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PURE SUBRINGS OF REGULAR RINGS
ARE PSEUDO-RATIONAL

HANS SCHOUTENS

ABSTRACT. We prove a generalization conjectured by Aschenbrenner and
Schoutens (2003) of the Hochster-Roberts-Boutot-Kawamata Theorem: let
R — S be a pure homomorphism of equicharacteristic zero Noetherian lo-
cal rings. If S is regular, then R is pseudo-rational, and if R is moreover
Q-Gorenstein, then it is pseudo-log-terminal.

1. INTRODUCTION

Hochster and Roberts showed in [I3], using finite characteristic methods, that
quotient singularities in characteristic zero are Cohen-Macaulay. This was improved
by Boutot in [2] where he shows, using deep vanishing theorems, that they are
rational. More precisely, if G is the complexification of a compact Lie group which
acts algebraically on an affine smooth scheme X of finite type over C, then the
quotient X /G has rational singularities. In algebraic terms, with X = Spec B, this
means that the ring of invariants A := B¢ has rational singularities whenever B
is regular. (In fact, it suffices that B has at most rational singularities, and there
is also a similar result in the analytic category.) When G is finite, Kawamata in
[16] showed moreover that X/G has at most log-terminal singularities, and the
author showed in [27], using non-standard tight closure, that this remains true
for non-finite G, provided X/G is moreover Q-Gorenstein (a condition that holds
automatically if G is finite).

The goal of the present paper is to extend all these results by removing the finite
type condition. However, since the notion of rational singularities is defined in terms
of a resolution of singularities, which might not be available in such generality, we
need to replace it by the notion of pseudo-rationality.

Main Theorem A. Let A — B be a cyclically pure homomorphism of Noetherian
rings containing Q. If B is reqular, then A is pseudo-rational.

Recall that a homomorphism A — B is cyclically pure if a = aB N A for each
ideal a in A; examples are split, pure or faithfully flat homomorphisms. Since the
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inclusion B¢ C B is split (via the so-called Reynolds operator), Boutot’s result is
therefore just a special case of our first main theorem. Theorem [Al was conjectured
in [I] and proven for algebras of finite type over an algebraically closed field in [26]
using canonical big Cohen-Macaulay algebras. The analogue in prime characteristic
was proven by Smith in [28], but unlike most applications of tight closure, this proof
did not carry over to characteristic zero, the reason being that cyclic purity is not
preserved under reduction modulo p. To formulate a corresponding generalization
in the Q-Gorenstein case, we need to make a definition. Call a Noetherian local Q-
Gorenstein ring R pseudo-log-terminal, if its canonical cover R (see §7.2)) is pseudo-
rational. In particular, if we are in a category of local algebras in which ‘pseudo-
rational’ is equivalent with ‘rational’ (e.g., the category of local algebras essentially
of finite type over a field), then ‘pseudo-log-terminal’ is the same as ‘log-terminal’ by
a result of Kawamata (Theorem [Z3]). With this terminology, we get the following
generalization, conjectured in [I] and proven for algebras of finite type over an
algebraically closed field in [27].

Main Theorem B. Let R — S be a cyclically pure homomorphism of equicharac-
teristic zero Noetherian local rings with S regular. If R is Q-Gorenstein, then it is
pseudo-log-terminal.

To prove both theorems, we will transform the argument for finitely generated
algebras given in [27] by means of the machinery of faithfully flat Lefschetz hulls
introduced in [I]. In that paper, we show that given an equicharacteristic zero Noe-
therian local ring R, we can find a faithfully flat local R-algebra ©(R) which is an
ultraproduct of rings of prime characteristic (these latter rings are called approwi-
mations of R, and their ultraproduct is called a Lefschetz hull of R). These results
enabled us in [I] to generalize the alternative constructions of tight closure and big
Cohen-Macaulay algebras from the papers [23] 26], 27] to arbitrary equicharacteris-
tic zero Noetherian local rings. Similar applications, although only implicitly using
Lefschetz hulls, can be found in [22] 24].

In the present paper, we will concentrate on one variant coming out of this work,
to wit, generic tight closure: an element is in the generic tight closure of an ideal
if almost all of its approximations belong to the tight closure of the corresponding
approximation of the ideal; see §3lfor exact definitions. Theorem [Alwill follow from
the fact that a generically F-rational ring is pseudo-rational (see Theorem [6.2)),
where we call a ring (generically) F-rational if some ideal generated by a system
of parameters is equal to its (generic) tight closure. Smith observes in [28] that F-
rationality in prime characteristic is equivalent with the top local cohomology of the
ring being Frobenius simple. This enables her to prove that an excellent F-rational
Noetherian local ring of prime characteristic is pseudo-rational. We will not use
this result directly, but rather the method used to prove it. To this end, we also
need Lefschetz hulls for finitely generated algebras over a Noetherian local ring, as
such rings appear in the Cech complex that calculates the local cohomology. This
is carried out in §21 Therefore, the present proof is entirely self-contained, apart
from some material taken from [IJ.

As for Theorem [B] we generalize the notion of an ultra-F-regular local ring in-
troduced in [27] as a Noetherian local domain R with the property that for each
non-zero ¢, we can find an ultra-Frobenius F¢ such that the morphism = — cF¢(x)
is pure (an wltra-Frobenius is an ultraproduct of powers of Frobenii; see §22 below).
We then show that the property of being ultra-F-regular descends under cyclically
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pure local homomorphisms (Proposition [7.9]) and is preserved under finite exten-
sions which are étale in codimension one (Proposition [.8]). Moreover, we show that
an ultra-F-regular local ring is pseudo-rational.

Open questions.

(1) Does the converse of Theorem [6.2also hold, that is to say, is pseudo-rational
equivalent with generically F-rational? In [26], Theorem 5.11], I gave a proof
of this in the finitely generated case which relies on a deep theorem due
to Hara: a local C-algebra R of finite type has rational singularities if and
only if it is of F-rational type; see [0].

(2) Does the stronger analogue of Boutot’s result also hold, that is to say, can
we weaken the assumption in Theorem[Althat B is only pseudo-rational? In
the finitely generated case, a tight closure proof is available if B is moreover
Gorenstein ([26, §5.14]), but this again depends on Hara’s result.

(3) In [27], using once again Hara’s result, it was shown that for Q-Gorenstein
local domains of finite type over an algebraically closed field, the notions
ultra-F-regular and log-terminal are equivalent. Is ultra-F-regular and
pseudo-log-terminal the same for Q-Gorenstein local domains?

(4) Again, we can weaken in the finite type case [27] the assumption that S is
regular to the assumption that it is (pseudo-)log-terminal. Does this also
hold in general?

(5) For local algebras of finite type over a field of characteristic zero, ratio-
nal and pseudo-rational are the same notions, and so are log-terminal and
pseudo-log-terminal. For which other categories of equicharacteristic zero
Noetherian local rings is this the case?

2. LEFSCHETZ HULLS

Let S, be a sequence of rings, where w runs over some infinite set endowed with
a non-principal ultrafilter. The wultraproduct of this sequence is a ring S, given as
the homomorphic image of the product [[, S, modulo the ideal of all sequences
which are almost equal to the zero sequence (two sequences (a,,) and (b,,) in the
product are said to be almost equal if a,, = b,, for almost all w, that is to say, for
all w in some member of the ultrafilter). When we want to emphasize the index,
we also denote the ultraproduct S by

ulim S,

and similarly, the image of a sequence (a,,) in S, is denoted ulim,, a,, or simply aoo.
In case all rings are equal, say S,, := S, their ultraproduct is called an ultrapower
of S. For more details, see [14], §9.5] or [5], or the brief review in [23] §2].

2.1. Lefschetz hulls. Let K be an uncountable algebraically closed field of char-
acteristic zero. In [I], we associate to every Noetherian local ring R whose residue
field is contained in K, a faithfully flat Lefschetz hull, that is to say, a faithfully
flat extension R C ®(R) such that ®(R) is an ultraproduct of prime characteristic
(complete) Noetherian local rings R,,. Any sequence of prime characteristic com-
plete Noetherian local rings R,, whose ultraproduct is equal to D(R) is called an
approzimation of R. For the extent to which the assignment R +— ®(R) is functo-
rial, we refer to the cited paper. All we need in the present paper is that if R — S
is a local homomorphism of Noetherian local rings whose residue field is contained
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in K, then there is a homomorphism ®(R) — D(S) making the following diagram
commute:

R D(R)

S D(5).

For the remainder of this section, R is an equicharacteristic zero Noetherian local
ring, R, an approximation of R and ©(R) its Lefschetz hull. We always choose
K large enough so that it contains all pertinent residue fields, and hence from now
on no further reference is made to it. For each w, let F,, denote the Frobenius
on R,,, that is to say the homomorphism given by z — zP(*) where p(w) is the
characteristic of R,,. Given a positive integer e, let *R,, denote the R,-algebra
structure on R,, given by F¢,. It follows that F¢ : R, — “R,, is R, -linear.

2.2. Ultra-Frobenius. A non-standard integer is an element ¢ of the ultrapower
Zso of Z, that is to say, an ultraproduct of integers e,,. If almost all e,, are positive,
then we call € positive. For each positive non-standard integer ¢, let F¢: R — D(R)
be the ultraproduct of the Fy”, that is to say, for x € R with approximation .,
we have

Fe(x) := ulime,}“ (xw) € D(R).

As in [27], we will call any homomorphism R — D(R) of the form F¢ for some
€ an wultra-Frobenius. If € = 1, then the corresponding ultra-Frobenius is just the
non-standard Frobenius introduced in [I].

For each positive non-standard integer e, we may view ©(R) as an R-algebra via
the homomorphism F¢. To denote this algebra structure, we will write *®(R) (in
[27], the alternative notation (F¢),D(R) was used). In other words, the R-algebra
structure on *®(R) is given by z - a := F°(z)a, for z € R and o € D(R).

One of the major drawbacks of the functor ® is its local nature. In particular,
since a localization R — R, is not a local homomorphism, there is no obvious map
from D (R) to D(Ry). Below we will have to deal with localizations of the form R,,
and hence we need a notion of Lefschetz hull for such (non-local) rings as well.

2.3. R-approximations. Let Y be a tuple of indeterminates and let f € R[Y],
say of the form f = ZyeN a,Y” with a, € R and N a finite index set. If a,,, is
an approximation of a,, for each v € N, then we call the sequence of polynomials
Jfw =2 en @Y an R-approzimation of f.

One checks that any two R-approximations of a polynomial f are almost equal.
Similarly, if T := (f1,..., fs) is an ideal in R[Y] and f;,, is an R-approximation
of f;, for each i, then we call the sequence I, := (fiuw,.-., fsw)Ruw[Y] an R-
approzimation of I, and if S = R[Y]/I, then we call the sequence S, := Ry, [Y]/I.
an R-approximation of S.
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2.4. Relative hulls. If S is a finitely generated R-algebra and S, is an R-approxi-
mation of S, then the ultraproduct of the S,, is called the (relative) R-hull of S
and is denoted D g(.9).

If R[Z]/J is another presentation of S as an R-algebra, then we have substitution
maps Y — a and Z — b which induce isomorphisms modulo I and J respectively,
where a and b are tuples of polynomials in the Z and Y-variables respectively.
Let a,, and b,, be R-approximations of these respective tuples and let J,, be an
R-approximation of J. By Los’ Theorem the substitutions Y +— a,, and Z — by,
induce for almost all w isomorphisms modulo I,, and J,, respectively. It follows
that the ultraproduct of the R, [Y]/I,, is isomorphic to the ultraproduct of the
Ry[Z])/Jw, showing that D r(S) is independent from the particular presentation of
S and from the particular choice of R-approximations.

Since D (S) is naturally a ®(R)-algebra and since by Los’ Theorem the tuple Y
is algebraically independent over ®(R), we get a natural ©(R)[Y]-algebra structure,
whence an R[Y]-algebra structure, on ®z(S). Under the natural homomorphism
R[Y] — Dg(S), we get IDR(S) = 0, so that this induces a homomorphism S —
Dr(S), endowing D z(S) with a canonical S-algebra structure. We can now extend
the notion of R-approximation of an element a or an ideal a in a finitely generated
R-algebra S as follows. Let S := R[Y]/I and choose a polynomial f € R[Y] and an
ideal 2 in R[Y] so that their images in S are respectively a and a. Let f,,, 2, and
Sw be R-approximations of f, 2 and S respectively. We call the image a,, of f
in S, (respectively, the ideal a,, := 2, S,,) an R-approximation of a (respectively,
of a). Note that the ultraproduct of the a,, (respectively, of the a,,) is equal to the
image of a in D(S) (respectively, equal to the ideal a®(S5)), showing that any
two R-approximations are almost equal.

If S — T is an R-algebra homomorphism of finite type, then this extends to an
R-algebra homomorphism D (S) — D (T) giving rise to a commutative diagram

S Dr(9)

T Dr(T).

In particular, D (-) is a functor on the category of finitely generated R-algebras.
The argument is the same as in [23] §3.2.4], and we leave the details to the reader.

3. GENERIC TIGHT CLOSURE

One of the tight closure notions introduced in [I] is generic tight closure. In
this section, we review the definition and (re)prove some of its main properties.
Throughout this section, (R, m) will denote an equicharacteristic Noetherian local
ring and (R,,, m,,) one of its approximations. For generalities on (characteristic p)
tight closure, see [I5].

3.1. Definition. An element z € R lies in the generic tight closure of an ideal
a C R, if almost all z,, lie in the tight closure a, of a,, where z,, and a,, are
approximations of z and a respectively.
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We denote the generic tight closure of an ideal a by clgen(a). One easily checks
that

(3) Clgen(a) = (ul&)m a)NR

where the contraction is with respect to the canonical embedding R — D (R). It fol-
lows that clgen(a) is an ideal, containing a, with the property that clgen(Clgen(a)) =
clgen(a). We say that an ideal a is generically tightly closed if a = clgen(a). The
proof of the following easy fact is left to the reader.

3.2. Lemma. If a C R is a generically tightly closed ideal, then so is any colon
ideal (a:g b), for b C R. O

3.3. Theorem. If R is regular, then every ideal is generically tightly closed.

Proof. By [I, Theorem 5.2], almost all R,, are regular, and hence all ideals in R,
are tightly closed by [I5, Theorem 1.3]. The assertion then follows from (B and
faithful flatness. 0

3.4. Theorem (Persistence). If R — S is a local homomorphism and a an ideal in
R, then clgen(a)S C clgen(aS).

Proof. Tmmediate from (B and the fact that persistence holds for each R,, — Sy,
where S, is an approximation of S (note that R,, is complete, so that [I5, Theorem
2.3] applies). |

3.5. Theorem (Strong Colon Capturing). Let (x1,...,24) be part of a system
of parameters of R. For each i, the element x; is a non-zero divisor modulo
Clgen((xla e ,ZL’i_l)R).

Proof. By downward induction on ¢, it suffices to prove the assertion for i = d. To
this end, suppose zzq € clgen(I) with I := (z1,...,24-1)R. Let Ry, z,, and z;,, be
approximations of R, z and z; respectively and put I, := (14, .-, Zd—1w)Rw. By
[T, Corollary 5.3], almost all (21),...,%4w) are part of a system of parameters in
Ry, and z,,x 4, € I7,. Since each R,, is complete, Strong Colon Capturing holds for
it, that is to say, x4, is a non-zero divisor modulo I?, (see [I5] Theorem 3.1A and
Lemma 4.1]). Therefore, z,, € I}, whence z € clgen([), as we needed to show. [

3.6. Remark. In particular, the usual Colon Capturing holds, that is to say, for each
i, we have an inclusion ((z1,...,2;—1)R : ;) C clgen((21,...,2i—1)R). The same
proof can also be used to prove the following stronger version (compare with [I5]
Theorem 9.2]): let Z[X] — R be given by X; — z; and let I,J C Z[X] be ideals.
We have an inclusion

(4) (clgen(IR) : JR) C clgen((I : J)R).

3.7. Corollary. If (z1,...,24) is part of a system of parameters in R and if
(z1,...,24)R is generically tightly closed, then so is each (x1,...,2;)R, for i =
1,...,d. In particular, (z1,...,2q) is a regular sequence.

Proof. The last assertion is clear from Colon Capturing and the first assertion. For
the first assertion, it suffices to treat the case i = d — 1, by downwards induction on
i. Let I := (z1,...,2q—1)R and let z € clgen(I). Clearly, z € clgen (I +x4R) and this
latter ideal is just I+ z4R by hypothesis. Write z = a +rzy, with a € I and r € R.
Therefore, z — a = rzq € clgen(I). Since z4 is a non-zero divisor modulo clgen (1)
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by Theorem 35 we get r € clgen(I). So, we proved that clgen () = I + xg clgen ().
Nakayama’s Lemma then yields that I = clgen(1). O

3.8. Theorem (Briangon-Skoda). The generic tight closure of an ideal a C R is
contained in its integral closure. If a is generated by at most n elements, then the
integral closure of a™ " is contained in clgen(a™T1), for each m.

Proof. Let z € clgen(a). In order to show that z is integral over a, it suffices by
[11, Lemma 2.3] to show that z € aV/, for each discrete valuation ring V' such that
R — V is a local homomorphism. Now, persistence (Theorem [3.4) yields that z
lies in clgen (aV), whence, by Theorem B3, in aV'.

Assume next that z lies in the integral closure of a™*", for some m and for n
the number of generators of a. Taking an integral equation witnessing this fact and
considering approximations, we see that almost all z,, lie in the integral closure of
am*tn where z,, and a, are approximations of z and a respectively. By the tight
closure Briangon-Skoda Theorem (see for instance [I5, Theorem 5.7] for an easy

proof), almost all z,, lie in the tight closure of a”*! and the result follows. (]

3.9. Comparison with other tight closure operations. By [I, Theorem 6.21],
the generic tight closure of an ideal a is contained in its non-standard tight closure,
provided R is analytically unramified. This latter condition is imposed to insure
the existence of uniform test elements ([IL Proposition 6.20]).

If R is moreover equidimensional and universally catenary, then by [Il Proposi-
tion 7.13], the B-closure a®B(R) N R of a is contained in its generic tight closure,
with equality if a is generated by a system of parameters. Here B(R) denotes the
canonical big Cohen-Macaulay algebra associated to R from [Il, §7]. (In the special
case that R is a complete domain with algebraically closed residue field, B(R) is
obtained as the ultraproduct of the absolute integral closures R} .)

4. GENERIC F-RATIONALITY

As before, R is an equicharacteristic zero Noetherian local ring and R,, is an
approximation of R.

4.1. Definition. We say that R is generically F-rational, if there exists a system
of parameters x in R such that xR is generically tightly closed.

Let us say that R is B-rational, if there exists a system of parameters x such
that xR = xB(R) N R. We will prove below that a ring is generically F-rational if
and only if its completion R is. We leave it as an exercise to prove that the same
property with “B-rational’ instead of ‘generically F-rational’ also holds. Therefore,
in view of our discussion in §3.9] a ring is generically F-rational if and only if it is
B-rational.

4.2. Theorem. If R is generically F-rational, then it is Cohen-Macaulay.

Proof. Let x be a system of parameters in R such that xR is generically tightly
closed. By Corollary 3.7, the sequence x is regular and hence R is Cohen-Macau-
lay. O

4.3. Theorem. If R is generically F-rational, then any ideal generated by part of
a system of parameters is generically tightly closed. In particular, R is normal.
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Proof. By Theorem 2] we know that R is Cohen-Macaulay. By Corollary B.7] it
suffices to show that any ideal generated by a system of parameters (y,...,%q)
is generically tightly closed. Reasoning on the top local cohomology, we can find
t > 1 and a € R such that (y1,...,ya)R = ((#4,...,25)R :r a) (see for instance
the proof of [I5, Lemma 4.1]). Therefore, if we can show that (zf,...,25)R is
generically tightly closed, then so will (y1,...,yq4)R be by Lemma Hence we
have reduced to the case that y; = z!, for some ¢ > 1.

Let z € clgen((2},...,25)R). We need to show that z € (x},...,z5)R. If some

zx; does not lie in (24, ..., 2%) R, we may replace our original z by this new element.
Therefore, we may assume that

2(w1,...,2q)RC (2, ... 2)R.
Since (z1,...,24) is R-regular, we have

((zh,...,2h)R: (z1,...,2q)R) = (2},. ..,x’;,yt_l)R,

where y := 2 - - - 4. In summary, we may assume that z = uy*~!, for some u € R.
By (@), we then get

u € (clgen((xﬁ, L T)R) ytThH C clgen(((xﬁ, LRy
= clgen((21,...,24)R) = (z1,...,24)R.

Therefore, z = uy'™! lies in (zf,...,25)R, as we wanted to show.

In order to prove that R is normal, it suffices to show that any height one
principal ideal aR is integrally closed. Since the integral closure of aR is contained
in clgen(aR) by Theorem B8 and since a is part of a system of parameters, the
conclusion follows from the first assertion. O

4.4. Proposition. A local ring R is generically F-rational if and only if its com-
pletion R is. In particular, a generically F-rational ring is analytically unramified.

Proof. Let x be a system of parameters in R such that n := xR is generically tightly
closed. I claim that nR is generically tightly closed, from which it follows that Ris
generically F-rational. To this end, let 2 € R be in the generic tight closure of nk.
Write 2 = z + @ with z € R and @ € nR. It follows that z € clgen(nﬁ). Let J be
the ultraproduct of the n’ , where n,, is an approximation of n. Since R,, is also
an approximation for R, we get clgon(nﬁ) =JNRby @). Hence z € J, and since
JNR=clgen(n) =n, weget Z=24+w € nR.

Conversely, suppose Ris generically F-rational. Let x be a system of parameters
in R. Let a be in the generic tight closure of xR, whence by persistence (Theo-
rem [34), in the generic tight closure of xR. Since x is a system of parameters in
E, the ideal xR is generically tightly closed by Theorem 43l Hence, a € xﬁ, and
therefore, by faithful flatness, a € xR, proving that R is generically F-rational.

To prove the last assertion, assume R is generically F-rational. Hence so is R by
what we just proved. Therefore, R is normal by Theorem [£3] whence a domain,
showing that R is analytically unramified. (I

4.5. Corollary. If R is generically F-rational, then almost all R,, are Cohen-Mac-
aulay and normal.

Proof. Since R and R have the same approximations, we may assume by Propo-
sition 4] that R is complete. Theorems and [£.3] yield that R is normal and
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Cohen-Macaulay. By [I, Theorem 5.2], almost all R,, are Cohen-Macaulay. Since
R satisfies Serre’s condition (R;), so do almost all R,, by [I Theorem 5.6]. To-
gether with the fact that almost all R,, are Cohen-Macaulay, we get from Serre’s
criterion for normality (see for instance [19, Theorem 23.8]) that almost all R,, are
normal. (]

4.6. Proposition. If almost all R,, are F-rational, then R is generically F-rational.
The converse holds if R is moreover Gorenstein.

Proof. Let x be a system of parameters in R, with approximation x,,, and let z be
in the generic tight closure of xR. By [I, Corollary 5.4], almost all x,, are systems
of parameters in R,,. Hence, by definition of F-rationality, x,, R,, is tightly closed.
Therefore, if z,, is an approximation of z, then z,, € x,, R,,. Taking ultraproducts,
we see that z lies in x®(R) and hence by faithful flatness, in xR, showing that R
is generically F-rational.

Suppose next that R is Gorenstein and generically F-rational. Towards a con-
tradiction, assume almost each R,, is not F-rational. If J is the ultraproduct of the
(xywRyw)*, then this means that x®(R) & J. On the other hand, by @) and our
assumption, J N R = xR. Put S := R/xR. By [I], §4.9], we have an isomorphism
D(S) 2 D(R)/xD(R) and D(.9) is an ultrapower of S ®, K, where k is the residue
field of R and K the algebraically closed field used in the definition of Lefschetz
hull. Since S is Gorenstein, so is S ®j, K, whence also ©(.5), since the Gorenstein
property is first order definable (see for instance [2I]). Let a € R be such that its
image in S generates the socle of this ring. By faithful flatness, a is a non-zero
element in the socle of ®(S), whence must generate it. Since JD(S) # 0, we must
have a € J whence a € J N R = xR, a contradiction. O

4.7. Remark. Note that by Smith’s result [28] Theorem 3.1], an F-rational excellent
local ring is pseudo-rational; the converse holds by [6]. It follows that if almost all
approximations of R are pseudo-rational, then R is generically F-rational, whence
pseudo-rational by Theorem below. I do not know whether the converse also
holds.

Let us call R weakly generically F-regular, if each ideal a C R is generically
tightly closed. By Theorem B3] any regular local ring is weakly generically F-
regular. By a similar argument as in the proof of Proposition 4], one can show
that R is weakly generically F-regular if and only if its completion is. If a ring is
weakly generically F-regular, then it is generically F-rational; the converse is true
for Gorenstein rings, as we now prove.

4.8. Theorem. If R is Gorenstein and generically F-rational, then it is weakly
generically F-regular.

Proof. Given an arbitrary ideal a C R, we need to show that a = clgen(a). Since
a is the intersection of m-primary ideals, we easily reduce to the case that a is
m-primary. Choose a system of parameters x such that xR C a. By Theorem (3]
the ideal xR is generically tightly closed. Since R is Gorenstein,

a=(xR: (xR :a))
which is a generically tightly closed ideal by Lemma |
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4.9. Proposition. Let R — S be a cyclically pure, local homomorphism between
equicharacteristic zero Noetherian local rings. If S is weakly generically F-regular,
then so is R.

Proof. Let z € clgen(a), for a an ideal in R. By Theorem B.4] the image of z in
S lies in the generic tight closure of aS, which by assumption is just aS. Hence
z€aSNR=a. O

4.10. Remark. It is well-known that the localization of an F-rational ring is again
F-rational (see [I5, Theorem 4.2]; the same property for weakly F-regular rings,
though, is still open). However, since Lefschetz hulls are not compatible with
localization, I do not know whether the localization of a generically F-rational ring
is again generically F-rational.

The next Briangon-Skoda type theorem was proven first in [I8] for pseudo-
rational local rings. Since we will show in the next section that a generically
F-rational local ring is pseudo-rational, this version generalizes their result.

4.11. Theorem. If R is a d-dimensional generically F-rational local ring, then the
integral closure of a™t¢ is contained in a™*t, for all m and all ideals a C R.

Proof. We follow the argument in [26] Theorem 6.4], where the special case that
R is of finite type over an algebraically closed field is proven. Let a be an element
of the integral closure of a™*¢. Assume first that a is generated by a system of
parameters. Therefore, a lies in clgen(tJ.erl)7 by Theorem B8] whence in a™*!, by
Lemma below. This proves the assertion for parameter ideals. Assume next
that a is merely m-primary, where m is the maximal ideal of R. In that case, a
admits a reduction I generated by a system of parameters. Since It is then a
reduction of a”*? we get that a lies in the integral closure of I™*% whence in
I™*1 by the first case, and, therefore, ultimately in a™*!, also establishing this
case. For arbitrary a, write a as the intersection of all a +m™ and use the previous
case. (I

4.12. Lemma. If (R, m) is a generically F-rational local ring, (x1,...,xq) a system
of parameters and J an m-primary ideal generated by monomials in the x;, then J
is generically tightly closed.

Proof. By [4], we can write J as the intersection of ideals of the form (z7*,..., 25" )R,
for some non-zero e;. Each such ideal is generically tightly closed by Theorem 3]
whence so is J. (]

5. LOCAL COHOMOLOGY

Before we turn to pseudo-rationality, we must say something about local and
sheaf cohomology and their respective ultraproducts. For our purposes, local co-
homology is most conveniently approached via Cech cohomology, which we quickly
review. Let a be an ideal in a Noetherian ring S and choose a tuple x := (z1, ..., zq)
so that a and xS have the same radical. For each ¢ < d, define

Y- -
C (X’ S) T @ S$l1$l2"'xli
1<hi<lx<--<1; <d

(with the convention that C°(x;S) = S). The C'(x; S) are the modules appearing
in a complex C*(x;S), called the algebraic Cech complex with respect to x, where
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the differential C*(x;S) — C“*(x;S) is given by the inclusion maps among the
localizations, with the choice of an appropriate sign to make C®(x;.S) a complex
(see [3l §3.5] for more details). The cohomology of this complex is called the
local cohomology of S with respect to a and is denoted H3(S). One shows that
H$(S) only depends on the radical of a and, in particular, is independent from the
choice of d-tuple x. We will be mainly interested in the top cohomology group
HY(S), and we use the following notation. Since H%(S) is a homomorphic image of
Cd(x; S) = Si,...z,, an arbitrary element is the image of a fraction m, and

we will denote this image by [ﬁ] S-

Local cohomology and sheaf cohomology. Let Y be a scheme and Z a closed
subset of Y. The collection of those global sections in H°(Y, Oy ) whose support is
contained in Z is denoted H%(Y') and is called the global sections with support in Z.
The derived functors H (Y') of the left-exact functor HY are called the cohomology
with support in Z. The cohomology groups with support are connected to the usual
sheaf cohomology via an exact sequence

(5) - — HIL(Y, Oy )L HNY — 7,0y _5) -2 H (V) — H(Y,Oy) — ...

where 9° are the connecting morphisms (see for instance [7, Corollary 1.9]).

For (quasi-)projective schemes, we also have a relationship between local coho-
mology and sheaf cohomology as follows. Let R be a Noetherian ring. A standard
graded R-algebra is a Noetherian graded ring

s =PI,
n>0
such that R = [S], and S is (finitely) generated as an R-algebra by [S],. The
irrelevant ideal of S will be denoted by ST := @, [5],. Let Y := Projs be
the projective scheme over Spec R defined by S and let Z be a closed subset of Y,
defined by some homogeneous ideal a C S. For each i > 2, we have

(6) H™NY — Z,0y_z) = [HL(5)], -

Local ultracohomology. For the remainder of this section, R is an equicharac-
teristic zero Noetherian local ring and S is a finitely generated R-algebra. Let a
be an ideal in S and let x be a d-tuple in S such that a and xS have the same
radical. Note that each module in the algebraic Cech complex C*(x;9) is a finitely
generated R-algebra, whence admits an R-hull. The non-standard algebraic Cech
complex C2 (x;S) over S with respect to x is by definition the complex whose ith
module is D z(C’(x; S)) and for which the differentials are induced by the differen-
tials on C*(x;S). The local ultracohomology of S with respect to a is by definition
the cohomology of the non-standard algebraic Cech complex C° (x;S) and is de-
noted UHS(S).

Without proof, we state that UH? (.S) is independent from the choice of a d-tuple
x. By (@), the canonical homomorphisms C’(x;S) — Dr(C'(x;S)) give rise to a
map of complexes C*(x;.5) — C2_(x;.5), and hence for each ¢ < d, we get a natural
morphism

Ja: Ha(S) — UHL(5).

Let Sy, ay and x,, be R-approximations of S, a and x respectively. Since we can
calculate the local cohomology H;w (Sw) with aid of the algebraic Cech complex of



620 HANS SCHOUTENS

X4, and since taking ultraproducts commutes with cohomology, we get
(7) UH!(S) = ulim H! (Su)

for each ¢. In particular, if ¢: S — T is an R-algebra homomorphism of finite type,
then the diagram

)

H,(S) = UHL(S)
®) H () UH; (¢)
H; (T) I UH,(T)

commutes for each i, where the vertical arrows are the natural maps.

Sheaf ultracohomology. Assume moreover that S is a standard graded R-algebra
and a is homogeneous. By an argument similar to the one in [27), §2.9], almost all
S are standard graded R,,-algebras and almost all a,, are homogeneous. For each
non-standard integer n., := ulim,, n,, we define the degree no, part of D g(S) as

[Or(9)],. = ulgjm [Sw]

Naw

If we apply this to each term in the algebraic Cech complex for a and take coho-
mology, we get the degree n part of the non-standard local cohomology groups
UH! (S), and by (@) this is also equal to the ultraproduct of the degree n,, parts of
the local cohomology of the approximations. In view of isomorphism (@), we define
for i = 2,...,d the sheaf ultracohomology of Y — Z as

UH'" (Y — Z,0y_z) := [UHL(5)], .
It follows from (@) and (@) that
UH"NY - Z,0y_z) =ulim B Y(Y,, — Z,,0y, _z.),
where Z,, := V(a,). The natural map 5 : H’(S) — UH.(S) induces in degree zero
a map
ut  HNY — Z,0y_z) - UHYY - Z,0y_7).

The restriction maps induce a diagram

i—1
H~L(Y, Oy) P H-Y(Y — Z,0y_5)
©) uyy
UH" (Y, Oy) s UH"™YY — Z,0y_7)

where piZ! is the ultraproduct of the restriction maps

S BV, O ) — B (Vo Zs O g)
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Making the appropriate identifications between local cohomology and sheaf coho-
mology given by (@), diagram (@) is the degree zero part of

%

i r i
S+ (S) Ha(S)
(10) ]S+ ]a
UH. () 3 UH,(S)

where r?_ is the ultraproduct of the natural maps

%

it Hys (Sw) = Hg, (Sw)-

It is easy to check that ([I0) commutes, whence so does ({@).

6. PSEUDO-RATIONALITY

The notion of pseudo-rationality was introduced by Lipman and Teissier to ex-
tend the notion of rational singularities to a situation where there is not necessarily
a resolution of singularities available.

6.1. Pseudo-rationality. A Noetherian local ring (R, m) is called pseudo-rational,
if it is analytically unramified, normal, Cohen-Macaulay and for any projective
birational map f: Y — Spec R with Y normal, the canonical epimorphism between
the top cohomology groups 6: HZ(R) — HL(Y) is injective, where Z is the closed
fiber f~!(m) and d the dimension of R (see (Il below for the definition of §).
Moreover, if Spec R admits a desingularization Y — Spec R, then it suffices to check
the above condition for just this one Y (see [I8, §2, Remark (a) and Example (b)]).
From this, one can show using Matlis duality, that if R is essentially of finite
type over a field of characteristic zero, then R is pseudo-rational if and only if it
has rational singularities. A Noetherian ring A is called pseudo-rational, if A, is
pseudo-rational for every prime ideal p in A.

The key ingredient in proving Theorems [A] and [Blis the following result linking
generic tight closure with pseudo-rationality, analogous to Smith’s characterization
[28] in prime characteristic.

6.2. Theorem. If an equicharacteristic zero Noetherian local ring R is generically
F-rational, then it is pseudo-rational.

Proof. By Theorems and 3] and Proposition 4] we know that R is analyti-
cally unramified, Cohen-Macaulay and normal. Let X := Spec R and let f: Y =
Proj S — X be a projective birational map with Y normal. In particular, S is a
standard graded R-algebra. Let i: R — S be the embedding identifying R with [S],
let m be the maximal ideal of R and let Z := V(mS) be the closed fiber of f. The
image of the canonical map HZ (7): H% (R) — HZ ¢(S) lies entirely in degree zero,
whence in view of (@), induces a morphism v¢: H%(R) — H" (Y — Z,0y _7).



622 HANS SCHOUTENS

Combining this with the tail of the exact sequence (@) and with (@) gives a com-
mutative diagram

i, (R)
dl \
(11) HH Y, Oy) — > H"H (Y - Z,0y_7) TH%(Y)

P
d—1 d—1
Uy l uyzl

UH (Y, Oy) —= UHY (Y — Z,0y_7)

in which the middle row is exact.

Let x be a system of parameters in R such that xR is generically tightly closed.
Note that the algebraic Cech complex of x over R (respectively, over S) calculates
the local cohomology of m (respectively, of mS). We need to show that the kernel
of § is zero, hence suppose the contrary. In particular, it must contain a non-zero
element of the form [%] Rr, with a € R and where y is the product of the entries in
x. From the exactness of (1)), we see that 6([$]r) = 0 means that *yd([%]R) lies
in the image of p®~!. Under the isomorphism H* (Y — Z, 0y _ ) = [HiS(S)]

0
from (@), we may identify vd([%]R) with [{]s. Since the square in ([[I}) commutes,
u‘)i,ilz([%]s) lies in the image of pZ L.

Let (R, m,) be an approximation of (R, m). By Corollary 5] almost all R,,
are Cohen-Macaulay and normal, whence in particular domains. Let S, be an
R-approximation of S, put X,, := Spec(R,,) and Y, := Proj(Sy,), and let Z,, :=
V(mySy) be the closed fiber of Y, — X,,. Let a,, and x,, be approximations of
a and x respectively, and put y,, equal to the product of all the entries in x,,. By

definition, u?/ilz([%] 5) is the ultraproduct of the [Z—“’] s,,- Hence by Los’ Theorem,

almost each [2%]g  lies in the image of

Y
plt H N (Y, Oy ) = H N (Y — 20, Oy, _z,,)

d—1

since p?>! is the ultraproduct of the po

have for each w, an exact diagram

. By the same argument as above, we

Hy, (Rw)

d
m
d Sw
(12) Y
Hd_l(Yw, wa) ? Hd_l(Yw - Zun OY,waw) ? HdZw (Yw)

P w

w

By reversing the above arguments, this diagram then shows that almost each [Z—Z] R
lies in the kernel L,, of §,,. Let us briefly recall the argument from [28] regarding
how for a fixed w this implies that a,, lies in the tight closure of x,,R,,. Namely,
since the Frobenius F,, acts on the local cohomology groups, the kernel L, is
invariant under its action by functoriality. Hence

(13) () = (R )

€ L.
Vo F2 ()
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Since L,, is a proper subgroup of Hflnw (R,) (note that d¢ is non-zero), the Matlis
dual of L,, is a proper homomorphic image of the canonical module wg, . Since the
canonical module has rank one, the Matlis dual of L,, has torsion, whence so does
L,, itself. Hence for some non-zero ¢, € R,, we have ¢, L,, = 0. Together with

(@3), this yields

[chZL(aw)
F (Yw)

for each m. Since almost each R,, is Cohen-Macaulay, we get

chZf(aw) S Fg(xw)Rwa

lr, =0

for all m, proving our claim that a, lies in the tight closure of x,,R,. Since
this holds for almost all w, we conclude that a lies in the generic tight closure
of xR, which, by assumption, is just xR. However, this means that [%} R 18 zero,
contradiction. O
Proof of Theorem [Al Since all properties localize, we may assume that A and B
are moreover local and that A — B is a local homomorphism. Since B is weakly
generically F-regular by Theorem [3.3] so is A, by Proposition Therefore, A is
pseudo-rational by Theorem O

7. ULTRA-F-REGULAR RINGS AND LOG-TERMINAL SINGULARITIES

In this section, we extend the argument from [27] in order to prove Theorem [Bl

7.1. Q-Gorenstein singularities. Let R be an equicharacteristic zero Noetherian
local domain and put X := Spec R. We say that R is Q-Gorenstein if it is normal
and some positive multiple of the canonical divisor Kx is Cartier; the least such
positive multiple is called the index of R. If R is the homomorphic image of an
excellent regular local ring (which is for instance the case if R is complete), then
X admits an embedded resolution of singularities f: Y — X by [9]. If E; are the
irreducible components of the exceptional locus of f, then the canonical divisor Ky
is numerically equivalent to f*(Kx) + > a;E; (as Q-divisors), for some a; € Q.
The rational number a; is called the discrepancy of X along E;; see [I7, Definition
2.22]. If all a; > —1, we call R log-terminal (in case we only have a weak inequality,
we call R log-canonical).

7.2. Canonical cover. Recall the construction of the canonical cover of a Q-
Gorenstein local ring R due to Kawamata. If r is the index of R, then Ox (rKx) =
Ox, where X := Spec R and Kx the canonical divisor of X. This isomorphism
induces an R-algebra structure on

R:=H(X,0x ®Ox(Kx)® & Ox((r—1)Kx)),

which is called the canonical cover of R; see [I6]. An important property for our
purposes is that R — R is étale in codimension one (see for instance [29, 4.12]).
We also use the following result proven by Kawamata in [16, Proposition 1.7]:

7.3. Theorem. Let R be a homomorphic image of an equicharacteristic zero, excel-
lent regular local ring. If R is Q-Gorenstein, then it has log-terminal singularities
if and only if its canonical cover is rational.
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7.4. Definition. Inspired by Kawamata’s result, we can now give a resolution-free
variant of log-terminal singularities. We call a Noetherian local domain pseudo-log-
terminal if it is Q-Gorenstein and its canonical cover is pseudo-rational.

In the remainder of this section, R is an equicharacteristic zero Noetherian local
ring and R,, is an approximation of R.

7.5. Ultra-F-regularity. We say that R is ultra-F-regular, if it is a domain and
for each non-zero ¢ € R, we can find an ultra-Frobenius F¢ such that the R-module
morphism

(14) R —*D(R): x — cF(x)

is pure. Note that in order for (I4) to be R-linear, we need to view D(R) as an
R-algebra via F¢, that is to say, the target must be taken to be *D(R) (see §2.2)).
Since ®(R) = @(ﬁ), an analytically unramified local ring R is ultra-F-regular if
and only if its completion R is.

Over normal domains, purity and cyclical purity are the same by [10, Theorem
2.6]. Hence for R normal, the purity of (I4) is equivalent to the weaker condition
that for every x € R and every ideal I C R, we have

(15) cFe(z) e F*(I)®(R) implies xz € 1.

One can show that if R is moreover analytically unramified, then either condition
entails normality, and hence in that case, they are equivalent (this follows for in-
stance from the discussion below and the Briangon-Skoda property of generic tight
closure).

7.6. Proposition. If R is regular, then it is ultra-F-regular.

Proof. By the above discussion, we need only verify the weaker condition ([3). In
fact, we will show that for any ¢, we may take ¢ = 1 in (I&)). Indeed, assume
cF(z) € F(I)D(R). Since F preserves regular sequences, !D(R) is a balanced big
Cohen-Macaulay R-algebra whence is flat by [25, Theorem IV.1] or [I2, Lemma
2.1(d)]. Hence
ce (F(H)D(R) :F(x)) =F( :2)D(R).

Suppose x ¢ I. Since (I : z) then lies in the maximal ideal of R, its image under
F lies in the ideal of infinitesimals of ®(R). Hence F(I : 2)®(R) N R = (0),
contradicting that ¢ # 0. O

7.7. Theorem. If R is analytically unramified and ultra-F-regular, then it is weakly
generically F-regular, whence in particular pseudo-rational.

Proof. The last assertion follows from the first by Theorem [6.2] Since all properties
are invariant under completion, we may assume that R is complete. Let I be an
ideal in R and « € clgen(I). We want to show that « € I. By [Il, Proposition 6.24],
there exists ¢ € R such that almost all ¢, are test elements in R,,, where ¢, and
R,, are approximations of ¢ and R respectively. Let x,, and I,, be approximations
of # and I respectively, so that almost all x,, € I},. Hence, for almost all w and all
e, we have

(16) cwF$ () € FS (L) Ry

By assumption, there is an ultra-Frobenius F¢ so that x — cF¢(x) is pure whence
cyclically pure, that is to say, so that (IB) holds. Let ¢ be the ultraproduct of
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integers e,,. Taking e equal to e, in ([I8) and taking ultraproducts shows that
cFe(z) € FE(I)®(R). Therefore, from (&) we get = € I, as we wanted to show. O

7.8. Proposition. Let R C S be a finite extension of Noetherian local domains
which is étale in codimension one. Let ¢ be a non-zero element of R and F¢ an
ultra-Frobenius. If R — ¢®(R): x — cF°(z) is pure, then so is its base change
S —D(S): x> cFe(x).

In particular, if R is ultra-F-reqular, then so is S.

Proof. Let R C S be an arbitrary finite extension of d-dimensional Noetherian local
domains and fix a non-zero element ¢ € R and an ultra-Frobenius F¢. Let n be the
maximal ideal of S and wg its canonical module. I claim that if R C S is étale,
then

(17) “D(S) = S ®r “D(R).

Assuming the claim, let R C S now only be étale in codimension one. It follows
from the claim that the supports of the kernel and the cokernel of the natural map
S ®r“D(R) — D(S) have codimension at least two. Hence the same is true for
the base change

ws ®r “D(R) — ws ®s “D(9).

Applying the top local cohomology functor Hff, we get from the long exact sequence
of local cohomology and Grothendieck Vanishing, an isomorphism

(18) Hi(ws ®r “D(R)) = Hi(ws ®s “D(9)).

Recall that by Grothendieck duality, H%(wg) is the injective hull E of the residue
field of S.

Let c. g denote the R-linear morphism R — *®(R): x — cF*(z). For an arbi-
trary R-module M, let ¢ gp.yr: M — M ®@p D (R) be the base change of ¢, g over
M. In particular, we have a commutative diagram

ws —2% s @R “D(R)

H l

wg — wWs Qg E@(S)
Ce,S,wg
Taking top local cohomology yields the outer square in the following commutative
diagram:

Ce ,R,E

E =HYws) =25 E®R“D(R) —— H(ws ®r “D(R))

(19) | | =

E=Hl(ws) —— E®sD(S) —— Hi(ws®s°D(S))

where the isomorphism at the right comes from (I8). Since ¢, g is pure, so is its
base change c. g Purity is preserved when taking cohomology, so that the top
composite map in (3] is pure, whence so is the bottom composite map, since it
is isomorphic to it. Since c. g g is a factor of this map, it is itself pure, whence in
particular injective. By [I2] Lemma 2.1(e)], to verify the purity of c. g, one only
needs to show that its base change c. g,r over E is injective, and this is exactly
what we just showed.
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To prove the claim ([7), observe that if R — S is étale with approximation
R, — Su, then almost all of these are étale. Indeed, by [20, Corollary 3.16], we
can write S as R[X]/I, with X = (X1,...,X,) and I = (f1,..., fn)R[X], such
that the Jacobian J(f1,..., f,) is a unit in R, and by Los’ Theorem, this property
is preserved for almost all approximations. Quite generally, if C' — D is an étale
extension of characteristic p domains, then we have for each e an isomorphism
°D = D ®¢ °C (see for instance [I5, p. 50] or the proof of [29, Theorem 4.15]).
Applied to the current situation, we get °S,, = S, ®pr, ‘R (see [I5, p. 50]).
Therefore, applied with e =: e,,, where e,, is an approximation of e, we get after
taking ultraproducts,

“D(S) = D(S) ®or) “D(R) = S ®r “D(R)

as required, where we used the isomorphism ®(S) = S ®g D(R), which holds by
[1, §4.10.4], since R — S is finite.

To prove the last assertion, we have to show that we can find for each non-zero
c € S an ultra-Frobenius F® such that c. g is pure. However, if we can do this for
some non-zero multiple of ¢, then we can also do this for ¢, and hence, since S is
finite over R, we may assume without loss of generality that ¢ € R. Since R is ultra-
F-regular, we can therefore find an ultra-Frobenius F¢ such that c. r is pure, and
hence by the first assertion, so then is c. g, proving that S is ultra-F-regular. [

7.9. Proposition. Let R — S be a cyclically pure homomorphism of equicharacter-
istic zero Noetherian local rings. If S is ultra-F-regular and analytically unramified,
then so is R.

Proof. Since R — Sis again cyclically pure by [I, Lemma 6.7], we may assume
without loss of generality that S is complete. Let ¢ € R be non-zero and let F¢ be
an ultra-Frobenius for which the S-module morphism

(20) Ceg: S — D(S): . +— cF°(x)

is pure. We want to show that the same is true upon replacing S by R, that is to
say, that c. g is pure. Since S is weakly generically F-regular by Theorem [T.7] so
is R by Proposition [£9 Hence R is in particular normal by Theorem [4.3] so that
it suffices to verify ([I5)). Let # € R and I C R be such that cF*(z) € F<(I)D(R).
Therefore, x belongs to IS by (20), whence to IS N R = I by cyclical purity. O

Note that in the proof, the condition that S is analytically unramified was only
used to get the normality of R.

Proof of Theorem [Bl Proposition yields that S is ultra-F-regular, whence so is
R by Proposition [.9l Let R be the canonical cover of R. By Proposition [[.8 R is
also ultra-F-regular, whence pseudo-rational by Theorem [T.7 O
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