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STRUCTURAL INTERACTIONS
OF CONJUGACY CLOSED LOOPS

ALEŠ DRÁPAL

Abstract. We study conjugacy closed loops by means of their multiplication
groups. Let Q be a conjugacy closed loop, N its nucleus, A the associator
subloop, and L and R the left and right multiplication groups, respectively.
Put M = {a ∈ Q; La ∈ R}. We prove that the cosets of A agree with orbits of
[L,R], that Q/M ∼= (Inn Q)/L1 and that one can define an abelian group on
Q/N × Mlt1. We also explain why the study of finite conjugacy closed loops
can be restricted to the case of N/A nilpotent. Group [L,R] is shown to be a
subgroup of a power of A (which is abelian), and we prove that Q/N can be
embedded into Aut([L,R]). Finally, we describe all conjugacy closed loops of
order pq.

Conjugacy closed loops have been defined independently by Soikis [15] and by
Goodaire and Robinson [7], [8]. More recent results concerning their structure have
been obtained by Basarab [1], Kunen [10], Drápal [4] and by Kinyon, Kunen and
Phillips [11].

This paper can be regarded as a sequel to [4] since its main concern rests in
exploring how various features of conjugacy closed loops are manifested in their
multiplication groups. We shall use several results of [11] and end by setting down
the structure of conjugacy closed loops of order pq. Their study was initiated by
Goodaire and Robinson in [7] and resumed by Kunen [10], who proved that if a
nonassociative conjugacy closed loop of such an order exists, then q < p has to
divide p − 1. Kunen also fully described the case q = 2. Here we shall prove that
whenever q divides p−1, then there can be constructed, up to isomorphism, exactly
one nonassociative conjugacy closed loop of order pq. Its operation can be given by
the formula

(i, r) · (j, s) = (i + jγr + (1 − γr)(1 − γs), r + s),
where i and j are integers modulo p, r and s are integers modulo q, and γ is a fixed
integer whose multiplicative order modulo p is equal to q.

Unlike in [10], we shall not construct the loop by considering equalities of loop
terms, but we shall derive it from knowledge of the loop’s multiplication group.
To get the structure of the multiplication group we shall use various facts, some
of which have appeared in [11] and [4], and some of which will be proved in this
paper. In fact, we shall obtain quite a few structural results, and not all of them
will be needed for the case pq. Before turning to their short overview, we shall list
those properties of conjugacy closed loops that will be used throughout this paper
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without a further reference. All of them can be found in [4] or [11] (of course, some
of them were proved earlier, e.g. in [7] or [1]). For general loop properties consult
[3] or [2].

Conjugacy closed loops are those loops where both left and right translations
are closed under conjugation. We shall usually denote a loop by Q, and for each
a ∈ Q we shall use La and Ra to denote the left translation x �→ ax and the right
translation x �→ xa, respectively. The mapping R−1

a La will be denoted by Ta. For
S ⊆ Q we shall write L(S) to denote the set {Ls; s ∈ S}, and similarly for R(S).

Left translations Lx generate the left multiplication group L, and the right trans-
lations Rx generate the right multiplication group R. The group Mlt Q = 〈L,R〉 is
the multiplication group of Q. If Q is conjugacy closed, then

LxLyL−1
x = LTx(y) and RxRyR−1

x = RT−1
x (y).

These identities imply additional ones, from which we shall mention

LxRyR−1
z L−1

x = RxyR−1
xz and RxLyL−1

z R−1
x = LyxL−1

zx .

It is immediate that L and R are normal subgroups of Mlt Q, for every conjugacy
closed loop Q.

Mappings L−1
xy LxLy generate L1, in every loop Q. The latter mapping will be

denoted by L(x, y). Similarly, R(x, y) = R−1
yx RxRy. If Q is conjugacy closed, then

L(x, y) and R(x, y) are automorphisms of Q, the group L1 is abelian and coincides
with R1, L(x, y) = L(y, x) and R(x, y) = R(y, x) for all x, y ∈ Q, and for every
x ∈ Q and every ϕ ∈ L1 we have ϕ(x)/x ∈ N and x\ϕ(x) ∈ N . Here N stands
for the nucleus of Q (the set of elements which associate with all other elements
of Q). If Q is conjugacy closed, then N is a normal subloop of Q and Q/N is an
abelian group [1]. Furthermore, the mappings L(x, y) and R(x, y) depend only on
the cosets xN and yN .

Generally, there are three nuclei Nλ, Nµ and Nρ, where Nλ = {a ∈ Q; a(xy) =
(ax)y for all x, y ∈ Q}, and where Nµ and Nρ are defined similarly by shifting the
position of a. We have N = Nλ = Nρ = Nµ in every conjugacy closed loop Q.

The stabilizer (MltQ)1 of the unit element is known as the inner mapping group
of Q and will be denoted by InnQ. If Q is conjugacy closed, then there exists
a surjective group homomorphism Λ : L → Inn Q, Λ(Lx) = Tx for all x ∈ Q.
This homomorphism is identical on L1, and hence each element of Inn Q can be
expressed as Txϕ, for some x ∈ Q and ϕ ∈ L1. We also see that Inn Q is generated
by mappings Tx, x ∈ Q (which means that to prove the normality of a subloop U
it suffices to show Tx(u) ∈ U and T−1

x (u) ∈ U , for all x ∈ Q and u ∈ U).
For every loop Q denote by A = A(Q) the least normal subloop such that Q/A

is a group. A(Q) is known as the associator subgroup. If Q is conjugacy closed,
then A ≤ Z(N).

The most famous property of conjugacy closed loops seems to be the fact that
they are G-loops, i.e., that every conjugacy closed loop Q is isomorphic to each of
its isotopes. Now, x ◦ y = x/e · f\y defines such a (principal) isotope, fe is its unit
and Mlt Q(◦) = Mlt Q. The left and right multiplication groups coincide as well,
and so L1 = R1 (which holds in every conjugacy closed loop) turns into Lfe = Rfe

(since Q(◦) is also conjugacy closed). We see that Lu = Ru for all u ∈ Q, whenever
Q is conjugacy closed.

In Section 1 we shall collect results that are true in a more general setting. Lem-
mas 1.1 and 1.5, Corollary 1.6 and Proposition 1.7 are easy group-theoretical facts.
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Lemma 1.2 is one of the basic loop-theoretical statements; the proof is included
to make the paper dependent only on [4] and [11]. Lemma 1.8 is another classical
result of loop theory, and Lemmas 1.4 and 1.9 are easy observations. Proposition
1.3 is the only statement of Section 1 that seems to be new. The basic nature of
the proposition suggests that it had to be observed earlier. Nevertheless, I was not
able to find a reference.

In Section 2 we shall show that the cosets of A(Q), Q a conjugacy closed loop,
coincide with the orbits of [L,R]. We shall also observe that the action of R on L
by conjugation induces a subgroup of OutL = AutL/InnL that is isomorphic to
Q/N , and we shall relate the obtained automorphisms of L to [L,R].

Section 3 is devoted to the proof of Q/M ∼= Inn Q/L1 and to the construction
of an abelian group on Q/N × L1. By M we mean a normal subloop of Q that
consists of all a ∈ Q with La ∈ R. This subloop has been introduced in [4] and for
conjugacy closed loops it seems to be of significant structural importance.

Section 4 discusses certain extensions of conjugacy closed loops that will be
called conical. They can be constructed as quotients of semidirect products, and
they correspond to situations when a conjugacy closed loop Q possesses a proper
subloop P with Q = PN . In such a situation one can obtain Q as a conical
extension of P , and that can be done only by means of group theory. Loops which
possess no such proper subloop P will be called conefree. We shall show that N/A
is nilpotent in every finite conefree conjugacy closed loop Q.

In Section 5 we shall prove that [L,R] has to be an abelian group and that Q/N
can be embedded into Aut [L,R], for every conjugacy closed loop Q. Furthermore,
we shall make clear that [L,R] can be embedded into a power Ar of the (abelian)
group A = A(Q), where r ≤ |Q : N |. If Q/N is a group of prime order, then
one can even prove r = 2. This is used to identify the group G that has to be
isomorphic to Mlt Q when Q is a nonassociative conjugacy closed loop of order pq.
By considering automorphisms of G we finally come, in Section 6, to a formula that
describes the binary operation of Q. The formula is not really novel: In [2, page
184] Belousov defined a nonassociative loop on F ∗× F , F a field, such that

(a, i) · (b, j) = (ab, (a−1 − 1)(b−1 − 1)ρ + b−1i + j),

where ρ ∈ F ∗ is a parameter of the loop. Goodaire and Robinson observed in [7]
that such loops are conjugacy closed (this property does not change when a−1 and
b−1 are replaced by a and b, respectively). Every subgroup of F ∗ induces a subloop,
and so a q-element subgroup of F ∗ yields a nonassociative conjugacy closed loop of
order pq whenever F is a field of order p and q divides p − 1. This paper proves,
amongst others, that all such loops are mutually isomorphic.

1. Some general properties of loops and groups

We start by an easy lemma that does not seem to require a proof.

Lemma 1.1. Let G be a transitive permutation group on Ω. Put H = 〈Gω; ω ∈ Ω〉.
Then H � G, and G/H acts regularly on orbits of H. Furthermore, if ∆ is such a
block of G that the action of G on the conjugate blocks of ∆ has a regular image,
then ∆ is equal to a union of orbits of H.
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Lemma 1.2. Let Q be a loop (or a quasigroup) and let ∼ be an equivalence on Q.
If all x, y ∈ Q with x ∼ y and all u ∈ Q satisfy

ux ∼ uy, xu ∼ yu, u\x ∼ u\y and x/u ∼ y/u,

then ∼ is a congruence on Q.

Proof. The first two conditions imply that ∼ is compatible with the product. Hence
· induces on Q/∼ a binary operation with left and right division. It suffices to show
that both divisions are always uniquely determined, i.e. that Q/∼ is left and right
cancellative. Now, if ux ∼ uy, then x = u\(ux) ∼ u\(uy) = y, and this establishes
the left cancellativity. The rest is clear. �

Proposition 1.3. Let Q be a loop and let L be its left multiplication group. Put
B = 〈Lu; u ∈ Q〉. Then the orbits of B coincide with the cosets of the associator
subloop A(Q).

Proof. A loop is a group if and only if L is regular. Hence the image of the action
of L on the cosets modulo A(Q) has to be regular. These cosets consist of orbits
of B, by Lemma 1.1. Suppose that the equivalence ∼ induced by these orbits is a
congruence of the loop Q. Then the left multiplication group of Q/∼ is regular,
by Lemma 1.1, and so Q/∼ is a group. If Q/∼ is a group, then the orbits of B
consist of cosets modulo A(Q), and we see that the orbits and the cosets coincide.

If x ∼ y, then clearly ux ∼ uy and u\x ∼ u\y, for all u ∈ Q. From x ∼ y we also
obtain that Lx and Ly act on the orbits of B in the same way. Therefore xu ∼ yu.
To see that ∼ is a congruence it remains to verify, by Lemma 1.2, that x/u ∼ y/u.
Now, Lx/u and Ly/u map u to the same orbit of B, and hence they act on the set
of orbits identically. Thus Lx/u(1) = x/u ∼ y/u = Ly/u(1). �

It is worth noting that 〈Lu; u ∈ Q〉 and 〈Ru; u ∈ Q〉 have the same orbits. These
orbits can be smaller than those of 〈(MltQ)u; u ∈ Q〉; take any nonabelian group
Q. In fact, it is easy to see that the orbits of 〈(MltQ)u; u ∈ Q〉 yield the smallest
congruence ∼ with Q/∼ an abelian group.

Consider now a normal subloop S of a loop Q. Then Lx �→ LxS and Rx �→ RxS

determine surjective homomorphisms of L and R to the left and right multiplica-
tion group of Q/S, respectively. Together they yield a surjective homomorphism
MltQ → Mlt (Q/S). If Q/S is a group (i.e., if S ≥ A(Q)), then RxS �→ xS is an
isomorphism from the right multiplication group of Q/S to (Q/S)op (the opposite
group). These facts lead to

Lemma 1.4. Suppose that Q is a loop with a normal subloop S such that Q/S
is a group. Then there exists a unique surjective homomorphism R → (Q/S)op

that maps each Rxϕ to xS, for every x ∈ Q and ϕ ∈ R1. The kernel of this
homomorphism consists of all mappings Rsϕ, where ϕ ∈ R1 and s ∈ S.

We shall use the preceding lemma also for the left multiplication group. In
that version, (Q/S)op is replaced by Q/S. This is due to the fact that we compose
mappings from the right to the left. The next three statements are easy observations
concerning groups.

Lemma 1.5. Let G be a group and let K be its subgroup. Let αi ∈ AutG be such
that α3 = α2α1, 1 ≤ i ≤ 3. If there are two i ∈ {1, 2, 3} such that αi(x)x−1 ∈ K
for all x ∈ G, then this condition holds for all i ∈ {1, 2, 3}.
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Proof. From α(x)x−1 ∈ K one gets xα(x)−1 ∈ K, and setting y = α(x) yields
α−1(y)y−1 ∈ K. We see that the condition is retained by the inverse automor-
phisms, and so it can be assumed that it holds for i = 1, 2. Then α2α1(x)x−1 =
α2(α1(x))α1(x)−1 · α1(x)x−1 ∈ K. �

Corollary 1.6. Let G be a group, K ≤ G and U ≤ AutG. If U = 〈S〉 and
α(x)x−1 ∈ K for all α ∈ S and x ∈ G, then α(x)x−1 ∈ K for all α ∈ U and x ∈ S.

Proposition 1.7. Let G be a group, K � G and U ≤ AutG. Assume G = 〈X〉
and U = 〈S〉. If α(x)x−1 ∈ K for all α ∈ S and x ∈ X, then α(x)x−1 ∈ K for all
α ∈ U and x ∈ G.

Proof. Consider α ∈ S and suppose that x, y ∈ G satisfy α(x)x−1 ∈ K and
α(y)y−1 ∈ K. Then α(x−1)x = x−1(α(x)x−1)−1x ∈ K and α(xy)(xy)−1 =
(α(x)x−1)(x(α(y)y−1)x−1) ∈ K. We see that if α(x)x−1 ∈ K for all x ∈ X,
then α(x)x−1 ∈ K for all x ∈ G. The rest follows from Corollary 1.6. �

A loop Q is called an A�-loop, if each ϕ ∈ L1 is an automorphism. Define Ar-
loops symmetrically. A loop Q is said to be an A-loop exactly when Inn Q ≤ AutQ.
A conjugacy closed loop is an A�-loop and an Ar-loop, but it is not an A-loop, unless
it is a group.

Lemma 1.8. Let Q be an A�-loop. Then ϕLxϕ−1 = Lϕ(x) for all ϕ ∈ L1 and
x ∈ Q. Furthermore

(Lxϕ)(Lyψ) = Lxϕ(y)L(x, ϕ(y))ϕψ

whenever x, y ∈ Q and ϕ, ψ ∈ L1.

Proof. We have ϕ(xy) = ϕ(x)ϕ(y) for all x, y ∈ Q. Hence ϕLx = Lϕ(x)ϕ, and the
rest is easy. �

The formula of the lemma allows us to regard L as a group on Q × L1 with
(x, ϕ) · (y, ψ) = (xϕ(y), L(x, ϕ(y))ϕψ). This seems to have been observed for the
first time by Sabinin [13].

Lemma 1.9. Let Q be a loop with a nucleus N . Then (u, v) �→ LuRv defines
a surjective homomorphism N × N → L(N)R(N) ≤ Mlt Q. Its kernel is equal to
{(u, u−1); u ∈ Z(Q)}.

Proof. Note that LuRx = RxLu and RuLx = LxRu for all u ∈ N and x ∈ Q. The
rest is immediate. �

2. The commutator of multiplication groups

Let Q be a conjugacy closed loop and let L and R be its left and right multi-
plication group, respectively. We have already defined M = M(Q) as the set of all
a ∈ Q with La ∈ R. This definition is left-right symmetric (since L1 = R1), and
from Section 3 of [4] we know that Z(L) = {Ra; a ∈ M}, Z(R) = {La; a ∈ M}
and L ∩ R = Z(L)L1 = Z(R)R1. The orbits of L ∩ R yield a congruence of Q
and this congruence is determined by a corresponding normal subloop of Q. We
see that this subloop is equal to M , and so we can state

Proposition 2.1. The orbits of L∩R coincide with the cosets of the normal subloop
M .
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The group [L,R] is also a normal subgroup of MltQ, and it is contained in L∩R.
The orbits of [L,R] therefore constitute cosets of a normal subloop contained in M ,
and we shall see in Theorem 2.4 that this subloop is exactly the associator subloop
A = A(Q). Some easy calculations will be needed.

Lemma 2.2. Let x, y ∈ Q. Then [L−1
x , R−1

y ] = RxyR−1
x R−1

y = LxLyL−1
xy and

[Lx, Ry] = Rx\1R
−1
x\yRy = L−1

x Lx/yL−1
1/y.

Proof. Proceed by direct computation, using the formulas in the introduction. �

Corollary 2.3. L1 = R1 = 〈[Lx, Ry]; x, y ∈ Q〉 = 〈[Rx, Ly]; x, y ∈ Q〉.

Proof. With respect to Lemma 2.2 it clearly suffices to prove, say, that each
R−1

xy RyRx is a product of some [Lu, Rv]. Turn R−1
xy RyRx to R−1

y Rx\yRx and
observe that [Lx, Rx] = Rx\1Rx. Now, [Lx, Ry] = (Rx\1Rx)(R−1

y Rx\yRx)−1, by
Lemma 2.2. �

Theorem 2.4. Let Q be a conjugacy closed loop and denote by L and R the left
and right multiplication group of Q, respectively. Then

[L,R] = 〈Lu; u ∈ Q〉 = 〈Ru; u ∈ Q〉
and the orbits of [L,R] coincide with the cosets modulo the associator subloop A(Q).

Proof. We have Lu = Ru for every u ∈ Q, and to prove 〈Lu; u ∈ Q〉 ≤ [L,R]
it suffices to show L1 ≤ [L,R], since [L,R] � Mlt Q. The inclusion follows from
Corollary 2.3, and from Proposition 1.3 we see that it remains to prove [L,R] ≤ 〈Lu;
u ∈ Q〉. Denote the latter group by B and note that every element of L (or R) can
be expressed as L−1

x ϕ (or R−1
y ψ), where ϕ, ψ ∈ L1 = R1. Now, [L−1

x ϕ, R−1
y ψ] =

ϕ−1Lxψ−1RyL−1
x ϕR−1

y ψ. We need to show Lxψ−1RyL−1
x ϕR−1

y ∈ B, and we have
Lxψ−1L−1

x ∈ Lx and RyϕR−1
y ∈ Ly. Hence it suffices to verify LxRyL−1

x R−1
y =

[L−1
x , R−1

y ] ∈ B. However, that follows from Corollary 2.3. �

We have seen that all elements of [L,R] map each coset of A onto itself. We
shall now characterize all mappings from Mlt Q that have this property. This will
involve the subloop of Q that equals the preimage of Z(Q/A). Note that this
subloop consists of all x ∈ Q with TxA = idQ/A. We have Ta ∈ L1 if and only if
a ∈ M , by [4, Theorem 3.7], and so TaA = idQ/A for all a ∈ M . In other words,
M/A ≤ Z(Q/A).

Proposition 2.5. Let Q be a conjugacy closed loop and put A = A(Q). Groups
[L,R]{Tx; xA ∈ Z(Q/A)} and {ψ ∈ Mlt Q; ψ(uA) = uA for all u ∈ Q} coincide.

Proof. The former group is surely contained in the latter, by Theorem 2.4. Now
let ψ be an element of the latter group, ψ(1) = a ∈ A. Each element of InnQ is
equal to some Txϕ, ϕ ∈ L1, and so ψ can be expressed as µTxϕ, where µ ∈ [L,R],
µ(1) = a and ϕ ∈ L1. Now, Txϕ = TxϕT−1

x Tx and TxϕT−1
x ∈ [L,R], again by

Theorem 2.4. The rest consists in the direct observation that Tx fixes each coset of
A if and only if xA ∈ Z(Q/A). �

Group [L,R] is also of importance when studying outer automorphisms of L that
are induced by R. Let us first verify that the term outer automorphism is rightly
chosen.
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Proposition 2.6. Let Q be a conjugacy closed loop and consider the action of R
on L by conjugation. The kernel of this action is equal to R(N) = {Ra; a ∈ N} and
the projection of the action’s image to OutL yields a group isomorphic to Q/N .
The conjugation by Rx, x ∈ Q, gives an inner automorphism of L if and only if
x ∈ N (in which case it gives the identity).

Proof. Consider x ∈ Q. We have RxLyR−1
x = LyxL−1

x for all y ∈ Q. Every
conjugate of Lx in L is again a left translation, and so LyxL−1

x has to equal some
Lz if Rx should induce an inner automorphism of L. We shall see that this takes
place if and only if x ∈ N . Indeed, from Lyx = LzLx we get z = y, and Lyx = LyLx

for all y ∈ Q if and only if x ∈ Nµ = N . On the other hand, if x ∈ N , then
RxLyR−1

x = LyxL−1
x = Ly for all y ∈ Q.

Every ϕ ∈ R1 induces an inner automorphism of L, since R1 = L1. This
automorphism is trivial if and only if ϕ = idQ. The automorphism induced by Rxϕ
is inner if and only if Rx ∈ InnL, i.e. exactly when x ∈ N . This makes clear the
statement about the kernel of the action. The preimage of InnL is equal to {Rxϕ;
x ∈ N and ϕ ∈ R1} and this is the kernel of the action’s projection to OutL. One
gets the same kernel when mapping R to Q/N = (Q/N)op, by Rxϕ �→ xN (see
Lemma 1.4), and this yields the isomorphism between Q/N and the image of the
projected action. �

Proposition 2.7. Let Q be a conjugacy closed loop and put A = A(Q). Fix
γ ∈ L ∪ R and consider α ∈ AutL, α(λ) = γλγ−1 for all λ ∈ L. If γ ∈ R, then
α(λ)λ−1 ∈ [L,R] for all λ ∈ L. If γ = Lxϕ ∈ L, where ϕ ∈ L1 and x ∈ Q, then
α(λ)λ−1 ∈ [L,R] for all λ ∈ L if and only if xA ∈ Z(Q/A).

Proof. We have α(λ)λ−1 = [γ−1, λ−1], and this makes clear the case γ ∈ R. In
the case γ = Lxϕ first note that [L,R] is a normal subloop of L. If x = 1, then
γ ∈ L1 = R1, and so α(λ)λ−1 ∈ [L,R] for all λ ∈ L. From Lemma 1.5 it hence
follows that we need to investigate only the case γ = Lx. We shall show that then
α(L−1

y )Ly ∈ [L,R], for all y ∈ Q, if and only if xA ∈ Z(Q/A). Nothing else will be
needed, by Proposition 1.7.

Now, α(L−1
y )Ly = [L−1

x , Ly] is equal to L−1
w(y), where w(y) = y\((xy)/x), by [4,

Proposition 4.4]. By Theorem 2.4 we are looking for x with w(y) ∈ A for all y ∈ Q.
Such x are clearly exactly those that satisfy xA ∈ Z(Q/A). �

3. Structural isomorphisms

We start by two lemmas that are not really necessary for the subsequent text.
Nevertheless they seem to be of interest of their own.

Lemma 3.1. Let U be a subloop of a conjugacy closed loop Q. Then U is normal
in Q if and only if 〈Lu; u ∈ U〉 � L.

Proof. We have LxLuL−1
x = LTx(u), L−1

x LuLx = LT−1
x (u) and InnQ = 〈Tx; x ∈ Q〉.

If U is normal in Q, then Tx(u) ∈ U for all x ∈ Q and u ∈ U , and so 〈Lu; u ∈ U〉�L.
To prove the converse we have to show that the normality of 〈Lu; u ∈ U〉 implies
T±1

x (u) ∈ U for all u ∈ U and x ∈ Q. We have LT±1
x (u) ∈ 〈Lu; u ∈ U〉, and it is

clear that Ly ∈ 〈Lu; u ∈ U〉, y ∈ Q, if and only if y ∈ U . �

Lemma 3.2. Let U be a nuclear subloop of a conjugacy closed loop Q. Consider
groups L(U) = {Lu; u ∈ U}, R(U) = {Ru; u ∈ U} and L(U)R(U) = {LuRv;
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u, v ∈ U}. If any of them is normal in MltQ, then all are normal. This holds if
and only if U is a normal subloop of Q.

Proof. The sets L(U), R(U) and L(U)R(U) are really groups, by Lemma 1.9. The
subloop U is contained in the nucleus, and so R centralizes L(U). Hence L(U)�Mlt Q
if and only if L(U) �L. A large part of the lemma thus follows from Lemma 3.1 and
from its symmetric version. It remains to prove that L(U)R(U) � MltQ implies the
normality of U in Q. But this is also clear since the orbit of L(U)R(U) containing 1
equals U . �

Theorem 3.3. Let Q be a conjugacy closed loop. Denote by L its left multiplication
group and put M = {a ∈ Q; Ra ∈ L}. Then there exists a (unique) isomorphism
Q/M ∼= Inn Q/L1 sending each xM , x ∈ Q, to TxL1.

Proof. We have A(Q) ≤ M , and hence there exists a surjective homomorphism
L → Q/M that maps each Lxϕ, ϕ ∈ L1 and x ∈ Q, to xM . Its kernel consists of
all Lxϕ with x ∈ M . (This follows from the symmetric version of Lemma 1.4.)

Consider also the homomorphism πΛ : L → Inn Q/L1, where π is the natural
projection modulo L1. Now, Tx ∈ L1 ≤ L if and only if Rx ∈ L, i.e., if and only
if x ∈ M . We see that both homomorphisms have the same kernel, and the rest is
clear. �

Theorem 3.4. Let Q be a conjugacy closed loop. The operation

(xN, ϕ) · (yN, ψ) = (xyN, L(x, y) ϕψ)

defines an abelian group on Q/N × L1. This group is the image of the surjective
homomorphism L → Q/N × L1 that maps Lxϕ to (xN, ϕ), for each x ∈ Q and
ϕ ∈ L1. The kernel of this homomorphism is equal to L(N) = {La; a ∈ N}.

Proof. The operation is well defined since the value of L(x, y) depends only on
xN and yN . The group L(N) is clearly normal in L. Identify L with Q × L1 by
means of Lemma 1.8. Every ϕ ∈ L1 is a nuclear automorphism, which implies that
xN = ϕ(x)N for all x ∈ N . Hence L(x, ϕ(y)) = L(x, y), and the factorization over
L(N) yields the formula of the theorem. Group Q/N is abelian and L(x, y) = L(y, x)
for all x, y ∈ Q. �

Corollary 3.5. Let Q be a conjugacy closed loop. Then L(x, yz)L(y, z) =
L(xy, z)L(x, y), for all x, y, z ∈ Q.

Proof. The group of Theorem 3.4 contains L1 as its subgroup and Q/N is the
corresponding quotient. The mappings L(x, y) appear in the formula of the theorem
in the rôle of a factor system. Therefore they satisfy the standard factor system
equality (which is responsible for the associativity of the group). �

We shall finish this section by collecting several easy facts about mappings Tx.
Some of them can be found in [7], [10] and [11].

Lemma 3.6. Let Q be a conjugacy closed loop. Then
(i) TxTy = TxyL(x, y) for all x, y ∈ Q;
(ii) a ∈ N if and only if TxTa = Txa for all x ∈ Q;
(iii) a ∈ N if and only if TaTx = Tax for all x ∈ Q;
(iv) TxTy(a) = Txy(a) for all x, y ∈ Q and all a ∈ N ;
(v) Ta(xy) = Ta(x)Ta(y) for all a ∈ N and x, y ∈ Q.
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Proof. Point (i) can be obtained by applying Λ to LxLy = LxyL(x, y). The condi-
tion of (ii) (or (iii)) is hence equivalent to L(x, a) = idQ (or L(a, x) = idQ), for all
x ∈ Q, respectively, and that holds exactly when a ∈ N . Point (iv) follows from (i)
because L(x, y) fixes elements of N pointwise. For (v), use direct computation or
[4, Theorem 2.10]. �

Corollary 3.7. Let U be a nuclear subloop of a conjugacy closed loop Q (i.e.,
U ≤ N). Then U is normal in Q if and only if Tx(u) ∈ U for all x ∈ Q and u ∈ U .

Proof. Only the converse implication is needed. To get it we have to show that the
condition implies T−1

x (u) ∈ U , for all x ∈ Q and u ∈ U . However, T−1
x (a) = Tx\1(a)

for every a ∈ N , by point (iv) of Lemma 3.6. �

Corollary 3.8. [Kunen] Map each x ∈ Q to the permutation a �→ Tx(a) of N .
This mapping constitutes a homomorphism Q → AutN , for every conjugacy closed
loop Q.

4. Conical construction

Proposition 4.1. Let Q be a conjugacy closed loop, G a group and τ : Q → AutG
a homomorphism. The binary operation

(g, x) · (h, y) = (gτx(h), xy)

defines a conjugacy closed loop on G × Q. The loop satisfies

(h, y)/(g, x) = (hτy/x(g−1), y/x),

(g, x)\(h, y) = (τ−1
x (g−1h), x\y),

((g, x)(h, y))/(g, x) = (gτx(h)τ(xy)/x(g−1), (xy)/x) and

(g, x)\((h, y)(g, x)) = (τ−1
x (g−1hτy(g)), x\(yx)).

The nucleus of the loop is equal to {(g, a); g ∈ G and a ∈ N}.

Proof. The formulas of the proposition are easy to verify. For conjugacy closedness
one needs to show

L(g,x)L(h,y)L
−1
(g,x) = L((g,x)(h,y))/(g,x) and

R(g,x)R(h,y)R
−1
(g,x) = R(g,x)\((h,y)(g,x)),

for all (g, x), (h, y) ∈ G×Q. This is not difficult and can be done in a straightforward
manner. However, one can refrain from doing so since our construction is a special
case of a general construction of the semidirect product for conjugacy closed loops.
The general construction is described in Section 9 of [11].

For g, h, k ∈ G and x, y, z ∈ Q one obtains

(g, x) · (h, y)(k, z) = (gτx(h)τxy(hk), x · yz) and
(g, x)(h, y) · (k, z) = (gτx(h)τxy(hk), xy · z).

It is hence clear that (g, x) belongs to the nucleus if and only if x ∈ N . �

The loop of Proposition 4.1 will be denoted by S(G, Q, τ).

Lemma 4.2. Assume x ≡ y mod A(Q). Then (h, y)/(g, x) = (hg−1, y/x) for all
g, h ∈ G. Furthermore, (g, y)/(g, x) = (1, y/x) and (g, x)\(g, y) = (1, x\y), for all
g ∈ G.
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Proof. The last equality holds for all x, y ∈ Q. To get the first equality note
that Ker τ contains A(Q). This means that τy/x is the identity whenever x ≡
y mod A(Q). �
Proposition 4.3. Put S = S(G, Q, τ), where τ : Q → AutG is a homomorphism,
G a group and Q a conjugacy closed loop. Then A(S) = {(1, a); a ∈ A(Q)}.
Proof. The associator subloop A(S) is the least normal subloop of S that contains
all (α ·βγ)/(αβ ·γ), where α, β, γ ∈ S. Assume α = (g, x), β = (h, y) and γ = (k, z).
Then (α · βγ)/(αβ · γ) = (1, (x · yz)/(xy · z)), by Lemma 4.2, and we see that A(S)
contains {(1, a); a ∈ A(Q)}. It suffices to show that the latter subloop is normal in
S. Now, T−1

(g,x)(1, a) = (τ−1
x (g−1g), T−1

x (a)) = (1, T−1
x (a)) belongs to the subloop

whenever a belongs to A(Q). We are done, by the symmetrical version of Corollary
3.7. �
Proposition 4.4. Let Q be a conjugacy closed loop with nucleus N and let G be a
group such that G ∩ Q = N . Suppose that τ : Q → AutG satisfies

(1) τx(a) = Tx(a) for all a ∈ N and x ∈ Q, and
(2) τa(g) = aga−1 for all a ∈ N and g ∈ G.

Put ∆ = {(a−1, a); a ∈ N}. Then ∆ is a normal subloop of S = S(G, Q, τ),
(a−1, a)(b−1, b) = ((ab)−1, ab) for all a, b ∈ N and (g, a) ≡ (ga, 1) mod ∆ for all
(g, a) ∈ G × N .

Denote by π the natural projection S → S/∆. It is injective on both G × 1 and
1×Q, and π(1×Q) is a proper subloop of S/∆ if and only if N is a proper subgroup
of G. The nucleus N(S/∆) is equal to N(S)/∆ = π(N(S)) = π(G × 1), and the
associator A(S/∆) is equal to A(S)∆/∆ = π(1 × A(Q)).

Proof. We have (a−1, a)(b−1, b) = (a−1τa(b−1), ab) = (a−1ab−1a−1, ab) =
((ab)−1, ab), for all a, b ∈ N . By Proposition 4.1, T−1

(g,x)(a
−1, a) is equal to

(τ−1
x (g−1a−1τa(g)), T−1

x (a)), and so T−1
(g,x)(a

−1, a) = (τ−1
x (g−1a−1aga−1), T−1

x (a))
= (T−1

x (a−1), T−1
x (a)) for all a ∈ N , g ∈ G and x ∈ Q. We have verified that ∆

forms a normal (nuclear) subloop of S.
The nucleus of S is the semidirect product S(G, N, τ ), by Proposition 4.1. Thus

(g, a)(a, a−1) = (gτa(a), 1) = (ga, 1) for all g ∈ G and a ∈ N , and (g, a) ≡
(ga, 1) mod ∆, as required.

We have (h, 1)/(g, 1) = (hg−1, 1) and (1, y)/(1, x) = (1, y/x) for all g, h ∈ G
and x, y ∈ Q. The results of the division are in ∆ if and only if h = g or y = x,
respectively. This means that π is injective on both subloops G × 1 and 1 × Q.

We also have (a, a−1)(1, x) = (a, a−1x) for all a ∈ N and x ∈ Q. Hence
∆(1 × Q) = {(a, x); a ∈ N and x ∈ Q}. Since π(1 × Q) = S/∆ if and only if
∆(1 × Q) = S, we see that this takes place if and only if N = G.

To compute the nucleus first note that each surjective homomorphism of loops
moves the nucleus into the nucleus. Hence N(S/∆) contains N(S)/∆ and we only
need to show that (g, x)∆ /∈ N(S/∆) for each x ∈ Q\N . Consider such an x and find
y, z ∈ Q with u = (x·yz)/(xy·z) �= 1. Then ((g, x)·(1, y)(1, z))/((g, x)(1, y)·(1, z)) =
(g, x · yz)/(g, xy · z) = (1, u), by Lemma 4.2. The element (1, u) does not belong to
∆, and so (g, x)∆ /∈ N(S/∆).

Let us finally consider the associator subloop. In every surjective homomorphism
of loops the image of the associator subloop contains the associator subloop of the
image. We hence have A(S/∆) ≥ π(1 × A(Q)). The equality follows from the
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injectivity of π on 1×Q and from the fact that in any loop the associator subloop
contains the associator subloop of each of its subloops. �

We shall denote S/∆ by Cone (G, Q, τ). This loop will be called the conical
extension of Q by G (by means of τ ).

Recall that in every loop Q the product PU = UP forms a subloop of Q whenever
U is a normal subloop of Q and P is also a subloop (not necessarily normal). If
U = N and Q = NP , then for every a ∈ Nµ(P ) one clearly has (bx)(a · yc) =
(bx · a)(yc) for all x, y ∈ P and b, c ∈ N . This implies Nµ(P ) = P ∩ Nµ(Q).

Lemma 4.5. Let Q be a conjugacy closed loop with a subloop P . Suppose that
Q = PN . The nucleus of P is then equal to N ∩ P . Denote by τ the homo-
morphism P → AutN , x �→ τx, τx(a) = Tx(a) for all x ∈ P and a ∈ N . Set
S = S(N, P, τ ) and denote by π the mapping S → Q, (a, x) �→ ax. Then π is a
surjective homomorphism of loops and Ker π = {(b−1, b); b ∈ P ∩ N}.

Proof. The equality N(P ) = N ∩ P follows from the remark preceding the lemma.
Consider a, b ∈ N and x, y ∈ P . Then (a, x) · (b, y) = (a · ((xb)/x), xy), and so
π((a, x) · (b, y)) = a · (((xb)/x)x)y = a(x · by) = ax · by = π(a, x) · π(b, y). We
see that π is really a homomorphism. Now, ax = 1 if and only if x ∈ P ∩ N and
x = a−1. �

In the situation of Lemma 4.5 we have
(1) τx(a) = Tx(a) for all a ∈ N ∩ P and x ∈ P , and
(2) τa(g) = aga−1 for all a ∈ N ∩ P and g ∈ N .

This means that π of the lemma induces an isomorphism Cone (N, P, τ ) ∼= Q. We
record it as

Theorem 4.6. Let Q be a conjugacy closed loop with such a subloop P that Q =
PN . For every x ∈ P define τx ∈ AutN by τx(a) = (xa)/x. Then there exists an
isomorphism Cone (N, P, τ ) ∼= Q.

Every conjugacy closed loop Q that possesses a subloop P with Q = PN can
thus be regarded as a conical extension of P .

Let us recapitulate the steps needed for a construction of such an extension. One
can start from the action of N on N by conjugation. Since A ≤ Z(N), this action
gives a homomorphism

τ0 : N/A → AutN, τ0(aA)(b) = aba−1.

To get a conical extension one needs to enlarge τ0 to a homomorphism

τ1 : Q/A → AutN, τ1(aA) = τ0(aA) for all a ∈ N.

This is still not sufficient, since we need a homomorphism Q/A → AutG, where
N � G. Thus τ1 has to be further extended to τ2 : Q/A → AutG, in such a way
that

(1) τ2(xA)(a) = τ1(xA)(a) for all x ∈ Q and a ∈ N , and
(2) τ2(aA)(g) = aga−1 for all g ∈ G and a ∈ N .

One then puts τ (x) = τ2(xA) for all x ∈ Q.
Conical extensions can thus be obtained by appropriate extensions of inner auto-

morphisms of N . From the structural point of view the more interesting conjugacy
closed loops are those that cannot be constructed in a clear way from smaller ones
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by means of group theory. The conical extension can be applied whenever a loop
Q has a proper subloop P with Q = PN . Call Q conefree if it possesses no such
subloop.

Theorem 4.7. Let Q be a finite conefree conjugacy closed loop. Let N = N(Q) be
its nucleus and A = A(Q) its associator subloop. Then N/A is a nilpotent group.

Proof. Consider all subloops P of Q that contain A and have the property that
P/A is a maximal subgroup of Q/A. Each such P contains N , since otherwise Q
would not be conefree. Denote by F the intersection of all possible P . Then F/A
is the Frattini subgroup of Q/A, and so it is nilpotent. We know that F contains
N , and nothing more is needed. �

5. Embeddings

Proposition 5.1. Let Q be a conjugacy closed loop. Then Laϕ = ϕLa for all
a ∈ N and ϕ ∈ L1.

Proof. Group L1 is generated by mappings L(x, y). These mappings depend only
on xN and yN , and so LaL(x, y)L−1

a = L(Ta(x), Ta(y)) = L(x, y), by point (v) of
Lemma 3.6. �

We see that L contains L(N) × L1 as its subgroup. In fact, this can be proved
for all A�-loops in which N is a normal subloop (some other results of this paper
generalize to A�-loops as well).

Corollary 5.2. Let Q be a conjugacy closed loop. Then Laψ = ψLa for all a ∈ N
and ψ ∈ [L,R].

Proof. We can assume ψ ∈ Lu, for some u ∈ Q, by Theorem 2.4. Then ψ = L−1
v ϕLv

for v = 1/u and some ϕ ∈ L1. Furthermore,

LaψL−1
a = L−1

v LvLaL−1
v ϕLvL−1

a L−1
v Lv = L−1

v LTv(a)ϕL−1
Tv(a)Lv = L−1

v ϕLv = ψ.

�

Lemma 5.3. Let Q be a conjugacy closed loop and let Γ be a coset modulo N .
Then N acts regularly on Γ by left translations. Denote by J the image of this
action, and denote by I the image of the action of [L,R] on Γ . Then I ∼= A(Q),
I ≤ Z(J) and the orbits of I coincide with those cosets of A(Q) that lie in Γ .

Proof. We know that the orbits of I have to coincide with the cosets modulo A(Q)
that are contained in Γ , by Theorem 3.4. The properties we wish to show are
retained by conjugation by Lu, u ∈ Q, and so we can assume Γ = N . Then J
becomes the regular action of N on itself by left translations, and the centralizer of
J is the group of right translations. We know, by Corollary 5.2, that I is a subgroup
of this centralizer. Because the centralizer is a regular permutation group, I is fully
determined by any of its orbits. One such orbit is equal to A = A(Q) and A ≤ Z(N).
The rest is clear. �

Theorem 5.4. Let Q be a conjugacy closed loop and let L and R be its left and
right multiplication groups, respectively. Furthermore, let N be its nucleus and let
A be its associator subloop. Then there exists r ≤ |Q : N |, such that [L,R] can be
embedded into the product of r copies of A.
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Proof. We have observed in Lemma 5.3 that by restricting all permutations of
[L,R] to a coset modulo N one obtains a semiregular permutation group that is
isomorphic to A. We can hence map [L,R] to a product of such permutation groups,
each coordinate corresponding to a coset of N . �
Corollary 5.5. The group [L,R] is abelian in every conjugacy closed loop Q.

Proposition 5.6. Let Q be a conjugacy closed loop and consider the action of L
on [L,R] by conjugation. The kernel of this action is equal to {Laϕ; a ∈ N and
ϕ ∈ L1} (which is the normalizer of L1 in L).

Proof. We have L1 ≤ [L,R], by Theorem 3.4, and so in our action L1 acts trivially,
by Corollary 5.5. From Lemma 5.3 we see that each La, a ∈ N , acts trivially as
well. On the other hand, L1 fixes pointwise exactly the elements of N , and hence
for every x ∈ Q \ N there exists ϕ ∈ L1 with Lxϕ �= ϕLx. �

The action of Proposition 5.6 can be regarded as an action of Q/N on [L,R]
(cf. Lemma 1.4), and so we can state

Corollary 5.7. There exists an embedding of Q/N to Aut [L,R], in every conju-
gacy closed loop Q.

From Theorem 5.4 and Corollary 5.7 we see that Q/N can be embedded into
AutAr, for some r ≤ |Q : N |. It seems that quite a lot can be done to downsize r.
However, in this paper we shall not go beyond Corollary 5.9 (see below).

Proposition 5.8. Let Q be a conjugacy closed loop and let A = A(Q) be its
associator subloop. Then La and Ra belong to [L,R], for every a ∈ A, and [L,R] =
{Laϕ; a ∈ A and ϕ ∈ L1} ∼= L(A) × L1.

Proof. For every a ∈ A there must exist ψ ∈ [L,R] with ψ(1) = a, by Theorem 3.4.
Now, ψ = Laϕ for some ϕ ∈ L1 ≤ [L,R]. Hence La ∈ [L,R]. The expression of ψ
as Laϕ is unique, and the rest follows easily. �
Corollary 5.9. Let Q be a conjugacy closed loop with |Q : N | a prime number.
Then L1 embeds into A = A(Q) and [L,R] ∼= A × L1 embeds into A × A.

Proof. Every ϕ ∈ L1 fixes all elements of N pointwise. The points fixed by ϕ form
a subloop of Q because ϕ is an automorphism. Since we assume that there is no
subloop between N and Q, L1 has to act on Q\N semiregularly, and so L1 embeds
into A, by Lemma 5.3. The isomorphism [L,R] ∼= A×L1 follows from Proposition
5.8. �

Recall that the orbits of L∩R correspond to the cosets of M = {a ∈ Q; La ∈ R},
by Proposition 2.1. Since (L ∩R)1 = [L,R]1 = L1, we immediately obtain

Lemma 5.10. Let Q be a conjugacy closed loop. Then |M : A(Q)| = |(L ∩ R) :
[L,R]|.

Lemma 5.11. Let Q be a nonassociative conjugacy closed loop of order pq. Then
one of the primes, say p, is equal to the order of N , and also to the order of L1.
We have N = M = A, [L,R] = L ∩ R ∼= N × N , and L/L ∩ R ∼= Inn Q/L1 is
of order q. Furthermore, |L| = p2q = |R|, |Mlt Q| = p2q2 and |Inn Q| = pq. The
group Inn Q is elementary abelian if p = q, and nonabelian if p �= q. In the latter
case q divides p − 1.
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Proof. We have 1 � A ≤ M ≤ N � Q, and so A = M = N . Assume |N | = p.
Then [L,R] = L ∩ R ∼= N × N and |L1| = p, by Lemma 5.10 and Corollary 5.9.
In every conjugacy closed loop L/L ∩ R ∼= LR/R ∼= (InnQ)R/R ∼= (Inn Q)/L1,
since (InnQ) ∩ R = R1 = L1. Also (Inn Q)/L1

∼= Q/N , by Theorem 3.4. This
resolves the group orders, and it remains to prove that InnQ cannot be cyclic.
Now, nontrivial InnQ is never cyclic, for every loop Q, by [9] (see also [12] and
[6]). We shall observe that this can also be seen directly, without resorting to the
general theorem. If Inn Q were cyclic, a generator ϕ of L1 would equal ψq for some
ψ ∈ Inn Q. This cannot happen if q = p since ψ fixes 1 and moves points within
the cosets of N (recall that Q/N is an abelian group). Assume p �= q and note that
ϕ acts regularly in each coset Γ modulo N , Γ �= N . This means that ψ has to act
as a p-cycle on each such coset Γ , and so ψp is a permutation of order q that fixes
all points outside N . In such a situation it is easy to deduce that |Inn Q| has to be
divided by q2, which is a contradiction. �

Proposition 5.12. Let Q be a nonassociative conjugacy closed loop of order pq, q
dividing p − 1. Then Z(Q) = 1. Furthermore, consider the group

G = 〈x, y, u, v; xp = yp = uq = vq = 1, xy = yx, uv = vu,

xv = vx, yu = uy, uxu−1 = xγ , vyv−1 = yγ〉,

where γq ≡ 1 mod p, γ �≡ 1 mod p. For all nontrivial a, b ∈ N there exists an
isomorphism Φ : G → Mlt Q such that x �→ La, y �→ Rb, Φ(〈x, y, u〉) = L and
Φ(〈x, y, v〉) = R.

Proof. The facts established in Lemma 5.11 will be used without further reference.
The nonabelian group InnQ moves points within the cosets of N . Therefore no
La, a ∈ N nontrivial, commutes with ψ ∈ Inn Q if |ψ| = q. Hence a /∈ Z(Q) and
Z(Q) = 1. Now consider a Sylow q-subgroup of Mlt Q. It intersects both L and R in
a q-element subgroup, and we shall choose generators of these subgroups and denote
them by u and v, respectively. Groups 〈u〉 and 〈v〉 are different, as |L ∩ R| = p2.
We see that 〈u, v〉 is elementary abelian, of order q2. Now, Z(L) = R(N) and
Z(R) = L(N), by Theorem 3.7 and Corollary 3.8 of [4]. Hence u commutes with
all Rb, b ∈ N , and v commutes with all La, a ∈ N . However, u cannot commute
with La, a ∈ N nontrivial, since L would be abelian. The rest is clear since we can
replace u and v by their appropriate powers, respectively. �

6. Conjugacy closed loops of order pq

Lemma 6.1. Let Q be a loop with an element a.

(i) If a ∈ Nµ ∩ Nρ, then L−1
xa RaLx = L−1

a Ra for all x ∈ Q.
(ii) If a ∈ Nµ ∩ Nλ, then R−1

ax LaRx = R−1
a La for all x ∈ Q.

Proof. We shall prove point (i). Consider c ∈ Q and put d = L−1
xa RaLx(c). Then

(xa)d = (xc)a, and hence x(ad) = x(ca), by a ∈ Nµ ∩ Nρ. We obtain ad = ca, and
so d = L−1

a Ra(c). �

Lemma 6.2. Let Q be a loop, a an element of Q, and K a normal subloop of Q.

(i) If K ≤ Nµ ∩ Nρ, then L−1
xa RaLx(c) = L−1

a Ra(c) for all c ∈ K and x ∈ Q.
(ii) If K ≤ Nµ ∩ Nλ, then R−1

ax LaRx(c) = R−1
a La(c) for all c ∈ K and x ∈ Q.
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Proof. We shall prove point (i). The element d = L−1
xa RaLx(c) belongs to K, as

L−1
xa RaLx ∈ Inn Q. Therefore from (xa)d = (xc)a and c, d ∈ Nρ ∩ Nµ one obtains

x(ad) = x(ca) and ad = ca. The latter fact means d = L−1
a Ra(c). �

Lemma 6.3. A loop Q is conjugacy closed if and only if L−1
xa RaLx = L−1

a Ra and
R−1

ax LaRx = R−1
a La, for all a, x ∈ Q.

Proof. This is one of the standard facts concerning conjugacy closed loops. See [5,
Lemma 2.1] or [11, Lemma 2.4]. �

For the rest of this section G will mean the group from Proposition 5.12, and by
H we shall denote its subgroup 〈xy−1, uv〉. Then (uv)(xy−1)(uv)−1 equals (xy−1)γ ,
and we see that H is a nonabelian group of order pq.

An element xivr, 0 ≤ i < p and 0 ≤ r < q, belongs to H if and only if i = r = 0.
Indeed, (xivr)(xy−1)(xivr)−1 = xy−γr

implies that xivr /∈ H for all r �= 0. Clearly,
H ∩ 〈x, y〉 = 〈xy−1〉, and so xi ∈ H exactly when i = 0.

Put Ω = {(i, r); 0 ≤ i < p and 0 ≤ r < q}.

Lemma 6.4. The set {xivr; (i, r) ∈ Ω} is a complete system of left coset repre-
sentatives modulo H. Furthermore,

x(xiv−rH) = xi+1v−rH, y(xiv−r)H = xi+γr

v−rH, and
u(xiv−rH) = xγiv−(r+1)H, v(xiv−r)H = xiv−(r−1)H.

Proof. If xivrH = xjvsH, then xi−jvr−s ∈ H. However, that means i = j and
r = s, by considerations above. The system of representatives is complete since |G :
H| = pq = |Ω|. Now, yxiv−r = xiv−rvryv−r = xiv−ryγr

= xi+γr

v−r(xy−1)−γr

and uxiv−r = xγiuv−r = xγiv−(r+1)(uv). The rest is clear. �

Now identify xiv−rH with (i, r). This identification yields an action of G on Ω,
where

x (i, r) = (i + 1, r), y (i, r) = (i + γr, r), and
u (i, r) = (γi, r + 1), v (i, r) = (i, r − 1).

The action of the powers of the generators is easy to compute, and we get

xj (i, r) = (i + j, r), yj (i, r) = (i + jγr, r), and
us (i, r) = (γsi, r + s), vs (i, r) = (i, r − s),

for all integers j and s.
The action of G on Ω is equivalent, by construction, to the action of G on the

left cosets of H. The stabilizer of G(0,0) is hence equal to H. The generators of H

are xy−1 and uv. Clearly,

(xy−1)j (i, r) = (i + j(1 − γr), r) and (uv)s (i, r) = (γsi, r),

for all integers j and s.

Lemma 6.5. Assume 1 ≤ i < p. Then G(0,0),(i,0) = 〈xy−1〉. Furthermore, if
w (0, 0) and w (i, 0) are known for some w ∈ G, then w is completely determined
by w (j, s), for any (j, s) ∈ Ω, s �= 0.

Proof. The set {(j, r); 0 ≤ j < p} is a block of G for every r, 0 ≤ r < p. The
permutation uv fixes only one point of such a block, i.e. the point (0, r). Since all
q-element subgroups of H are conjugate, the same property must be fulfilled by all
elements of H that are of order q. Hence H(i,0) = 〈xy−1〉. For the rest it suffices
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to show that w ∈ H(i,0) is completely determined by w (j, s), s �= 0. However, that
follows from the fact that 〈xy−1〉 acts semiregularly on {(j, s) ∈ Ω; s �= 0}. �

Corollary 6.6. Let Q be a loop on Ω with Mlt Q ≤ G. Suppose that (i, 0) · (j, s) =
(i + j, s) and (j, s) · (i, 0) = (j + iγs, s) for all (j, s) ∈ Ω and all i, 0 ≤ i < p. Then
Q is completely determined by any value (i1, r1) · (i2, r2), where (ik, rk) ∈ Ω and
rk �= 0, for k ∈ {1, 2}.

Proof. This is an immediate consequence of Lemma 6.5, since (i1, r1) · (i2, r2) de-
termines L(i1,r1), and the subsequent knowledge of (i1, r1) · (i, r) determines R(i,r),
for all (i, r) ∈ Ω, r �= 0. �

Lemma 6.7. Let Q be a loop on Ω with MltQ ≤ G, and such that (0, 0) is its unit
element. Suppose that L ≤ 〈x, y, u〉 and R ≤ 〈x, y, v〉. Then Q is conjugacy closed
and Γ = {(i, 0); 0 ≤ i < p} is contained in the nucleus.

Proof. The set Γ is a block of G and hence a normal subloop of Q. We have
L(0,0) ≤ 〈xy−1〉, and this implies Γ ≤ Nρ as xy−1 fixes all elements of Γ . Similarly,
Γ ≤ Nλ. Furthermore, L ∩ R = 〈x, y〉, and so [L,R] ∩ H ≤ 〈xy−1〉 as well. Thus
[Lα, Rβ ] fixes Γ pointwise, for all α, β ∈ Q, and hence Γ ≤ Nµ.

Now consider the mappings L−1
(j,s)·(i,r)R(i,r)L(j,s) and L−1

(i,r)R(i,r), for some (i, r)
and (j, s) from Ω, where r �= 0. These mappings agree on Γ , by point (i) of Lemma
6.2. However, they also agree on (i, r), since this point is fixed by both of them.
Hence they agree everywhere, by Lemma 6.5. For the rest use Lemma 6.1, Lemma
6.3 and the left-right symmetry. �

Proposition 6.8. Let Q be a nonassociative conjugacy closed loop of order pq, q
dividing p−1. Then there exists an isomorphism Φ : G ∼= MltQ with Φ(H) = InnQ
that fulfils the conditions of Proposition 5.12. In addition one can assume that
either Φ(u) or Φ(u(xy−1)(1−γ)/γ) is a left translation of Q.

Proof. The automorphisms of G that normalize each of the subgroups 〈x〉, 〈y〉,
〈x, y, u〉 and 〈x, y, v〉 form a subgroup of Aut G, and this subgroup will be denoted
by B. We have InnG ≤ B, since all these subgroups are normal.

For any choice of i, j ∈ {1, . . . , p − 1} the defining relations of G remain valid
when x is replaced by xi, and y by yj . Hence there exists α = αi,j ∈ B such that
α(x) = xi, α(y) = yj , α(u) = u and α(v) = v.

Let us consider an isomorphism Φ : G ∼= Mlt Q that fulfils the conditions of
Proposition 5.12. We shall first look for α ∈ B such that Φα maps H upon InnQ,
and then replace Φ by Φα. The centre of 〈x, y, u〉 is equal to 〈y〉, and Z(L) = {Ra;
a ∈ Q}. In our situation M = N = A, by Lemma 5.11, and (InnQ) ∩ (L ∩ R) =
L1 = R1. Since Φ(〈x, y〉) = L ∩ R, we see that Φ−1(L1) is a proper subgroup of
〈x, y〉 which is different from both 〈x〉 and 〈y〉. Thus it equals 〈xy−j〉 for some j,
1 ≤ j < p. Setting α = α1,j yields (Φα)−1(L1) = α−1(〈xy−j〉) = 〈xy−1〉. We can
hence assume Φ(xy−1) ∈ L1.

The normalizer of 〈xy−1〉 in G is equal to 〈x, y, uv〉, which is a group of order
p2q. Consider ψ ∈ Inn Q of order q. Then ψL1ψ

−1 = L1, as L1 � Inn Q. Therefore
Φ−1(ψ) ∈ 〈x, y, uv〉. All q-element subgroups of 〈x, y, uv〉 are mutually conjugated
in 〈x, y, uv〉, and hence there exists α ∈ B such that (Φα)−1(ψ) is a power of uv,
and α(〈xy−1〉) = 〈xy−1〉. Hence (Φα)(uv) ∈ Inn Q and (Φα)(xy−1) ∈ Inn Q, which
implies (Φα)(H) = InnQ. We can assume Φ(H) = InnQ.
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Note that αj,j(H) = H for any j ∈ {1, . . . , p − 1}. We can thus replace Φ by
Φαj,j without violating the condition Φ(H) = Inn Q.

The preimage of each left translation is an element of 〈x, y, u〉. The left trans-
lations form a complete set of representatives for the left cosets of L1 in L, and
hence their preimages form a complete set of representatives for left cosets modulo
〈xy−1〉 in 〈x, y, u〉. Let u1 be the representative of u〈xy−1〉. Then either u1 = u, or
u1 = u(xy−1)j = αj,j(uxy−1), for some j, 1 ≤ j < p. We see that either Φ(u) is a
left translation of Q, or that Φ(u(xy−1)(1−γ)/γ) can be assumed to be a left trans-
lation of Q, when Φ is replaced by Φαi,i, for an appropriate i ∈ {1, . . . , p − 1}. �

Theorem 6.9. Let Q be a nonassociative conjugacy closed loop of order pq, where
q < p are primes. Such a loop exists if and only if q divides p − 1, and then it is
determined uniquely up to isomorphism.

If q divides p − 1 and γ is an integer with γq ≡ 1 mod p, γ �≡ 1 mod p, then Q
is isomorphic to a loop on {(i, r); 0 ≤ i < p and 0 ≤ r < q}, where

(i, r) · (j, s) = (i + jγr + (1 − γr)(1 − γs), r + s)

for all elements (i, r) and (j, s) of the underlying set.

Proof. We shall use the isomorphism Φ : G → MltQ constructed in Proposition
6.8. The isomorphism maps x to some La, a ∈ M = N , as x ∈ Z(〈x, y, v〉). A
symmetric argument shows that Φ(y) is a right translation. From Φ(xy−1) ∈ Inn Q
we obtain Φ(y) = Ra.

Group 〈x, v〉 is abelian of order pq, and xivr is of exponent p if and only if
r ≡ 0 mod q. Since R1 is of exponent p, we see that Φ(xivr) ∈ R is fixed point free
when xivr �= 1. This means that Φ(〈x, v〉) is a regular abelian permutation group,
and that each element of Q has a unique expression as Φ(xiv−r)(1), where 0 ≤ i < p
and 0 ≤ r < q. Denote this element by [i, r], and note that [i, 0] = Φ(xi)(1) =
Li

a(1) = ai. We also have [i, 0] · [j, s] = ai(aj [0, s]) = ai+j [0, s] = [i + j, s], and
[j, s] · [i, 0] = aj [0, s]ai = Φ(xjyiv−s)(1).

This can be turned into

[j, s] · [i, 0] = [j + iγs, s],

since yiv−s = v−syiγs

= xiγs

v−s(x−1y)iγs

, and Φ(x−1y) ∈ Inn Q.
From Φ(xy−1), Φ(uv) ∈ Inn Q we get

Φ(u)(1) = Φ(v−1)(1) = [0, 1] = Φ(u(xy−1)j)(1),

for every j ∈ {0, . . . , p − 1}.
This means that [0, 1] · [0, 1] is equal to Φ(u(xy−1)jv−1)(1), when j is such that

Φ(u(xy−1)j) is a left translation. Now, uxjy−jv−1 = xjγuy−jv−1 = xjγy−jv−2(uv)
= xjγv−2y−jγ2

(uv) = xj(γ−γ2)v−2(xy−1)jγ2
(uv). We assume j ∈ {0, (1−γ)/γ}, by

Proposition 6.8, and so [0, 1] · [0, 1] = [η, 2], where η ∈ {0, (1 − γ)2}.
We have proved Φ(x)[i, r] = [1, 0][i, r] = [i + 1, r] and Φ(y)[i, r] = [i + γr, r].

We also have Φ(u)[i, r] = Φ(uxiv−r)(1) = Φ(xγiv−(r+1)(uv))(1) = [γi, r + 1] and
Φ(v)[i, r] = Φ(xiv−(r−1))(1) = [i, r − 1].

We see that the bijection [i, r] �→ (i, r) induces an isomorphism of Q upon such
a loop on Ω that fulfils the assumptions of Corollary 6.6. The loop on Ω satisfies,
in addition, (0, 1) · (0, 1) = (η, 2). However, that means that the loop is uniquely
determined, by Corollary 6.6.
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Consider first the group operation (i, r)·(j, s) = (i+jγr, r+s). Then L(i,r) = xiur

and R(j,s) = v−syj . The multiplication group of this group is contained in G, and
(0, 1) · (0, 1) = (0, 2). The case η = 0 thus yields an associative conjugacy closed
loop Q.

Consider now the loop described in the theorem. This loop satisfies (0, 1)·(0, 1) =
((1 − γ)2, 2). We shall verify that the left and right translations belong to 〈x, y, u〉
and 〈x, y, v〉, respectively.

Now, (xy−1)γ−r−1 sends (j, s) ∈ Ω to (j + (γ−r − 1)(1 − γs), s), and this is
sent by xiur to (i + γrj + (1 − γr)(1 − γs), r + s). We have verified that L(i,r) =
xiur(xy−1)γ−r−1 for all (i, r) ∈ Ω. In particular, L(0,1) = u(xy−1)(1−γ)/γ as γ−1 −
1 = (1 − γ)/γ.

The mapping (xy−1)1−γs

yj sends (i, r) ∈ Ω to (i + jγr + (1 − γs)(1 − γr), r),
and we see that R(j,s) = v−s(xy−1)γs−1yj , for all (j, s) ∈ Ω.

We now have two loops on Ω: one defined by the formula of the theorem, and
the other one isomorphic to the loop Q. Both of them satisfy the assumptions
of Corollary 6.6 and coincide on (0, 1) · (0, 1). They are thus identical, again by
Corollary 6.6.

Note that up to now we have not proved that the loop is really conjugacy closed.
However, that follows from Lemma 6.7. �

7. Conclusions

We have demonstrated that the structure of conjugacy closed loops is reflected
substantially in their multiplication groups. We have also used multiplication
groups to describe the structure of conjugacy closed loops of order pq.

It might be worth repeating the stages involved in the procedure of determining
the uniqueness of the pq-loops:

(1) Identify isomorphism types of G ∼= Mlt Q and of InnQ.
(2) Gather enough partial information about the multiplication table of Q to

be able to reconstruct the rest only from knowledge of one further product.
(3) By using automorphisms of G limit the choices for the result of such a

product.
(4) For each of the choices compute the loop.

The last stage was not included in the paper for the sake of brevity, since the proof
can rely on the uniqueness property, and so one can just verify that the found loop
operation satisfies the assumptions of the earlier stages.

The above strategy might work in many additional cases. However, the ongo-
ing research on conjugacy closed loops indicates that more potent methods will be
available soon. Using these methods one will be able to show the uniqueness and
existence of many conjugacy closed loops in a more direct way. The approach via
multiplication groups often requires a lot of laborous computations, but it can bring
insight into loops where there seem to be no structural properties from which to
start. When a class of loops is better understood, then the machinery of multiplica-
tion groups may prove to be too heavy. On the other hand, they can still generate
interesting problems. One of them can be derived from the results of this paper.
Let Q be a nonassociative conjugacy closed loop of order pq, and let L and R be
the left and right multiplication group of Q, respectively. Suppose that there is an-
other loop with the same underlying set and the same left and right multiplication
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groups. From Theorem 6.9 and Lemma 6.7 we see that such a loop is isomorphic
to Q. It seems desirable to find examples of other loops where L and R determine
the structure of the loop uniquely up to isomorphism.
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