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ON A STOCHASTIC WAVE EQUATION
WITH UNILATERAL BOUNDARY CONDITIONS

JONG UHN KIM

Abstract. We prove the existence and uniqueness of solutions to the initial
boundary value problem for a one-dimensional wave equation with unilateral
boundary conditions and random noise. We also establish the existence of an
invariant measure.

§0. Introduction

In this paper, we discuss a one-dimensional wave equation with unilateral bound-
ary conditions and random noise. The problem is formulated as follows:

utt − uxx + αut =
∂Φ
∂t

, for (x, t) ∈ (0, L) × (0, T ),(0.1)

ux(0, t) ≤ 0, u(0, t) ≥ 0, ux(0, t)u(0, t) = 0, for t ∈ (0, T ),(0.2)

u(L, t) = 0, for t ∈ (0, T ),(0.3)

u(x, 0) = u0(x), ut(x, 0) = u1(x), for x ∈ (0, L).(0.4)

This problem is associated with the longitudinal motion of a linear elastic bar
against a rigid stationary obstacle. Here u denotes the axial displacement, and the
boundary condition (0.2) expresses the condition that the left end of the bar does
not stick to the obstacle and the rigid obstacle can exert stress only if the bar is
in contact with the obstacle. Φ is a continuous martingale which will be described
in detail later, and α is a nonnegative constant. For the case when ∂tΦ is replaced
by a deterministic function and the damping term αut is replaced by a memory
term, this initial-boundary value problem has been investigated in [9]. Related
deterministic problems were studied in [3], [4], [7], [12], [13] and [15]. However,
with a random noise, this is a completely new problem, which is not readily covered
by the existing results. For general results on the stochastic evolution equations,
the readers are referred to [1]. The nonlinear boundary condition (0.2) combined
with a random noise poses a new challenge in stochastic analysis. Our goal is to
prove the existence and uniqueness of solutions to (0.1) - (0.4), and to establish the
existence of an invariant measure.

For a parabolic equation with unilateral constraint, the existence and uniqueness
of solutions can be obtained through the form of a stochastic parabolic variational
inequality; see [5], where the penalty method was used. We will also use the penalty
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method which is meaningful from the physical viewpoint. Namely, we approximate
the rigid obstacle by elastic obstacles with increasing rigidity and obtain a solution
as a limit of the approximate solutions. So our general strategy is fairly standard.
However, as the rigidity parameter increases to infinity, we do not have strong con-
vergence of approximate solutions. We only have weak convergence over the sample
space. This is in sharp contrast to the parabolic case in [5]. Weak convergence over
the sample space is not sufficient to obtain pathwise solutions of our problem. This
is the main reason why we will work directly with the above form (0.1) - (0.4) even
though the problem can be formulated as a stochastic hyperbolic variational in-
equality. For a deterministic nonlinear problem, we can derive strong convergence
in a larger function class from weak convergence by means of compact imbedding
of function spaces to handle nonlinearity. In the case of stochastic problems, weak
convergence over the sample space cannot be translated into strong convergence.
The nonlinearity is due to the boundary condition (0.2). In particular, weak con-
vergence is not sufficient for a limit function to satisfy the last condition in (0.2).
Fortunately, we have some partial strong convergence of the trace of approximate
solutions as rigidity tends to infinity. This requires some unusual estimates, which
are also essential for the proof of pathwise uniqueness. One of our goals is to address
these technical issues. If the noise term is additive, i.e., Φ is independent of the
unknown function u, then the technical procedure can be simpler. In this case, we
have pathwise convergence of approximate solutions by splitting each approximate
solution into two parts. Namely, one part takes care of the random noise, and the
other part is a solution of essentially a deterministic problem. This will be shown
in Section 5 below.

For asymptotic behavior of solutions to stochastic evolution equations, an in-
variant measure is an important object. If the probability law of the initial data
is the same as an invariant measure, then the probability law of evolving solu-
tions is invariant in time. This corresponds to stationary solutions of deterministic
equations. There are well-known results on the existence of invariant measures for
general semi-linear evolution equations: see [1] and [2]. But the existence of an in-
variant measure for (0.1) - (0.3) is a completely new problem which is not covered
by these well-known results. Recently, the author [10] obtained a new existence
result on the invariant measures of a certain class of evolution equations. It turns
out that the above problem (0.1) - (0.3) fits into this class. Our task is to show
that all the required assumptions for the result in [10] are satisfied. For this, we
need pathwise convergence of approximate solutions to justify necessary conditions
for the result in [10]. Hence, we can handle only the case of an additive noise for
the existence of an invariant measure.

Finally, we note that a stochastic version of the problem discussed in [12] and [13]
is still an open question. When an obstacle is placed in the interior, the uniqueness
of the solution is known only under an extra condition of energy conservation. It
is not known how such a condition can be modified for the stochastic problem.

§1. Notation and statement of the main results

We will use the following notation:

∂tu = ut =
∂u

∂t
, ∂xu = ux =

∂u

∂x
,
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and

h+ = max(h, 0), h− = max(−h, 0).

For a real number s, Hs(0, L) denotes the usual Sobolev space of order s over the
interval (0, L). If h ∈ H1(0, T ), then h(·)− ∈ H1(0, T ) and

(1.1)
d

dt

(
h(·)−

)
= −χ{h(t) < 0} d

dt
h(·)

where χ{· · · } is the characteristic function of the set {· · · }.(
Ω,F ,Ft, P

)
is a given stochastic basis, where P is a probability measure, F

is a σ-algebra and {Ft}t≥0 is a right-continuous filtration on
(
Ω,F

)
such that F0

contains all P -negligible subsets. {Bj(t)}∞j=1 is a sequence of mutually independent
standard Brownian motions over (Ω,F ,Ft, P ). E

(
·
)

stands for expectation with
respect to the probability measure P. In this paper, a stochastic integral is defined
in the sense of Ito. When O is a topological space, B(O) denotes the Borel σ-
algebra over O. When X is a Banach space, an X -valued function f is said to
be F-measurable if f−1(G) ∈ F for every G ∈ B(X ). This coincides with strong
measurability for Bochner integrals when the range of f is separable. When X is
a Banach space, Lp(Ω;X ), 1 ≤ p < ∞, denotes the set of all X -valued strongly
measurable functions such that ∫

Ω

‖f‖p
X dP < ∞.

An X -valued stochastic process Y (t) is said to be progressively measurable if Y
restricted to the interval [0, t] is B

(
[0, t]

)
⊗ Ft-measurable for each t ≥ 0. If X

is a separable Hilbert space, then L∞(0, T ;X ) is the dual of L1(0, T ;X ). In this
case, let L2

∗
(
Ω; L∞(0, T ;X )

)
be the set of all f such that 〈f, q〉 is F-measurable for

every q ∈ L1(0, T ;X ), where 〈 ·, · 〉 is the duality pairing between L∞(0, T ;X ) and
L1(0, T ;X ), and ∫

Ω

‖f(ω)‖2
L∞(0,T ;X )dP < ∞.

Then, L2
∗
(
Ω; L∞(0, T ;X )

)
is the dual of L2

(
Ω; L1(0, T ;X )

)
; see [14].

Throughout this paper, we suppose that

Φ = Φ(u)(t) =
∞∑

j=1

∫ t

0

(σju + fj)dBj

where the fj ’s are progressively measurable with respect to {Ft}, and

(1.2)
∞∑

j=1

‖fj‖2
L2(Ω;L2(0,T ;L2(0,L)) < ∞

for each T > 0. The σj ’s are deterministic functions such that

(1.3)
∞∑

j=1

‖σj‖2
L∞((0,L)×(0,T )) < ∞

for each T > 0.
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Lemma 1.1. Suppose that {vk}∞k=1 is a sequence of progressively measurable func-
tions in L2

(
Ω; L2(0, T ; L2(0, L))

)
such that as k → ∞,

vk → v weakly in L2
(
Ω; L2(0, T ; L2(0, L))

)
,

∂tvk → ∂tv weakly in L2
(
Ω; L2(0, T ; L2(0, L))

)
.

Then, as k → ∞,
∞∑

j=1

∫ (·)

0

σjvk dBj →
∞∑

j=1

∫ (·)

0

σjv dBj

weakly in L2
(
Ω; L2(0, T ; L2(0, L))

)
.

Proof. For any ε > 0, there is a positive integer N such that
∞∑

j=N

E

(∫ T

0

‖σjvk‖2
L2(0,L)dt

)
< ε

for all k ≥ 1. Hence, it is enough to show that as k → ∞,

(1.4)
∫ (·)

0

σjvk dBj →
∫ (·)

0

σjv dBj

weakly in L2
(
Ω; L2(0, T ; L2(0, L))

)
, for each j. Since ∂tvk ∈ L2

(
Ω; L2(0, T ;

L2(0, L))
)
, we have

dvk =
(
∂tvk

)
dt,

which, combined with the Ito calculus (see [8]), yields
(1.5)

vk(t)
∫ t

0

σj(s)dBj(s) =
∫ t

0

vk(s)σj(s) dBj(s) +
∫ t

0

(∫ s

0

σj(η)dBj(η)
)

∂svk(s) ds

for all t ∈ [0, T ], for almost all ω ∈ Ω. Since we have∫ (·)

0

σj(s)dBj(s) ∈ L2
(
Ω; C([0, T ]; L2(0, L))

)
,

it holds that for any b ∈ L2
(
0, T ; L∞(0, L)

)
and G ∈ F ,∫

G

∫ T

0

〈b(t), vk(t)
∫ t

0

σj(s)dBj(s)〉dt dP →
∫

G

∫ T

0

〈b(t), v(t)
∫ t

0

σj(s)dBj(s)〉dt dP

as k → ∞. Here 〈· , ·〉 denotes the duality pairing between L1(0, L) and L∞(0, L).
By changing the order of integration, we see that∫

G

∫ T

0

〈b(t),
∫ t

0

(∫ s

0

σj(η)dBj(η)
)

∂svk(s) ds〉dt dP

=
∫

G

∫ T

0

〈
∫ T

t

b(s) ds, ∂tvk(t)
∫ t

0

σj(s)dBj(s)〉dt dP

and hence, ∫
G

∫ T

0

〈b(t),
∫ t

0

(∫ s

0

σj(η)dBj(η)
)

∂svk(s) ds〉dt dP

→
∫

G

∫ T

0

〈b(t),
∫ t

0

(∫ s

0

σj(η)dBj(η)
)

∂sv(s) ds〉dt dP
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as k → ∞. Therefore, it follows from (1.5) that∫
G

∫ T

0

〈b(t),
∫ t

0

vk(s)σj(s)dBj(s)〉dt dP(1.6)

→
∫

G

∫ T

0

〈b(t),
∫ t

0

v(s)σj(s)dBj(s)〉dt dP as k → ∞

for every b ∈ L2
(
0, T ; L∞(0, L)

)
and G ∈ F . We note that∫ (·)

0

σj vk dBj is bounded in L2
(
Ω; C([0, T ]; L2(0, L))

)
uniformly in k,

and that each function in L2
(
Ω; L2(0, T ; L2(0, L))

)
can be approximated by func-

tions of the form
∑N

i=1 biχ{Gi}, where 1 ≤ N < ∞, bi ∈ L2
(
0, T ; L∞(0, L)

)
and

Gi ∈ F . Consequently, (1.4) follows from (1.6). �

Next we set

Ψ(t) =
∞∑

j=1

∫ t

0

fj(s) dBj(s)

and recall the following known fact.

Lemma 1.2. For any ψ ∈ C∞
0 ((0, T )), it holds that

(1.7)
∫ T

0

ψt(t)Ψ(t) dt = −
∞∑

j=1

∫ T

0

ψ(t)fj(t) dBj(t)

for almost all ω ∈ Ω.

Proof. Choose any ψ ∈ C∞
0 ((0, T )), and set

Ψm(t) =
m∑

j=1

∫ t

0

fj(s)dBj(s).

Let us partition the interval [0, T ] as

0 = t0 < t1 < · · · < tN = T, tk − tk−1 = δN = T/N, k = 1, · · · , N,

and define
ψN (t) = ψ(tj), for tj−1 < t ≤ tj , 1 ≤ j ≤ N.

Since Ψm ∈ C
(
[0, T ]; L2(0, L)

)
, for almost all ω, and

ψ(t + δN ) − ψ(t)
δN

→ ψt(t) uniformly in t ∈ [0, T ] as N → ∞,

we have ∫ T

0

ψt(t)Ψm(t)dt = lim
N→∞

N−1∑
k=0

ψ(tk+1) − ψ(tk)
δN

Ψm(tk)δN

= − lim
N→∞

N−1∑
k=1

ψ(tk)(Ψm(tk) − Ψm(tk−1))

= − lim
N→∞

m∑
j=1

∫ T

0

ψN (t)fj(t)dBj(t),
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for almost all ω. In the meantime, as N → ∞,
m∑

j=1

∫ T

0

ψN (t)fj(t)dBj(t) →
m∑

j=1

∫ T

0

ψ(t)fj(t)dBj(t)

in L2
(
Ω; L2(0, L)

)
. Hence,∫ T

0

ψt(t)Ψm(t)dt = −
m∑

j=1

∫ T

0

ψ(t)fj(t)dBj(t)

for almost all ω ∈ Ω.
By passing m → ∞, we arrive at (1.7). �

Definition 1.3. A progressively measurable function u ∈ L2
(
Ω; L2(0, T ; H1(0, L))

)
is said to be a solution of (0.1) - (0.4) if for almost all ω ∈ Ω, it satisfies (0.1) in
the sense of distributions over (0, L)× (0, T ), (0.2) - (0.3) for almost all t ∈ [0, T ],
and (0.4) for almost all x ∈ [0, L].

Our main results are as follows.

Theorem 1.4. Let α ≥ 0, and suppose that u0 and u1 are F0-measurable such that
u1 ∈ L2

(
Ω; L2(0, L)

)
and u0 ∈ L2

(
Ω; H1(0, L)

)
with u0(0) ≥ 0 and u0(L) = 0, for

almost all ω ∈ Ω. For any T > 0, there is a pathwise unique solution u of (0.1) -
(0.4) such that u is progressively measurable, and

u ∈ L2
(
Ω; C

(
[0, T ]; H1(0, L)

))
, ut ∈ L2

(
Ω; C

(
[0, T ] : L2(0, L)

))
.

Theorem 1.5. Let α > 0, and assume that σj ≡ 0, j ≥ 1, and that the fj’s
are independent of time. Then, there is an invariant measure of (0.1) - (0.3) over
H1(0, L) × L2(0, L).

§2. Deterministic equation

In this section, we will present basic facts on the deterministic equation which
will be used for the proof of Theorem 1.4.

Lemma 2.1. Suppose that

(2.1) v ∈ L2
(
0, T ; H1(0, L)

)
, vt ∈ L2

(
0, T ; L2(0, L)

)
and that v satisfies

(2.2) vtt − vxx + αvt = 0 for (x, t) ∈ (0, L) × (0, T )

and

(2.3) v(x, 0) = 0, vt(x, 0) = 0 for x ∈ (0, L).

Then, it holds that for each 0 < ε < T,

(2.4) v ∈ C([0, T − ε]; H1(0, L)), vt ∈ C([0, T − ε]; L2(0, L))

and

vx(0, ·), vx(L, ·) ∈ L2(0, T − ε),(2.5)

vt(0, ·), vt(L, ·) ∈ L2(0, T − ε).(2.6)

This is a special case of Lemma 1.6 of [9]. Here (2.2) and (2.3) are satisfied in
the sense of distributions over (0, L) × (0, T ) and (0, L), respectively.
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Lemma 2.2. For given q ∈ L2(0, T ) and f ∈ L2
(
0, T ; L2(0, L)

)
, there is a unique

solution v ∈ C
(
[0, T ]; H1(0, L)

)
∩ C1

(
[0, T ]; L2(0, L)

)
of

vtt − vxx + αvt = f for (x, t) ∈ (0, L) × (0, T ),(2.7)

vx(0, t) = q(t), v(L, t) = 0 for t ∈ (0, T ),(2.8)

v(x, 0) = 0, vt(x, 0) = 0 for x ∈ (0, L).(2.9)

Furthermore, it holds that

1
2
‖vt(t)‖2

L2(0,L) +
1
2
‖vx(t)‖2

L2(0,L)(2.10)

= −
∫ t

0

vs(0, s)q(s) ds− α

∫ t

0

‖vs(s)‖2
L2(0,L)ds +

∫ t

0

∫ L

0

f vs dx ds

for all t ∈ [0, T ],

(2.11) ‖vt(t)‖2
L2(0,L) + ‖v(t)‖2

H1(0,L) ≤ M

∫ t

0

|q(s)|2ds + M

∫ t

0

‖f(s)‖2
L2(0,L)ds

for all t ∈ [0, T ], and∫ t

0

|vs(0, s)|2ds +
∫ t

0

|q(s)|2ds ≤ M
(
‖vt(t)‖2

L2(0,L) + ‖v(t)‖2
H1(0,L)

)
(2.12)

+ M

∫ t

0

(
‖vs(s)‖2

L2(0,L) + ‖v(s)‖2
H1(0,L)

)
ds + M

∫ t

0

‖f(s)‖2
L2(0,L)ds

for all t ∈ [0, T ]. Here M denotes positive constants independent of q and f.

For the proof, see Proposition 1.5 of [9], where a different boundary condition was
used at x = L, but the details of the proof are essentially the same. We note that
if q = qm ∈ C3([0, T ]) and f = fm ∈ C1

(
[0, T ]; L2(0, L)

)
, then the corresponding

solution vm satisfies additional regularity such that

vm ∈ L∞(
0, T ; H2(0, L)

)
, ∂tvm ∈ L∞(

0, T ; H1(0, L)
)
,(2.13)

∂ttvm ∈ L∞(
0, T ; L2(0, L)

)
.

If qm → q in L2(0, T ) and fm → f in L2
(
0, T ; L2(0, L)

)
, then (2.11) and (2.12)

imply that

(2.14) vm → v in C
(
[0, T ]; H1(0, L)

)
∩ C1

(
[0, T ]; L2(0, L)

)
and

(2.15) ∂tvm(0, ·) → ∂tv(0, ·) in L2(0, T ).

Lemma 2.3. For given h ∈ H1(0, T ), there is a unique solution v ∈ C
(
[0, T ];

H1(0, L)
)
∩ C1

(
[0, T ]; L2(0, L)

)
of

vtt − vxx + αvt = 0 for (x, t) ∈ (0, L) × (0, T ),(2.16)

vx(0, t) = −K
(
v(0, t) + h(t)

)−
, v(L, t) = 0 for t ∈ (0, T ),(2.17)

v(x, 0) = 0, vt(x, 0) = 0 for x ∈ (0, L)(2.18)



582 JONG UHN KIM

where K is a positive constant. Furthermore, if h(0) ≥ 0, it holds that

‖vt(t)‖2
L2(0,L) + ‖v(t)‖2

H1(0,L) + K
∣∣(v(0, t) + h(t)

)−∣∣2(2.19)

+
∫ t

0

|vx(0, s)|2ds +
∫ t

0

|vs(0, s)|2ds ≤ M

∫ t

0

|hs(s)|2ds

for all t ∈ [0, T ], for some constant M independent of K and h. If v1 and v2 are
solutions corresponding to h = h1 and h = h2, respectively, it holds that

‖∂tv1(t) − ∂tv2(t)‖2
L2(0,L) + ‖v1(t) − v2(t)‖2

H1(0,L)(2.20)

+
∫ t

0

∣∣∂sv1(0, s) − ∂sv2(0, s)
∣∣2ds +

∫ t

0

∣∣∂xv1(0, s) − ∂xv2(0, s)
∣∣2ds

≤ MK

∫ t

0

|h1(s) − h2(s)|2ds

for all t ∈ [0, T ], for some constant MK independent of h1 and h2.

Proof. Existence of a solution follows from Lemma 2.2 and an iteration scheme.
For (2.19), we find from (2.10) that

‖vt(t)‖2
L2(0,L) + ‖vx(t)‖2

L2(0,L) = 2
∫ t

0

K
(
v(0, s) + h(s)

)−(
vs(0, s) + hs(s)

)
ds

(2.21)

− 2
∫ t

0

K
(
v(0, s) + h(s)

)−
hs(s) ds − 2α

∫ t

0

‖vs(s)‖2
L2(0,L)ds

for all t ∈ [0, T ]. In the meantime, it follows from (2.12) that∫ t

0

(
K

(
v(0, s) + h(s)

)−)2

ds +
∫ t

0

|vs(0, s)|2ds(2.22)

≤ M
(
‖vt(t)‖2

L2(0,L) + ‖v(t)‖2
H1(0,L)

)
+ M

∫ t

0

(
‖vs(s)‖2

L2(0,L) + ‖v(s)‖2
H1(0,L)

)
ds.

Since v(0, 0) + h(0) ≥ 0, it follows from (1.1) that

(2.23) 2
∫ t

0

K
(
v(0, s) + h(s)

)−(
vs(0, s) + hs(s)

)
ds = −K

∣∣(v(0, t) + h(t)
)−∣∣2.

We now use (2.23) and

− 2
∫ t

0

K
(
v(0, s) + h(s)

)−
hs(s) ds ≤ ε

∫ t

0

(
K

(
v(0, s) + h(s)

)−)2

ds(2.24)

+
1
ε

∫ t

0

|hs(s)|2ds, for each ε > 0

to derive (2.19) from (2.21) and (2.22) with help of the Gronwall inequality.
Next we use (2.11) and (2.12) with q = −K

(
v1(0, t) + h1(t)

)− + K
(
v2(0, t) +

h2(t)
)−

, v = v1 − v2 and f ≡ 0. By (2.11) and

(2.25)
∫ t

0

∣∣v1(0, s) − v2(0, s)
∣∣2ds ≤ M

∫ t

0

‖v1(s) − v2(s)‖2
H1(0,L)ds,
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we can again use the Gronwall inequality to derive

‖∂tv1(t) − ∂tv2(t)‖2
L2(0,L) + ‖v1(t) − v2(t)‖2

H1(0,L)(2.26)

≤ MK

∫ t

0

|h1(s) − h2(s)|2ds

for all t ∈ [0, T ], for some constant MK independent of h1 and h2.
This, combined with (2.12), yields (2.20). �

§3. Stochastic equation

Let us consider the initial-boundary value problem

wtt − wxx + αwt = f +
∂

∂t

∞∑
j=1

∫ t

0

gj dBj for (x, t) ∈ (0, L) × (0, T ),(3.1)

wx(0, t) = 0, w(L, t) = 0 for 0 < t < T,(3.2)

w(x, 0) = u0(x), wt(x, 0) = u1(x) for 0 < x < L.(3.3)

Here f and the gj ’s are given functions such that they are progressively measurable,
f ∈ L2

(
Ω; L2(0, T ; L2(0, L))

)
, for each T > 0, and

(3.4)
∞∑

j=1

E
(
‖gj‖2

L2(0,T ;L2(0,L))

)
< ∞

for each T > 0.

Lemma 3.1. Suppose that u0 and u1 are F0-measurable such that u1 ∈ L2
(
Ω;

L2(0, L)
)

and u0 ∈ L2
(
Ω; H1(0, L)

)
with u0(L) = 0, for almost all ω ∈ Ω. Then,

there is a unique solution w of (3.1) - (3.3) such that w is progressively measurable
and

(3.5) w ∈ L2

(
Ω; C

(
[0, T ]; H1(0, L)

)
∩ C1

(
[0, T ]; L2(0, L)

))
for each T > 0. Furthermore, it holds that

E
(

sup
s∈[0,t]

‖w(s)‖2
H1(0,L)

)
+ E

(
sup

s∈[0,t]

‖ws(s)‖2
L2(0,L)

)
+ E

(∫ t

0

|ws(0, s)|2ds
)

(3.6)

≤ ME
(
‖u0‖2

H1(0,L)

)
+ ME

(
‖u1‖2

L2(0,L)

)
+ ME

(∫ t

0

‖f‖2
L2(0,L)ds

)
+ M E

( ∞∑
j=1

∫ t

0

‖gj‖2
L2(0,L) ds

)

for all t ∈ [0, T ], for some positive constant M depending only on T > 0.

In order to justify manipulations to obtain (3.6), we need more regularity than
is indicated by (3.5). Therefore, we first consider the case of more regular data.

Let {ek}∞k=1 be a complete orthonormal basis for L2(0, L) such that

(3.7)

{
−∂xxek = λkek, for x ∈ (0, L),
∂xek(0) = 0, ek(L) = 0.

We write

Ψ(t) =
∞∑

j=1

∫ t

0

gj(s)dBj(s),
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and define for each ν ≥ 1,

u0,ν =
ν∑

k=1

〈u0, ek〉ek, u1,ν =
ν∑

k=1

〈u1, ek〉ek,

fν =
ν∑

k=1

〈f, ek〉ek, gj,ν =
ν∑

k=1

〈gj , ek〉ek

and

Ψν(t) =
∞∑

j=1

∫ t

0

gj,ν(s)dBj(s).

Here, 〈 · , · 〉 denotes the inner product in L2(0, L).

Lemma 3.2. Fix any T > 0 and ν ≥ 1. For u0,ν and u1,ν defined as above, there
is a unique solution wν of

∂ttwν − ∂xxwν + α∂twν = fν + ∂tΨν , for (x, t) ∈ (0, L) × (0, T ),(3.8)

∂xwν(0, t) = 0, wν(L, t) = 0, for t ∈ (0, T ),(3.9)

wν(x, 0) = u0,ν(x), ∂twν(x, 0) = u1,ν(x), for x ∈ (0, L)(3.10)

such that wν is progressively measurable and

(3.11) wν ∈ L2

(
Ω; C1

(
[0, T ]; Hm(0, L)

))
, for all m ≥ 1.

Furthermore, it holds that

E

(
sup

s∈[0,t]

‖wν(s)‖2
H1(0,L)

)
+ E

(
sup

s∈[0,t]

‖∂swν(s)‖2
L2(0,L)

)
(3.12)

+ E

(∫ t

0

|∂swν(0, s)|2 ds

)
≤ ME

(
‖u0,ν‖2

H1(0,L)

)
+ ME

(
‖u1,ν‖2

L2(0,L)

)
+ ME

(∫ t

0

‖fν(s)‖2
L2(0,L)ds

)

+ M E

( ∞∑
j=1

∫ t

0

‖gj,ν(s)‖2
L2(0,L) ds

)

for all t ∈ [0, T ], for some positive constant M depending only on T > 0.

Proof. It is easy to see that a solution wν can be represented by

(3.13) wν(x, t) =
ν∑

k=1

ck(t)ek(x)

where the ck’s satisfy the system of stochastic differential equations

(3.14) ∂ttck = −λk ck − α∂tck + 〈fν + ∂tΨν , ek〉, 1 ≤ k ≤ ν,

and the initial conditions

(3.15) ck(0) = 〈u0, ek〉, ∂tck(0) = 〈u1, ek〉, 1 ≤ k ≤ ν.

We can write (3.8) as

(3.16) d
(
∂twν

)
=

(
∂xxwν − α∂twν

)
dt + fνdt + dΨν .
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By Ito’s rule and integration by parts using (3.9), we have

‖∂twν(t)‖2
L2(0,L) + ‖∂xwν(t)‖2

L2(0,L) = ‖u1,ν‖2
L2(0,L) + ‖∂xu0,ν‖2

L2(0,L)(3.17)

− 2α

∫ t

0

‖∂swν‖2
L2(0,L)ds + 2

∫ t

0

〈fν , ∂swν〉ds

+ 2
∞∑

j=1

∫ t

0

〈∂swν , gj,ν〉dBj(s) +
∞∑

j=1

∫ t

0

‖gj,ν‖2
L2(0,L)ds

for all t ∈ [0, T ], for almost all ω ∈ Ω. By the Burkholder-Davis-Gundy inequality,

E

(
sup

s∈[0,t]

∣∣∣∣
∞∑

j=1

∫ s

0

〈∂ηwν , gj,ν〉dBj(η)
∣∣∣∣
)

≤ CE

( ∞∑
j=1

∫ t

0

∥∥∂swν

∥∥2

L2(0,L)

∥∥gj,ν

∥∥2

L2(0,L)
ds

)1/2

(3.18)

≤ δE

(
sup

s∈[0,t]

∥∥∂swν(s)
∥∥2

L2(0,L)

)
+

C2

δ
E

( ∞∑
j=1

∫ t

0

∥∥gj,ν

∥∥2

L2(0,L)
ds

)

for all δ > 0, for some positive constant C independent of ν.
Hence, it follows from (3.17) that

E

(
sup

s∈[0,t]

‖∂swν(s)‖2
L2(0,L) + sup

s∈[0,t]

‖wν(s)‖2
H1(0,L)

)
(3.19)

≤ ME
(
‖u0,ν‖2

H1(0,L)

)
+ ME

(
‖u1,ν‖2

L2(0,L)

)
+ ME

(∫ t

0

‖fν‖L2(0,L)ds

)2

+ M

∞∑
j=1

E

(∫ t

0

‖gj,ν‖2
L2(0,L)ds

)

for all t ∈ [0, T ], for some positive constant M independent of ν. Next let ψ ∈
C1([0, L]) such that ψ(0) = 1 and ψ(L) = ψx(L) = 0, and write

(3.20) d
(
ψ ∂xwν) =

(
ψ ∂xtwν

)
dt.

By applying Ito’s rule to the functional 〈∂twν , ψ∂xwν〉, we find

〈∂twν(t), ψ∂xwν(t)〉 − 〈u1,ν , ψ∂xu0,ν〉 = −1
2

∫ t

0

|∂swν(0, s)|2ds(3.21)

−
∫ t

0

∫ L

0

(
1
2
ψx(∂xwν)2 + αψ(∂xwν) ∂swν +

1
2
ψx(∂swν)2

)
dx ds

+
∫ t

0

〈ψ ∂xwν , fν〉ds +
∞∑

j=1

∫ t

0

〈ψ ∂xwν , gj,ν〉dBj(s)

for all t ∈ [0, T ], for almost all ω ∈ Ω. By taking the expectation of (3.21) and com-
bining it with (3.19), we obtain (3.12). The argument for the pathwise uniqueness
of solutions is the same as that for the deterministic equation. �

Proof of Lemma 3.1. Let u0 ∈ H1(0, L) with u0(L) = 0, and u1 ∈ L2(0, L) be
given. We define u0,ν and u1,ν as above. Then, as ν → ∞, u0,ν → u0 in H1(0, L),
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and u1,ν → u1 in L2(0, L). Let wν be the solution of (3.8) - (3.10). We also note
that as ν → ∞,

(3.22) E

( ∞∑
j=1

∫ T

0

‖gj,ν − gj‖2
L2(0,L)dt

)
→ 0.

We can estimate wν1 −wν2 in the same way as for (3.12) and find that as ν → ∞,

(3.23) wν → w in L2
(
Ω; C([0, T ]; H1(0, L))

)
and

(3.24) ∂twν → ∂tw in L2
(
Ω; C([0, T ]; L2(0, L))

)
where w is a solution of

(3.25)

⎧⎪⎪⎨
⎪⎪⎩

∂ttw − ∂xxw + α∂tw = f + ∂tΨ for (x, t) ∈ (0, L) × (0, T ),
w(L, t) = 0 for t ∈ (0, T ),

w(x, 0) = u0(x), ∂tw(x, 0) = u1(x), for x ∈ (0, L).

Obviously w is progressively measurable. Next we show that the trace of wt and
wx at x = 0 is well defined and belongs to L2

(
Ω; L2(0, T )

)
. For almost all ω ∈ Ω,

it holds that

(3.26) ∂xxwν = ∂ttwν + α∂twν − fν − ∂tΨν

and

(3.27) ∂xxw = ∂ttw + αwt − f − ∂tΨ

in the sense of distributions over (0, L)×(0, T ). Since Ψν → Ψ in L2
(
Ω; L2((0, L)×

(0, T ))
)

as ν → ∞, it follows from (3.23) - (3.27) that

(3.28) ∂xxwν → ∂xxw in L2
(
Ω; L2(0, L; H−1(0, T ))

)
as ν → ∞.

Consequently, as ν → ∞,

∂xwν → ∂xw in L2
(
Ω; C([0, L]; H−1(0, T ))

)
and

∂twν → ∂tw in L2
(
Ω; C([0, L]; H−2(0, T ))

)
.

Thus, it follows that

(3.29) ∂twν(0, ·) → ∂tw(0, ·) in L2
(
Ω; H−2(0, T )

)
and

(3.30) ∂xwν(0, ·) → ∂xw(0, ·) in L2
(
Ω; H−1(0, T )

)
.

By means of (3.12), it must hold that

(3.31) ∂twν(0, ·) → ∂tw(0, ·) weakly in L2
(
Ω; L2(0, T )

)
.

For each ν ≥ 1, ∂twν(0, ·) is progressively measurable and hence, ∂tw(0, ·) is also
progressively measurable. Since ∂xwν(0, ·) ≡ 0, for all ν, we also have

(3.32) ∂xw(0, ·) ≡ 0.

Hence, w is a solution of (3.1) - (3.3), and (3.6) follows from (3.12), (3.23), (3.24)
and (3.31). The pathwise uniqueness of solution of (3.1) - (3.3) follows from the
well-known uniqueness result on the deterministic equation. �
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Lemma 3.3. Let f be progressively measurable such that f ∈ L1
(
Ω; L1(0, T )

)
.

Suppose that v ∈ L2

(
Ω; C([0, T ]; H1(0, L)) ∩ C1([0, T ]; L2(0, L))

)
is progressively

measurable and is a solution of

vtt − vxx + αvt =
∞∑

j=1

σjv
dBj

dt
for (x, t) ∈ (0, L) × (0, T ),(3.33)

vx(0, t)v(0, t) ≥ −|f(t)| for t ∈ (0, T ),(3.34)

v(L, t) = 0 for t ∈ (0, T ),(3.35)

v(x, 0) = 0, vt(x, 0) = 0 for x ∈ (0, L).(3.36)

Then, there is some 0 < δ < T and a positive constant Mδ independent of v, the
σj’s and f such that

(3.37) E
(

sup
t∈[0,δ]

|v(0, t)|2
)
≤ MδE

(∫ δ

0

|f(s)|ds

)
.

Proof. Let ṽ = veαt/2. Then, ṽ satisfies the equation

(3.38) vtt − vxx =
α2

4
v +

∞∑
j=1

σjv
dBj

dt
, for (x, t) ∈ (0, L) × (0, T )

and (3.34) - (3.36) with f(t) replaced by f(t)eαt. Hence, we may consider (3.38)
instead of (3.33). Now suppose that v is a solution of (3.34) - (3.36) and (3.38).

With this v as a given function, let φ ∈ L2

(
Ω; C

(
[0, T ]; H1(0, L)

)
∩ C1

(
[0, T ];

L2(0, L)
))

be the unique solution of

(3.39)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

φtt − φxx = α2

4 v +
∑∞

j=1 σjv
dBj

dt for (x, t) ∈ (0, L) × (0, T ),
φx(0, t) = 0, φ(L, t) = 0 for t ∈ (0, T ),

φ(x, 0) = 0, φt(x, 0) = 0 for x ∈ (0, L),

and let ψ = v − φ. Then, ψ ∈ C([0, T ]; H1(0, L)) ∩ C1([0, T ]; L2(0, L)), for almost
all ω ∈ Ω, and ψ satisfies

(3.40)

⎧⎪⎪⎨
⎪⎪⎩

ψtt − ψxx = 0 for (x, t) ∈ (0, L) × (0, T ),
ψ(L, t) = 0 for t ∈ (0, T ),

ψ(x, 0) = 0, ψt(x, 0) = 0 for x ∈ (0, L).

There is some Ω̃ ⊂ Ω such that P
(
Ω \ Ω̃

)
= 0 and for each ω ∈ Ω̃, (3.34)

- (3.36) and (3.38) - (3.40) hold. Let us fix any ω ∈ Ω̃. For all (x, t) such that
0 ≤ t ≤ min(T, L/2), 0 ≤ x ≤ L/2, t ≥ x, it holds that

ψ(x, t) + ψ
( t − x

2
,
t − x

2
)

= ψ(0, t − x) + ψ
( t + x

2
,
t + x

2
)
.

For this identity, see John [6]. In the meantime, by the domain of dependence,

ψ
( t − x

2
,
t − x

2
)

= ψ
( t + x

2
,
t + x

2
)

= 0.
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Hence,

(3.41) ψ(x, t) = ψ(0, t − x).

By the same argument, for all (x, t) such that L/2 ≤ x ≤ L, 0 ≤ t ≤ min(T, L/2),
x + t ≥ L,

(3.42) ψ(x, t) = ψ(L, x + t − L).

Meanwhile, ψ(L, t) = 0, for all 0 ≤ t ≤ T, and hence, it follows that, for all (x, t)
such that L/2 ≤ x ≤ L, 0 ≤ t ≤ min(T, L/2), x + t ≥ L,

(3.43) ψ(x, t) = 0.

Again by the domain of dependence, (3.43) is also valid for all (x, t) such that
0 ≤ x ≤ L, 0 ≤ t ≤ min(T, L/2), t ≤ x and t ≤ L − x. We see from (3.41) that

(3.44) ψt(0, t) = −ψx(0, t)

for almost all t ∈ (0, min(T, L/2)). Since ψx(0, t) = vx(0, t), it follows that

(3.45) v(0, t)(vt(0, t) − φt(0, t)) = v(0, t)ψt(0, t) ≤ |f(t)|

for almost all t ∈ (0, min(T, L/2)), and thus,

(3.46) |v(0, t)|2 ≤
∫ t

0

|v(0, s)|2ds +
∫ t

0

|φs(0, s)|2ds + 2
∫ t

0

|f(s)|ds

for all t ∈ [0, min(T, L/2)]. This is true for each ω ∈ Ω̃. In the meantime, it follows
from Lemma 3.1 that

E
(

sup
s∈[0,t]

‖φ(s)‖2
H1(0,L)

)
+ E

(
sup

s∈[0,t]

‖φs(s)‖2
L2(0,L)

)
+ E

(∫ t

0

|φs(0, s)|2ds
)

(3.47)

≤ ME

(∫ t

0

∫ L

0

|v|2 dx ds

)

and

E

(∫ t

0

∫ L

0

|v|2 dx ds

)
≤ 2E

(∫ t

0

∫ L

0

(|ψ|2 + |φ|2)dx ds

)
(3.48)

≤ 2E

(∫ t

0

∫ L

0

|ψ|2dx ds

)
+ 2t2E

(∫ t

0

∫ L

0

|φs|2dx ds

)

≤ 2E

(∫ t

0

∫ L

0

|ψ|2dx ds

)
+ Mt2E

(∫ t

0

∫ L

0

|v|2dx ds

)

for all t ∈ [0, T ], for some positive constant M independent of v. Thus, there is
some 0 < δ < min(T, L/2) independent of v and a positive constant Mδ depending
on δ such that

(3.49) E

(∫ t

0

∫ L

0

|v|2dx ds

)
≤ MδE

(∫ t

0

∫ L

0

|ψ|2dx ds

)
,

for all 0 ≤ t ≤ δ. Hence, it follows from (3.47) that

(3.50) E

(∫ t

0

|φs(0, s)|2ds

)
≤ MδE

(∫ t

0

∫ L

0

|ψ|2dx ds

)
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for all 0 ≤ t ≤ δ. In the meantime, we derive from (3.41) and (3.43) that

E

(∫ t

0

∫ L

0

|ψ(x, s)|2dx ds

)
= E

(∫ t

0

∫ s

0

|ψ(0, s − x)|2dx ds

)
(3.51)

≤ tE

(∫ t

0

|ψ(0, s)|2ds

)

≤ 2tE

(∫ t

0

|v(0, s)|2ds

)
+ 2tE

(∫ t

0

|φ(0, s)|2ds

)

≤ 2tE

(∫ t

0

|v(0, s)|2ds

)
+ 2t3E

(∫ t

0

|φs(0, s)|2ds

)
.

By taking δ smaller if necessary, we find that for all 0 ≤ t ≤ δ,

(3.52) E

(∫ t

0

|φs(0, s)|2ds

)
≤ MδE

(∫ t

0

|v(0, s)|2ds

)
,

which, together with (3.46), yields

(3.53) E
(

sup
s∈[0,t]

|v(0, s)|2
)
≤ Mδ

∫ t

0

E
(
|v(0, s)|2

)
ds + 2E

(∫ t

0

|f(s)|ds

)

for all 0 ≤ t ≤ δ. By the Gronwall inequality, we have (3.37). �

Remark 3.4. If f ≡ 0 in (3.34), then v(0, t) = 0 for all t ∈ [0, δ], for almost all ω,
and thus, v ≡ 0 on [0, δ] for almost all ω. By repetition, we conclude that v ≡ 0
on [0, T ], for almost all ω.

§4. Proof of Theorem 1.4

Let us choose any T > 0. According to Lemma 3.1, let w ∈ L2

(
Ω; C

(
[0, T ];

H1(0, L)
)
∩ C1

(
[0, T ]; L2(0, L)

))
be a unique solution of

(4.1)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

wtt − wxx + αwt =
∑∞

j=1 gj
dBj

dt for (x, t) ∈ (0, L) × (0, T ),
wx(0, t) = 0, w(L, t) = 0 for t ∈ (0, T ),

w(x, 0) = u0(x), wt(x, 0) = u1(x) for x ∈ (0, L).

Let v be the unique solution in Lemma 2.3 with

h(t) = w(0, t).

By virtue of (2.20), the mapping
h 
→ v

is continuous from L2(0, T ) into C([0, T ]; H1(0, L)) ∩C1([0, T ]; L2(0, L)). Also, we
find that if h ∈ L2

(
Ω; L2(0, T )

)
, then v ∈ L2

(
Ω; C([0, T ]; H1(0, L)) ∩ C1([0, T ];

L2(0, L))
)
. At the same time, if h is progressively measurable, so is v. Next we

write
u = w + v.
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Then, u ∈ L2

(
Ω; C

(
[0, T ]; H1(0, L)

)
∩C1

(
[0, T ]; L2(0, L)

))
is a unique solution of

(4.2)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

utt − uxx + αut =
∑∞

j=1 gj
dBj

dt for (x, t) ∈ (0, L) × (0, T ),
ux(0, t) = −Ku(0, t)−, u(L, t) = 0 for t ∈ (0, T ),

u(x, 0) = u0(x), ut(x, 0) = u1(x) for x ∈ (0, L).

Let u and ũ be the solutions corresponding to {gj}∞j=1 and {g̃j}∞j=1, respectively.
Then, we can write

u = w + v, ũ = w̃ + ṽ

where w and w̃ are solutions of (4.1) corresponding to {gj}∞j=1 and {g̃j}∞j=1, respec-
tively, while v and ṽ are solutions in Lemma 2.3 corresponding to h(t) = w(0, t)
and h(t) = w̃(0, t), respectively. By applying (2.20) to v − ṽ and (3.6) to w − w̃,
we have

E
(

sup
s∈[0,t]

‖u(s) − ũ‖2
H1(0,L)

)
+ E

(
sup

s∈[0,t]

‖us(s) − ũs(s)‖2
L2(0,L)

)
(4.3)

+ E

(∫ t

0

∣∣ux(0, s) − ũx(0, s)
∣∣2 ds

)
+ E

(∫ t

0

∣∣us(0, s) − ũs(0, s)
∣∣2 ds

)

≤ MK E

( ∞∑
j=1

∫ t

0

‖gj − g̃j‖2
L2(0,L) ds

)
, for all t ∈ [0, T ].

Let u(0) = u0, and for given u(m), m ≥ 0, let u(m+1) be the solution of

u
(m+1)
tt − u(m+1)

xx + αu
(m+1)
t =

∞∑
j=1

(
fj + σju

(m)
)dBj

dt
for (x, t) ∈ (0, L) × (0, T ),

(4.4)

u(m+1)
x (0, t) = −Ku(m+1)(0, t)−, u(m+1)(L, t) = 0 for t ∈ (0, T ),(4.5)

u(m+1)(x, 0) = u0(x), u
(m+1)
t (x, 0) = u1(x) for x ∈ (0, L).(4.6)

As in (4.3), we have

E
(

sup
s∈[0,t]

‖u(m+1)(s) − u(m)(s)‖2
H1(0,L)

)
+ E

(
sup

s∈[0,t]

‖u(m+1)
s (s) − u(m)

s (s)‖2
L2(0,L)

)(4.7)

+ E

(∫ t

0

∣∣u(m+1)
x (0, s) − u(m)

x (0, s)
∣∣2 ds

)
+ E

(∫ t

0

∣∣u(m+1)
s (0, s) − u(m)

s (0, s)
∣∣2 ds

)

≤ MK E

(∫ t

0

‖u(m)(s) − u(m−1)(s)‖2
L2(0,L) ds

)
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for all t ∈ [0, T ], and all m ≥ 1. By induction, we obtain

E
(

sup
s∈[0,t]

‖u(m+1)(s) − u(m)(s)‖2
H1(0,L)

)
+ E

(
sup

s∈[0,t]

‖u(m+1)
s (s) − u(m)

s (s)‖2
L2(0,L)

)(4.8)

+ E

(∫ t

0

∣∣u(m+1)
x (0, s) − u(m)

x (0, s)
∣∣2 ds

)
+ E

(∫ t

0

∣∣u(m+1)
s (0, s) − u(m)

s (0, s)
∣∣2 ds

)
≤ Mm

K tm/m! for all t ∈ [0, T ], and all m ≥ 1,

where MK stands for a positive constant independent of m. Hence, {u(m)}∞m=1 is
a Cauchy sequence in

L2

(
Ω; C

(
[0, T ]; H1(0, L)

)
∩ C1

(
[0, T ]; L2(0, L)

))

and each u(m) is progressively measurable. By the same argument as in the proof
of Lemma 3.1, the limit u is a solution of

utt − uxx + αut =
∞∑

j=1

(
fj + σju

)dBj

dt
for (x, t) ∈ (0, L) × (0, T ),(4.9)

ux(0, t) = −Ku(0, t)−, u(L, t) = 0 for t ∈ (0, T ),(4.10)

u(x, 0) = u0(x), ut(x, 0) = u1(x) for x ∈ (0, L)(4.11)

such that

u ∈ L2
(
Ω; C([0, T ]; H1(0, L))

)
, ut ∈ L2

(
Ω; C([0, T ]; L2(0, L))

)
, and ut(0, ·) ∈
L2

(
Ω; L2(0, T )

)
.

Taking this u as a given function, let w ∈ L2

(
C

(
[0, T ]; H1(0, L)

)
∩ C1

(
[0, T ];

L2(0, L)
))

be a unique solution of

(4.12)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

wtt − wxx + αwt =
∑∞

j=1(fj + σju)dBj

dt for (x, t) ∈ (0, L) × (0, T ),
wx(0, t) = 0, w(L, t) = 0 for t ∈ (0, T ),

w(x, 0) = u0(x), wt(x, 0) = u1(x) for x ∈ (0, L).

By virtue of Lemma 2.3, we find that v = u − w is a unique solution of (2.16) -
(2.18) for h(t) = w(0, t) such that

v ∈ L2

(
Ω; C

(
[0, T ]; H1(0, L)

)
∩ C1

(
[0, T ]; L2(0, L)

))
.
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We now suppose u0(0) ≥ 0. It follows from (2.19) and (3.6) with f ≡ 0, gj =
fj + σju for j ≥ 1, that

E

(
sup

s∈[0,t]

‖u(s)‖2
H1(0,L)

)
+ E

(
sup

s∈[0,t]

‖∂su(s)‖2
L2(0,L)

)
+ E

(∫ t

0

|∂xu(0, s)|2 ds

)(4.13)

+ E

(∫ t

0

|∂su(0, s)|2ds

)
≤ ME

(
‖u0‖2

H1(0,L)

)
+ ME

(
‖u1‖2

L2(0,L)

)

+ M E

(∫ t

0

‖u(s)‖2
L2(0,L) ds

)
+ M

∞∑
j=1

E

(∫ t

0

‖fj(s)‖2
L2(0,L)ds

)

for all t ∈ [0, T ], and thus, by the Gronwall inequality,

E

(
sup

t∈[0,T ]

‖u(t)‖2
H1(0,L)

)
+ E

(
sup

t∈[0,T ]

‖∂tu(t)‖2
L2(0,L)

)(4.14)

+ E

(∫ T

0

|∂xu(0, t)|2 dt

)
+ E

(∫ T

0

|∂tu(0, t)|2dt

)

≤ ME
(
‖u0‖2

H1(0,L)

)
+ ME

(
‖u1‖2

L2(0,L)

)
+ M

∞∑
j=1

E

(∫ T

0

‖fj(t)‖2
L2(0,L)dt

)

where M denotes positive constants independent of K, u0 and u1. Next we denote
by uK the solution of (4.9) - (4.11) for each K > 0. Since L2

∗
(
Ω; L∞(0, T ; Hn(0, L))

)
is the dual of L2

(
Ω; L1(0, T ; Hn(0, L))

)
, n = 0, 1, it follows from (4.14) that there

is a sequence {uKm
}∞m=1 such that Km ↑ ∞ as m → ∞, and

uKm
→ u weak star in L2

∗
(
Ω; L∞(0, T ; H1(0, L))

)
,(4.15)

∂tuKm
→ ∂tu weak star in L2

∗
(
Ω; L∞(0, T ; L2(0, L))

)
(4.16)

as m → ∞, for some u. Each uKm
satisfies∫

A

∫ T

0

(
〈∂tuKm

, ∂tψ〉 − 〈∂xuKm
, ∂xψ〉 − 〈α∂tuKm

, ψ〉
)

dt dP

=
∫

A

∫ T

0

〈∂tψ,
∞∑

j=1

∫ t

0

(
fj + σjuKm

)
dBj〉dt dP

for every A ∈ F , and every ψ ∈ H1
0

(
(0, L) × (0, T )

)
. Here 〈· , ·〉 denotes the inner

product in L2(0, L). Since (4.15) and (4.16) imply that

(4.17) uKm
→ u weakly in L2

(
Ω; L2(0, T ; H1(0, L))

)
as m → ∞

and

(4.18) ∂tuKm
→ ∂tu weakly in L2

(
Ω; L2(0, T ; L2(0, L))

)
as m → ∞,

it follows from Lemma 1.1 that∫
A

∫ T

0

(
〈∂tu, ∂tψ〉 − 〈∂xu, ∂xψ〉 − 〈α∂tu, ψ〉

)
dt dP

=
∫

A

∫ T

0

〈∂tψ,

∞∑
j=1

∫ t

0

(
fj + σju

)
dBj〉dt dP
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for every A ∈ F , and every ψ ∈ H1
0

(
(0, L) × (0, T )

)
. Hence, there is Ω̃ ⊂ Ω such

that P (Ω \ Ω̃) = 0 and for each ω ∈ Ω̃,∫ T

0

(
〈∂tu, ∂tψ〉 − 〈∂xu, ∂xψ〉 − 〈α∂tu, ψ〉

)
dt(4.19)

=
∫ T

0

〈∂tψ,

∞∑
j=1

∫ t

0

(
fj + σju

)
dBj〉dt

for all ψ in a countable dense subset of H1
0

(
(0, L) × (0, T )

)
. Consequently, (4.19)

holds for every ψ ∈ H1
0

(
(0, L) × (0, T )

)
, for almost all ω, because u ∈ L2

∗
(
Ω;

L∞(0, T ; H1(0, L))
)

and ut ∈ L2
∗
(
Ω; L∞(0, T ; L2(0, L))

)
. Therefore, u satisfies (0.1)

for almost all ω.
Next we will show that u also satisfies the boundary conditions. (4.15) implies

that

(4.20) uKm
(0, · ) → u(0, · ) weak star in L2

∗
(
Ω; L∞(0, T )

)
and

(4.21) uKm
(L, · ) → u(L, · ) weak star in L2

∗
(
Ω; L∞(0, T )

)
.

Thus, u(L, ·) ≡ 0, for almost all ω. By the same argument as for (3.28), we find
that

∂xxuKm
→ ∂xxu weakly in L2

(
Ω; L2(0, L; H−1(0, T ))

)
and hence,

(4.22) ∂xuKm
(0, · ) → ∂xu(0, · ) weakly in L2

(
Ω; H−1(0, T )

)
.

By virtue of (4.14) and (4.22),

(4.23) ∂xuKm
(0, · ) → ∂xu(0, · ) weakly in L2

(
Ω; L2(0, T )

)
.

Since

(4.24) ∂xuKm
(0, · ) = −KmuKm

(0, · )−,

we derive from (4.14) that

(4.25) uKm
(0, · )− → 0 strongly in L2

(
Ω; L2(0, T )

)
.

Choose any nonnegative φ ∈ L2(Ω; L2(0, T )). Then, it follows from (4.20) that

(4.26)
∫

Ω

∫ T

0

(
uKm

(0, t)+ − uKm
(0, t)−

)
φ(t) dt dP →

∫
Ω

∫ T

0

u(0, t)φ(t) dt dP,

which, combined with (4.25), yields∫
Ω

∫ T

0

u(0, t)φ(t) dt dP ≥ 0.

Also, by (4.23) and (4.24), we have∫
Ω

∫ T

0

∂xu(0, t)φ(t) dt dP ≤ 0.

Hence, we find that

(4.27) u(0, t)− = 0
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and

(4.28) ∂xu(0, t) ≤ 0,

for almost all t ∈ [0, T ], for almost all ω. Next we show that {uKm
(0, ·)}∞m=1 is

strongly convergent in L2
(
Ω; L2(0, δ)

)
for some 0 < δ < T. Choose any Km < Kn

and set
v1 = uKm

, v2 = uKn
.

Then, we can write

∂xv1(0, t) − ∂xv2(0, t) = −Km

(
v1(0, t)− − v2(0, t)−

)
+ (Kn − Km)v2(0, t)−

and hence, by dropping all nonnegative terms,(
∂xv1(0, t) − ∂xv2(0, t)

)(
v1(0, t) − v2(0, t)

)
(4.29)

= −Km

(
v1(0, t)− − v2(0, t)−

)(
v1(0, t)+ − v2(0, t)+

)
+ Km

(
v1(0, t)− − v2(0, t)−

)2 + (Kn − Km)v2(0, t)−
(
v1(0, t)+ − v2(0, t)+

)
− (Kn − Km)v2(0, t)−

(
v1(0, t)− − v2(0, t)−

)
≥ −(Kn − Km)v2(0, t)− v1(0, t)−.

It follows from (4.14) and (4.24) that

(4.30) E

(∫ T

0

|v1(0, t)−|2dt

)
≤ C

K2
m

and

(4.31) E

(∫ T

0

|v2(0, t)−|2dt

)
≤ C

K2
n

where C stands for the right-hand side of (4.14). Hence, we have

E

(∫ T

0

(Kn − Km) v2(0, t)− v1(0, t)− dt

)
(4.32)

≤
(

Kn − Km

KmKn

)
C.

Applying Lemma 3.3 to v = v1 − v2 with help from (4.29) and (4.32), there is
some 0 < δ < T such that {uKm

(0, · )}∞m=1 is a Cauchy sequence in L2
(
Ω; L2(0, δ)

)
.

Since

∂xuKm
(0, · ) → ∂xu(0, · ) weakly in L2

(
Ω; L2(0, T )

)
as m → ∞,

we find that

uKm
(0, · )∂xuKm

(0, · ) → u(0, · )∂xu(0, · ) weakly in L1
(
Ω; L1(0, δ)

)
.

But by (4.14) and (4.24) again, we see that as m → ∞,

uKm
(0, · )∂xuKm

(0, · ) = Km

∣∣uKm
(0, · )−

∣∣2 → 0 strongly in L1
(
Ω; L1(0, T )

)
.

Hence, it holds that

(4.33) u(0, t)∂xu(0, t) = 0

for almost all t ∈ [0, δ], for almost all ω.
Therefore, u is a solution of (0.1) - (0.4) for 0 < t < δ such that

u ∈ L2
∗
(
Ω; L∞(0, δ; H1(0, L))

)
, ut ∈ L2

∗
(
Ω; L∞(0, δ; L2(0, L))

)
.



WAVE EQUATION WITH UNILATERAL BOUNDARY CONDITIONS 595

Here we note that δ is independent of the initial conditions. Again by applying
Lemma 2.1 to u−w where w is the solution of (4.12), we find that for almost all ω,

u ∈ C
(
[0, δ]; H1(0, L)

)
, ut ∈ C

(
[0, δ]; L2(0, L)

)
by taking slightly smaller δ. Since C

(
[0, δ]; H1(0, L)

)
and C

(
[0, δ]; L2(0, L)

)
are sep-

arable closed subspaces of L∞(
0, δ; H1(0, L)

)
and L∞(0, δ; L2(0, L)

)
, respectively,

we have

(4.34) u ∈ L2
(
Ω; C([0, δ]; H1(0, L))

)
, ut ∈ L2

(
Ω; C([0, δ]; L2(0, L))

)
.

See [14, pp. 72 - 73]. For the pathwise uniqueness of solution, we argue as follows.
Let v1 and v2 be two solutions of (0.1) - (0.4) such that

vi ∈ L2
(
Ω; C([0, T ]; H1(0, L))

)
, ∂tvi ∈ L2

(
Ω; C([0, T ]; L2(0, L))

)
, i = 1, 2,

for some T > 0. There is a subset Ω̃ ⊂ Ω such that P
(
Ω \ Ω̃

)
= 0, and for

each ω ∈ Ω̃, (0.3) is satisfied by v1 and v2, for almost all t ∈ [0, T ]. Fix any
ω ∈ Ω̃ and t where (0.3) is satisfied by v1 and v2. Set v = v2 − v1. If v(0, t) = 0,
then v(0, t)vx(0, t) = 0 holds. If v(0, t) > 0, then v2(0, t) > v1(0, t) ≥ 0. Hence,
∂xv2(0, t) = 0, and vx(0, t) = ∂xv2(0, t) − ∂xv1(0, t) ≥ 0. Thus, v(0, t)vx(0, t) ≥ 0.
By the same argument, if v(0, t) < 0, then v(0, t)vx(0, t) ≥ 0 again holds. According
to Remark 3.4, we conclude that v ≡ 0 on [0, T ]. Finally, since δ in (4.34) is
independent of the initial conditions, we can extend the time interval of existence
by using the pathwise uniqueness of solution.

§5. Proof of Theorem 1.5

Throughout this section, we assume that σj ≡ 0, for all j ≥ 1, and that all
fj ’s are deterministic and independent of time. The proof is based on the following
result of [10].

Suppose that X(t, s; z), 0 ≤ s ≤ t < ∞ is a pathwise unique solution of a certain
stochastic evolution equation such that X(s, s; z) = z. We assume the following
conditions.

[I] X(· , s; z) is a Ξ-valued continuous process adapted to {Ft}t≥s for each z ∈ Ξ
and s ≥ 0, where Ξ is a separable Banach space.

We define a function

P(s, z; t, Γ) = P
(
X(t, s; z) ∈ Γ

)
, for each Γ ∈ B(Ξ), 0 ≤ s ≤ t < ∞, z ∈ Ξ

where B(Ξ) is the Borel σ-algebra of Ξ.
[II] P(·, · ; ·, ·) is a time-homogeneous transition probability function. In other

words, it satisfies the following conditions.
(i) P(s, z; t, ·) is a probability measure over

(
Ξ,B(Ξ)

)
for all z ∈ Ξ, and 0 ≤ s <

t < ∞.
(ii) P(s, · ; t, Γ) is B(Ξ)-measurable for all 0 ≤ s < t < ∞ and Γ ∈ B(Ξ).
(iii) For all 0 ≤ s < t < ξ < ∞ and Γ ∈ B(Ξ),

P(s, z; ξ, Γ) =
∫

Ξ

P(s, z; t, dy)P(t, y; ξ, Γ).

(iv) P(s, · ; t, ·) = P(s + h, · ; t + h, ·) for all 0 ≤ s < t < ∞ and h > 0.
[III] If ‖z‖Ξ ≤ M, then

E
(
‖X(t, 0; z)‖Ξ

)
≤ CM , for all t ≥ 0,

for some positive constant CM .
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[IV] There is a separable Banach space Υ such that Ξ ⊂ Υ, the imbedding Ξ → Υ
is continuous, and each closed ball of finite radius in Ξ is a compact subset of Υ.
Furthermore, for each bounded continuous function ψ on Ξ, there is a sequence of
continuous functions {ψk}∞k=1 on Υ such that ψk is bounded uniformly in k and

lim
k→∞

ψk(y) = ψ(y), for each y ∈ Ξ.

[V] For each fixed 0 ≤ t < ∞, and each fixed closed ball S of finite radius in Ξ,
if {zn}∞n=1 is a sequence in S such that

zn → z in Υ,

then
E

(
φ(X(t, 0; zn))

)
→ E

(
φ(X(t, 0; z))

)
,

for every bounded continuous function φ on Υ.

Theorem ([10]). Under the assumptions [I] - [V], there is an invariant measure
for the above process X(·). In other words, there is a probability measure µ on Ξ
such that ∫

Ξ

E
(
ψ(X(t, 0; z))

)
µ(dz) =

∫
Ξ

ψ(z) µ(dz)

for all t ≥ 0, and every bounded continuous function ψ on Ξ.

For the proof of Theorem 1.5, it is enough to establish the above assumptions
[I] - [V].

We will first prove pathwise convergence of approximate solutions, where the
assumption σj ≡ 0, j ≥ 1, is essentially used.

Lemma 5.1. Let uK be the solution of (4.9) - (4.11) with σj ≡ 0, j ≥ 1. Then,
for each sequence {uKm

}∞m=1, it holds that for almost all ω,

uKm
→ u weak star in L∞(0, T ; H1(0, L)),(5.1)

∂tuKm
→ ∂tu weak star in L∞(0, T ; L2(0, L))(5.2)

as Km ↑ ∞, for each T > 0, where u is the solution in Theorem 1.4.

Proof. Choose any T > 0, and let w be the solution of (4.12) with σj ≡ 0, j ≥ 1.

Then, there is some Ω̃ ⊂ Ω such that P (Ω \ Ω̃) = 0, and for each ω ∈ Ω̃,

w ∈ C
(
[0, T ]; H1(0, L)

)
∩ C1

(
[0, T ]; L2(0, L)

)
, w(0, ·) ∈ H1(0, T ),

Φ =
∞∑

j=1

fj Bj(·) ∈ C([0, T ]; L2(0, L))

and w satisfies (4.12).
Let vK be the solution of (2.16) - (2.18) with h(t) = w(0, t). Then, according to

the construction of the solution uK of (4.9) - (4.11) with σj ≡ 0, j ≥ 1,

uK = w + vK , for each ω ∈ Ω̃.

It follows from (2.19) that

‖∂tvK(t)‖2
L2(0,L) + ‖vK(t)‖2

H1(0,L) +
∫ t

0

|∂xvK(0, s)|2ds(5.3)

≤ M

∫ t

0

|ws(0, s)|2ds
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for all t ∈ [0, T ], for each ω ∈ Ω̃. Here M is a constant independent of K and ω.

Now fix any ω ∈ Ω̃. By (5.3), there is a sequence {vKm
}∞m=1 such that

vKm
→ vω weak star in L∞(

0, T ; H1(0, L)
)
,(5.4)

∂tvKm
→ ∂tvω weak star in L∞(

0, T ; L2(0, L)
)

(5.5)

for some function vω. This vω must satisfy (2.16), (2.18) and

(5.6)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

vω(0, t) + w(0, t) ≥ 0,

∂xvω(0, t) ≤ 0,

∂xvω(0, t)
(
vω(0, t) + w(0, t)

)
= 0,

vω(L, t) = 0

for almost all t ∈ [0, T ]. Here we note that (5.4) and (5.5) imply that for any η > 0,

(5.7) vKm
→ vω strongly in C

(
[0, T ]; H1−η(0, L)

)
and hence,

vKm
(0, · ) → vω(0, · ) strongly in C

(
[0, T ]

)
.

For (5.7), see Lemma 1.7 of [9]. Meanwhile, by (5.3),

∂xvKm
(0, · )

(
vKm

(0, · ) + w(0, · )
)

= Km

∣∣(vKm
(0, · ) + w(0, · )

)−∣∣2 → 0 in L1(0, T ),

which yields the third property in (5.6). Next it follows from Lemma 2.1 that

(5.8) vω ∈ C
(
[0, T ); H1(0, L)

)
∩ C1

(
[0, T ); L2(0, L)

)
.

Suppose ṽω is a limit of another sequence. Then, by the same argument as in
Section 4, vω − ṽω satisfies the boundary condition(

vω(0, t) − ṽω(0, t)
)(

∂xvω(0, t) − ∂xṽω(0, t)
)
≥ 0

for almost all t ∈ [0, T ], for each ω ∈ Ω̃. Again by Remark 3.4, we conclude that
vω ≡ ṽω. Hence, every sequence converges to the same limit. We now fix any se-
quence {vKm

}∞m=1. For each ω ∈ Ω̃, we define vω as the limit of this sequence. Since
C

(
[0, T − ε]; H1(0, L)

)
is a separable closed subspace of L∞(

0, T − ε; H1(0, L)
)
, for

each 0 < ε < T, it follows from (5.4) and (5.8) that v = vω is C
(
[0, T−ε]; H1(0, L)

)
-

valued strongly measurable over
(
Ω,FT−ε

)
, which implies that v is also progres-

sively measurable. Similarly, ∂tv is C
(
[0, T − ε]; L2(0, L)

)
-valued strongly measur-

able over
(
Ω,FT−ε

)
. By virtue of (5.4), (5.5) and Fatou’s lemma, it holds that for

each 0 < ε < T,

E

(
‖v + w‖2

C([0,T−ε];H1(0,L)) + ‖vt + wt‖2
C([0,T−ε];L2(0,L))

)

≤ E

(
lim

m→∞

(
‖vKm

+ w‖2
L∞(0,T ;H1(0,L)) + ‖∂tvKm

+ wt‖2
L∞(0,T ;H1(0,L))

))

≤ lim
m→∞

E

(
‖vKm

+ w‖2
L∞(0,T ;H1(0,L)) + ‖∂tvKm

+ wt‖2
L∞(0,T ;H1(0,L))

)
,

which, together with (5.3), yields

v + w ∈ L2
(
Ω; C([0, T − ε]; H1(0, L))

)
, vt + wt ∈ L2

(
Ω; C([0, T − ε]; L2(0, L))

)
.
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Obviously, v + w is a solution of (0.1) - (0.4) on the interval [0, T − ε], for each
0 < ε < T. By the pathwise uniqueness of the solution, this coincides with the
solution in Theorem 1.4, and the proof of Lemma 5.1 is complete. �

We next establish the following estimate.

Lemma 5.2. Let u be the solution in Theorem 1.4 under the conditions of Theorem
1.5. It holds that

E

(
‖u(t)‖2

H1(0,L) + ‖ut(t)‖2
L2(0,L)

)
≤ M

for all t ≥ 0, for some constant M > 0.

Proof. Fix any T > 0 and K = k. Let w be the solution of (4.12) with σj ≡
0, j ≥ 1, and let vk be the solution in Lemma 2.3 with h = w(0, · ). We write
uk = vk + w. As above, let us define

u0,ν =
ν∑

k=1

〈u0, ek〉ek, u1,ν =
ν∑

k=1

〈u1, ek〉ek,

fj,ν =
ν∑

k=1

〈fj , ek〉ek, Φν =
∞∑

j=1

fj,ν Bj(·).

Let wν be the solution in Lemma 3.2 with fν + ∂tΨν replaced by ∂tΦν . Then, as
ν → ∞,

wν → w in L2

(
Ω; C

(
[0, T ]; H1(0, L)

)
∩ C1

(
[0, T ]; L2(0, L)

))
,(5.9)

wν(0, · ) → w(0, · ) in L2(Ω; H1(0, T )).(5.10)

After extending −k
(
vk(0, t) + w(0, t)

)− to be zero for t /∈ [0, T ], we define

qk,ν(t) = −
∫ ∞

−∞
k

(
vk(0, t − s) + w(0, t − s)

)−
ρν(s) ds

where ρν(t) = νρ(νt), ρ ∈ C∞
0

(
(0, 1)

)
such that ‖ρ‖L1(0,1) = 1.

Then, qk,ν ∈ C∞
0 (R) is adapted to {Ft} and, as ν → ∞,

(5.11) qk,ν → −k
(
vk(0, · ) + w(0, · )

)− in L2
(
Ω; L2(0, T )

)
.

Let vk,ν be the solution in Lemma 2.2 with q = qk,ν and f ≡ 0, satisfying the
additional regularity (2.13). Then, as ν → ∞,

(5.12) vk,ν → vk in L2

(
Ω; C

(
[0, T ]; H1(0, L)

)
∩ C1

(
[0, T ]; L2(0, L)

))
and

(5.13) ∂tvk,ν(0, · ) → ∂tvk(0, · ) in L2
(
Ω; L2(0, L)

)
.

We may write

d(∂twν + ∂tvk,ν) = (∂xxwν + ∂xxvk,ν)dt − α(∂twν + ∂tvk,ν)dt + dΦν

and
d
(
wν + vk,ν

)
=

(
∂twν + ∂tvk,ν

)
dt.

By applying Ito’s rule to the functionals

〈∂twν + ∂tvk,ν , ∂twν + ∂tvk,ν〉
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and
〈∂twν + ∂tvk,ν , wν + vk,ν〉,

we have for each ν ≥ 1,

‖∂twν(t) + ∂tvk,ν(t)‖2
L2(0,L) + ‖∂xwν(t) + ∂xvk,ν(t)‖2

L2(0,L)(5.14)

= ‖∂xu0,ν‖2
L2(0,L) + ‖u1,ν‖2

L2(0,L)

− 2
∫ t

0

qk,ν(s)
(
∂svk,ν(0, s) + ∂swν(0, s)

)
ds

− 2α

∫ t

0

‖∂swν(s) + ∂svk,ν(s)‖2
L2(0,L)ds

+ 2
∞∑

j=1

∫ t

0

〈∂swν(s) + ∂svk,ν(s), fj,ν〉dBj(s) +
∞∑

j=1

t ‖fj,ν‖2
L2(0,L)

and

ε〈∂twν(t) + ∂tvk,ν(t), wν(t) + vk,ν(t)〉 − ε〈u0,ν , u1,ν〉(5.15)

+
εα

2
‖wν(t) + vk,ν(t)‖2

L2(0,L) −
εα

2
‖u0,ν‖2

L2(0,L)

= − ε

∫ t

0

qk,ν(s)
(
vk,ν(0, s) + wν(0, s)

)
ds

− ε

∫ t

0

‖∂xwν(s) + ∂xvk,ν(s)‖2
L2(0,L)ds

+ ε

∫ t

0

‖∂swν(s) + ∂svk,ν(s)‖2
L2(0,L)ds

+ ε
∞∑

j=1

∫ t

0

〈wν(s) + vk,ν(s), fj,ν〉dBj(s)

for all t ∈ [0, T ], for almost all ω. Here ε is a positive constant, which will be
determined later. By means of (5.9) - (5.13), we can extract a subsequence

{
wνm

+
vk,νm

}∞
m=1

for pathwise convergence and pass νm → ∞ in (5.14) and (5.15) to
arrive at

‖∂tuk(t)‖2
L2(0,L) + ‖∂xuk(t)‖2

L2(0,L) = ‖∂xu0‖2
L2(0,L) + ‖u1‖2

L2(0,L)(5.16)

+ 2
∫ t

0

kuk(0, s)−∂suk(0, s)ds − 2α

∫ t

0

‖∂suk(s)‖2
L2(0,L)ds

+ 2
∞∑

j=1

∫ t

0

〈∂suk, fj〉dBj(s) +
∞∑

j=1

t ‖fj‖2
L2(0,L)

and

ε〈∂tuk(t), uk(t)〉 − ε〈u0, u1〉 +
εα

2
‖uk(t)‖2

L2(0,L) −
εα

2
‖u0‖2

L2(0,L)(5.17)

= ε

∫ t

0

kuk(0, s)−uk(0, s)ds − ε

∫ t

0

‖∂xuk(s)‖2
L2(0,L)ds

+ ε

∫ t

0

‖∂suk(s)‖2
L2(0,L)ds + ε

∞∑
j=1

∫ t

0

〈uk(s), fj〉dBj(s)
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for all t ∈ [0, T ], for almost all ω ∈ Ω. Since T > 0 could be chosen arbitrarily,
(5.16) and (5.17) are valid for all t ≥ 0, for almost all ω.

Next, by means of (1.1) and u0(0) ≥ 0, we find that

(5.18)
∫ t

0

kuk(0, s)−∂suk(0, s)ds = −k

2

∣∣uk(0, t)−
∣∣2.

Let us set

Qk(t) = ‖∂tuk(t)‖2
L2(0,L) + ‖∂xuk(t)‖2

L2(0,L) + ε〈∂tuk(t), uk(t)〉 +
εα

2
‖uk(t)‖2

L2(0,L)

and choose sufficiently small 0 < ε < α such that

c1

(
‖∂tuk(t)‖2

L2(0,L)+‖uk(t)‖2
H1(0,L)

)
≤Qk(t) ≤ c2

(
‖∂tuk(t)‖2

L2(0,L)+‖uk(t)‖2
H1(0,L)

)
for some positive constants c1, c2 independent of uk(t). We now set

Rk(t) = Qk(t) + k|uk(0, t)−|2.
It follows that for any 0 ≤ t1 < t2,

E(Rk(t2)) − E(Rk(t1)) = −(2α − ε)
∫ t2

t1

E
(
‖∂tuk(t)‖2

L2(0,L)

)
dt(5.19)

− ε

∫ t2

t1

E
(
k|uk(0, t)−|2

)
dt − ε

∫ t2

t1

E
(
‖∂xuk(t)‖2

L2(0,L)

)
dt

+
∞∑

j=1

(t2 − t1)‖fj‖2
L2(0,L).

Hence, there is some positive constant c independent of k such that

d

dt
E(Rk(t)) ≤ − c E(Rk(t)) +

∞∑
j=1

‖fj‖2
L2(0,L)

for all t > 0, which implies that

(5.20) E(Rk(t)) ≤ M, for all k ≥ 1, and all t ≥ 0.

Meanwhile, according to Lemma 5.1, there is Ω̃ ⊂ Ω such that P (Ω \ Ω̃) = 0 and
for each ω ∈ Ω̃,

uk → u weak star in L∞(
0, T ; H1(0, L)

)
, as k → ∞,(5.21)

∂tuk → ut weak star in L∞(
0, T ; L2(0, L)

)
, as k → ∞,(5.22)

Φ ∈ C
(
[0, T ]; L2(0, L)

)
(5.23)

and
(5.24)

u and all uk’s satisfy (0.1) in the sense of distributions over (0, L) × (0, T ),

for all T > 0. It follows that for each ω ∈ Ω̃,

(5.25) ∂t

(
∂tuk − Φ

)
→ ∂t

(
ut − Φ

)
weak star in L∞(0, T ; H−1(0, L)),

as k → ∞. Thus, for each ω ∈ Ω̃, it holds that

(5.26) uk → u in C([0, T ]; H1−η(0, L))

and

(5.27) ∂tuk → ut in C([0, T ]; H−η(0, L))
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for any η > 0, for all T > 0. See Lemma 1.7 of [9]. Consequently, for all t ≥ 0, and
all ω ∈ Ω̃,

(5.28) uk(t) → u(t) in H1−η(0, L)

and

(5.29) ∂tuk(t) → ut(t) in H−η(0, L),

as k → ∞. Now fix any t ≥ 0. Define

Sk(t) = ‖uk(t)‖2
H1(0,L) + ‖∂tuk(t)‖2

L2(0,L).

By Fatou’s lemma, (5.20) yields

(5.30) E

(
lim

k→∞
Sk(t)

)
≤ M

where M is a positive constant independent of t. This implies that there is some
Ωt ⊂ Ω such that P (Ω \ Ωt) = 0 and, for each ω ∈ Ωt,

lim
k→∞

Sk(t) < ∞,

which, combined with (5.28) and (5.29), implies that for each fixed ω ∈ Ω̃ ∩ Ωt,
there is a subsequence {ukm

}∞m=1 such that

lim
m→∞

Skm
(t) = lim

k→∞
Sk(t) < ∞,

ukm
(t) → u(t) weakly in H1(0, L)

and
∂tukm

(t) → ut(t) weakly in L2(0, L).

Consequently,
‖u(t)‖2

H1(0,L) + ‖ut(t)‖2
L2(0,L) ≤ lim

k→∞
Sk(t).

This is true for each ω ∈ Ωt ∩ Ω̃. Hence, we have

E
(
‖u(t)‖2

H1(0,L) + ‖ut(t)‖2
L2(0,L)

)
≤ M

for all t ≥ 0. This proves the lemma. �

Next we define

Y =
{
z = (z1, z2) | z1 ∈ H1(0, L), z1(0) ≥ 0, z1(L) = 0, z2 ∈ L2(0, L)

}
.

Y is a closed subset of H1(0, L) × L2(0, L), and thus, B(Y) ⊂ B
(
H1(0, L) ×

L2(0, L)
)
. For each z ∈ Y , we write

(5.31) X(t; s, z) = (u(t), ut(t)), for t ≥ s ≥ 0

where u is the solution of (0.1) - (0.4) with the initial condition (u(s), ut(s)) = z.
We then write

P(s, z; t, Γ) = P
{
X(t; s, z) ∈ Γ

}
for each Γ ∈ B

(
H1(0, L) × L2(0, L)

)
and t ≥ s ≥ 0.
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Lemma 5.3. For each t > s ≥ 0, and z ∈ Y , P(s, z; t, · ) is a probability measure

over
(

H1(0, L) × L2(0, L), B
(
H1(0, L) × L2(0, L)

))
supported on Y . For each

t > s ≥ 0 and Γ ∈ B
(
H1(0, L)×L2(0, L)

)
, P(s, · ; t, Γ) is B

(
H1(0, L)×L2(0, L)

)
-

measurable.

Proof. The first assertion is obvious from Theorem 1.4. We will prove the sec-
ond assertion. Choose any arbitrary sequence {zn}∞n=1 in Y such that zn → z in
H1(0, L)×L2(0, L), as n → ∞. Let wn be the solution of (4.12) with σj ≡ 0, j ≥ 1,
and the initial condition (wn(s), ∂twn(s)) = zn for each n ≥ 1. Let vk,n be
the solution in Lemma 2.3 with K = k, h = wn(0, · ) and the initial condition
vk,n(· , s) = 0, ∂tvk,n(· , s) = 0. We write

Xk(· , s; zn) =
(
wn + vk,n, ∂twn + ∂tvk,n

)
.

Then, for each t ≥ s ≥ 0,

(5.32) Xk(t, s; zn) → Xk(t, s; z) in L2
(
Ω; H1(0, L) × L2(0, L)

)
as n → ∞. We define a function space H∗(0, L) by

H∗(0, L) =
{ ∞∑

k=1

dkek

∣∣∣∣
∞∑

k=1

|dk|2
λk

< ∞
}

where the λk’s and ek’s are the same as in (3.7).
Let ψ be a bounded continuous function on L2(0, L) × H∗(0, L). Then, it is

also a bounded continuous function on H1(0, L) × L2(0, L). It follows from (5.32)
that there is a subsequence

{
Xk(t, s; znm

)
}∞

m=1
that converges to Xk(t, s; z) in

H1(0, L) × L2(0, L), for almost all ω. This implies that∫
Ω

ψ(Xk(t, s; zn))dP →
∫

Ω

ψ(Xk(t, s; z))dP

as n → ∞, and hence,∫
Ω

ψ(Xk(t, s; z))dP is continuous in z ∈ Y .

Meanwhile, it follows from (5.26) and (5.27) that for almost all ω ∈ Ω,

Xk(t, s; z) → X(t, s; z) in L2(0, L) × H∗(0, L)

as k → ∞, because H−η(0, L) is imbedded into H∗(0, L) for 0 ≤ η ≤ 1/2. Hence,

(5.33)
∫

Ω

ψ(X(t, s; z))dP is B
(
H1(0, L) × L2(0, L)

)
-measurable in z.

Next let φ be a bounded continuous function on H1(0, L) × L2(0, L). We define
φm by

φm(z) = φ
(
(Πmz1, Πmz2)

)
where z = (z1, z2) ∈ L2(0, L)×H∗(0, L) and Πm is the projection onto the subspace
spanned by {e1, · · · , em}. Then, for each m, φm is a bounded continuous function
on L2(0, L) × H∗(0, L) and for each y ∈ Y ,

(5.34) φm(y) → φ(y) as m → ∞.

Thus, by (5.33),∫
Ω

φm(X(t, s; z))dP is B
(
H1(0, L) × L2(0, L)

)
-measurable in z
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and, by (5.34),∫
Ω

φ(X(t, s; z))dP is B
(
H1(0, L) × L2(0, L)

)
-measurable in z.

Thus, P(s, z; t, Γ) is B
(
H1(0, L) × L2(0, L)

)
-measurable in z, for each t > s ≥ 0

and each Γ ∈ B
(
H1(0, L) × L2(0, L)

)
.

�

Lemma 5.4. For each t ≥ 0, s ≥ 0, z ∈ Y and Γ ∈ B
(
H1(0, L) × L2(0, L)

)
, it

holds that
P(0, z; t, Γ) = P(s, z; t + s, Γ).

Proof. Fix any s > 0 and z = (u0, u1) ∈ Y . Let us write

B∗
j (t) = Bj(t + s) − Bj(s)

and

Φ∗(t) = Φ(t + s) − Φ(s) =
∞∑

j=1

fj B∗
j (t).

Choose any T > 0, and let w∗ be the solution of

(5.35)

⎧⎪⎪⎨
⎪⎪⎩

w∗
tt − w∗

xx + αw∗
t = ∂tΦ∗ for (x, t) ∈ (0, L) × (0, T ),

w∗
x(0, t) = 0, w∗(L, t) = 0 for t ∈ (0, T ),

w∗(x, 0) = u0(x), w∗
t (x, 0) = u1(x) for x ∈ (0, L).

Let w be the solution of (4.12). Then, w and w∗ have the same distribution in the
sense that

P
(
(w, wt) ∈ G

)
= P

(
(w∗, w∗

t ) ∈ G
)

for every G ∈ B
(

C
(
[0, T ]; H1(0, L)×L2(0, L)

))
. Let vk and v∗k be the solutions in

Lemma 2.3 with K = k, and h = w(0, · ), h = w∗(0, · ), respectively. The mapping

(w, wt) 
→ h 
→ (vk, ∂tvk)

is continuous from C
(
[0, T ]; H1(0, L)×L2(0, L)

)
into itself. Therefore, it holds that

(5.36)

P

((
w(t) + vk(t), wt(t) + ∂tvk(t)

)
∈ Γ

)
= P

((
w∗(t) + v∗k(t), w∗

t (t) + ∂tv
∗
k(t)

)
∈ Γ

)

for every Γ ∈ B
(
H1(0, L) × L2(0, L)

)
, and every t ∈ [0, T ]. Let φ be a continuous

bounded function on H1(0, L) × L2(0, L). As above, let {φn}∞n=1 be a sequence
of uniformly bounded functions on H1(0, L) × L2(0, L) which are continuous with
respect to the norm of L2(0, L) × H∗(0, L) such that

(5.37) φn(y) → φ(y) for each y ∈ Y .

It follows from Lemma 5.1 that for almost all ω ∈ Ω,

Xk = (w + vk, ∂tw + ∂tvk) → X = (w + v, wt + vt)

weak star in L∞(0, T ; H1(0, L) × L2(0, L)), as k → ∞, and

X∗
k = (w∗ + v∗k, ∂tw

∗ + ∂tv
∗
k) → X∗ = (w∗ + v∗, w∗

t + v∗t )
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weak star in L∞(
0, T ; H1(0, L) × L2(0, L)

)
. In the meantime, we can write

∂t

(
wt + ∂tvk − Φ

)
= wxx + ∂xxvk − α(wt + ∂tvk)

and
∂t

(
w∗

t + ∂tv
∗
k − Φ∗) = w∗

xx + ∂xxv∗k − α(w∗
t + ∂tv

∗
k).

As above, it follows from (5.26) and (5.27) that for almost all ω ∈ Ω,

Xk = (w + vk, ∂tw + ∂tvk) → X = (w + v, wt + vt)

strongly in C
(
[0, T ]; L2(0, L) × H∗(0, L)

)
, as k → ∞, and

X∗
k = (w∗ + v∗k, ∂tw

∗ + ∂tv
∗
k) → X∗ = (w∗ + v∗, w∗

t + v∗t )

strongly in C
(
[0, T ]; L2(0, L) × H∗(0, L)

)
. Hence, for each n ≥ 1, and each t ∈

[0, T ], ∫
Ω

φn(Xk(t))dP →
∫

Ω

φn(X(t))dP

and ∫
Ω

φn(X∗
k(t))dP →

∫
Ω

φn(X∗(t))dP,

as k → ∞. But, by (5.36), we see that for each n ≥ 1,∫
Ω

φn(Xk(t))dP =
∫

Ω

φn(X∗
k(t))dP.

Thus, for all n ≥ 1, ∫
Ω

φn(X(t))dP =
∫

Ω

φn(X∗(t))dP.

By passing n → ∞, we use (5.37) to arrive at∫
Ω

φ(X(t))dP =
∫

Ω

φ(X∗(t))dP,

which completes the proof of Lemma 5.4. �

Next let {zn}∞n=1 be a sequence in Y such that it is bounded with respect to the
norm of H1(0, L) × L2(0, L), and

zn → z in L2(0, L) × H∗(0, L).

This implies that z ∈ Y . Let us write Xn =
(
un, ∂tun

)
where un is the solution

of (0.1) - (0.4) if the initial condition is Xn(0) = zn, and write X = (u, ut) if the
initial condition is X(0) = z.

Lemma 5.5. For any T > 0, and any bounded continuous function φ on L2(0, L)×
H∗(0, L), ∫

Ω

φ
(
Xn(T )

)
dP →

∫
Ω

φ
(
X(T )

)
dP as n → ∞.

Proof. Fix any T > 0. Since the sequence {zn}∞n=1 is bounded in Y , it follows from
(4.14) - (4.16) and (4.23) that

(5.38) E

(
sup

0≤t≤T
‖Xn(t)‖2

H1(0,L)×L2(0,L)

)
+ E

(
‖∂xun(0, · )‖2

L2(0,T )

)
≤ M
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for all n ≥ 1, for some positive constant M. Choose any ε > 0. Then there is
some constant K > 0 independent of n such that

(5.39) P
{

sup
0≤t≤T

‖Xn(t)‖H1(0,L)×L2(0,L) ≥ K
}

+ P
{
‖∂xun(0, · )‖L2(0,T ) ≥ K

}
< ε.

Choose any bounded continuous function φ on L2(0, L) × H∗(0, L). We assume
φ ≥ 0, and let

C = sup
z∈L2(0,L)×H∗(0,L)

φ(z),(5.40)

An,K =
{
ω

∣∣ sup
0≤t≤T

‖Xn(t)‖H1(0,L)×L2(0,L) ≤ K, ‖∂xun(0, ·)‖L2(0,T ) ≤ K
}

and
Ξn = φ(Xn(T )) χ{An,K}

where χ{·} is the characteristic function. We can also define a subset Ω† ⊂ Ω such
that P (Ω \ Ω†) = 0 and for each fixed ω ∈ Ω†,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X(ω) and Xn(ω), n ≥ 1, belong to C
(
[0, T ]; H1(0, L) × L2(0, L)

)
,

∂xu(0, ·) and ∂xun(0, ·), n ≥ 1, belong to L2(0, T ),

Φ(ω) ∈ C
(
[0, T ]; L2(0, L)

)
,

u and un, n ≥ 1, satisfy (0.1) in the sense of distributions,

u and un, n ≥ 1, satisfy (0.2) for almost all t ∈ [0, T ].

We will show that for all ω ∈ Ω†,

(5.41) 0 ≤ lim
n→∞

Ξn(ω) ≤ φ
(
X(T, ω)

)
.

If limn→∞ Ξn(ω) = 0, then it holds because φ ≥ 0. Suppose limn→∞ Ξn(ω) > 0,
for some ω ∈ Ω†. Then, there is a subsequence {Xnk

(ω)}∞k=1 such that

lim
n→∞

Ξn(ω) = lim
k→∞

Ξnk
(ω) = lim

k→∞
φ(Xnk

(T, ω)),(5.42)

sup
0≤t≤T

‖Xnk
(t, ω)‖H1(0,L)×L2(0,L) ≤ K,(5.43)

‖∂xunk
(0, · )‖L2(0,T ) ≤ K,(5.44)

unk
→ u∗ weak star in L∞(

0, T ; H1(0, L)
)
,(5.45)

∂tunk
→ ∂tu

∗ weak star in L∞(
0, T ; L2(0, L)

)
,(5.46)

and

(5.47) ∂xunk
(0, ·) → ∂xu∗(0, · ) weakly in L2(0, T )

where u∗ satisfies (0.1) in the sense of distributions for this fixed ω. As above, it
follows from (0.1), (5.45) and (5.46) that

(5.48) unk
→ u∗ strongly in C

(
[0, T ]; H1−η(0, L)

)
and

(5.49) ∂tunk
→ ∂tu

∗ strongly in C
(
[0, T ]; H−η(0, L)

)
for every η > 0. Hence, u∗ satisfies (0.2) - (0.4). Since σj ≡ 0, j ≥ 1, we can
apply the uniqueness of solution of (0.1) - (0.4) for this fixed ω to conclude that

(5.50) X(ω) =
(
u∗, ∂tu

∗).
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By (5.48) and (5.49), we see that

Xnk
(T, ω) → X(T, ω) in L2(0, L) × H∗(0, L).

Hence,
φ(Xnk

(T, ω)) → φ(X(T, ω)), as k → ∞
and thus,

lim
n→∞

Ξn(ω) = φ(X(T, ω))

and the inequality holds. Consequently,

lim
n→∞

∫
Ω

Ξn(ω)dP ≤
∫

Ω

lim
n→∞

Ξn(ω)dP

≤
∫

Ω

φ(X(T, ω))dP.

Hence, by (5.39) and (5.40),

lim
n→∞

∫
Ω

φ
(
Xn(T, ω)

)
dP − Cε ≤

∫
Ω

φ
(
X(T, ω)

)
dP.

Next let
Θn = φ(Xn(T )) χ{An,K} ∨ C

(
1 − χ{An,K}

)
where C is the same constant as in (5.40). We will show that for all ω ∈ Ω†,

(5.51) φ(X(T, ω)) ≤ lim
n→∞

Θn(ω).

If limn→∞ Θn(ω) = C, then it is true because of the definition of C. Suppose that
limn→∞ Θn(ω) < C, for some ω ∈ Ω†. Then, as above, there is a subsequence
{Θnk

}∞k=1 such that

(5.52) lim
n→∞

Θn(ω) = lim
k→∞

Θnk
(ω) = lim

k→∞
φ(Xnk

(T, ω))

and (5.43) - (5.49) hold for this ω. By the same argument as above, as k → ∞,

Xnk
(T, ω) → X(T, ω) in L2(0, L) × H∗(0, L)

and hence,
lim

n→∞
Θn(ω) = lim

k→∞
φ(Xnk

(T, ω)) = φ(X(T, ω)).

Thus, the inequality holds for all ω ∈ Ω†. So it follows from (5.39) and (5.40) that∫
Ω

φ(X(T, ω))dP ≤
∫

Ω

lim
n→∞

Θn(ω)dP

≤ lim
n→∞

∫
Ω

Θn(ω)dP ≤ lim
n→∞

∫
Ω

φ(Xn(T, ω))dP + Cε.

Since ε > 0 is arbitrary, we have

lim
n→∞

∫
Ω

φ(Xn(T, ω))dP =
∫

Ω

φ(X(T, ω))dP.

We can drop the assumption that φ ≥ 0, by writing φ = φ+ − φ−. �
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We now check the conditions [I] - [V] for the existence of an invariant measure.
Here we take Ξ = H1(0, L) × L2(0, L) and Υ = L2(0, L) × H∗(0, L). X(t, s; z) is
defined by (5.31) for t ≥ s ≥ 0 and z ∈ Y . Even though X(t, s; z) is defined only
for z ∈ Y , this is not a restriction because X(t, s; z) ∈ Y for all t ≥ s ≥ 0, for
almost all ω, if z ∈ Y . Accordingly, the condition on {ψk}∞k=1 in [IV] is relaxed by

lim
k→∞

ψk(y) = ψ(y), for all y ∈ Y ,

and the sequence {zn}∞n=1 in [V] is chosen from S ∩ Y . [I] follows from Theorem
1.4 and [II] is verified by Lemmas 5.3 and 5.4. [III] is verified by Lemma 5.2. [V] is
verified by Lemma 5.5. It remains to verify [IV]. Let ψ be a bounded continuous
function on Ξ. We define ψk by

ψk(y) = ψ
(
(Πky1, Πky2)

)
, for each y = (y1, y2) ∈ Υ,

where Πk is the projection onto the subspace spanned by {e1, e2, · · · , ek}. Then,
ψk satisfies the required property. This completes the proof of Theorem 1.5.
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