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GEOMETRY OF REGULAR MODULES
OVER CANONICAL ALGEBRAS

GRZEGORZ BOBIŃSKI

Dedicated to the memory of Professor Stanis�law Balcerzyk

Abstract. We classify canonical algebras such that for every dimension vector
of a regular module the corresponding module variety is normal (respectively, a
complete intersection). We also prove that for the dimension vectors of regular
modules normality is equivalent to irreducibility.

1. Introduction and main result

Throughout the paper k is a fixed algebraically closed field. By an algebra we
always mean a finite dimensional algebra over k and by a module a finite dimensional
left module.

In [20, 3.7] Ringel introduced a class of so-called canonical algebras (see Subsec-
tion 2.4 for a definition). A canonical algebra Λ depends on a sequence (m1,. . ., mn),
n > 2, of positive integers greater than 1, and on a sequence (λ3, . . . , λn) of pairwise
distinct nonzero elements of k. In the above situation we say that Λ is a canonical
algebra of type (m1, . . . , mn). These algebras play a prominent role in the repre-
sentation theory of algebras. For example their module categories serve as model
categories for module categories of algebras admitting separating tubular families
(see [17,21]). The module categories of canonical algebras are derived equivalent to
the categories of coherent sheaves over weighted projective lines (see [11]). More-
over, according to [13, Theorem 3.1] every quasi-titled algebra is derived equivalent
either to a hereditary algebra or to a canonical one.

An important and interesting direction of research in the representation theory
of algebras is the study of varieties modΛ(d) of Λ-modules of dimension vector d
(see Section 3.1), where d is an element of the Grothendieck group K0(Λ) (for some
reviews of results see for example [7,12,16]). In particular, varieties of modules over
canonical algebras have been studied. In [2] Skowroński and the author proved that
if Λ is a tame canonical algebra and d is the dimension vector of an indecomposable
Λ-module, then modΛ(d) is a complete intersection with at most 2 irreducible
components. It was also shown that in the above case irreducibility of modΛ(d) is
equivalent to normality.

For a canonical algebra Λ one may distinguish so-called regular modules (see Sub-
section 2.5). This class of modules also received special attention from a geometric
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point of view. Skowroński and the author showed in [3] that if d is the dimension
vector of a regular module over a tame canonical algebra Λ, then the correspond-
ing variety is an irreducible and normal complete intersection. Similar results for
special cases of wild canonical algebras were obtained by Barot and Schröer in [1].
It is also worth mentioning that if d is the dimension vector of a regular module
over a canonical algebra, then descriptions of the semi-invariants with respect to
the natural action of GL(d) were given independently by Skowroński and Weyman
in [22] and Domokos and Lenzing in [9, 10].

Our first theorem generalizes to regular modules over arbitrary canonical algebra
a result obtained for indecomposable modules over tame canonical algebra in [2].

Theorem 1.1. Let Λ be a canonical algebra and let d be the dimension vector of
a regular Λ-module. Then modΛ(d) is normal if and only if it is irreducible.

Let a(d) = dim GL(d)−〈d,d〉 for d ∈ K0(Λ), where GL(d) is the corresponding
product of general linear groups (see Subsection 3.1) and 〈−,−〉 : K0(Λ)×K0(Λ) →
Z is the Ringel bilinear form (see Subsection 2.3). We have the following criterion
for a complete intersection.

Theorem 1.2. Let Λ be a canonical algebra and let d be the dimension vector
of a regular Λ-module. Then modΛ(d) is a complete intersection if and only if
dim modΛ(d) = a(d).

In Propositions 4.3 and 4.5 we show how the above theorems can be translated
into numeric properties of the Ringel form.

Our aim in this paper is to classify canonical algebras such that the correspond-
ing module varieties have “good” geometric properties for all dimension vectors of
regular modules. It is done in the following theorem.

Theorem 1.3. Let Λ be a canonical algebra of type (m1, . . . , mn).
(1) The varieties modΛ(d) are complete intersections for all dimension vectors

d of regular Λ-modules if and only if
1

m1−1 + · · · + 1
mn−1 ≥ 2n − 5.

(2) The varieties modΛ(d) are normal for all dimension vectors d of regular
Λ-modules if and only if

1
m1−1 + · · · + 1

mn−1 > 2n − 5.

Recall that if Λ is a canonical algebra of type (m1, . . . , mn), then Λ is of tame
(respectively, domestic) representation type if and only if

1
m1

+ · · · + 1
mn

≥ n − 2 (> n − 2).

A natural assumption when dealing with geometric problems is that d is the
dimension vector of a sincere module M (i.e., every simple module occurs as a
composition factor of M). Such dimension vectors are also called sincere. We have
the corresponding result in this case.

Theorem 1.4. Let Λ be a canonical algebra of type (m1, . . . , mn).
(1) The varieties modΛ(d) are complete intersections for all dimension vectors

d of sincere regular Λ-modules if and only if
1

m1−1 + · · · + 1
mn−1 ≥ 2n − 5.
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(2) The varieties modΛ(d) are normal for all dimension vectors d of sincere
regular Λ-modules if and only if either

1
m1−1 + · · · + 1

mn−1 > 2n − 5,

or n = 5 and mi = 2 for all i = 1, . . . , 5.

Let h be the dimension vector of the multiplicity free sincere semi-simple Λ-
module (see Subsection 2.4). It can be observed from [3, 10, 22] that results about
modΛ(d) depend on whether there exists a regular Λ-module M of dimension vector
d which has a direct summand of dimension vector h. Let R′ be the set of all such
dimension vectors (see also Subsection 2.6).

Theorem 1.5. Let Λ be a canonical algebra of type (m1, . . . , mn).
(1) The varieties modΛ(d) are complete intersections for all dimension vectors

d ∈ R′ if and only if
1

m1−1 + · · · + 1
mn−1 ≥ 2n − 5.

(2) The varieties modΛ(d) are normal for all dimension vectors d ∈ R′ if and
only if

1
m1−1 + · · · + 1

mn−1 ≥ 2n − 5.

We exclude from our considerations the case of canonical algebras of type
(m1, m2), since in this case the module varieties are just affine spaces. However,
the above theorems are also trivially satisfied in this case, if we set 1

0 = ∞.
The paper is organized as follows. In Section 2 we present necessary facts about

canonical algebras. In Section 3 we collect some useful facts about varieties of
modules, while in Section 4 we prove Theorems 1.1 and 1.2, and show how to
reduce the proofs of Theorems 1.3, 1.4 and 1.5 to questions about properties of the
Ringel form. Next in Section 5 we prove inequalities which show that for canonical
algebras satisfying the conditions of Theorems 1.3, 1.4 and 1.5, the corresponding
module varieties have the required properties. On the other hand, in Section 6 we
present examples showing that the above statements do not hold for the remaining
canonical algebras.

The results presented in this paper were obtained while the author held a one year
post-doc position at the University of Bern. The author gratefully acknowledges
the support from the Schweizerischer Nationalfonds and the Polish Scientific Grant
KBN No. 1 P03A 018 27. The author also expresses his gratitude to Professor
Riedtmann for discussions, which were an inspiration for this research.

2. Facts about canonical algebras

Throughout the paper, by N and Z we denote the sets of nonnegative integers
and integers, respectively. If i, j ∈ Z, then [i, j] denotes the set of all l ∈ Z such
that i ≤ l ≤ j.

2.1. Recall that by a quiver ∆ we mean a finite set ∆0 of vertices and a finite set ∆1

of arrows together with two maps s, t : ∆1 → ∆0, which assign to an arrow γ ∈ ∆1

its starting and terminating vertex, respectively. By a path of length m ≥ 1 in ∆ we
mean a sequence σ = γ1 · · · γm of arrows such that sγi = tγi+1 for i ∈ [1, m−1]. We
write sσ and tσ for sγm and tγ1, respectively. For each vertex x of ∆ we introduce
a path x of length 0 such that sx = x = tx. We only consider quivers without
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oriented cycles, i.e., we assume that there exists no path σ of positive length such
that tσ = sσ.

With a quiver ∆ we associate its path algebra k∆, which as a k-vector space
has a basis formed by all paths in ∆ and whose multiplication is induced by the
composition of paths. By a relation ρ in ∆ we mean a linear combination of paths
of length at least 2 with the same starting and terminating vertex. This common
starting vertex is denoted by sρ and the common terminating vertex by tρ. A set
R of relations is called minimal if for every ρ ∈ R, ρ does not belong to the ideal
〈R \ {ρ}〉 of k∆ generated by R \ {ρ}. A pair (∆, R) consisting of a quiver ∆ and
a minimal set of relations R is called a bound quiver. If (∆, R) is a bound quiver,
then the algebra k∆/〈R〉 is called the path algebra of (∆, R).

2.2. Let Λ be the path algebra of a bound quiver (∆, R). It is known that the
category modΛ of Λ-modules is equivalent to the category of representations of
(∆, R) (see for example [20, 2.1]). Recall, that by a representation of (∆, R) we
mean a collection (Mx, Mγ)x∈∆0, γ∈∆1 of finite dimensional k-vector spaces Mx,
x ∈ ∆0, and k-linear maps Mγ : Msγ → Mtγ , γ ∈ ∆1, such that Mρ = 0 for all
ρ ∈ R. Here, if σ = γ1 · · · γm is a path in ∆, then we write Mσ = Mγ1 · · ·Mγm

, and
if ρ = λ1σ1+· · ·+λnσn is a relation in ∆, then Mρ = λ1Mσ1+· · ·+λnMσn

. If M and
N are two representations of (∆, R), then by a morphism f : M → N we mean a
collection (fx)x∈∆0 of linear maps fx : Mx → Nx, x ∈ ∆0, such that ftγMγ = Nγfsγ

for all γ ∈ ∆1. From now on we identify Λ-modules with representations of (∆, R).
In particular, for each Λ-module M we define its dimension vector dimM ∈ N∆0

by (dimM)x = dimk Mx, x ∈ ∆0.

2.3. Let Λ be the path algebra of a bound quiver (∆, R). For a vertex x of ∆0 we
denote by ex the element of the canonical basis of Z∆0 corresponding to x. For
d ∈ Z∆0 we write d =

∑
x∈∆0

dxex. Assume that gl. dim Λ ≤ 2. We have the
Ringel bilinear form 〈−,−〉 : Z∆0 × Z∆0 → Z defined by

〈d′,d′′〉 =
∑

x∈∆0

d′xd′′x −
∑

γ∈∆1

d′sγd′′tγ +
∑
ρ∈R

d′sρd
′′
tρ.

It is known (see [4, 2.2]), that if M and N are Λ-modules, then

〈dimM,dimN〉 = [M, N ] − [M, N ]1 + [M, N ]2,

where following Bongartz [5] we write [M, N ] = dimk HomΛ(M, N), [M, N ]1 =
dimk Ext1Λ(M, N) and [M, N ]2 = dimk Ext2Λ(M, N).

2.4. Let m = (m1, . . . , mn), n ≥ 3, be a sequence of integers greater than 1 and
let λ = (λ3, . . . , λn) be a sequence of pairwise distinct nonzero elements of k. We
define Λ(m, λ) as the path algebra of the quiver ∆(m)

•(1,1)

γ1,1

����������� · · ·
γ1,2

�� •(1,m1−1)

γ1,m1−1
��

•(2,1)

γ2,1���������� · · ·
γ2,2

�� •(2,m2−1)

γ2,m2−1
��

•α · · •ω

γ1,m1

�����������
γ2,m2

����������

γn,mn

����
��

��
��

��· ·
· ·
•

(n,1)

γn,1

������������
· · ·

γn,2�� •
(n,mn−1)

γn,mn−1��
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bound by relations

γ1,1 · · · γ1,m1 + λiγ2,1 · · · γ2,m2 − γi,1 · · · γi,mi
, i ∈ [3, n].

The algebras of the above form are called canonical. In particular, we call Λ(m, λ)
a canonical algebra of type m. It is well known (see for example [14, III.4]) that
gl. dim Λ(m, λ) = 2. If m and λ are fixed, then we usually write Λ and ∆ instead of
Λ(m, λ) and ∆(m), respectively. From now until the end of the section we assume
that Λ = Λ(m, λ) is a fixed canonical algebra.

We write ei,j instead of e(i,j) for i ∈ [1, n] and j ∈ [1, mi − 1]. For future
convenience for i ∈ [1, n] by (i, 0) and (i, mi) we mean α and ω, respectively.
Moreover, if i ∈ [1, n] and j ∈ [0, mi], then we write di,j instead of d(i,j). Let
h =

∑
x∈∆0

ex. For i ∈ [1, n], we put ei,0 = ei,mi
= h−

∑
j∈[1,mi−1] ei,j . Note that

〈ei,j ,d〉 = di,j − di,j−1, i ∈ [1, n], j ∈ [1, mi],

and

〈d, ei,j〉 = di,j − di,j+1, i ∈ [1, n], j ∈ [0, mi − 1],

and consequently 〈h,d〉 = dω − dα = −〈d,h〉, for all d ∈ Z
∆0 .

2.5. Let P (R, Q, respectively) be the subcategory of all Λ-modules which are
direct sums of indecomposable Λ-modules X such that

〈dimX,h〉 > 0 (〈dimX,h〉 = 0, 〈dimX,h〉 < 0, respectively).

The Λ-modules belonging to R are called regular. We have the following properties
of the above decomposition of modΛ (see [20, 3.7]).

First, [N, M ] = 0 and [M, N ]1 = 0, if either N ∈ R ∨ Q and M ∈ P, or
N ∈ Q and M ∈ P ∨R. Here, for two subcategories X and Y of modΛ, we denote
by X ∨ Y the additive closure of their union. Second, R decomposes into a P

1(k)-
family

∐
λ∈P1(k) Rλ of uniserial categories. If λ ∈ P1(k)\{λ1, . . . , λn}, where λ1 = 0

and λ2 = ∞, then there is a unique simple object in Rλ, and its dimension vector
is h. On the other hand, if λ = λi for i ∈ [1, n], then there are mi simple objects
in Rλi

and their dimension vectors are ei,j , j ∈ [1, mi]. Finally, one knows that
pdΛ M ≤ 1 for M ∈ P ∨R and idΛ N ≤ 1 for N ∈ R ∨Q.

2.6. We denote by P, R and Q the sets of the dimension vectors of the Λ-modules
belonging to P, R and Q, respectively. Note that d ∈ R if and only if

d = ph +
∑

i∈[1,n]

∑
j∈[1,mi]

pi,jei,j

for some nonnegative integers p and pi,j , i ∈ [1, n], j ∈ [1, mi]. We know from [20,
3.7], that if d ∈ P, d 	= 0, then dα > dω ≥ 0 and di,j ≥ di,j+1 for all i ∈ [1, n]
and j ∈ [0, mi − 1]. We now show the converse. Let d be as above. Fix λ0 ∈
P1(k) \ {λ1, . . . , λn}. It is easy to see that there exists M ∈ P ∨Rλ0 of dimension
vector d. Indeed, it is enough to write d = d′+d′′, where d′′ = dωh. Then obviously
there is M ′′ ∈ Rλ0 of dimension vector d′′, and one can easily construct M ′ ∈ P
of dimension vector d′, since d′ω = 0. Since [N ′, N ′′] = 0 for N ′ ∈

∐
λ �=λ0

Rλ ∨ Q
and N ′′ ∈ P ∨ Rλ0 , it follows that P ∨ Rλ0 is extension closed. In particular, if
we assume that the dimension of the endomorphism ring of M is minimal possible,
then M = M ′ ⊕ M ′′ for M ′ ∈ P and M ′′ ∈ Rλ0 such that [M ′′, M ′]1 = 0 (see for
example [20, 2.3]). On the other hand, M ′′ = ph for a nonnegative integer p, and
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[M ′′, M ′]1 = −〈ph,d − ph〉 = p(dα − dω) > 0, if p > 0. Thus p = 0, M ′′ = 0, and
M = M ′ ∈ P.

Dually, d ∈ Q, d 	= 0, if and only if 0 ≤ dα < dω and di,j−1 ≤ di,j for all
i ∈ [1, n] and j ∈ [1, mi]. Thus, each d ∈ Q can be written in a form

d = ph +
∑

i∈[1,n]

∑
j∈[1,mi−1]

pi,jei,j + pωeω

for some nonnegative integers p, pω and pi,j , i ∈ [1, n], j ∈ [1, mi−1]. Consequently,
d ∈ R + Q if and only if

d = ph +
∑

i∈[1,n]

∑
j∈[1,mi]

pi,jei,j + pωeω

for some nonnegative integers p, pω and pi,j , i ∈ [1, n], j ∈ [1, mi]. In particular, if
d ∈ R + Q, then there exists a unique presentation

d = pdh +
∑

i∈[1,n]

∑
j∈[1,mi]

pd
i,jei,j + pd

ωeω

such that pd, pd
ω and pd

i,j , i ∈ [1, n], j ∈ [1, mi], are nonnegative integers, and for
each i ∈ [1, n] there exists j ∈ [1, mi] such that pd

i,j = 0. Note that d ∈ R if and
only if pd

ω = 0. Moreover, d ∈ R′ if and only if pd
ω = 0 and pd 	= 0. Recall that by

R′ we denote the set of all dimension vectors of regular Λ-modules which have a
direct summand of dimension vector h.

3. Varieties of modules

Throughout this section Λ is the path algebra of a bound quiver (∆, R) of global
dimension at most 2.

3.1. For d′,d′′ ∈ N∆0 , let A(d′,d′′) =
∏

γ∈∆1
M(d′tγ , d′′sγ), where by M(p, q) we

denote the space of p × q-matrices with coefficients in k. For a dimension vector
d ∈ N∆0 , M ∈ A(d,d) and a path σ = γ1 · · · γm of positive length, we put Mσ =
Mγ1 · · ·Mγm

. We extend this notation to relations in the standard way. We denote
by modΛ(d) the set of all M ∈ A(d,d), such that Mρ = 0 for all ρ ∈ R. Obviously,
modΛ(d) is an affine variety. Note that every point M of modΛ(d) determines
a Λ-module of dimension vector d (by taking Mx = kdx for x ∈ ∆0), which we
also denote by M , and every Λ-module of dimension vector d is isomorphic to M
for some M ∈ modΛ(d). We call modΛ(d) the variety of Λ-modules of dimension
vector d. Note that a(d) defined in Section 1 can be calculated as follows:

a(d) =
∑

γ∈∆1

dsγdtγ −
∑
ρ∈R

dsρdtρ,

hence a(d) is just the dimension of A(d,d) minus the number of equations defining
modΛ(d). In particular, the dimension of each irreducible component of modΛ(d)
is at least a(d).

The product GL(d) =
∏

x∈∆0
GL(dx) of general linear groups acts on modΛ(d)

by conjugations
(g · M)γ = gtγMγg−1

sγ , γ ∈ ∆1,

for g ∈ GL(d) and M ∈ modΛ(d). The orbits with respect to this action correspond
bijectively to the isomorphism classes of Λ-modules of dimension vector d.
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3.2. We now present a construction investigated in [5, 2.1] by Bongartz. Fix d′,d′′ ∈
N∆0 , M ′ ∈ modΛ(d′) and M ′′ ∈ modΛ(d′′). For Z ∈ A(d′,d′′) and a path σ =
γ1 · · · γm of positive length, let

Zσ =
∑

i∈[1,m]

M ′
γ1

· · ·M ′
γi−1

Zγi
M ′′

γi+1
· · ·M ′′

γm
.

If ρ =
∑

i∈[1,n] λiσi is a relation in ∆, then Zρ =
∑

i∈[1,n] λiZσi
. We define

Z(M ′′, M ′) as the set of all Z ∈ A(d′,d′′) such that Zρ = 0 for all ρ ∈ R. For
Z ∈ Z(M ′′, M ′), let M ∈ A(d′ + d′′,d′ + d′′) be given by

Mγ =
[
M ′

γ Zγ

0 M ′′
γ

]
, γ ∈ ∆1.

Then M ∈ modΛ(d′ + d′′), and we have a short exact sequence

0 → M ′ f−→ M
g−→ M ′′ → 0,

with the maps f and g given by the canonical injections kd′
x → kd′

x+d′′
x , x ∈ ∆0,

and the canonical surjections kd′
x+d′′

x → kd′′
x , x ∈ ∆0, respectively. On the other

hand, for every short exact sequence ε of the form

0 → M ′ → M → M ′′ → 0,

there exists a (nonunique) element of Z(M ′′, M ′) such that the corresponding
short exact sequence is isomorphic to ε. More precisely, the map Z(M ′′, M ′) →
Ext1Λ(M ′′, M ′) described above is a surjective linear map. The kernel of this map
consists of Z ∈ Z(M ′′, M ′) such that the corresponding sequence splits, i.e., there
exists h ∈ V(d′,d′′) =

∏
x∈∆0

M(d′x, d′′x) such that Zγ = M ′
γhsγ − htγM ′′

γ for all
γ ∈ ∆1. Consequently,

dimk Z(M ′′, M ′) = [M ′′, M ′]1 − [M ′′, M ′] +
∑

x∈∆0

d′xd′′x.

3.3. Let d ∈ N∆0 and M ∈ modΛ(d). There is a natural inclusion of the tangent
space TM modΛ(d) to modΛ(d) at M into Z(M, M) (see [15, (2.7)]). If [M, M ]2 = 0,
then this map is an isomorphism. Indeed, we have a sequence of inequalities, which
implies the claim:

a(d) = dimGL(d) − 〈d,d〉 = dimGL(d) − [M, M ] + [M, M ]1

= dimk Z(M, M) ≥ dimk TM modΛ(d) ≥ dimM modΛ(d) ≥ a(d),

where dimM modΛ(d) denotes the dimension of modΛ(d) at M , i.e., the maximum
of the dimensions of the irreducible components of modΛ(d) passing through M . It
also follows from the above calculations that if [M, M ]2 = 0, then dimM modΛ(d) =
a(d) and M is a nonsingular point of modΛ(d) (see also [12] for a general proof of
the last assertion).

Using similar inequalities and the fact that Z(M, M) is the tangent space to the
corresponding (not necessarily reduced) scheme (see [23]), one proves the following
fact.

Proposition. If [M, M ]2 vanishes generically on modΛ(d), then the variety
modΛ(d) is a complete intersection of dimension a(d). Moreover, in the above
situation M ∈ modΛ(d) is nonsingular if and only if [M, M ]2 = 0.
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Proof. This is just a more general formulation of the fact proved in [3, Section 1].
�

3.4. Let d′ and d′′ be dimension vectors. Put d = d′+d′′. Let C ′ be a constructible
irreducible GL(d′)-invariant subset of modΛ(d′) and let C ′′ be a constructible irre-
ducible GL(d′′)-invariant subset of modΛ(d′′). Let

hom(C ′, C ′′) = min{[M ′, M ′′] | M ′ ∈ C ′, M ′′ ∈ C ′′},
ext1(C ′, C ′′) = min{[M ′, M ′′]1 | M ′ ∈ C ′, M ′′ ∈ C ′′},

and

ext2(C ′, C ′′) = min{[M ′, M ′′]2 | M ′ ∈ C ′, M ′′ ∈ C ′′}.

Recall from [8, Lemma 4.3] that the functions

C ′ × C ′′ � (M ′, M ′′) �→ [M ′, M ′′] ∈ Z,

C ′ × C ′′ � (M ′, M ′′) �→ [M ′, M ′′]1 ∈ Z

are upper semicontinuous. Moreover, in our case

[M ′, M ′′]2 = dimk Z(M ′, M ′′) −
∑

γ∈∆1

d′sγd′′tγ +
∑
ρ∈R

d′sρd
′′
tρ,

hence the function

C ′ × C ′′ � (M ′, M ′′) �→ [M ′, M ′′]2 ∈ Z

is also upper semicontinuous (using standard projective resolutions one may prove
this fact in a more general setting). In particular, the sets

{(M ′, M ′′) ∈ C ′ × C ′′ | [M ′, M ′′] = hom(C ′, C ′′)},
{(M ′, M ′′) ∈ C ′ × C ′′ | [M ′, M ′′]1 = ext1(C ′, C ′′)},
{(M ′, M ′′) ∈ C ′ × C ′′ | [M ′, M ′′]2 = ext2(C ′, C ′′)}

are open subsets of C ′ × C ′′.
We define C ′ ⊕ C ′′ to be the set of all M ∈ modΛ(d) which are isomorphic to a

module of the form M ′ ⊕ M ′′ for M ′ ∈ C ′ and M ′′ ∈ C ′′. We have the following
formula for the dimension of C ′ ⊕ C ′′.

Lemma. If C ′ and C ′′ are as above, then C ′⊕C ′′ is a constructible GL(d)-invariant
irreducible subset of modΛ(d) of dimension

dim C ′ + dimC ′′ + dim GL(d)

− dim GL(d′) − dim GL(d′′) − hom(C ′, C ′′) − hom(C ′′, C ′).

Proof. The claim follows by considering the map

GL(d) × C ′ × C ′′ � (g, M ′, M ′′) �→ g · (M ′ ⊕ M ′′) ∈ modΛ(d)

(compare for example [8, Section 1]). �

A special case of the above lemma, which is really of interest for us, is the
following.
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Corollary. Let C ′ and C ′′ be as above. If dimC ′ = a(d′)−c1, dimC ′′ = a(d′′)−c2,
hom(C ′, C ′′) = 〈d′,d′′〉 and hom(C ′′, C ′) = 0, then C ′ ⊕ C ′′ is a constructible
irreducible subset of modΛ(d) of dimension

a(d) + 〈d′′,d′〉 − (c1 + c2).

Proof. Direct calculations. �

3.5. Let C ′ and C ′′ be as above. By E(C ′, C ′′) we mean the set of all

M ∈ modΛ(d′ + d′′)

for which there exists an exact sequence

0 → M ′′ → M → M ′ → 0

with M ′ ∈ C ′ and M ′′ ∈ C ′′. It follows from [8, Theorem 1.3(i)] that if C ′ and
C ′′ are closed subsets of modΛ(d′) and modΛ(d′′) respectively, then E(C ′, C ′′) is a
closed subset of modΛ(d′ + d′′).

3.6. Let d be a dimension vector. Let modP
Λ be the full subcategory of Λ-modules

of projective dimension at most 1. Barot and Schröer proved in [1, Proposition 3.1]
that if modP

Λ (d) is nonempty, then it is an irreducible open subset of modΛ(d) of
dimension a(d). Here, for a subcategory X of modΛ and d ∈ N∆0 , we denote by
X (d) the set of all M ∈ modΛ(d) such that M ∈ X . Dually, modI

Λ(d) (if nonempty)
is an irreducible open subset of modΛ(d) of dimension a(d), where modI

Λ is the full
subcategory of Λ-modules of injective dimension at most 1.

3.7. From now until the end of the section we assume that Λ is a fixed canonical
algebra. The first observation is the following.

Lemma. If d ∈ P + R, then (P ∨ R)(d) is an open subset of modP
Λ (d). In

particular, dim(P ∨R)(d) = a(d).

By duality, if d ∈ R + Q, then (R ∨ Q)(d) is an open subset of modI
Λ(d) of

dimension a(d). As a consequence it also follows that if d ∈ R, then R(d) =
(P ∨ R)(d) ∩ (R ∨ Q)(d) is an irreducible open subset of modΛ(d) of dimension
a(d) (see also [10, Section 4] for another explanation of the last fact).

Proof. We already know that (P ∨ R)(d) is contained in modP
Λ (d), thus it only

remains to show that it is open. But M ∈ (P∨R)(d) if and only if there exists X ∈
R of dimension vector h such that HomΛ(X, M) = 0, hence the claim follows. �

3.8. The proof of an analogous fact for d ∈ P is more involved.

Lemma. If d ∈ P, then P(d) is an open subset of modP
Λ(d). In particular,

dimP(d) = a(d).

By duality, if d ∈ Q, then Q(d) is an open subset of modI
Λ(d) of dimension a(d).

Proof. Again we only have to show that P(d) is an open subset of modΛ(d), hence
also of modP

Λ (d). We prove that P(d) is the complement of the sum⋃
d′∈P, d′′∈R+Q
d′+d′′=d, d′′ �=0

E(modΛ(d′), modΛ(d′′)).
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Since this is a finite sum of sets which are closed by Subsection 3.5, it will imply the
lemma. In order to show the above claim, take M 	∈ P(d). Then M = M ′ ⊕ M ′′

for some M ′ ∈ P and M ′′ ∈ R ∨Q, M ′′ 	= 0, and obviously

M ∈ E(modΛ(dimM ′), modΛ(dimM ′′)).

Assume now that M ∈ E(modΛ(d′), modΛ(d′′)) for d′ and d′′ as above. Let

0 → M ′′ → M → M ′ → 0

be a short exact sequence with M ′ ∈ modΛ(d′) and M ′′ ∈ modΛ(d′′). Since
〈dimM ′′,h〉 ≤ 0, it follows that M ′′ has a nonzero direct summand N ′′ ∈ R ∨Q.
Since HomΛ(N ′′, N) = 0 for all N ∈ P, we get M 	∈ P, and we are done. �

4. Proofs of Theorems 1.1 and 1.2

4.1. We prove Theorems 1.1 and 1.2 in a more general setting. Let Λ be the path
algebra of a bound quiver (∆, R) of global dimension at most 2. We also assume
that we are given two full subcategories X and Y of modΛ having the following
properties:

(1) X and Y are closed under forming direct sums and taking direct summands,
(2) X ∨ Y = modΛ,
(3) pdΛ M ≤ 1 for M ∈ X and idΛ N ≤ 1 for N ∈ Y ,
(4) [N, M ] = 0 and [M, N ]1 = 0 for N ∈ Y and M ∈ X ,
(5) if d ∈ N∆0 , then X (d) and Y(d) are open subsets of modΛ(d).

Observe that canonical algebras fit into the above setting with X = P and Y =
R∨Q (or X = P ∨R and Y = Q).

Let X and Y denote the sets of the dimension vectors of the modules belonging
to X and Y , respectively. It follows from the above conditions that if d ∈ X
(d ∈ Y, respectively), then X (d) (Y(d)) is an irreducible open subset of modΛ(d)
of dimension a(d). In particular, if d′ ∈ X and d′′ ∈ Y, then X (d′) ⊕ Y(d′′) is an
irreducible constructible subset (in fact, using [8, Theorem 1.3(iii)] one can even
show that this set is locally closed) of modΛ(d′ + d′′) of dimension a(d′ + d′′) +
〈d′′,d′〉 (apply Corollary 3.4). Consequently, for d ∈ N∆0 , modΛ(d) is a finite
disjoint union ⋃

d′∈X, d′′∈Y
d′+d′′=d

X (d′) ⊕ Y(d′′)

of irreducible constructible subsets of dimensions a(d) + 〈d′′,d′〉, respectively. In
particular, this implies that

dim modΛ(d) = a(d) + max{〈d′′,d′〉 | d′ ∈ X, d′′ ∈ Y, d′ + d′′ = d}.
Consequently, dim modΛ(d) = a(d) if and only if 〈d′′,d′〉 ≤ 0 for all d′ and d′′ as
above (recall that obviously dim modΛ(d) ≥ a(d)).

4.2. As a first step in proving Theorem 1.2 we prove the following lemma.

Lemma. Let d ∈ N
∆0 . If 〈d′′,d′〉 ≤ 0 for all d′ ∈ X and d′′ ∈ Y such that

d = d′ + d′′, then modΛ(d) is a complete intersection.

Proof. According to Proposition 3.3, in order to prove that modΛ(d) is a complete
intersection, it is enough to prove that [M, M ]2 vanishes generically on modΛ(d).
Note that every irreducible component of modΛ(d) is the closure of the set of the
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form X (d′) ⊕ Y(d′′) for some d′ ∈ X and d′′ ∈ Y, such that 〈d′′,d′〉 = 0. It
is well-known that if the closure of X (d′) ⊕ Y(d′′) is an irreducible component of
modΛ(d), then ext1(Y(d′′),X (d′)) = 0 (see for example [8, Theorem 1.2]). Since
obviously hom(Y(d′′),X (d′)) = 0, we get ext2(Y(d′′),X (d′)) = 0 and the claim
follows, because pdΛ M ′ ≤ 1 for M ′ ∈ X and idΛ M ′′ ≤ 1 for M ′′ ∈ Y . �

4.3. In order to reverse the above implication and finish the proof of Theorem 1.2
we need an additional assumption.

Proposition. Let d be the dimension vector of a Λ-module of projective or injective
dimension at most 1. Then modΛ(d) is a complete intersection if and only if
〈d′′,d′〉 ≤ 0 for all d′ ∈ X and d′′ ∈ Y such that d = d′ + d′′.

Proof. We only have to prove that if modΛ(d) is a complete intersection, then
dim modΛ(d) = a(d), but this follows since modΛ(d) has an irreducible component
of dimension a(d) (the closure of modP

Λ (d) or modI
Λ(d)) and complete intersections

are equidimensional. �

4.4. We also divide the proof of an analogous criterion for irreducibility in two
steps.

Lemma. Let d be the dimension vector. If 〈d′′,d′〉 ≤ 0 for all d′ ∈ X and d′′ ∈ Y
such that d = d′+d′′, and equality holds for exactly one pair (d′,d′′), then modΛ(d)
is irreducible.

Proof. Let d̂′ ∈ X and d̂′′ ∈ Y be such that d̂′ + d̂′′ = d and 〈d̂′′, d̂′〉 = 0. Then
X (d̂′)⊕Y(d̂′′) is an irreducible constructible subset of modΛ(d) of dimension a(d),
and the remaining sets X (d′) ⊕ Y(d′′) have dimensions smaller than a(d). Since
every irreducible component of modΛ(d) has dimension at least a(d), modΛ(d) is
the closure of X (d̂′) ⊕ Y(d̂′′), hence irreducible. �

4.5. We may again reverse the above implication if we assume the existence of a
Λ-module of dimension vector d and projective or injective dimension at most 1.

Proposition. Let d be the dimension vector of a Λ-module of projective or injective
dimension at most 1. Then modΛ(d) is irreducible if and only if 〈d′′,d′〉 ≤ 0 for
all d′ ∈ X and d′′ ∈ Y such that d = d′ + d′′, and equality holds for exactly one
pair (d′,d′′).

Proof. We only have to prove that if modΛ(d) is irreducible, then the above condi-
tion is satisfied. Without loss of generality we may assume that d is the dimension
vector of a Λ-module of projective dimension at most 1. Then we know that the
closure of modP

Λ (d) is an irreducible component of modΛ(d) of dimension a(d),
thus dim modΛ(d) = a(d). In particular, 〈d′′,d′〉 ≤ 0 for all d′ and d′′. More-
over, the irreducible components of modΛ(d) are precisely the closures of the sets
X (d′)⊕Y(d′′) with dim(X (d′)⊕Y(d′′)) = a(d), i.e., 〈d′′,d′〉 = 0. Thus irreducibil-
ity of modΛ(d) implies that the equality holds for exactly one pair (d′,d′′). �

4.6. As a consequence of the above propositions we also obtain some information
about the maximal GL(d)-orbits in the above situations. Namely, if d is a dimension
vector such that dim modΛ(d) = a(d), then every maximal GL(d)-orbit consists
of points which are nonsingular in modΛ(d). Indeed, let the GL(d)-orbit of a
Λ-module M be maximal and write M = M ′ ⊕ M ′′ for M ′ ∈ X and M ′′ ∈ Y .
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We know that 〈dimM ′′,dimM ′〉 ≤ 0. Obviously, [M ′′, M ′] = 0. Moreover, the
maximality of the GL(d)-orbit of M implies that [M ′′, M ′]1 = 0 (see for example [6,
Lemma 1.1]). Consequently, [M ′′, M ′]2 = 0. Since pdΛ M ′ ≤ 1 and idΛ M ′′ ≤ 1,
this implies that [M, M ]2 = 0, which finishes the proof according to Subsection 3.3.

Now assume in addition that Λ is a canonical algebra, d ∈ R and modΛ(d) is
irreducible. Then it follows from Proposition 4.5 that 〈d′′,d′〉 < 0 for all d′ ∈ P
and d′′ ∈ R + Q with d′ 	= 0. Consequently, again using [6, Lemma 1.1] we
obtain that if the GL(d)-orbit of M is maximal, then M ∈ R ∨ Q. Since 〈h,d〉 =
0, (R ∨ Q)(d) = R(d) and M ∈ R. With methods analogous to those used
in the proofs of [19, Theorem 3.5] and [3, Proposition 5], one can give a precise
description of the maximal GL(d)-orbits. It is essentially identical to that given
in [3, Proposition 5], but since it is lengthy and requires introducing an appropriate
language, we will not present it here.

4.7. We now give the proof of Theorem 1.1. The crucial observation, whose proof
is based on ideas of the proof of [18, Proposition 2.5], is the following.

Lemma. Let d′ ∈ X and d′′ ∈ Y. If dim modΛ(d′ + d′′) = a(d′ + d′′), then
ext1(Y(d′′),X (d′)) = −〈d′′,d′〉.

Proof. Let d = d′ + d′′, C ′ = X (d′) and C ′′ = Y(d′′). Obviously, ext1(C ′′, C ′) ≥
−〈d′′,d′〉, thus we only have to show that ext1(C ′′, C ′) ≤ −〈d′′,d′〉.

Recall that U = {(M ′, M ′′) ∈ C ′ × C ′′ | [M ′′, M ′]1 = ext1(C ′′, C ′)} is an open
subset of C ′ × C ′′. Consequently, according to [8, Theorem 1.3(iii)], the subset V
of all M ∈ modΛ(d) such that there exists a short exact sequence

0 → M ′ → M → M ′′ → 0

with (M ′, M ′′) ∈ U is an open subset of modΛ(d). In particular, V contains non-
singular points of modΛ(d).

Let Z = {(M ′, M ′′, Z) | (M ′, M ′′) ∈ U , Z ∈ Z(M ′′, M ′)}. It follows from [5,
Lemma 1] that the canonical projection Z → U is a subbundle of the trivial vector
bundle U × A(d′,d′′) → U . In particular, Z is smooth, since U is an open subset
of modΛ(d′) × modΛ(d′′) consisting of nonsingular points. We now describe the
tangent space T(M ′,M ′′,Z)Z for (M ′, M ′′, Z) ∈ Z more precisely. Obviously, it is a
subspace of

A(d′,d′) × A(d′′,d′′) × A(d′,d′′)

of dimension
a(d′) + a(d′′) + ext1(C ′′, C ′) +

∑
x∈∆0

d′xd′′x.

Moreover, if (Z ′, Z ′′, Y ) ∈ T(M ′,M ′′,Z)Z, then Z ′ ∈ Z(M ′, M ′), Z ′′ ∈ Z(M ′′, M ′′)
and Yρ = rρ for all ρ ∈ R, where Yρ is defined as in Subsection 3.3 and we define
rρ by the standard extension to relations of the following definition for paths: if
σ = γ1 · · · γm is a path of length at least 2, then

rσ =
∑

i<j∈[1,m]

M ′
γ1

· · ·M ′
γi−1

Z ′
γi

M ′
γi+1

· · ·M ′
γj−1

Zγj
M ′′

γj+1
· · ·M ′′

γm

+
∑

i<j∈[1,m]

M ′
γ1

· · ·M ′
γi−1

Zγi
M ′′

γi+1
· · ·M ′′

γj−1
Z ′′

γj
M ′′

γj+1
· · ·M ′′

γm
.
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Since dimk Z(M ′, M ′) = a(d′), dimk Z(M ′′, M ′′) = a(d′′) and the solution set of
the homogeneous system Yρ = 0, ρ ∈ R, is Z(M ′′, M ′), it follows by compar-
ing dimensions that T(M ′,M ′′,Z)Z is the set of all (Z ′, Z ′′, Y ) satisfying the above
conditions.

Note that TId GL(d) = V(d,d) (see Subsection 3.2 for a definition). With respect
to the canonical decomposition

V(d,d) =
[

V(d′,d′) V(d′,d′′)
V(d′′,d′) V(d′′,d′′)

]
,

every element X ∈ V(d,d) can be written as

X =
[
X(1,1) X(1,2)

X(2,1) X(2,2)

]
.

On the other hand, if M ∈ V , then TMV = TM modΛ(d) ⊂ A(d,d), and the
canonical decomposition

A(d,d) =
[

A(d′,d′) A(d′,d′′)
A(d′′,d′) A(d′′,d′′)

]

induces the analogous matrix presentation of the elements of TMV .
We have a surjective map Φ : GL(d) ×Z → V given by

(g, M ′, M ′′, Z) �→ g · M, where Mγ =
[
M ′

γ Zγ

0 M ′′
γ

]
, γ ∈ ∆1.

For fixed (M ′, M ′′, Z)∈Z, we have the tangent map F : TId GL(d)×T(M ′,M ′′,Z)Z →
TMV given by (here we apply the conventions for presenting the elements of V(d,d)
and TMV introduced above)

F (X, Z ′, Z ′′, Y )(1,1)
γ = Z ′

γ + X
(1,1)
tγ M ′

γ − M ′
γX(1,1)

sγ − ZγX(2,1)
sγ ,

F (X, Z ′, Z ′′, Y )(1,2)
γ = Yγ + X

(1,1)
tγ Zγ + X

(1,2)
tγ M ′′

γ

− M ′
γX(1,2)

sγ − ZγX(2,2)
sγ ,

F (X, Z ′, Z ′′, Y )(2,1)
γ = X

(2,1)
tγ M ′

γ − M ′′
γ X(2,1)

sγ ,

and

F (X, Z ′, Z ′′, Y )(2,2)
γ = Z ′′

γ + X
(2,1)
tγ Zγ + X

(2,2)
tγ M ′′

γ − M ′′
γ X(2,2)

sγ ,

for γ ∈ ∆1 (it follows by computations using block matrices — compare the corre-
sponding calculations in the proof of [18, Proposition 2.5]).

Note that X(2,1) ∈ HomΛ(M ′, M ′′) for (X, Z ′, Z ′′, Y ) ∈ KerF . Thus the lin-
ear map G : KerF → HomΛ(M ′, M ′′) given by G(X, Z ′, Z ′′, Y ) = X(2,1) is well-
defined. Moreover, G is surjective. Indeed, for f : M ′ → M ′′ we define

X =
[
0 0
f 0

]
, Yγ = 0,

Z ′
γ = Zγfsγ , Z ′′

γ = −ftγZγ ,

where γ ∈ ∆1. One checks that (Z ′, Z ′′, Y ) ∈ T(M ′,M ′′,Z)Z. Moreover,

F (X, Z ′, Z ′′, Y ) = 0 and G(X, Z ′, Z ′′, Y ) = f.
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Let p = {X ∈ V(d) | X(2,1) = 0}. Define H : p → TId GL(d) × T(M ′,M ′′,Z)Z by
H(X) = (X, Z ′, Z ′′, Y ), where

Z ′
γ = M ′

γX(1,1)
sγ − X

(1,1)
tγ M ′

γ ,

Z ′′
γ = M ′′

γ X(2,2)
sγ − X

(2,2)
tγ M ′′

γ ,

and

Yγ = M ′
γX(1,2)

sγ + ZγX(2,2)
sγ − X

(1,1)
tγ Zγ − X

(1,2)
tγ M ′′

γ ,

for γ ∈ ∆1. Using the description of T(M ′,M ′′,Z)Z one checks that H is well-
defined. Obviously, H is injective. Moreover, by direct calculations one checks that
Im H = Ker G. Consequently, we get

dimk Ker F = dimk p + dimk HomΛ(M ′, M ′′)

= dim GL(d′) + dim GL(d′′) +
∑

x∈∆0

d′xd′′x + 〈d′,d′′〉.

We may assume that M is a nonsingular point of modΛ(d). Then we have the
following sequence of inequalities:

a(d) = dimM modΛ(d) = dimk TM modΛ(d) = dimk TMV
≥ dimk Im F = dimk V(d) + dimk T(M ′,M ′′,Z)Z − dimk KerF

= dim GL(d) + a(d′) + a(d′′) + ext1(C ′′, C ′) +
∑

x∈∆0

d′xd′′x

− dim GL(d′) − dim GL(d′′) −
∑

x∈∆0

d′xd′′x − 〈d′,d′′〉

= a(d) + 〈d′′,d′〉 + ext1(C ′′, C ′),

which implies ext1(C ′′, C ′) ≤ −〈d′′,d′〉, hence finishes the proof. �
4.8. Another useful observation is the following.

Lemma. Let d be a dimension vector such that modΛ(d) is irreducible, modP
Λ (d) 	=

∅ and modI
Λ(d) 	= ∅. If d′ ∈ X and d′′ ∈ Y are such that d′ + d′′ = d and

〈d′′,d′〉 = 0, then the set of M ∈ X (d′) ⊕ Y(d′′) such that [M, M ]2 	= 0 has
dimension at most a(d) − 2.

Proof. Our assumptions imply that modΛ(d) is the closure of X (d′)⊕Y(d′′), hence
(X (d′)⊕Y(d′′))∩modP

Λ (d) 	= ∅ and (X (d′)⊕Y(d′′))∩modI
Λ(d) 	= ∅. In particular,

X (d′) ∩ modI
Λ(d′) 	= ∅ and Y(d′′) ∩ modP

Λ (d′′) 	= ∅. Consequently, dim C ′ ≤
a(d′) − 1 and dimC ′′ ≤ a(d′′) − 1, where C ′ = {M ′ ∈ X (d′) | idΛ M ′ = 2} and
C ′′ = {M ′′ ∈ Y(d′′) | pdΛ M ′′ = 2}. Since {M ∈ X (d′) ⊕ Y(d′′) | [M, M ]2 	= 0} ⊂
C ′ ⊕ C ′′, the claim follows from Corollary 3.4. �
4.9. The following fact implies Theorem 1.1.

Proposition. Let d be a dimension vector such that at least one of the following
conditions is satisfied:

(1) d ∈ X or d ∈ Y,
(2) modP

Λ (d) 	= ∅ and modI
Λ(d) 	= ∅.

Then modΛ(d) is normal if and only if it is irreducible.
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Proof. We only have to prove that if modΛ(d) is irreducible, then it is normal. First
observe that irreducibility of modΛ(d) implies that either modP

Λ(d) or modI
Λ(d) is

a dense open subset of modΛ(d). In particular, [M, M ]2 vanishes generically on
modΛ(d), hence modΛ(d) is a complete intersection by Proposition 3.3. Conse-
quently, according to Serre’s criterion, in order to prove normality we have to show
that modΛ(d) is nonsingular in codimension 1. According to Proposition 3.3, this
will follow if we show that the set of M ∈ modΛ(d) such that [M, M ]2 	= 0 is of
codimension at least 2.

Recall that

modΛ(d) =
⋃

d′∈X, d′′∈Y
d′+d′′=d

X (d′) ⊕ Y(d′′)

is a presentation of modΛ(d) as a finite disjoint sum of constructible sets of di-
mensions a(d) + 〈d′′,d′〉, respectively. Thus we have to show that the set of
M ∈ X (d′)⊕Y(d′′) such that [M, M ]2 	= 0 has dimension at most a(d)−2 for all d′

and d′′ as above. Note that by Lemma 4.7 ext1(Y(d′′),X (d′)) = −〈d′′,d′〉. Since
obviously hom(Y(d′′),X (d′)) = 0, we get ext2(Y(d′′),X (d′)) = 0. This implies our
claim if 〈d′′,d′〉 < 0.

Assume now that d′ ∈ X, d′′ ∈ Y, d′ +d′′ = d and 〈d′′,d′〉 = 0. If d ∈ X, then
Proposition 4.5 implies that d′ = d and d′′ = 0. Consequently, [M, M ]2 = 0 for all
M ∈ X (d′)⊕Y(d′′) = X (d). A similar argument applies if d ∈ Y. If modP

Λ(d) 	= ∅

and modI
Λ(d) 	= ∅, then we can use the previous lemma. �

5. Inequalities

Throughout this section, Λ is a fixed canonical algebra of type m = (m1, . . . , mn).

5.1. Our aim in this section is to prove the following inequalities.

Proposition. Let d ∈ R and d′ ∈ P be such that d′ 	= 0 and d − d′ ∈ R + Q.

(1) If
∑

i∈[1,n]
1

mi−1 > 2n − 5, then 〈d− d′,d′〉 < 0.
(2) If

∑
i∈[1,n]

1
mi−1 = 2n− 5, then 〈d− d′,d′〉 ≤ 0. Moreover, if pd > 0, then

the above inequality is strict.
(3) If m = (2, 2, 2, 2, 2) and d is sincere, then 〈d− d′,d′〉 < 0.

According to the results of the previous section, the above proposition implies
the “positive” parts of Theorems 1.3, 1.4 and 1.5.

5.2. We start with a series of simple inequalities leading to our main result. The
elementary proof of the first inequality is left to the reader.

Lemma. Let d and δ1, . . . , δm, m > 0, be nonnegative and such that d =∑
i∈[1,m] δi. Then ∑

i<j∈[1,m]

δiδj ≤ m−1
2m d2.

Moreover, equality holds if and only if δi = d
m for all i ∈ [1, m]. �
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5.3. We will need the following variant of the above inequality.

Lemma. Let d and δ1, . . . , δm, m > 2, be nonnegative and such that d =∑
i∈[1,m] δi. Then ∑

i<j∈[1,m]

δiδj ≤ 1
4 (d + d′)2 − m−1

2(m−2)d
′2,

where d′ =
∑

i∈[2,m−1] δi. Moreover, equality holds if and only if δ1 = δm = d−d′

2

and δi = d′

m−2 for all i ∈ [2, m − 1].

Proof. It follows by direct calculations that∑
i<j∈[1,m]

δiδj = δ1δm + (d − d′)d′ +
∑

i<j∈[2,m−1]

δiδj .

Now the claim follows by applying the previous lemma to δ1δm

and
∑

i<j∈[2,m−1]δiδj . �

5.4. The next step is the following.

Lemma. Let d, q and δ1, . . . , δm, m ≥ 2, be nonnegative and such that d =∑
i∈[1,m] δi and δ1, δm ≥ q. Then

∑
i<j∈[1,m]

δiδj ≤
{

m−1
2m d2, mq ≤ d,

(d − q)2 − m−1
2(m−2)(d − 2q)2, mq > d.

Moreover, in the first case equality holds if and only if δi = d
m for all i ∈ [1, m],

and in the second case equality holds if and only if δ1 = δm = q and δi = d−2q
m−2 for

all i ∈ [2, m − 1].

Note that mq > d may hold only for m > 2.

Proof. The claim for m = 2 is an easy exercise, hence we may assume that m > 2
and apply the previous lemma. Since d′ =

∑
i∈[2,m−1] δi varies from 0 to d−2q, the

maximal value of 1
4d2 + 1

2dd′ − m
4(m−2)d

′2 is obtained for d′ = min(m−2
m d, d − 2q).

This immediately implies our claim. �
5.5. The following inequality is what we really need.

Lemma. Let d, q and δ1, . . . , δm, m ≥ 2, be nonnegative and such that d =∑
i∈[1,m] δi and δ1 ≥ q. Then

−δmq +
∑

i<j∈[1,m]

δiδj ≤
{
−dq + m−1

2m (d + q)2, (m − 1)q ≤ d,

−dq + d2 − m−1
2(m−2) (d − q)2, (m − 1)q > d.

Moreover, in the first case equality holds if and only if δi = d+q
m for all i ∈ [1, m−1]

and δm = d−(m−1)q
m , and in the second case equality holds if and only if δ1 = q,

δm = 0 and δi = d−q
m−2 for all i ∈ [2, m − 1].

Proof. Let δ′i = δi for i ∈ [1, m − 1] and δ′m = δm + q. Then

−δmq +
∑

i<j∈[1,m]

δiδj = −dq +
∑

i<j∈[1,m]

δ′iδ
′
j ,

and we may apply the previous lemma. �
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5.6. We will also need the following consequence of the previous inequality.

Corollary. Let d, q and δ1, . . . , δm, m ≥ 2, be nonnegative and such that d =∑
i∈[1,m] δi and δ1 ≥ q. Then

−δmq +
∑

i<j∈[1,m]

δiδj ≤ 1
2d2 − 1

2q2.

Moreover, if equality holds, then q = d.

Proof. If q = 0, then the claim is obvious from the previous lemma; thus we assume
that q > 0. We first consider the case (m − 1)q ≤ d. In this case 1

m ≥ q
d+q . Using

the previous lemma once more one easily gets that

( 1
2d2 − 1

2q2) −
(
−δmq +

∑
i<j∈[1,m]

δiδj

)
≥ 1

2m (d + q)2 − q2 ≥ 1
2q(d − q),

hence the claim follows. On the other hand, if (m − 1)q > d, then

( 1
2d2 − 1

2q2) −
(
−δmq +

∑
i<j∈[1,m]

δiδj

)
≥ 1

2(m−2)(d − q)2,

which finishes the proof. �

5.7. For a fixed positive d and integers m1, m2, m3 ≥ 2, let f be the function
defined on the set of all 4-tuples (p, p1, p2, p3) of nonnegative real numbers such
that p + p1 + p2 + p3 = d by f(p, p1, p2, p3) = gm1(p1) + gm2(p2) + gm3(p3), where

gm(q) =

{
m−1
2m (d + q)2, (m − 1)q ≤ d,

d2 − m−1
2(m−2) (d − q)2, (m − 1)q > d.

Our next aim is to prove the following.

Lemma. If 1
m1−1 + 1

m2−1 + 1
m3−1 ≥ 1, then f(p, p1, p2, p3) ≤ 2d2. Moreover,

equality holds if and only if 1
m1−1 + 1

m2−1 + 1
m3−1 = 1, p = 0 and there exists

i ∈ [1, 3] and λ such that mi−1
mi

d ≤ λ ≤ d, pi = mi

mi−1λ − d and pj = d − mj−2
mj−1λ for

j 	= i.

Proof. If we substitute p = ξ2 and pi = ξ2
i for i ∈ [1, 3], then we may replace f by a

function F defined on the set of all 4-tuples (ξ, ξ1, ξ2, ξ3) of real numbers such that
ξ2 + ξ2

1 + ξ2
2 + ξ2

3 = d by F (ξ, ξ1, ξ2, ξ3) = Gm1(ξ1) + Gm2(ξ2) + Gm3(ξ3), where

Gm(µ) =

{
m−1
2m (d + µ2)2, (m − 1)µ2 ≤ d,

d2 − m−1
2(m−2) (d − µ2)2, (m − 1)µ2 > d.

By direct calculations one checks that F is differentiable. Since the set considered is
compact, F possesses a maximum. Using Lagrange’s multipliers method we know
that, if F has a maximum at (ξ, ξ1, ξ2, ξ3), then there exists λ such that λξ = 0 and
ξiHmi

(ξi) = 0 for all i ∈ [1, 3], where

Hm(µ) =

{
m−1

m (d + µ2) − λ, (m − 1)µ2 ≤ d,
m−1
m−2(d − µ2) − λ, (m − 1)µ2 > d.
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If ξ 	= 0, then λ = 0 and it follows that either ξi = 0 or ξ2
i = d for each i. Let I be

the set of all i such that ξ2
i = d. Then d|I| + ξ = d, hence I = ∅ and ξ2 = d. We

have
f(d, 0, 0, 0) = ( 3

2 − 1
2m1

− 1
2m2

− 1
2m3

)d2 < 2d2,

thus we may assume that ξ = 0.
Let I0 = {i | ξi = 0}, I1 = {i | 0 < ξ2 ≤ 1

mi−1d} and I2 = {i | 1
mi−1d < ξ2 ≤ d}.

Up to symmetry we have to consider the following cases:

• I0 = {1, 2};
• I0 = {1}, I1 = {2, 3};
• I0 = {1}, I1 = {2}, I2 = {3};
• I0 = {1}, I2 = {2, 3};
• I1 = {1, 2, 3};
• I1 = {1, 2}, I2 = {3};
• I1 = {1}, I2 = {2, 3}.

Note that our assumption ξ = 0 implies that I0 	= {1, 2, 3}. On the other hand
1

m1−1 + 1
m2−1 + 1

m3−1 ≥ 1 implies that I2 	= {1, 2, 3}. For future use, let δ =
1

m1−1 + 1
m2−1 + 1

m3−1 and γ = 1
m2−1 + 1

m3−1 .
We start with the case I0 = {1, 2}, thus p1 = p2 = 0. Then obviously p3 = d

and
f(p, p1, p2, p3) = (2 − 1

2m1
− 1

2m2
)d2 < 2d2.

Assume now that I0 = {1} and I1 = {2, 3}, thus p1 = 0. Moreover, there exists
λ such that p2 = m2

m2−1λ − d and p3 = m3
m3−1λ − d. Since p + p1 + p2 + p3 = d,

it follows that λ = 3
2+γ d. The inequality p3 ≤ 1

m3−1d implies that λ ≤ d, hence
γ ≥ 1. By direct calculations we get

f(p, p1, p2, p3) = (2 − 1
2m1

− 3(γ−1)
2(2+γ) )d

2 < 2d2.

Now let I0 = {1}, I1 = {2} and I3 = {3}. Then p1 = 0 and there exists λ such
that p2 = m2

m2−1λ − d and p3 = d − m3−2
m3−1λ. It follows that λ = 1

γ d. The inequality
p3 > 1

m3−1d implies that λ < d, hence γ > 1. One calculates that

f(p, p1, p2, p3) = (2 − 1
2m1

− γ−1
2γ )d2 < 2d2.

We now consider the case I0 = {1} and I2 = {2, 3}. Then p1 = 0, and there
exists λ such that p2 = d − m2−2

m2−1λ and p3 = d − m3−2
m3−1λ. It follows that λ = 1

2−γ d.
We get

f(p, p1, p2, p3) = (2 − δ−1
2(δ−γ+1)(2−γ))d

2 ≤ 2d2.

Note that γ < 2 since in this case m2, m3 > 2. The inequality is strict if and only
if δ > 1. Note that if δ = 1, then λ = m1−1

m1
d and p1 = m1

m1−1λ − d.
The next case is I1 = {1, 2, 3}. Then p1 = m1

m1−1λ − d, p2 = m2
m2−1λ − d and

p3 = m3
m3−1λ − d for some λ. It follows that λ = 4

3+δ d. We get

f(p, p1, p2, p3) = (2 − 2(δ−1)
3+δ )d2 ≤ 2d2.

Equality holds if and only if δ = 1. If this is the case, then λ = d, p2 = d − m2−2
m2−1λ

and p3 = d − m3−2
m3−1λ.
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Assume now that I1 = {1, 2} and I2 = {3}. There exists λ such that p1 =
m1

m1−1λ − d, p2 = m2
m2−1λ − d and p3 = d − m3−2

m3−1λ. It follows that λ = 2
1+δ d. The

inequality p3 > 1
m3−1d implies that λ < d, hence δ > 1. We get

f(p, p1, p2, p3) = (2 − δ−1
1+δ )d2 < 2d2.

Finally, let I1 = {1} and I2 = {2, 3}. There exists λ such that p1 = m1
m1−1λ − d,

p2 = d − m2−2
m2−1λ and p3 = d − m3−2

m3−1λ. It follows that (δ − 1)λ = 0. If δ > 1,
then λ = 0 and p1 = −d < 0, which is impossible. Assume now that δ = 1. The
inequalities p1 > 0 and p3 > 1

m3−1d imply that m1−1
m1

d < λ < d. One also checks
that in this case

f(p, p1, p2, p3) = 2d2,

which finishes the proof. �

5.8. Our first aim is to prove Proposition 5.1 in the following situation. Let d ∈ R
and d′ ∈ P be such that d′ 	= 0, d′α = dα, d′ω = 0, d−d′ ∈ N∆0 and pd

i,j = 0 for all
i ∈ [1, n] and j ∈ [1, mi − 1]. For simplicity we write in this case d, p and p1, . . . ,
pn instead of dα, pd and pd

1,m1
, . . . , pd

n,mn
, respectively. Note that

〈d − d′,d′〉 = −d2 − dp +
∑

i∈[1,n]

(
−d′i,mi−1pi +

∑
j∈[1,mi−1]

(d′i,j−1 − d′i,j)d
′
i,j

)

and d = p +
∑

i∈[1,n] pi. Let δi,j = d′i,j−1 − d′i,j for i ∈ [1, n] and j ∈ [1, mi]. Then

〈d− d′,d′〉 = −d2 − dp +
∑

i∈[1,n]

Si,

where Si = −δi,mi
pi +

∑
j<l∈[1,mi]

δi,jδi,l. Note that δi,j ≥ 0 for i ∈ [1, n] and
j ∈ [1, mi],

∑
j∈[1,n] δi,j = d for i ∈ [1, n], and δi,1 = d′α − d′i,1 ≥ dα − di,1 = pi for

i ∈ [1, n].
Let O be the set of all pairs (d,d′) such that d ∈ R, pd = 0, pd

i,j = 0 for
i ∈ [1, n], j ∈ [1, mi − 1], d′ ∈ P, d′i,j−1 > d′i,j for i ∈ [1, n] and j ∈ [1, mi − 1],
d′ω = 0, and d − d′ ∈ N∆0 .

5.9. Assume first that n = 3. It follows from the above paragraph and Lemma 5.5
that

〈d − d′,d′〉 ≤ −2d2 + f(p, p1, p2, p3),
where f is as in Subsection 5.7. Lemma 5.7 shows that if 1

m1−1 + 1
m2−1 + 1

m3−1 ≥ 1,
then

〈d − d′,d′〉 ≤ 0,

and if equality holds, then 1
m1−1 + 1

m2−1 + 1
m3−1 = 1 and pd = 0, which finishes

the proof of Proposition 5.1 in this case. Note also that if equality holds, then
according to Lemmas 5.5 and 5.7, (d,d′) ∈ O.

5.10. As the next case, consider m = (2, 2, 2, m). It follows from Lemma 5.5 that

Si ≤ 1
4d2 − 1

2dpi + 1
4p2

i

for i ∈ [1, 3], where we use notation introduced in Subsection 5.8. If p4 = d, then
p = p1 = p2 = p3 = 0, and it follows from Corollary 5.6 that S4 ≤ 0, hence

〈d− d′,d′〉 ≤ −1
4d2 < 0.
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On the other hand, if d > p4, then again using Corollary 5.6,

S4 < 1
2d2 − 1

2p2
4,

hence

〈d− d′,d′〉
< −3

4p2 − 1
4p2

4 − pp1 − pp2 − pp3 − 1
2pp4 − 1

2p1p2 − 1
2p1p3 − 1

2p2p3 ≤ 0.

5.11. Assume now that m = (2, 2, 3, 3). It follows from Lemma 5.5 that

Si ≤ 1
4d2 − 1

2dpi + 1
4p2

i

for i ∈ [1, 2]. If 2p3 ≤ d and 2p4 ≤ d, then again using Lemma 5.5, we get

Si ≤ 1
3d2 − 1

3dpi + 1
3p2

i

for i ∈ [3, 4], hence

〈d− d′,d′〉 ≤ −5
6p2 − 1

12p2
1 − 1

12p2
2 − 7

6pp1 − 7
6pp2 − 5

6pp3 − 5
6pp4

− 2
3p1p2 − 1

3p1p3 − 1
3p1p4 − 1

3p2p3 − 1
3p2p4 − 1

6p3(d − 2p3) − 1
6p4(d − 2p4) ≤ 0.

Moreover, if equality holds, then p = p1 = p2 = 0 and p3 = p4. In addition applying
Lemma 5.5 once more we get that if equality holds, then (d,d′) ∈ O.

As the next case, consider 2p4 > d, i.e., p4 > p+p1 +p2 +p3. Then in particular
2p3 ≤ d, hence

S3 ≤ 1
3d2 − 1

3dp3 + 1
3p2

3, S4 ≤ dp4 − p2
4,

and

〈d− d′,d′〉 ≤ −7
6p2 − 5

12p2
1 − 5

12p2
2 − 1

6p2
3 − 1

6p2
4 − 11

6 pp1 − 11
6 pp2

− 5
3pp3 − 1

3pp4 − 4
3p1p2 − 7

6p1p3 + 1
6p1p4 − 7

6p2p3 + 1
6p2p4 + 1

3p3p4.

One easily checks that the above expression is decreasing when considered as a
function of p4 for p4 > p + p1 + p2 + p3. Moreover, for p4 = p + p1 + p2 + p3 we get

−5
3p2 − 5

12p2
1 − 5

12p2
2 − 7

3pp1 − 7
3pp2 − 2pp3 − 4

3p1p2 − p1p3 − p2p3,

hence 〈d− d′,d〉 < 0 in this case.

5.12. The final case we have to consider is m = (2, 2, 2, 2, 2). Let O′ be the set of
all pairs (d,d′) ∈ O such that d = dei,2 for a positive integer d and some i ∈ [1, 5],
d′α ∈ [1, d], d′i,1 = 0, d′j,1 = 1

2d′α for j ∈ [1, 5], j 	= i, and d′ω = 0.
Using Lemma 5.5 we get that

Si ≤ 1
4d2 − 1

2dpi + 1
4p2

i

for i ∈ [1, 5], hence

〈d − d′,d′〉 = −3
4p2 −

∑
i∈[1,5]

ppi − 1
2

∑
i<j∈[1,5]

pipj ≤ 0.

Moreover, if equality holds, then p = 0 and there exists i ∈ [1, 5] such that pi = d
and pj = 0 for j ∈ [1, 5], j 	= i. Finally, it follows from Lemma 5.5 that in the case
of equality (d,d′) ∈ O′.
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5.13. We now show that we can reduce the proof of Proposition 5.1 to the special
situation considered in the previous paragraphs. We first show that we may assume
that d′ω = 0.

Lemma. Let d ∈ R and d′ ∈ P be such that d′ 	= 0 and d − d′ ∈ R + Q. If
d′ω > 0, then d′ − h ∈ P, d′ − h 	= 0, d − (d′ − h) ∈ R + Q, and

〈d− d′,d′〉 = 〈d − (d′ − h),d′ − h〉.

Proof. The former three assertions are obvious (d′−h 	= 0, since h 	∈ P), the latter
follows by direct calculations. �
5.14. The second reduction is the following.

Lemma. Let d ∈ R and d′ ∈ P be such that d′ 	= 0, d−d′ ∈ R+Q and d′ω = 0. If
i ∈ [1, n] and j ∈ [1, mi−1] are such that pd

i,j > 0 and pd−d′

i,j > 0, then d−ei,j ∈ R,
(d− ei,j) − d′ ∈ R + Q and

〈d − d′,d′〉 ≤ 〈(d− ei,j) − d′,d′〉.
Moreover, if (d − ei,j ,d′) ∈ O, then the above inequality is strict.

Proof. Obviously, pd
i,j > 0 implies that d − ei,j ∈ R. Similarly, pd−d′

i,j > 0 implies
that (d − ei,j) − d′ = (d − d′) − ei,j ∈ R + Q. Moreover,

〈(d − ei,j) − d′,d′〉 − 〈d− d′,d′〉 = d′i,j−1 − d′i,j ≥ 0.

Finally, if (d − ei,j ,d′) ∈ O, then d′i,j−1 > d′i,j , hence the above inequality is
strict. �
5.15. A more complicated version of the above reduction is the following.

Lemma. Let d ∈ R and d′ ∈ P be such that d′ 	= 0, d − d′ ∈ R + Q and
d′ω = 0. If i ∈ [1, n] and j ∈ [1, mi − 1] are such that pd

i,j > 0, pd
i,l = 0 for all

l ∈ [j + 1, mi − 1], and pd−d′

i,j = 0, then d − ei,j ∈ R, d′ − ei,j ∈ P, d′ − ei,j 	= 0,
(d− ei,j) − (d′ − ei,j) ∈ R + Q and

〈d− d′,d′〉 ≤ 〈(d− ei,j) − (d′ − ei,j),d′ − ei,j〉.
Moreover, if (d − ei,j ,d′ − ei,j) ∈ O, then the above inequality is strict.

Proof. Obviously, (d − ei,j) − (d′ − ei,j) = d − d′ ∈ R + Q and pd
i,j > 0 implies

that d − ei,j ∈ R. Moreover, d′ − ei,j 	= 0, since ei,j 	∈ P. Note that

di,l − d′i,l = pd−d′
+

∑
s∈[1,n]

s �=i

pd−d′

s,ms
+ pd−d′

i,l

for l ∈ [1, mi − 1], and

di,mi
− d′i,mi

= pd−d′
+

∑
s∈[1,n]

pd−d′

s,ms
+ pd−d′

ω .

Thus our assumption implies that

(5.15.1) di,j − d′i,j = min
l∈[1,mi]

(di,l − d′i,l).

In particular,

(5.15.2) di,j − d′i,j ≤ di,j+1 − d′i,j+1,
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and the above inequality is strict if j = mi − 1 (note that d′ 	= 0 implies that
pd−d′

ω 	= 0).
We now show that d′ − ei,j ∈ P. In order to do this we have to prove that

d′i,j − d′i,j+1 > 0. If j < mi − 1, then using that pd
i,j+1 = 0 and (5.15.2) we get

d′i,j − d′i,j+1 ≥ di,j − di,j+1 = pd
i,j − pd

i,j+1 = pd
i,j > 0.

If j = mi − 1, then d′i,j+1 = d′ω = 0, so we have to prove that d′i,j > 0. Choose l ∈
[1, mi] such that pd

i,l = 0. It follows similarly as above that di,l < di,j . Using (5.15.1)
we get

d′i,j > d′i,l ≥ 0;
thus the claim follows.

In order to prove the required inequality note that

〈(d− ei,j) − (d′ − ei,j),d′ − ei,j〉 − 〈d− d′,d′〉
= (di,j+1 − d′i,j+1) − (di,j − d′i,j);

hence the claim follows from (5.15.2). It also follows that if j = mi − 1, then the
inequality is strict. Finally assume that j ∈ [1, mi − 2] and (d− ei,j ,d′ − e′i,j) ∈ O.
This implies that di,j = di,j+1+1 and d′i,j ≥ d′i,j+1+2, which finishes the proof. �
5.16. The last reduction is the following.

Lemma. Let d ∈ R and d′ ∈ P be such that d′ 	= 0, d−d′ ∈ R + Q, d′ω = 0, and
pd

i,j = 0 for all i ∈ [1, n] and j ∈ [1, mi − 1]. If d′α < dα, then there exists i ∈ [1, n]
such that d − ei,mi

∈ R, (d− ei,mi
) − d′ ∈ R + Q and

(5.16.1) 〈d− d′,d′〉 ≤ 〈(d− ei,mi
) − d′,d′〉.

Moreover, if (d − ei,mi
,d′) ∈ O, then (d,d′) ∈ O. Finally, if m = (2, 2, 2, 2, 2),

(d− ei,mi
,d′) ∈ O′ and (d,d′) 	∈ O′, then the above inequality is strict.

Proof. We first show the existence of i ∈ [1, n] such that d − ei,mi
∈ R and

(d− ei,mi
) − d′ ∈ R + Q.

Observe that 0 < d′α < dα = pd +
∑

i∈[1,n] p
d
i,mi

, hence either pd > 0 or there exists
i ∈ [1, n] such that pd

i,mi
> 0. Similarly, since dα − d′α > 0, either pd−d′

> 0 or
there exists i ∈ [1, n] such that pd−d′

i,mi
> 0. Note that if pd > 0, then d− ei,mi

∈ R
for all i ∈ [1, n], since h − ei,mi

=
∑

j∈[1,mi−1] ei,j . Again similarly, if pd−d′
> 0,

then (d − ei,mi
) − d′ = (d − d′) − ei,mi

∈ R + Q for all i ∈ [1, n]. Thus it
remains to show that if pd = 0 = pd−d′

, then there exists i ∈ [1, n] such that
pd

i,mi
, pd−d′

i,mi
> 0. Without loss of generality we may assume that pd

1,m1
, . . . , pd

s,ms
>

0 and pd
s+1,ms+1

= · · · = pd
n,mn

= 0 for some s ∈ [1, n]. Then for i ∈ [s + 1, n]

and j ∈ [1, mi − 1], di,j = dα and (di,j − d′i,j) − (dα − d′α) = pd−d′

i,j − pd−d′

i,mi
, hence

pd−d′

i,mi
− pd−d′

i,j = d′i,j − d′α ≤ 0. Consequently,

pd−d′

i,mi
= min{pd−d′

i,j | j ∈ [1, mi]} = 0

for i ∈ [s + 1, n]. Since dα − d′α > 0, it follows that there exists i ∈ [1, s] such that
pd−d′

i,mi
> 0.

Note that

〈(d − ei,mi
) − d′,d′〉 − 〈d − d′,d′〉 = d′i,mi−1 ≥ 0.
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Obviously, if (d − ei,mi
,d′) ∈ O, then (d,d′) ∈ O. Finally, assume that m =

(2, 2, 2, 2, 2) and (d−ei,mi
,d′) ∈ O′. In particular, d−ei,mi

= dej,mj
for a positive

integer d and j ∈ [1, n]. If (d,d′) 	∈ O′, then j 	= i, hence d′i,mi−1 = 1
2d 	= 0, and

the above inequality is strict, which finishes the proof. �
5.17. We can now complete the proof of Proposition 5.1. Let Λ be a canonical
algebra of type m, d ∈ R and let d′ ∈ P be such that d′ 	= 0 and d− d′ ∈ R + Q.
It follows from Lemma 5.13 that we may assume d′ω = 0. It follows by an easy
induction that there exists a sequence (d(s),d′(s)), s ∈ [0, l], such that d(0) = d,
d′(0) = d′, (d(s),d′(s)) is obtained from (d(s−1),d′(l−s)), s ∈ [1, l], by applying one
of the reductions described in Lemmas 5.14–5.16, d

(l)
α = d

′(l)
α , and pd(l)

i,j = 0 for all
i ∈ [1, n] and j ∈ [1, mi − 1]. In particular we know that

〈d − d′,d′〉 ≤ 〈d(l) − d′(l),d′(l)〉 ≤ 0,

where the latter inequality follows from Subsections 5.9–5.12. Moreover, the latter
inequality is strict if

∑
i∈[1,n]

1
mi−1 > 2n − 5.

Now assume that
∑

i∈[1,n]
1

mi−1 = 2n − 5 and 〈d − d′,d′〉 = 0. Then 〈d(l) −
d′(l),d′(l)〉 = 0 and consequently

〈d(s−1) − d′(s−1),d′(s−1)〉 = 〈d(s) − d′(s),d′(s)〉
for all s ∈ [1, l]. It also follows from Subsections 5.9, 5.11 and 5.12 that (d(l),d′(l)) ∈
O, hence using Lemmas 5.14–5.16 we get by induction that for all s ∈ [0, l],
(d(s),d′(s)) ∈ O. In particular, pd = pd(0)

= 0. With similar arguments we prove
that (d,d′) ∈ O′ if m = (2, 2, 2, 2, 2) and 〈d − d′,d′〉 = 0, which implies the last
assertion of Proposition 5.1.

6. Counterexamples

In this section we present for a canonical algebra of type m such that∑
i∈[1,n]

1
mi−1 = 2n − 5 ( < 2n − 5, respectively),

examples of dimension vectors d′ ∈ P and d′′ ∈ Q such that d′ + d′′ ∈ R and

〈d′′,d′〉 = 0 ( > 0, respectively).

Together with Propositions 4.3, 4.5, 4.9 and 5.1, it will finish the proof of Theo-
rems 1.3, 1.4 and 1.5.

6.1. Let Λ be a canonical algebra of type (m1, m2, m3) such that

δ = 1
m1−1 + 1

m2−1 + 1
m3−1 ≤ 1.

Note that our assumption implies that m1, m2, m3 > 2. Let

m = (m1 − 1)(m2 − 1)(m3 − 1)(m1 − 2)(m2 − 2)(m3 − 2).

Define d′ and d′′ by

d′α = δm, d′′α = 0,

d′i,j = (δ(mi−1)−1)(mi−j−1)
(mi−1)(mi−2) m, d′′i,j = (δ(mi−1)−1)(j−1)

(mi−1)(mi−2) m,

i ∈ [1, 3], j ∈ [1, mi − 1],

d′ω = 0, d′′ω = δm.
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Then d′ ∈ P, d′′ ∈ Q,

d′ + d′′ = m
m1−1e1,m1 + m

m2−1e2,m2 + m
m3−1e3,m3 ∈ R

and

〈d′′,d′〉 =
∑

i∈[1,3]

∑
j∈[2,mi−1]

d′′i,j(d
′
i,j − d′i,j−1) + d′′ωd′α

= 1
2

(
−

∑
i∈[1,3]

(δ(mi−1)−1)2

(mi−1)(mi−2) + 2δ2
)
m2

= 1
2 (−δ2 − δ2δ′ + 2δδ′ + δ − δ′)m2 = 1

2 (1 − δ)(δδ′ + δ − δ′)

= 1
2 (1 − δ)

( ∑
i �=j∈[1,3]

1
(mi−1)(mj−2)

)
m2 ≥ 0,

where

δ′ = 1
m1−2 + 1

m2−2 + 1
m3−2 .

The above inequality is strict if δ < 1.

6.2. Let Λ be a canonical algebra of type (m1, m2, m3, m4) such that

1
m1−1 + 1

m2−1 + 1
m3−1 + 1

m4−1 ≤ 3.

The above assumption implies in particular that, without loss of generality, we may
assume that m3, m4 > 2. Let

m = 2m1m2(m3 − 2)(m4 − 2).

Define d′ and d′′ by

d′α = m, d′′α = 0,

d′i,j = mi−j
mi

m, d′′i,j = j
mi

m, i ∈ [1, 2], j ∈ [1, mi − 1],

d′i,j = mi−j−1
2(mi−2)m, d′′i,j = j−1

2(mi−2)m, i ∈ [3, 4], j ∈ [1, mi − 1],

d′ω = 0, d′′ω = m.

Then d′ ∈ P, d′′ ∈ Q,

d′ + d′′ = m
2 e3,m3 + m

2 e3,m4 ∈ R

and

〈d′′,d′〉 = ( 3
4 − 1

2m1
− 1

2m2
− 1

8(m3−2) −
1

8(m4−2) )m
2 ≥ 0.

The inequality is strict if m 	= (2, 2, 3, 3).

6.3. Let Λ be a canonical algebra of type (m1, . . . , mn) for n ≥ 5. We may assume,
without loss of generality, that mn = min(m1, . . . , mn). Let

m = m1 · · ·mn−1.
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Define d′ and d′′ by

d′α = m, d′′α = 0,

d′i,j = mi−j
mi

m, d′′i,j = j
mi

m, i ∈ [1, n − 1], j ∈ [1, mi − 1],

d′n,j = 0, d′′n,j = 0, j ∈ [1, mn − 1],

d′ω = 0, d′′ω = m.

Then d′ ∈ P, d′′ ∈ Q,

d′ + d′′ = men,mn

and

〈d′′,d′〉 = 1
2

(
n − 3 −

∑
i∈[1,n−1]

1
mi

)
m2 ≥ 0.

The inequality is strict if m 	=(2, 2, 2, 2, 2) (remember that mn =min(m1, . . . , mn)).

6.4. Note that in all the above examples pd = 0 for d = d′ + d′′. Moreover, d
is not sincere for n ≥ 5. In order to complete the proof of Theorem 1.5 we have
to present examples with pd > 0 and 〈d′′,d′〉 > 0, for canonical algebras Λ of
type (m1, . . . , mn) with

∑
i∈[1,n]

1
mi−1 < 2n − 5. It will also complete the proof of

Theorem 1.4, since d ∈ R with pd > 0 is sincere.
Let Λ be an algebra of the above form. It follows from the preceding subsections

that there exist dimension vectors d′ ∈ P and d′′ ∈ Q such that d′ + d′′ ∈ R and
〈d′′,d′〉 > 0. Choose a positive integer q such that

q〈d′′,d′〉 + 〈d′′,h〉 > 0.

Then d̂′ = qd′ + h ∈ P, d̂′′ = qd′′ ∈ Q, d = d̂′ + d̂′′ = h + q(d′ + d′′) ∈ R, pd > 0
and

〈d̂′′, d̂′〉 = q2〈d′′,d′〉 + q〈d′′,h〉 > 0.
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[2] G. Bobiński and A. Skowroński, Geometry of modules over tame quasi-tilted algebras, Colloq.
Math. 79 (1999), no. 1, 85–118. MR1671811 (2000i:14067)

[3] , Geometry of periodic modules over tame concealed and tubular algebras, Algebr.

Represent. Theory 5 (2002), no. 2, 187–200. MR1909550 (2003d:16021)
[4] K. Bongartz, Algebras and quadratic forms, J. London Math. Soc. (2) 28 (1983), no. 3, 461–

469. MR724715 (85i:16036)
[5] , Minimal singularities for representations of Dynkin quivers, Comment. Math. Helv.

69 (1994), no. 4, 575–611. MR1303228 (96f:16016)
[6] , On degenerations and extensions of finite-dimensional modules, Adv. Math. 121

(1996), no. 2, 245–287. MR1402728 (98e:16012)
[7] , Some geometric aspects of representation theory, Algebras and Modules, I (Trond-

heim, 1996), 1998, pp. 1–27. MR1648601 (99j:16005)
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