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LARGE ORBITS IN COPRIME ACTIONS
OF SOLVABLE GROUPS

SILVIO DOLFI

Abstract. Let G be a solvable group of automorphisms of a finite group K.
If |G| and |K| are coprime, then there exists an orbit of G on K of size at

least
√

|G|. It is also proved that in a π-solvable group, the largest normal
π-subgroup is the intersection of at most three Hall π-subgroups.

1. Introduction

All groups considered here are finite groups.
We prove the following:

Theorem 1.1. Let G be a solvable group acting faithfully on a group K. If
(|G|, |K|) = 1, then there exist x, y ∈ K such that

CG(x) ∩ CG(y) = 1 .

As a consequence of Theorem 1.1, we have that in a faithful coprime action of a
solvable group G there always exists an orbit of size at least

√
|G|. This answers a

question raised by I. M. Isaacs in [9].

Corollary 1.2. If G is a solvable group that acts faithfully on a group K with
(|G|, |K|) = 1, then there exists x ∈ K such that

|CG(x)| ≤
√
|G| .

The main step in the proof of Theorem 1.1 is the study of large orbits of primitive
solvable linear groups. This is accomplished in Theorem 3.4.

Theorem 1.1 can be rephrased in a somewhat different way:

Theorem 1.3. Let π be a set of primes, G a π-solvable group and H a Hall π-
subgroup of G. Then there exist x, y ∈ G such that

H ∩ Hx ∩ Hy = Oπ(G) .

We remark that Theorem 1.3 was proved by D. S. Passman in [12] for sets π = {p}
consisting of a single prime. We point out that in [18], V. I. Zenkov shows that
if H is a nilpotent Hall π-subgroup of a π-solvable group G, then the intersection
of any number of conjugates of H in G can be expressed as the intersection of (at
most) three conjugates of H.
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We also reprove a result by A. Seress ([13, Theorem 2.1]):

Theorem 1.4. Let G be a solvable group and V a finite faithful G-module. If V is
completely reducible, then there exist v1, v2, v3 ∈ V such that

CG(v1) ∩ CG(v2) ∩ CG(v3) = 1.

We point out that Theorem 1.4 can be improved for groups of odd order:

Theorem 1.5 ([4], Theorem 3). Let G be a (solvable) group of odd order and V a
finite faithful and completely reducible G-module. Then there exist v, w ∈ V such
that

CG(v) ∩ CG(w) = 1 .

As shown in [17], Theorem 1.5 holds for supersolvable groups G, but it fails for
G solvable of even order.

2. Preliminaries

By well established reduction methods, the proof of Theorem 1.1 boils down
to showing that a solvable group G, acting faithfully and primitively on a finite
module V with (|G|, |V |) = 1, has “enough” regular orbits on V ⊕ V . That is
given by Corollary 3.6, which follows from Theorem 3.4 where we consider a more
general context, by dropping the coprimality assumption. We mention here that in
the proof of Theorem 3.4 we are using the computer algebra system [GAP] in order
to check some “small” primitive groups.

We recall that an irreducible G-module V is said to be primitive if there is no
nontrivial decomposition of V into a direct sum of subspaces V = V1⊕V2⊕· · ·⊕Vm

such that G permutes the set {V1, V2, . . . , Vm}. A linear group G ≤ GL(d, pk) is
said to be primitive if the natural G-module is primitive.

It is clear that in looking for regular orbits of a primitive solvable linear group
G, we can assume that G is a maximal primitive solvable linear group. Further, by
reducing the scalars, there is no loss of generality in assuming that the ground field
of the module is a prime field.

In the following lemma we collect a number of facts concerning the structure of
maximal primitive solvable linear groups. We mainly adopt the notation in [14]. In
particular, we denote by G1�G2 the central product of two groups G1 and G2 and by
F2(G) the second term of the Fitting series of G (i.e. F2(G)/ F(G) = F(G/ F(G))).

Lemma 2.1. Let G be a primitive maximal soluble group of GL(d, p), p a prime.
Then G has a unique maximal abelian normal subgroup A, A is cyclic and |A| =

pa − 1 for some integer a.
Let C = CG(A) and let F = F(C) be the Fitting subgroup of C. Let e = e(G) =

d/a. Then the following holds:
(1) G/C is a cyclic group and |G/C| divides a;
(2) C ≤ GL(e, pa) (for a suitable embedding of GL(e, pa) in GL(d, p));
(3) |F/A| = e2 and each prime divisor of e divides |A|;
(4) F/A is a completely reducible, faithful symplectic C/F -module (possibly

over fields of different characteristic);
(5) for each prime divisor q of e, Oq(F ) = Oq(A) � Eq with Eq an extraspecial

group; if q is odd, then exp(Eq) = q; if |Eq| = q1+2n, in GL(qn, pa) there
is a unique conjugacy class of subgroups Eq isomorphic to Eq;
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(6) if e = d = qn1
1 qn2

2 , with q1, q2 distinct primes, then G is conjugate in
GL(d, p) to the Kronecker product G1×̇G2 where Gi is a maximal primitive
solvable subgroup of GL(qni , p) with e(Gi) = qni for i = 1, 2;

(7) if d is a prime and a = 1, then G � (Cp−1�E).H where E is an extraspecial
group of order d3 and exponent d if d is odd, E = Q8 if d = 2, and H is
a maximal irreducible soluble subgroup of SL(2, d); further, |H : F(H)| ≤ 6
and |H : F(H)| = 2 if d = 2;

(8) G is isomorphic to the semilinear group Γ(pd) if and only if e = 1.

Proof. For (1)–(4) we refer to [14, Thms. 2.5.13–15]. (5) comes from [14, Thm.
2.5.17] and [14, Thm. 2.4.7a)]. (6) is a particular case of [15, Thm. 20.17]. For (7)
we refer to [14, pg. 62 and pg. 76]. Observe also that H = H1 ∩ SL(2, d), where
H1 is a maximal irreducible soluble subgroup of GL(2, d). If H1 is imprimitive
or semilinear, then |H1 : F(H1)| = 2. If H1 is primitive and e(H1) = 2, then
|H1 : F(H1)| ≤ 6. (8) is [10, Corollary 2.3(a)]. �

We remark that for Gi ≤ GL(ni, p) with Zi = Z(GL(ni, p)) ≤ Gi, the Kro-
necker product G1×̇G2 is isomorphic to the central product G1 � G2, with Z1, Z2

amalgamated.
We will maintain throughout the paper the meaning of the symbols a, e, A, C,

F introduced in Lemma 2.1.
We state now a couple of well-known facts about symplectic modules. We say

that an H-module U is symplectic if U carries a nonsingular symplectic form that
is invariant by the action of H.

Lemma 2.2. Let U be a finite symplectic S-module. If char(U) does not divide
|S|, then [S, U ] and CU (S) are nonsingular S-submodules of U .

Proof. By the Zassenhaus decomposition, U = [U, S]×CU (S). It is enough to show
that CU (S) = [U, S]⊥, the orthogonal (with respect to the nonsingular S-invariant
symplectic form 〈·, ·〉 on U) of [U, S]. If w ∈ [U, S]⊥, then for all u ∈ U , x ∈ S,
0 = 〈w, ux−u〉 = 〈w, ux〉−〈w, u〉 = 〈w, ux〉−〈wx, ux〉 = 〈w−wx, ux〉, so w−wx = 0
and w ∈ CU (S). Therefore [U, S]⊥ ≤ CU (S) and equality follows by considering
dimensions. �

Lemma 2.3. Let U be a symplectic H-module and assume that U = U1 ⊕ U2 with
U1, U2 totally isotropic H-submodules of U . Then CH(U1) = CH(U2).

Proof. One can choose x1, x2, . . . , xk ∈ U1 and y1, y2, . . . , yk ∈ U2 such that, for
i = 1, . . . , k, the linear span Pi of xi and yi is a hyperbolic plane and U is the
orthogonal sum of the Pi’s. Then observe that if h ∈ H centralizes all the elements
xi, then h centralizes also all the elements yi. �

We need also some estimate on the order of centralizers in primitive linear ac-
tions. The following lemma is inspired by [16, Theorem 1.2(b)] and [13, Lemma
2.3]. We adopt the notation in Lemma 2.1.

Lemma 2.4. Let G be a primitive maximal solvable subgroup of GL(d, p), p a
prime, and V the natural G-module. Let S be a subgroup of G of prime order s.

If S ≤ C, then |CV (S)| ≤ paeα, where:
(1) if S ≤ A, then α = 0;
(2) if S ≤ F , then α ≤ 1/s;
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(3) if [S, Oq(F )] �= 1 for some prime q �= s, then |[S, Oq(F )]| = q2m+1 for some
positive integer m and

α ≤ 1
s

(
qm + s − 1

qm

)
if s|qm − 1,

α ≤ 1
s

(
qm + 1

qm

)
if s|qm + 1;

(4) if S ≤ F2(C), then α ≤ 2/3 and α ≤ 1/2 if s �= 2;
(5) α ≤ 3/4 in any case.

If S �≤ C, then |CV (S)| ≤ pea/2.

Proof. The cyclic group A acts fixed point freely on V , so (1) is clear.
If S �≤ C, then there exist x ∈ S, a ∈ A such that [x, a] is a nontrivial element

of A. Since CV (x) ∩ CV (xa) = CV (x−1) ∩ CV (xa) ≤ CV ([x, a]) = 0 and |CV (x)| =
|CV (xa)|, we have |CV (S)| ≤ pea/2.

Therefore, we can assume S ≤ C. By Lemma 2.1(2) a subgroup of C is a group
of GF (pa)-linear transformations of V .

Assume first that S ≤ F , S �≤ A. Then s �= p and S ≤ E � G, with E
an extraspecial s-group. We consider the restriction VE . It is a direct sum of
faithful irreducible E-modules, since Z(E) ≤ A acts fixed point freely on V . As
dimensions of centralizers do not change by extending the ground field and they
add up in direct sums, we can assume that V is an irreducible, faithful E-module
on an algebraically closed field F. If χ is the (Brauer) character corresponding to
V , then, as char(F) �= s, dimF(CV (S)) = [χS , 1S ] = 1

s dimF(V ) since χ(x) = 0 for
every x ∈ E \ Z(E), and (2) is proved.

Assume now that [S, Fq] �= 1, where Fq = Oq(F ), for some prime q �= s. Observe
that S centralizes Z(Fq) ≤ A. Hence U = Fq/Z(Fq) is a faithful nonsingular
symplectic S-module and (|S|, |U |) = 1. Then by Lemma 2.2, Q = [Fq, S] is an
extraspecial group and |Q| = q2m+1 for some positive integer m. Observe that
S centralizes Z(Q) and by coprimality S acts fixed point freely on Q/Z(Q). We
may again assume that the ground field of V is algebraically closed. If W is a
QS-submodule of V , then |CV (S)| = |CW (S)||CV/W (S)|, and both W and V/W
are faithful QS-modules (as nontrivial normal subgroups of QS containing Z(Q),
which acts fixed point freely). By induction on dim(V ), we can hence assume that
V is irreducible. Applying [7, Satz V.17.3] when char(V ) �= s and [8, Theorem 2.6]
when char(V ) = s, we get (3).

If S ≤ F2(C), then [S, Os ′(F )] �= 1 or S ≤ F ; thus (4) follows by (2) and (3).
Finally, if S �≤ F there exist g ∈ G, x ∈ S with 1 �= z = [x, g] ∈ F . By

(2), dimGF (pa) CV (z) ≤ e/2 and since 2 dimGF (pa) CV (x) = dimGF (pa) CV (x−1) +
dimGF (pa) CV (xg) = e + dimGF (pa)(CV (x−1) ∩ CV (xg)), we have (5). �

The next two lemmas are probably known, but we have found no reference in
the literature. Their proof uses arguments similar to those in [10, Thm. 3.5].

Lemma 2.5. Let G a nontrivial solvable and completely reducible group of linear
transformations of the finite vector space U . Then

|G : F(G)| ≤ |U |β
λ

where β = log9(6
3
√

24) and λ = 3
√

24.
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Remark 2.6. The bound in Lemma 2.5 is attained when G = GL(2, 3), acting on
its natural module. Observe also that 2.884 ≤ λ ≤ 2.885 and 1.297 ≤ β ≤ 1.298.

Proof. We work by induction on |U |.
Let U = U1 ⊕ U2 for nontrivial G-modules U1,U2 and let Gi = G/Ci with

Ci = CG(Ui), i = 1, 2. Then G is isomorphic to a subgroup of G1 × G2 and hence,
by induction,

|G : F(G)| ≤ |G1 × G2 : F(G1 × G2)| ≤
|U1|β

λ

|U2|β
λ

=
|U |β
λ2

<
|U |β
λ

.

We can hence suppose that U is an irreducible G-module. If U is imprimitive,
there exists a normal subgroup N of G such that UN is non-homogeneous; we choose
N maximal with such properties. Let UN = U1 ⊕ U2 ⊕ · · · ⊕ Um, where the Ui’s
are the homogeneous components of UN . Then G/N is a faithful and primitive
permutation group on the set {U1, U2, . . . , Um} (see, for instance, [10, Proposition
0.2]). By induction, we have |N : F(N)| ≤ |U |β/λm. As |G : F(G)| ≤ |G : F(N)| =
|G : N ||N : F (N)|, it is enough to show that |G/N | ≤ λm−1.

If M/N is a chief factor of G/N , then |M/N | = m and M/N is a faithful
and irreducible G/M -module. By [10, Theorem 3.5 (a)] |G/N | ≤ mα+1/λ, with
3 < α + 1 < 10/3. So we can assume m10/3 > λm, that implies 2 ≤ m ≤ 5. If m is
prime, then |G/N | ≤ m(m− 1) ≤ λm−1. If m = 4, then |G/N | ≤ |S4| = λ3 and we
are done in this case.

As the limitation of the index of the Fitting subgroups is inherited by subgroups,
we can thus assume that G is a maximal solvable primitive subgroup of GL(d, p),
where |U | = pd, p a prime.

We use the notation of Lemma 2.1. If e = 1, then by Lemma 2.1(8) we have
|G : F(G)| ≤ d ≤ pdβ/λ for all (p, d) �= (2, 1). But, if (p, d) = (2, 1), then G is trivial.
So we can assume e ≥ 2. We remark also that if p = 2, then by Lemma 2.1(3) it
must be a ≥ 2 and e odd.

By [10, Theorem 3.5 (a)], |C/F | ≤ e2·9/4, so |G : F(G)| ≤ |G : F | ≤ a · e9/2.
Recall that |U | = pae. As β > 5/4, we are done when λae9/2 ≤ pae5/4. So we
consider the function

f(p, e, a) =
5ae

4
log p − log a − 9

2
log e − 1

3
log 24

in D = {(p, e, a) | p prime, e, a positive integers, e ≥ 2}.
Taking derivatives, one checks that f(p, e, a) is increasing with respect to p and

a in D, and it is increasing in e whenever ea ≥ 6.
Further, f is positive at (2, 6, 2), (2, 3, 3), (3, 8, 1), (7, 3, 1) and (3, 2, 2). There-

fore, recalling that the prime divisors of e must divide pa − 1, we are left with the
cases (p, e, a) = (2, 3, 2), (3, 4, 1) or p ≥ 3, e = 2, a = 1.

Assume (p, e, a) = (2, 3, 2). By Lemma 2.1(4), C/F is isomorphic to a subgroup
of Sp(2, 3). Hence, λ|G : F(G)| ≤ λ48 ≤ 26β.

If (p, e, a) = (3, 4, 1), then G/ F(G) = C/F is a solvable subgroup of the sym-
plectic group Sp(4, 2) � S6, so |G/ F(G)| ≤ 72. As 72λ ≤ 34β , we are done in this
case.

If e = 2, then by Lemma 2.1(7), |G/ F(G)| ≤ 6 and hence |G/ F(G)|λ ≤ p2β for
all p ≥ 3 (with equality when p = 3). The proof is complete. �
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Lemma 2.7. Let K be a nilpotent group and U be a nontrivial, finite, symplectic
K-module. If U is faithful and completely reducible, then

|K| ≤ |U |γ
2

where γ = log4(6).

Remark 2.8. The bound is sharp for K = F(Sp(2, 2)). Also, 1.292 ≤ γ ≤ 1.293.

Proof. By induction on |U |.
Arguing as in step (1) of the proof of Theorem A in [3], we have an orthogonal

decomposition U = W1⊥W2⊥ · · ·⊥Wn, where each Wi is K-irreducible or the sum
of an irreducible K-module and its dual. In both cases Wi is non-singular, for all i.

Working by induction on |U |, we can hence assume that U = W1.
Let N be a normal subgroup of K. By step (2) of the proof of Theorem A in [3],

UN = U1 ⊕ U2 ⊕ · · · ⊕ Uh where each Ui is either homogeneous or the sum of the
homogeneous components corresponding to an irreducible M -module and its dual.

If h > 1 and M is the kernel of the transitive permutation action of K on
{U1, U2, . . . , Uh}, by the induction hypothesis,

|M | ≤
h∏

i=1

∣∣∣∣ M

CM (Ui)

∣∣∣∣ ≤
h∏

i=1

|Ui|γ
2

≤ |U |γ
2h

.

By [1, Theorem 3], |K/M | ≤ 2h−1; hence |K| ≤ |U |γ/2.
Therefore, we can assume that, for all N � K, UN is either homogeneous or the

sum of a homogeneous N -module and its dual. Since the kernel of a module is the
same as the kernel of its dual, it follows that every abelian normal subgroup of K
is cyclic. As K is nilpotent, it follows that there exists a cyclic normal subgroup B
of K with |K : B| ≤ 2 (see for instance [7, III.7.6]). By [3, Lemma 1.1], |B| divides
pn ±1, where |U | = p2n, p a prime. Hence |K| ≤ 2(pn +1) and, as 4(pn +1) ≤ p2nγ

for all pn ≥ 3, we are left with the case pn = 2. Then K ≤ Sp(2, 2) and hence
|K| ≤ 3. As 3 = 4γ/2, the proof is finished. �

3. The primitive case

Given a group G and a prime q, we denote by nq(G) the number of elements of
order q of G and by nq ′(G) the number of elements of prime order �= q of G.

We further denote by ν(G) (resp. νq(G); resp. νq ′(G)) the number of subgroups
of G of prime order (resp. of order q; resp. of order a prime �= q ) not contained in
Z(G).

The proof of the next lemma is straightforward and we omit it.

Lemma 3.1. Let G be a group and q a prime.

(a) If G = L × M , then nq(G) = (nq(L) + 1)(nq(M) + 1) − 1.
(b) If Z = Z(G) is cyclic, then

νq(G) ≤ (q, |Z|)
q − 1

nq(G/Z) .

Lemma 3.2. Let H be a solvable and completely reducible subgroup of Sp(4, 3).
Then there exists a 2-subgroup K of H such that |H : K| ≤ 48 and n2(K) ≤ 3.
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Proof. It is well known that a maximal subgroup of Sp(4, 3) is conjugate to one
of five groups M1, M2, . . . , M5, where M1 � SL(2, 3) � S2, |M2| = |M3| = 24 · 34,
|O3(M2)| = |O3(M3)| = 33, M4 = 2.S6, M5 = (D8 � Q8).A5. We can hence assume
that H is maximal among the solvable subgroups of Mi such that O3(H) = 1, for
some i. If i = 1, then H = M1 and we consider K = O2(M1) � Q8 × Q8. If i = 2
or i = 3, then |H| ≤ 48. If H ≤ M4, then Z = Z(M4) ≤ H and H/Z is isomorphic
to a solvable subgroup L of S6 with O3(L) = 1. It is easily checked that then L
is isomorphic to a subgroup of either S2 � S3 � S4 × C2 or a Frobenius group of
order 20. Hence in this case |H| ≤ 96 and one takes K = Z. If, finally, H ≤ M5,
then H � (Q8 � D8).L, where L is isomorphic to S3, A4 or a Frobenius group of
order 10. We are done by taking as K a subgroup of H isomorphic to Q8. (We
observe also that this is the only case where K is not normal in H. If we take
K = F(H) � Q8 � D8, then n2(K) = 11 and |H : K| ≤ 12.) �

By Lemma 2.1(4), symplectic groups are naturally involved in the structure of
primitive linear groups. We collect in the following lemma some information about
some small solvable symplectic groups (see also [13, 2.10, 2.11]).

Lemma 3.3. Let R be a solvable group, U an elementary abelian normal q-subgroup
of R (q a prime) and assume that R/U acts completely reducibly and faithfully,
respecting a nonsingular symplectic form on U . Then there is a normal subgroup
K of R with U ≤ K and K/U nilpotent such that:

(a) if |U | = 24, then |R : K| ≤ 8, π(K/U) ⊆ {3, 5} and n3(K) ≤ 80, n5(K) = 0
or n3(K) = 0, n5(K) ≤ 64;

(b) if |U | = 26, then |R/K| ≤ 48, R/K has at most 23 subgroups of prime
order, π(K/U) ⊆ {3, 5, 7} and one of the following holds:

i) n3(K) ≤ 728, n5(K) = 0, n7(K) = 0;
ii) n3(K) ≤ 8, n5(K) ≤ 64, n7(K) = 0;
iii) n3(K) ≤ 8, n5(K) = 0, n7(K) ≤ 384;

(c) if |U | = 28 and U has no totally isotropic H-submodules, then |R/K| ≤ 64
or R/K is isomorphic to a subgroup of either S2 �S4 or GL(2, 3)×C2; also
ν2 ′(K) ≤ 3280;

(d) if |U | = 36, then |R/K| ≤ 1296, π(K/U) = {2} and ν2(K) ≤ 7 · 38.

Proof. By assumption H = R/U is a solvable completely reducible subgroup of
the symplectic group Sp(U). Note that an irreducible H-submodule of U must be
either nonsingular or totally isotropic. Observe also that we may shift to subgroups
H1 ≤ GL(U) containing H. Namely, if N1 is a normal nilpotent subgroup of H1 and
K is the preimage in R of N1∩H, then R/K is isomorphic to a subgroup of H1/N1

and π(K/U) ⊆ π(N1). Also, K acts completely reducibly on U , so (|K|, |U |) = 1
and K splits on U . It follows that nq(K) ≤ nq(U � N1), for all primes q.

(a): If H is reducible or H is imprimitive, then H ≤ H1 = GL(2, 2) � S2 (as
a subgroup of GL(4, 2)). Considering N1 = F(H1), we have |H1 : N1| = 8 and
n2 ′(U � N1) = n3(A4 × A4) = 80. If H is primitive, then H is a subgroup of the
semilinear group Γ(24). Since Sp(4, 2) � S6 has no element of order 15, the claim
follows.

(b): Let |U | = 26. If U , as an H-module, is reducible and has an irreducible
submodule of dimension 4, then H ≤ L × GL(2, 2) where L is a maximal solvable
irreducible subgroup of Sp(4, 2) and by (a) we have i) or ii). If U has just one
irreducible submodule of dimension 3, then H ≤ L×GL(2, 2) where L is a maximal
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solvable completely reducible subgroup of GL(3, 2). Thus, L � Γ(23) and hence
we have iii). If U = U1 ⊕ U2 with Ui irreducible submodules of dimension 3, then
the Ui are both totally isotropic and by Lemma 2.3, CH(U1) = CH(U2). Hence
H � Γ(23) ≤ GL(3, 2) and iii) follows. If all irreducible submodules of H are at
most 2-dimensional, then H ≤ (GL(2, 2))3, hence i) follows.

Assume now that H is irreducible and imprimitive. If the blocks of H are
2-dimensional, then H ≤ H1 = GL(2, 2) � S3. With N1 = O3(H1), we have
U � N1 � (A4)3 and we have i). If the blocks are 3-dimensional, then they are
totally isotropic (as the space generated by their radicals is H-invariant) and again
they have the same centralizer in H. It follows that H � Γ(23).S2, hence we have
iii).

Suppose finally that H is primitive. Then, in the notation of Lemma 2.1, e(H) =
1 or e(H) = 3. If e(H) = 1, then H ≤ Γ(26) and, as Sp(6, 2) has no element of
order 21, we have i) or iii). If e(H) = 3, then H ≤ H1 where H1 is the (unique up
to conjugation) maximal primitive solvable subgroup of GL(6, 2) with N1 = F(H1)
extraspecial of order 33. One checks that H1/N1 � GL(2, 3). As N1 ≤ SL(3, 22),
the non-central elements in N1 have centralizers of order 22 in U . Hence U � N1

has 2 · 26 + 24 · 24 = 512 elements of order 3 and i) follows.
Observe that in any case R/K has at most 23 prime order subgroups, since either

|R/K| ≤ 16 or R/K � GL(2, 3) or S2 � S3.
(c): Assume that |U | = 28 and that H fixes no totally isotropic subspace of U .

Observe that U has no irreducible submodule of odd dimension. If U is reducible
and one irreducible submodule of U has dimension 6, then H ≤ L×GL(2, 2), where
L is an irreducible solvable subgroup of Sp(6, 2). By (b) (and the last paragraph
in its proof), we get (c).

If the submodules of U are at most 4-dimensional, then H ≤ Sp(4, 2) × Sp(4, 2)
and we are done by (a).

Assume now that U is irreducible and imprimitive. If the minimal blocks have
dimension 2, then H ≤ H1 = GL(2, 2) � S4. Thus for N1 = O3(H1) we have
U �N1 � (A4)4, so ν2′(U �N1) = 3280 and H1/N1 � S2 �S4. If the minimal blocks
are 4-dimensional, they are either both totally isotropic or both nonsingular. In the
first case, the centralizer of one of them centralizes also the other and H ≤ Γ(24).C2.
In the latter case, H ≤ Γ(24) �S2 and, recalling that Sp(4, 2) has no element of order
21, (c) follows.

Finally, if H is primitive, then H ≤ H1 � Γ(28). For N1 = F(H1), |H1 : N1| = 8
and ν(U � N1) ≤ 283.

(d): Let |U | = 36. Assume first that H = R/U is reducible. Note that there
is no irreducible H-submodule of U of dimension 5. If there is a 4-dimensional
irreducible submodule, then H ≤ Sp(4, 3) × GL(2, 3) and, recalling the remark at
the end of the proof of Lemma 3.2, there is a 2-group N �H such that n2(N) ≤ 23
and |H : N | ≤ 48 ·6 = 288. If there is a 3-dimensional irreducible H-submodule U1,
then U1 is totally isotropic. If U = U1 ⊕ U2 with U2 a totally isotropic H-module,
then by Lemma 2.3, H � GL(3, 3). Otherwise, H � GL(3, 3)× Sp(2, 3)×GL(1, 3).
Observe that if T is a completely reducible solvable subgroup of GL(3, 3), then T
is either isomorphic to a subgroup of GL(2, 3) × GL(1, 3) (if T is reducible), or
GL(1, 3) � S3 (if T is irreducible and imprimitive), or Γ(33) (if T is primitive). In
all cases there is a 2-subgroup M � T with n2(M) ≤ 7 and |T : M | ≤ 39. So it
follows that if U has a 3-dimensional submodule, then there is a 2-group N � H
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with n2(N) ≤ 31 and |H : N | ≤ 117. If the irreducible H-submodules of U are
at most 2-dimensional, then H ≤ (GL(2, 3))3 and hence there exists a 2-subgroup
N � H with |H : N | ≤ 216 and n2(N) ≤ 7.

Let us assume that H is irreducible and imprimitive. If H has blocks of dimension
1, then we can assume H � GL(1, 3) � S6. Since the solvable subgroups of S6

have order at most 72, taking as N the base group of H we have n2(N) = 63
and |H : N | ≤ 72. If H has 2-dimensional minimal blocks, then we can assume
H � GL(2, 3) � S3, and by taking N = O2(H) we have n2(N) = 7 and |H : N | =
2434 = 1296. Finally, if H has minimal blocks of dimension 3, then by Lemma 2.3,
H ≤ GL(3, 3).C2 and hence there is a 2-group N � H with n2(N) ≤ 31 and
|H : N | ≤ 234.

If H is primitive, then H � Γ(36) (if e(H) = 1) or H � (C26 � Q8).Sp(2, 2).C3

(if e(H) = 2). In both cases there is a 2-subgroup N � H with n2(N) = 1 and
|H : N | ≤ 546.

Therefore, in any case there is a K � R with K/U a 2-group, |R : K| ≤ 1296
and ν2(K) ≤ 63 · 36. �

We now come to our main result about primitive solvable linear groups. We
observe that the condition about multiplicities of regular orbits is needed for han-
dling the imprimitive case. We also remark that in the proof of the following result,
some small primitive groups have been checked by constructing them in the algebra
computer system [GAP].

Theorem 3.4. Let G be a solvable primitive subgroup of GL(d, p), p a prime, d
a positive integer, and let V be the natural module for G. Then G has at least p
regular orbits on V ⊕ V or G is one of the following groups:

(1) GL(2, 2);
(2) SL(2, 3) or GL(2, 3);
(3) 31+2.SL(2, 3) or 31+2.GL(2, 3) ≤ GL(6, 2);
(4) (Q8 � Q8)H ≤ GL(4, 3) where H is isomorphic to a subgroup of index 1, 2

or 4 of O+(4, 2).

Proof. We prove that if G is not one of the groups in (1)–(4), then G satisfies the
following property:

(P) there is an element v ∈ V such that CG(v) has at least p regular orbits on V .

Observe that we can assume that G is a maximal primitive solvable subgroup of
GL(d, p). We adopt the notation of Lemma 2.1.

Assume first that e = e(G) = 1.
Then G = Γ(pd) and for any 0 �= v ∈ V , |CG(v)| = d. We can hence assume that

CG(v) is the Galois group of V = GF (pd). So the elements of V that do not belong
to a regular orbit of CG(v) are in the union of the subfields GF (pd/m), m varying
among the prime divisors of d. Since the (distinct) prime divisors of d are at most
log2(d), it is enough to prove that f(p, d) = pd − log2(d)pd/2 − dp is nonnegative.
It is easily checked that f(3, d) ≥ 0 for all integers d ≥ 1 so, as f(p, d) is increasing
in p, f(p, d) ≥ 0 for all p ≥ 3, d ≥ 1. Further, f(2, d) ≥ 0 for all d ≥ 4. Thus
we are left with the cases pd = 2i, i = 1, 2, 3. Γ(2) and Γ(23) verify (P), while
Γ(22) = GL(2, 2) is the exceptional case in (1).

Therefore, in the following we can assume e ≥ 2.
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To find a vector v as in (P), we are going to look for a regular orbit of the
subgroup K = F2(C). If X is a subgroup of prime order of K, then |CV (X)| = 1
if X ≤ A and |CV (X)| ≤ |V |2/3 in any case by 2.4(4). Further, if pa − 1 is a
power of 2, then by Lemma 2.1(3) and (4), |K/F | is odd and by Lemma 2.4(4),
|CV (X)| ≤ |V |1/2. Let X be the set of all subgroups of prime order of K which
do not lie in A. Applying Lemma 2.7 to the symplectic K/F -module F/A, by
Lemma 3.1(b) it follows that

|X | ≤
∑

q∈π(K)

q

q − 1
nq(K/A) ≤ 2|K/A| = 2|K/F ||F/A| ≤ |F/A|γ+1 = e2(γ+1)

where γ = log4(6). Hence K certainly has a regular orbit on V if |V |−|X ||V |k > 0,
where k = 1/2 if pa − 1 is a power of 2 and k = 2/3 otherwise. Taking logarithms,
we consider the function

fk(p, e, a) = (1 − k)ea − c logp(e)

where k = 1/2, 2/3 and c = 2(γ + 1) ≤ 4.585, in the domain p ≥ 2, e ≥ 2 and
a ≥ 1. Note also that if p = 2, then a �= 1.

One checks, for both values of k, that fk is increasing in p and a, and it is
increasing in e when ea ≥ 13. Therefore, evaluating fk at suitable points, it follows
that:

a = 1): f2/3(p, e, 1) > 0 for e ≥ 22, p ≥ 7, f1/2(5, e, 1) > 0 for e ≥ 16,
f1/2(3, e, 1) > 0 for e ≥ 28;

a = 2): f2/3(p, e, 2) > 0 for e ≥ 10, p ≥ 5, f2/3(2, e, 2) > 0 for e ≥ 36,
f1/2(3, e, 2) > 0 for e ≥ 10;

a = 3): f2/3(p, e, 3) > 0 for e ≥ 4, p ≥ 5, f2/3(3, e, 3) > 0 for e ≥ 10,
f2/3(2, e, 3) > 0 for e ≥ 20;

a = 4): f2/3(p, e, 4) > 0 for e ≥ 2, p ≥ 5, f2/3(3, e, 4) > 0 for e ≥ 6, f2/3(2, e, 4) >
0 for e ≥ 13;

and that f2/3(p, e, a) > 0 for all p ≥ 3, e ≥ 2, a ≥ 5, while f2/3(2, e, 5) > 0 for
e ≥ 9, f2/3(2, e, 6) > 0 for e ≥ 6, f2/3(2, e, 7) > 0 for e ≥ 4 and f2/3(2, e, a) > 0 for
all e ≥ 3 when a ≥ 8. Observe that if e = 20, then p ≥ 11 and f2/3(11, 20, 1) > 0.
If e = 21, then p ≥ 43 and f2/3(43, 21, 1) > 0.

Therefore, recalling that each prime divisor of e divides pa − 1, there exist an
element v ∈ V such that CG(v) ∩ K = 1, or we are in one of the following cases:

Table 1

(1) a = 1: e ≤ 19 for p ≥ 7, e = 2i (1 ≤ i ≤ 4) for p = 3, 5;
(2) a = 2: e ≤ 9 for p ≥ 3, e = 3i (1 ≤ i ≤ 3) for p = 2;
(3) a = 3: e ≤ 3 for p ≥ 5, e = 2i (1 ≤ i ≤ 3) for p = 3, e = 7 for p = 2;
(4) a = 4: e ≤ 5 for p = 3, e = 3, 5, 9 for p = 2;
(5) a = 6, e = 3, p = 2.

Therefore, except for the cases in Table 1, |CG(v)| ≤ |G/K| ≤ a|C/K| ≤
a|F/A|β/λ = ae2β/λ where β and λ are as in Lemma 2.5. As |CV (S)| ≤ |V |3/4 for
every prime order subgroup S of D = CG(v), to prove (P) it is enough to show that
|V | − |D||V |3/4 ≥ p|D| or equivalently that pea ≥ a

λe2β
(
p

3
4 ea + p

)
. We observe
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that p
3
4 ea+ 1

6 ≥ p
3
4 ea + p for ea ≥ 6, so taking logarithms it is enough to study the

positivity of the function

h(p, e, a) =
1
4
ea − 2β logp(e) − logp(a) + logp(λ) − 1

6

for p ≥ 2, e ≥ 2, a ≥ 1.
One checks that h(p, e, a) is increasing in p, e and a when ea ≥ 10 and that

h(p, e, a) > 0 with the exceptions mentioned in Table 1 and also (p, e, a) = (3, 28, 1)
and (p, e, a) = (3, 10, 2). But if (p, a) = (3, 1) or (3, 2), then e is a power of 2.

Therefore, we are just left with the cases in Table 1 to check.
e prime:
Assume first e ≥ 5. By Lemma 2.1(4), C/F is an irreducible subgroup of

Sp(2, e) = SL(2, e). Hence |C/F | divides e2 − 1, and there exists a nilpotent nor-
mal subgroup K/F of C/F such that |C : K| divides 6 and K/F has at most
one subgroup of order q for each prime q (see for instance [15, pp. 165–166] or
[10, Theorem 2.11]). We therefore have νe(K) = e(e + 1) and by Lemma 3.1b),
ν2(K) ≤ 2e2 and νq(K) ≤ e2q ≤ e2 e+1

2 for each prime divisor q �= 2 of |K/F |.
Since the odd prime divisors of |K/F | are at most e−1

2 + e+1
2 = e, K has at

most e3
(

e+1
2

)
+ e(e + 1) subgroups S of odd prime order. Observe also that, by

Lemma 2.4(4), |CV (S)| ≤ |V |1/2. Further, by Lemma 2.4(3), |CV (x)| ≤ |V |3/5 for
each involution x ∈ K. Observe that e ≥ 5 divides pa − 1, so pa = 8 or pa ≥ 11.
We show that K has a regular orbit on V , by considering the function

f(x, e) = xe − 2e2x
3
5 e − (e3

(
e + 1

2

)
+ e(e + 1))x

1
2 e.

One checks that f(x, e) is increasing in x for x = pa ≥ 11 and that f(11, e) > 0 for
e ≥ 7.

For e = 5 or e = 7, observe that the only odd prime divisor of e2 − 1 is 3. Thus
ν2′(K) = ν3(K) + νe(K) ≤ 3 · e2 + e(e + 1) and again K has a regular orbit on V .

Thus for e ≥ 5 there is a v ∈ V such that |CG(v)| ≤ |G : K| ≤ 6a. Since
pea − 6 · a

(
p

3
4 ea + p

)
> 0 for pa ≥ 11, e ≥ 5 and pa = 8, e = 7 we are done for e

prime, e �= 2, 3.
Assume e = 2. Note that hence p ≥ 3 and then by Lemma 2.1(2) and Lemma 2.4

each nontrivial element in G centralizes at most pa elements of V .
Let L be the normalizer in C of a Sylow 3-subgroup of C. Then |C : L| = 4 and in

L there are at most 9 subgroups of prime order not contained in A (namely at most
6 involutions and at most 3 subgroups of order 3). Therefore, L has a regular orbit
on V for all pa ≥ 9; that is, there exists a v ∈ V such that |CG(v)| ≤ |G : L| = 4a.
Since p2a − 1 − (4a − 1)(pa − 1) − 4ap > 0 for pa ≥ 9, we are left with the cases
pa = 3, 5, 7 to check.

If pa = 3, then G is a subgroup of GL(2, 3) that contains the normal quaternion
subgroup of GL(2, 3). Thus G is either contained in a Sylow 2-subgroup of GL(2, 3)
and hence it satisfies (P), or G contains SL(2, 3) and we have the exceptional cases
in (2).

Assume now a = 1, p = 5, 7 and let H = G ∩ SL(2, p). Observe that H acts
fixed point freely on V , since an element x ∈ SL(2, p) has 1 as an eigenvalue only
if p divides |x|. Therefore, CG(v) ∩ H = 1 for any 1 �= v ∈ V and hence CG(v)
is isomorphic to a subgroup of the cyclic group G/H. Observe that |G : H| = 4
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if p = 5. If p = 7, then |G : H| = 3 since G is the normalizer in GL(2, 7) of a
subgroup E � Q8 and E is normal in a Sylow 2-subgroup of SL(2, 7). Thus CG(v)
has just one subgroup of prime order and hence it has at least (p2 − p)/(p− 1) = p
regular orbits on V .

Assume finally e = 3. First let a = 1, so that G = C ≤ GL(3, p) and p ≥ 7.
Define H = (K ∩ SL(3, p))B, where K = F2(C) and B is the 2-complement of
A. Note that H is metanilpotent. Further, G/H is a cyclic {2, 3}-group, since
G/K is cyclic of order 3 and K = (K ∩ SL(3, p))A (since F ≤ (K ∩ SL(3, p))A,
so 3 does not divide |K : (K ∩ SL(3, p))A| and |(K ∩ SL(3, p))A : K ∩ SL(3, p)| =
|A : A ∩ SL(3, p)| = p−1

3 ), and hence K/H is a cyclic 2-group. The Sylow 2-
subgroups of H are quaternion groups, so ν2(H) = 9, and if x ∈ H is an involution,
dim(CV (x)) ≤ 1 as 1 cannot be a double eigenvalue of x. Also, ν3(H) = 12. As
p3 − 1 − (9 + 12)(p − 1) > 0, there is a v ∈ V such that D = CG(v) is a cyclic
{2, 3}-group and |D| ≤ 3(p − 1). D has at most two subgroups of prime order and
p3 − 2p2 − 3(p − 1)p > 0 for all p ≥ 7, so D has at least p regular orbits on V .

Assume now a ≥ 2. As C/F ≤ Sp(2, 3), K = F2(C) has at most 9 involutions
if p = 2 and at most 18 involutions otherwise. Also, ν3(K) = 12. One checks
that y3 − 18y2 − 12y > 0 for all y = pa with p odd (recall that p �= 3) and that
y3 −9y2 −12y > 0 if y = 2a with a ≥ 4. So for a ≥ 2, p odd or a ≥ 4, there exists a
v ∈ V such that |CG(v)| ≤ |G/K| ≤ 3a. Hence (P) holds for a ≥ 2, p odd or a ≥ 4,
since in this case p3a − 3a(p2a + p) > 0. By Lemma 2.1(3), we are hence left with
the case p = a = 2, which gives the exceptional group G0 � 31+2.GL(2, 3). It is
not difficult to check that the only proper primitive subgroup of G0 that does not
satisfy (P) is 31+2.SL(2, 3).

e = 4:
The central products D8 �D8, D8 �Q8 and D8 �D8 �C4 have respectively 18, 10

and 30 noncentral involutions. By Lemma 3.3(a), there is a normal subgroup K of
C such that K/F is a nilpotent 3- or 5-group, and by Lemma 3.1b), ν2 ′(K) ≤ 40 if
3 and 5 do not divide pa − 1, ν2 ′(K) ≤ 80 if 3 � pa − 1 and ν2 ′(K) ≤ 120 otherwise.
We have that x4 − 1 − ν(K)(x2 − 1) > 0 for x = pa ≥ 9 if 3, 5 � pa − 1, for x ≥ 11
if 3 � pa − 1 and for x ≥ 12 otherwise. Hence, if pa �= 3, 5, 7 there is a v ∈ V such
that |CG(v)| ≤ |G/K| ≤ 8a. Using Lemma 2.4 and recalling that here p is odd, (P)
follows by checking that p4a − 7(p3a − 1) − 8(a − 1)(p2a − 1) − 8ap is positive for
pa ≥ 9.

The cases pa = 5 and pa = 7 are done using [GAP]: one checks that the normal-
izer in GL(4, p) of an extraspecial subgroup of order p3 (there are two conjugacy
classes of such groups when p = 7 and just one if p = 5) verifies (P).

Assume finally p = 3 and a = 1. In GL(4, 3) there are two conjugacy classes
of maximal primitive solvable subgroups with e = 4: G0 � (D8 � Q8).H with H
a Frobenius group of order 20 and G1 � (Q8 � Q8).O+(4, 2) (see for instance [14,
§8.1]). Using [GAP] one checks that (P) holds for G0 but not for G1. By [14,
Thm. 8.3.1] there is an epimorphism ϕ : W → G1 where W = GL(2, 3) � S2 and
Ker(ϕ) = Z(W ) has order 2. The primitive subgroups G ≤ G1 with e = e(G) = 4
are the ϕ(M) where M contains the subgroup SL(2, 3)×SL(2, 3) of the base group.
It is not difficult to check (with [GAP]) that the groups G = ϕ(M) do not satisfy
(P) (precisely, no centralizer has regular orbits) when M � GL(2, 3) × SL(2, 3) or
M � SL(2, 3)×GL(2, 3) (in these cases (P) holds: each centralizer has three regular
orbits).



LARGE ORBITS IN COPRIME ACTIONS OF SOLVABLE GROUPS 147

e = 6:
In this case p ≥ 7 and by [15, Thm. 20.13], C is a subgroup of the central product

N1 � N2, where N1/A � S4 and N2/A is (isomorphic to) the semidirect product
of SL(2, 3) and its natural module. Since C/A � N1/A × N2/A, by Lemma 3.1 it
follows that there is a K�C with K/F nilpotent and |C : K| ≤ 6 such that ν2(K) ≤
78 and ν3(K) ≤ 120. As x6 − 78x4 − 120x3 > 0 for x ≥ 11, by Lemma 2.4(4), K
has a regular orbit on V for all pa �= 7. If pa = 7, by Lemma 2.1(6), G is (linearly)
isomorphic to a central product G1 �G2 where G1 is the (unique up to conjugation)
maximal primitive subgroup of GL(2, 7) with e(G1) = 2 and G2 is the maximal
primitive subgroup of GL(3, 7) with e(G2) = 3. One checks that G1 � G2 has just
18 noncentral involutions. Since 76 − 18 · 74 − 120 · 73 > 0 the subgroup K = F2(G)
has a regular orbit on V .

Since p6a − 6ap6a 3
4 − 6ap > 0 for all p ≥ 7, a ≥ 1, (P) holds when e = 6.

e = 8:
By Proposition 3.3(b), there is a normal subgroup K of C such that K/F is

nilpotent , |C/K| ≤ 48, C/K has at most 23 prime order subgroups and ν2 ′(K) ≤
452 if 3 � |A| = pa −1 and ν2 ′(K) ≤ 1092 otherwise. The central product D8 �D8 �

D8 � C4 has 126 noncentral involutions; hence ν(K) ≤ 1218 if p ≡ 1 (mod 3) and
ν(K) ≤ 578 otherwise. Since p8a − 1218p4a > 0 for pa ≥ 7 and 58 − 578 · 54 > 0,
then by Lemma 2.4(4), when pa �= 3 there is a v ∈ V such that CG(v) ∩ K = 1.
Hence CG(v) has at least p regular orbits on V , as p8a − 23p6a − 48a(p4a + p) > 0
for all pa �= 3.

We check the case p = 3, a = 1 by [GAP]. The Fitting subgroup F of G is
isomorphic either to E1 = D8 � D8 � D8 or E2 = D8 � D8 � Q8. We consider
E1, E2 as subgroups of GL(8, 3) (using for instance the method in [14, p. 19]).
By Lemma 2.1(5) we can assume that, up to conjugation in GL(8, 3), F = E1 or
F = E2.

If F = E1, then G ≤ L = NGL(8,3)(E1) and H = G/F is a maximal ([14,
2.5.34]) solvable completely reducible subgroup of L/F � O+(6, 2) ([14, 2.4.12]).
As |O+(6, 2)| = 27 · 32 · 5 · 7 and O2(H) = 1, then Oq(H) �= 1 for some q ∈ {3, 5, 7}.
Choose for q ∈ {3, 5, 7} a Sylow q-subgroup Tq of L and let Gq = NL(FTq). If
O3′(H) �= 1, then up to conjugation G ≤ G5 or G ≤ G7. If O3′(H) = 1, then
|O3(H)| > 3 by the maximality of H and hence up to conjugation G ≤ G3. One
now checks by [GAP] that there is a v ∈ V such that CGq

(v) has at least three
regular orbits on V , for q = 3, 5, 7.

Assume now F = E2. Then G ≤ M = NGL(8,3)(E2) and H = G/F is a
maximal solvable completely reducible subgroup of M/F � O−(6, 2). Recall that
|O−(6, 2)| = 27 · 34 · 5. If O5(H) �= 1, then (up to conjugacy) G ≤ G5 = NM (FT5)
where T5 is a Sylow 5-subgroup of M . One checks by [GAP] that G5 satisfies
(P). So we can assume F(H) = O3(H). Observe that |O3(H)| ≥ 32. Let T3 be a
Sylow 3-subgroup of M . One checks by [GAP] that NM (FS) verifies (P), for each
representative S of the conjugacy classes of subgroups of T3 with |S| ≥ 32.

e = 9:
In this case C/F ≤ Sp(U) � Sp(4, 3), where U = F/A. Let x be an involution

of Sp(4, 3). If all eigenvalues of x are −1, then x must be the central involution
z of Sp(4, 3). So if x �= z, then CU (x) �= 0 and by Lemma 2.2, it follows that
|CU (x)| = 32. Further, by Lemma 3.2, there is an N ≤ C with F ≤ N , N/F a
2-group with at most 3 involutions and |C : N | ≤ 48. Assume first p �= 2. Observe
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that ν3 ′(N) = ν2(N) ≤ 2(34 + 2 · 32) = 198 and that ν3(N) = 120. Since pa ≥ 7
and x9 − 198x6 − 120x3 > 0 for x ≥ 7, it follows that N has a regular orbit on V .

For p = 2 we need a slightly sharper counting. In this case pa ≥ 4 and |A| is odd.
Let T be a Sylow 2-subgroup of N . Then T � N/F and by the previous observation
there is at most a z ∈ T such that |[z, F ]| = 35. Observe that by Lemma 2.4(3) any
of the 81 involutions that are conjugate to z in N centralizes at most pa·5 elements
of V . Further, in N there are at most 3 · 32 involutions not conjugate to z and
each one of them by Lemma 2.4(4) centralizes at most pa·6 elements of V . Since
x9 − 81x5 − 27x6 − 120x3 > 0 for all x ≥ 4, we have again that, for all p ≥ 2, there
exists a v ∈ V such that CG(v) ∩ N = 1.

It follows that |CC(v)| ≤ |C : N | ≤ 48. By Lemma 2.4(5), |CV (x)| ≤ pa6 if
x ∈ C and |CV (x)| ≤ pa9/2 if x �∈ C . Since pa9 − 48pa6 − (a− 1)48pa9/2 − 48ap > 0
for all p ≥ 7 if a = 1 and for all p ≥ 2 if a = 2, we are done.

e = 10:
By Table 1, we are left with the case a = 1. By Lemma 2.1(6), G = G1�G2 where

G1 (resp. G2) is isomorphic to primitive maximal soluble subgroups of GL(2, p)
(resp. GL(5, p)) with e1 = e(G1) = 2 (resp. e2 = e(G2) = 5). Let K = F2(G).
Then K/A is the direct product of a group isomorphic to the alternating group A4

and an extension of a completely reducible nilpotent subgroup of SL(2, 5) by the
natural module. Thus π(K/A) = {2, 3, 5} and, as the Sylow 2-subgroups of SL(2, 5)
are quaternion groups and the Sylow 3-subgroups are cyclic, by Lemma 3.1a),
n2(K/A) ≤ 4(52 + 1) − 1 = 103, n3(K/A) ≤ 8 · 50 + 50 + 8 = 458, n5(K/A) = 24.
By Lemma 3.1(b), it follows that ν2(K) ≤ 206, ν3(K) ≤ 687 and ν5(K) ≤ 30.

Observe now that p ≥ 11. Therefore, as 1110 − (206 + 687 + 30)112/3 > 0 there
is a v ∈ V such that CK(v) = 1 and hence |CG(v)| ≤ |G : K| = |G1 : F2(G1)||G2 :
F2(G2)| ≤ 2 · 6 by Lemma 2.1(7). Since p10 − 12p10·3/4 − 12p > 0 for all p ≥ 11, we
have (P).

e = 12:
We can again consider just the case a = 1. By Lemma 2.1(6) and (7), G is

the central product of groups G1 � (Cp−1 � E1).SL(2, 3) where E1 is extraspecial
of order 33 and G2 � (Cp−1 � E2).D, with E2 extraspecial, |E2| = 25 and D
isomorphic to either S3 � S2 or a Frobenius group of order 20 (see [14, §8.1]). Let
K = F2(G). Note that |G : K| ≤ 3 · 8 and that π(K) ⊆ {2, 3, 5}. Using Lemma 3.1
in K/A = F2(G1)/A × F2(G2)/A, one gets n2(K/A) ≤ 159, n3(K/A) ≤ 1160 and
n5(K/A) ≤ 64. Hence ν2(K) ≤ 318, ν3(K) ≤ 1740 and ν5(K) ≤ 80. Since p ≥ 7,
because 2 and 3 divide p−1, p12 − (ν2(K)+ ν3(K)+ ν5(K))p8 is certainly positive.
Thus K has a regular orbit on V . As p12 − 24p9 − 24p is also positive, (P) follows.

e = 14:
Again a = 1 and G is the central product of G1 � (Cp−1 � Q8).SL(2, 2) and

G2 � (Cp−1 � E).D, with E extraspecial of order 73 and D a maximal irreducible
soluble subgroup of SL(2, 7). Let K = F2(G). Then π(K) = {2, 3, 7} and, arguing
as in the case e = 10, ν2(K) ≤ 398 (observe that a Sylow 2-subgroup of SL(2, 7)
has just one involution; see for instance [7, II.8.10]), ν3(K) ≤ 1335 and ν7(K) = 56.
Since by Lemma 2.1(3), p ≥ 29, certainly p14 − (ν2(K)+ν3(K)+ν7(K))p14·2/3 > 0
and, as by Lemma 2.1(7), |G : K| ≤ 12, (P) follows.

e = 15:
Here a = 1 and G is the central product of groups G1 � (Cp−1 �E1).SL(2, 3) and

G2 � (Cp−1 �E2).D, where E1 and E2 are extraspecial groups of order respectively
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33 and 73, and D is a maximal irreducible soluble subgroup of SL(2, 5). Take K =
F2(G), so that π(K) = {2, 3, 5} and, arguing as above, ν2(K) ≤ 518, ν3(K) ≤ 687
and ν5(K) = 30. Hence K has a regular orbit on V (observe that 3 and 5 divide
p) and, observing that |G : K| ≤ 3 · 6, (P) follows since p15 − 18p15·3/4 − 18p is
positive.

e = 16:
We have only to check the case p = 3, a = 1. By [14, 2.5.34] no isotropic subspace

of F/A is fixed by G/F . Hence by Lemma 3.3(c), there is a K � G such that K ≤
F2(G), ν2 ′(K) = ν2 ′(K/A) ≤ 3280, |G/K| ≤ 273 and n2(G/K) ≤ n2(S2 �S4) = 75.
Clearly, ν2(K) = ν2(F ) ≤ 2|F/A| = 29. By Lemma 2.4(2),(4) the subgroups of
prime order of K centralize at most 38 elements. Since 316−(3280+29)38 > 0 there
is a v ∈ V such that CK(v) = 1, and hence CG(v) is isomorphic to a subgroup of
G/K. By Lemma 2.4(3) the 2 ′-elements of CG(v) centralize at most 38 elements in
V . So CG(v) has at least three regular orbits on V , as 316−75·312−273·38−2732 > 0.

e = 18:
Here a = 1, so by Lemma 2.1(6) and (7), G is the central product of groups

G1 � (Cp−1 �Q8).SL(2, 2) and G2 � (Cp−1 �E).D, with E extraspecial of order 35

and D a maximal irreducible soluble subgroup of Sp(4, 3). Working in the direct
product G/A and using Lemma 3.2, it follows that there exist a {2, 3}-subgroup K
of G such that ν2(K) ≤ 2(4 · 244 − 1) = 1950, ν3(K) ≤ 3

2 (3234 − 1) = 1092 and
|G : K| ≤ 96. Since p18−ν2(K)p12−ν3(K)p9 > 0 and p18−|G : K|(p18·3/4 +p) > 0
for all p ≥ 7, (P) follows.

e = 27:
We have only to consider the case p = 2, a = 2. Then F is an extraspecial group

of order 37. By Lemma 3.3(d), there is a K�C with K/F a 2-group, |G : K| ≤ 2592
and ν2(K) ≤ 387. Also, ν3(K) = ν3(F ) = 1092. Hence 427−ν2(K)418−ν3(K)227 >
0 and K has a regular orbit on V . As 427 − 2592(427·3/4 + 2) > 0, (P) holds.

The proof is finished. �
Remark 3.5. We have 11 conjugacy classes, in the respective GL(d, p), of primitive
linear groups that have less than p regular orbits on V ⊕ V , where V = V (d, p) is
the natural module. Six of them are in GL(4, 3).

As an immediate consequence of Theorem 3.4, we have the following.

Corollary 3.6. Let G be a solvable group and V be a finite, faithful and primitive
G-module. If p = char(V ) does not divide |G|, then G has at least p regular orbits
on V ⊕ V .

4. Proofs of the theorems

In order to handle imprimitive linear groups, we need some information on per-
mutation actions on subsets.

If G is a permutation group on a set Ω and Γ ⊆ Ω, we denote by GΓ the (setwise)
stabilizer of Γ in G.

Lemma 4.1. Let G be a solvable permutation group on a finite set Ω. Let p be a
prime that does not divide |G| and q = min{p, 5}. Then there exist Γ1, Γ2, . . . , Γq

disjoint subsets of Ω such that Ω = Γ1 ∪ Γ2 ∪ . . . ∪ Γq and
q⋂

i=1

GΓi
= 1 .
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Proof. Observe that we do not require that the sets Γi are all nonempty. Thus, we
can assume that p is the smallest prime that does not divide |G|.

If |G| is odd, then by [5, Corollary 1] (see also [11] for an alternative proof) G
has a regular orbit on Ω; i.e. there exists Γ ⊆ Ω such that GΓ = 1.

If 3 does not divide |G|, the claim follows by [2, Lemma 1a) and Theorem 2].
We can hence assume p ≥ 5. By [13, Theorem 1.2] or [2, Corollary 6], there is a

partition Ω = Γ1 ∪ Γ2 ∪ . . . ∪ Γ5 of Ω such that
⋂5

i=1 GΓi
= 1. �

In the proof of Theorem 1.1, we are going to use the following result by Hartley
and Turull ([6], Lemma 2.6.2).

Lemma 4.2. Let G be a solvable group that acts on a group K and assume that
(|G|, |K|) = 1. Then there exists a solvable group K1 such that G acts on K1 and
K and K1 are isomorphic as G-sets.

We remark that Hartley and Turull prove that K1 can even be chosen to be
a product of elementary abelian groups. We do not, however, need this stronger
statement in the following.

Proof of Theorem 1.1. By the Hartley-Turull Lemma, we can assume that K is
solvable.

Since F(K) = F(K �G), G acts faithfully on V = F(K)/Φ(F(K)). By induction
on |K| we can assume that K = V , a completely reducible G-module (possibly of
mixed characteristic).

If V is reducible, say V = V1 ⊕ V2, for proper G-modules Vi, then by induction
on |V | there exist xi, yi ∈ Vi such that CG(xi) ∩CG(yi) = CG(Vi), for i = 1, 2, and
we are done by considering x = x1 + x2 and y = y1 + y2.

Therefore, we can assume that V is irreducible. We prove that G has a regular
orbit on V ⊕ V that is clearly equivalent to the existence of x, y ∈ V with CG(x)∩
CG(y) = 1.

Let V = W1 ⊕ W2 ⊕ . . . ⊕ Wn be an imprimitivity decomposition of V with a
maximal number n of blocks and let H = NG(W1). Then W = W1 is a primitive
H-module. (Observe that we also allow n = 1: in that case V is primitive.)

As p = char(W ) does not divide |H|, by Corollary 3.6 there exist w1, w2, . . . , wp

∈ W ⊕ W belonging to distinct regular orbits of H/CH(W ) on W ⊕ W .
Let T be a (right) transversal of H in G. Then, writing actions (multiplicatively)

on the right, V ⊕ V =
⊕

α∈T (W ⊕ W )α and there is a homomorphism ϕ : G →
Sym(T ), defined by αϕ(g) = β, where α, β ∈ T , g ∈ G and αg = hαβ for some
hα ∈ H (hα depending also on g).

By Lemma 4.1, there are Γ1, . . . , Γp ⊆ T (with possibly some of the Γi’s empty)
such that T is the disjoint union of the Γi’s and

⋂p
i=1 GΓi

= Ker(ϕ).
Define v ∈ V ⊕ V by

v =
∑
α∈T

uαα

where uα = wi whenever α ∈ Γi.
Observe that, if g ∈ G fixes v, then g stabilizes all the sets Γi and hence g ∈

Ker(ϕ). Therefore, αgα−1 = hα ∈ CH(W ) for all α ∈ T .
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It follows that

g ∈
⋂

α∈T

CG(W )α =
⋂

α∈T

CG(Wα) = CG(V ) = 1,

and hence CG(v) = 1. �

Proof of Theorem 1.3. We want to show that there are H1, H2, H3 ∈ Hallπ(G) such
that H1 ∩ H2 ∩ H3 = Oπ(G). By factoring out Oπ(G), we can assume Oπ(G) = 1.

Let L = Oπ′π(G). If L < G, by induction there exist H ′
1, H

′
2, H

′
3 ∈ Hallπ(L) such

that
⋂3

i=1 H ′
i = 1. Further, as L �= 1 and Oπ(G/L) = 1, there exist H1, H2, H3 ∈

Hallπ(G) such that
⋂3

i=1 HiL = L. Since Hi ∩ L ∈ Hallπ(L) and hence it is L-
conjugate to H ′

i, we can assume Hi ∩ L = H ′
i, for i = 1, 2, 3.

As
⋂3

i=1 Hi ≤ L, we hence have
3⋂

i=1

Hi =
3⋂

i=1

Hi ∩ L =
3⋂

i=1

H ′
i = 1 .

Therefore, we can assume G = L = KH with K a normal π-complement of G and
H ∈ Hallπ(G). As Oπ(G) = 1, H acts faithfully on K and hence by Theorem 1.1
there exist x, y ∈ K such that

1 = CH(x) ∩ CH(y) = (H ∩ Hx) ∩ (H ∩ Hy) = H ∩ Hx ∩ Hy .

�

In proving Theorem 1.4, we use the following elementary result:

Lemma 4.3. Let V be a finite G-module and k a positive integer. If G has k
regular orbits on V ⊕V , then G has at least k(|V |+2) regular orbits on V ⊕V ⊕V .

Proof. Let {(xi, yi) | i = 1, 2, . . . , k} be a set of representatives for the regular
G-orbits of V ⊕ V . Then

{(xi, yi, u) | i=1, . . . , k, u ∈ V, u �= 0}∪{(xi, yi, 0), (xi, 0, yi), (0, xi, yi) | i = 1, . . . , k}
is a (not necessarily complete) set of representatives of distinct regular orbits of G
on V ⊕ V ⊕ V . �

Proof of Theorem 1.4. By the reduction method used in the proof of Theorem 1.1
and by Lemma 4.1, it is enough to prove that if G is a solvable group and V is
a primitive, finite and faithful G-module, then G has at least 5 regular orbits on
V ⊕ V ⊕ V .

By Lemma 4.3, we are hence left to check the exceptional groups (1)–(4) in
Theorem 3.4. It is also enough to consider the maximal groups in that list.

If G = GL(2, 2) or G = GL(2, 3) and V is the corresponding natural module,
then G has exactly one regular orbit on V ⊕V and hence, by Lemma 4.3, G has at
least five regular orbits on V ⊕ V ⊕ V .

If G = 31+2.GL(2, 3) ≤ GL(6, 2) or G = (Q8 � Q8).O+(4, 2) ≤ GL(4, 3), one
checks by [GAP] that G has at least five regular orbits on V ⊕ V ⊕ V , where V is
the natural G-module. �

Added in proof. In the paper “Regular orbits of induced modules of finite
groups”, Finite groups 2003 (Thompson Conference), de Gruyter, Berlin, 2004,
T. Wolf gives a systematic and accurate way to count regular orbits of induced
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modules. This result, which was not available to the author at the time of his
writing, could be used to replace some arguments in the proof of Theorem 1.1.

References

1. J. Dixon, The Fitting subgroup of a linear solvable group, J. Austr. Math. Soc., 7 (1967),
419–424. MR0230814 (37:6372)

2. S. Dolfi, Orbits of permutation groups on the power set, Arch. Math., 75 (2000), 321–327.
MR1785438 (2001g:20002)

3. A. Espuelas, Regular orbits on symplectic modules, J. Algebra, 138 (1991), 1–12. MR1102565
(92b:20007)

4. S. Dolfi, Intersections of odd order Hall subgroups, Bull. London Math. Soc. 37 (2005), 61–66.
MR2105819 (2005h:20041)

GAP. The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.3 ; 2002,
(http://www.gap-system.org).

5. D. Gluck, Trivial set stabilizers in finite permutation groups, Canad. J. Math., 35 (1983),
59–76. MR685817 (84c:20008)

6. B. Hartley and A. Turull, On characters of coprime operator groups and the Glauberman char-
acter correspondence, J. Reine Angew. Math. 451 (1994), 175–219. MR1277300 (95d:20010)

7. B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin - Heidelberg - New York, 1967.

MR0224703 (37:302)
8. B. Huppert and N. Blackburn, Finite Groups II, Springer-Verlag, Berlin - Heidelberg - New

York, 1982. MR650245 (84i:20001a)
9. I. M. Isaacs, Large orbits in actions of nilpotent groups, Proc. Amer. Math. Soc. 127 (1999),

45–50. MR1469413 (99b:20035)
10. O. Manz and T. Wolf, Representations of solvable groups, Cambridge Univ. Press, Cambridge,

1993. MR1261638 (95c:20013)
11. H. Matsuyama, Another proof of Gluck’s theorem, J. Algebra, 274 (2002), 703–706.

MR1877870 (2002j:20004)
12. D. S. Passman, Groups with normal solvable Hall p ′-subgroups, Trans. Amer. Math. Soc. 123

(1966), 99–111. MR0195947 (33:4143)
13. A. Seress, The minimal base size of primitive permutation groups, J. London Math. Soc., 53

(1996), 243–255. MR1373058 (96k:20003)
14. M. W. Short, The primitive soluble permutation groups of degree less than 256, Lecture Notes

in Mathematics 1519, Springer-Verlag, Berlin-Heidelberg, 1992. MR1176516 (93g:20006)
15. D. A. Suprunenko, Matrix groups, Translations of Mathematical Monographs 45, Amer. Math.

Soc., Providence RI, 1976. MR0390025 (52:10852)
16. T. Wolf, Indices of centralizers for Hall-subgroups of linear groups, Illinois J. Math., 43

(1999), 324–337. MR1703191 (2000e:20023)
17. T. Wolf, Large orbits of supersolvable linear groups, J. Algebra 215 (1999), 235–247.

MR1684166 (2000d:20047)
18. V. I. Zenkov, The structure of intersections of nilpotent π-subgroups in finite π-solvable

groups, Siberian Math. J. 34 (1993), 683–687. MR1248794 (94g:20023)

Dipartimento di Matematica “U. Dini”, Università degli Studi di Firenze, Firenze,
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