymptotically
flat space.

(3) Generic, noncompact, and oscillating solutions all have different types of sin-
gularities at rc. They also determine spacetime manifolds that have different global
geometries. In a separate analysis we show to what extent the global geometry of
the underlying spacetime manifold is determined by the nature of the singularity
in the solution at r = rc.
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