
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 360, Number 2, February 2008, Pages 765–799
S 0002-9947(07)04228-6
Article electronically published on September 18, 2007

ON SYMPLECTIC FILLINGS OF LENS SPACES

PAOLO LISCA

Abstract. Let ξst be the contact structure naturally induced on the lens
space L(p, q) = S3/Z/pZ by the standard contact structure ξst on the three–
sphere S3. We obtain a complete classification of the symplectic fillings of
(L(p, q), ξst) up to orientation–preserving diffeomorphisms. In view of our re-
sults, we formulate a conjecture on the diffeomorphism types of the smoothings
of complex two–dimensional cyclic quotient singularities.

1. Introduction and statement of results

A (coorientable) contact three–manifold is a pair (Y, ξ), where Y is a closed
three–manifold and ξ ⊂ TY a two–dimensional distribution given as the kernel of
a one–form α ∈ Ω1(Y ) such that α ∧ dα is a volume form. The orientation on Y
determined by α ∧ dα only depends on the distribution ξ. We shall always assume
that the underlying manifold of a contact three–manifold is oriented, and that the
orientation is the one induced by the contact structure.

A symplectic filling of a closed contact three–manifold (Y, ξ) is the pair (X, ω)
consisting of a smooth, compact, connected four–manifold X and a symplectic
form ω on X such that, if X is oriented by ω ∧ω and ∂X is given by the boundary
orientation, there exists an orientation–preserving diffeomorphism ϕ : Y → ∂X such
that ω|dϕ(ξ) �= 0 at every point of ∂X. For example, the unit four–ball B4 ⊂ C2

endowed with the restriction of the standard Kähler form on C
2 is a symplectic

filling of (S3, ξst), where the standard contact structure ξst on S3 is, by definition,
the distribution of complex lines tangent to S3 ⊂ C2.

The first classification result for symplectic fillings is due to Eliashberg [6], who
proved that if (X, ω) is a symplectic filling of (S3, ξst), then X is diffeomorphic
to a blowup of B4. McDuff [19] extended Eliashberg’s result to the lens spaces
L(p, 1) endowed with the contact structure ξst defined in the following paragraph.
Ohta and Ono [23] determined the diffeomorphism types of the strong symplectic
fillings of links of simple elliptic singularities endowed with their natural contact
structures. In [15, 24] results on the intersection forms of symplectic fillings of finite
quotients of S3 were proved.

The distribution ξst on S3, being invariant under the natural action of U(2), is
a fortiori invariant under the induced action of the subgroup

(1.1) Gp,q = {
(

ζ 0
0 ζq

)
| ζp = 1} ⊂ U(2),
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where p, q ∈ Z. It follows that when p > q ≥ 1 and p, q are coprime, ξst descends
to a contact structure ξst on the lens space L(p, q) = S3/Gp,q.

Let Dp denote the disk bundle over the two–sphere with Euler class e(Dp) = p.
The contact three–manifold (L(p, 1), ξst) admits a symplectic filling of the form
(D−p, ω) for every p > 1. On the other hand, (L(4, 1), ξst) also admits a symplec-
tic filling of the form

(
CP2 \ ν(C), ω0

)
, where ν(C) is a strictly pseudo–concave

neighborhood of a smooth conic C ⊂ CP2 and ω0 is the restriction of the standard
Kähler form on CP2.

McDuff proved [19] that if (X, ω) is a symplectic filling of (L(p, 1), ξst), then X
is orientation preserving diffeomorphic to a smooth blowup of:

(a) D−p if p �= 4,
(b) D−4 or CP2 \ ν(C) if p = 4.

In this paper we obtain a complete classification up to diffeomorphism for the
symplectic fillings of the contact three–manifolds

(
L(p, q), ξst

)
. In order to state

our result we need to introduce some notation.
Let p and q be coprime integers such that

(1.2) p > q ≥ 1,
p

p − q
= b1 −

1

b2 −
1

. . . −
1
bk

, b1, . . . , bk ≥ 2.

The integers bi are uniquely determined by the rational number p
p−q . Without the

assumption bi ≥ 2, this uniqueness property fails. The standard symbol [b1, . . . , bk]
will be used throughout the paper to denote a contined fraction as the one in (1.2).

Definition. A k–tuple of non–negative integers (n1, . . . , nk) is admissible if each
of the denominators appearing in the continued fraction [n1, . . . , nk] is positive.

Let n = (n1, . . . , nk) be an admissible k–tuple of non–negative integers such that

(1.3) [n1, . . . , nk] = 0.

Let N(n) be the closed, oriented three–manifold given by surgery on S3 along the
framed link of Figure 1. It is easy to check that assumption (1.3) ensures the
existence of an orientation preserving diffeomorphism

(1.4) ϕ : N(n) → S1 × S2.

n1 n2 nk−1 nk

. . . .

Figure 1. The manifold N(n)

Definition. Fix a diffeomorphism ϕ as in (1.4), and let L ⊂ N(n) be the thick
framed link drawn in Figure 2. Define Wp,q(n) to be the smooth four–manifold
with boundary obtained by attaching two–handles to S1 × D3 along the framed
link

ϕ(L) ⊂ S1 × S2.
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Remark. The diffeomorphism type of Wp,q(n) is independent of the choice of the
diffeomorphism ϕ, because every self–diffeomorphism of S1 × S2 extends to S1 ×
D3 [10].

b1 − n1 b2 − n2 bk−1 − nk−1 bk − nk

−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

n1 n2 nk−1 nk

L ... ... ... ...

. . . .

Figure 2. The framed link L ⊂ N(n)

Definition. Let Zp,q ⊂ Z
k be the set of admissible k–tuples of non–negative inte-

gers (n1, . . . , nk) such that

[n1, . . . , nk] = 0 and 0 ≤ ni ≤ bi for i = 1, . . . , k.

It is easy to check (see Section 2) that the set Zp,q admits the involution:

n = (n1, . . . , nk) �→ n = (nk, . . . , n1).

Given coprime integers p > q ≥ 1, we denote by q the only integer satifsying

p > q ≥ 1, qq ≡ 1 mod p.

Theorem 1.1. Let p > q ≥ 1 be coprime integers. Then,
(1) Let (W, ω) be a symplectic filling of the contact three–manifold (L(p, q), ξst).

Then, there exists n ∈ Zp,q such that W is orientation preserving diffeo-
morphic to a smooth blowup of Wp,q(n).

(2) For every n ∈ Zp,q, the four–manifold Wp,q(n) carries a symplectic form ω
such that (Wp,q(n), ω) is a symplectic filling of the contact three–manifold(
L(p, q), ξst

)
. Moreover, there are no classes in H2(Wp,q(n); Z) with self–

intersection equal to −1.
(3) Let n ∈ Zp,q and n′ ∈ Zp′,q′ . Then, Wp,q(n)#rCP

2
is orientation preserv-

ing diffeomorphic to Wp′,q′(n′)#sCP
2

if and only if:
(a) (p′, s) = (p, r) and (q′,n′) = (q,n), or
(b) (p′, s) = (p, r) and (q′,n′) = (q,n).

Theorem 1.1 gives a complete diffeomorphism classification of the symplectic
fillings of (L(p, q), ξst), extending the result of McDuff quoted above.1 For instance,
as explained in [16], by Theorem 1.1 there are exactly two symplectic fillings of
(L(p2, p−1), ξst) up to blowups and diffeomorphisms. One comes from the canonical
resolution of the associated singularity, while the other is the rational homology ball
used in the symplectic rational blowdown construction [8, 27].

1Portions (1) and (2) of Theorem 1.1 were announced in [16, 17].
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The following corollary gives three new results as applications of Theorem 1.1:

Corollary 1.2. Let p > q ≥ 1 be coprime integers.

(a) Given a positive integer n, there exist infinitely many lens spaces L(p, q)
such that the contact three–manifold (L(p, q), ξst) has more than n symplec-
tic fillings pairwise distinct up to homotopy equivalence and whose under-
lying four–manifolds are smoothly minimal.2

(b) There exist infinitely many lens spaces L(p, q) such that q > 1 and the
contact three–manifold (L(p, q), ξst) has only one symplectic filling up to
blowups and diffeomorphisms.

(c) The contact three–manifold (L(p, q), ξst) has a symplectic filling (W, ω) with
b2(W ) = 0 if and only if (p, q) = (m2, mh− 1), for some m and h coprime
natural numbers.

The statement of Theorem 1.1 – not the proof given here – is related to the
deformation theory of complex two–dimensional cyclic quotient singularities. In
fact, the contact three–manifold

(
L(p, q), ξst

)
can be viewed as the link of the

singularity (C2/Gp,q, 0) together with the natural contact structure given by the
complex tangents. Every smoothing of (C2/Gp,q, 0) determines Stein fillings F of
(L(p, q), ξ0), and Theorem 1.1 implies that any such F must be diffeomorphic to
Wp,q(n) for some n ∈ Zp,q. It seems likely that a converse to this fact should
also hold, because every irreducible component of the reduced base space Sred of
the versal deformation of (C2/Gp.q, 0) gives a smoothing of the singularity, and
Stevens [26] proved the existence of a one–to–one correspondence between Zp,q and
the set Sp,q of irreducible components of Sred (see also [3]). In light of the results
obtained in this paper, we propose the following:

Conjecture. Let F (n) be a Stein filling of
(
L(p, q), ξst

)
determined by the smooth-

ing of (C2/Gp.q, 0) corresponding to n ∈ Zp,q under the Stevens correspondence [26].
Then, F (n) is diffeomorphic to Wp,q(n).

There is evidence supporting this conjecture. In fact, in this paper we prove that
each Wp,q(n) carries Stein structures (Corollary 5.2). Moreover, the smoothing cor-
responding to (1, 2, . . . , 2, 1) ∈ Zp,q is known to be isomorphic to the canonical res-
olution Xp,q of the singularity, and it is not hard to verify that if n = (1, 2, . . . , 2, 1),
then Wp,q(n) is indeed diffeomorphic to a regular neighborhood of the exceptional
divisor in Xp,q. Finally, by [28, 5.9.1], a singularity (C2/Gp.q, 0) has a smoothing
with b2 = 0 if and only if (p, q) = (m2, mh−1), with m and h coprime, in agreement
with Corollary 1.2(c).

The paper is organized as follows. In Section 2 we prove Corollary 1.2 assum-
ing Theorem 1.1. In Section 3 we show that every symplectic filling (W, ω) of
(L(p, q), ξst) can be compactified to a rational symplectic four–manifold X so that
X\W is a neighborhood of an immersed symplectic surface Γ ⊂ X of a special kind.
In Section 4 we prove Theorem 1.1(1). In Section 5 we construct Stein structures
on the smooth four–manifolds Wp,q(n). In Section 6 we prove Theorem 1.1(2). In
Section 7 we complete the proof of Theorem 1.1.

2A smooth, oriented four–manifold X is smoothly minimal if the interior of X contains no
smoothly embedded two–sphere of self–intersection −1.
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2. The proof of Corollary 1.2

Definition 2.1. Given a k–tuple of positive integers

(n1, . . . , ns−1, ns, ns−1, . . . , nk)

with ns = 1, we say that the (k − 1)–tuple

(n1, . . . , ns−1 − 1, ns+1 − 1, . . . , nk)

is obtained by a blowdown at ns (with the obvious meaning of the notation when
s = 1 or s = k). The reverse process is a blowup. A blowdown at ns is strict if
s > 1. The reverse process is a strict blowup.

It is shown in [22, Appendix] that a k–tuple of positive integers (n1, . . . , nk) is
admissible3 if and only if the symmetric matrix⎛⎜⎜⎜⎜⎜⎝

n1 −1
−1 n2 −1

−1 n3

. . . −1
−1 −nk

⎞⎟⎟⎟⎟⎟⎠
is positive semi–definite of rank ≥ k− 1. It immediately follows from this fact that
if (n1, . . . , nk) is admissible, then (nk, . . . , n1) is admissible,

(ni, ni+1, . . . , nj−1, nj)

is admissible for every 1 ≤ i ≤ j ≤ k, and blowing up and blowing down preserve
admissibility.

Lemma 2.2. Let (n1, . . . , nk) be a k–tuple of positive integers. Then, the following
conditions are equivalent:

• (n1, . . . , nk) is admissible and satisfies [n1, . . . , nk] = 0;
• (n1, . . . , nk) is obtained from (0) by a sequence of strict blowups.

Proof. Clearly, a k–tuple of positive integers is obtained from (0) via a sequence of
strict blowups if and only if it is obtained from (1, 1) via such a sequence. Moreover,
both the property of being admissible and that of having a vanishing associated
continued fraction are preserved under blowup. Therefore, since (1, 1) is admissible
and [1, 1] = 0, any k–tuple of positive integers obtained from (0) by a sequence of
strict blowups is admissible and has a vanishing associated continued fraction.

Conversely, let (n1, . . . , nk) be an admissible k–tuple of positive integers with
[n1, . . . , nk] = 0. Then, we must have k ≥ 2. We shall argue by induction that
(n1, . . . , nk) is obtained from (0) by a sequence of strict blowups. For k = 2 the
statement is obvious, so suppose that k > 2 and the statement corresponding to
k − 1 holds true. An easy induction argument shows that if ni ≥ 2 for every
i = 1, . . . , k, then [n1, . . . , nk] > 1. Thus, if [n1, . . . , nk] = 0, then necessarily
ni = 1 for some i ∈ {1, . . . , k}. We conclude that (n1, . . . , nk) is obtained from the
admissible (k − 1)–tuple

(n1, . . . , ni−1 − 1, ni+1 − 1, . . . , nk)

3The definition of admissibility given in [22, Appendix] is easily seen to be equivalent to the
one given in Section 1.



770 PAOLO LISCA

by a blowup (which is strict if and only if i > 1). By the induction hypothesis,

(n1, . . . , ni−1 − 1, ni+1 − 1, . . . , nk)

is obtained from (0) by a sequence of strict blowups, hence nj = 1 for some j >
1. Therefore, the k–tuple (n1, . . . , nk) is obtained by a strict blowup from the
admissible (k − 1)–tuple

(n1, . . . , nj−1 − 1, nj+1 − 1, . . . , nk),

and the conclusion follows by induction. �

Lemma 2.3. Let p > q ≥ 1 be coprime integers, and suppose that
p

q
= [a1, . . . , ah], with a1, . . . , ah ≥ 5.

Then,
Zp,q = {(1, 2, . . . , 2, 1)}.

Proof. Let
p

p − q
= [b1, . . . , bk], b1, . . . , bk ≥ 2.

Using Riemenschneider’s point diagram [25], one can easily check that the assump-
tion on the ai’s implies the following three conditions:

• k ≥ 4,
• b1, . . . , bk ≤ 3,
• if bi = bj = 3, then either 3 < i = j < k − 2 or |i − j| ≥ 3.

Therefore, if (n1, . . . , nk) ∈ Zp,q we have
(1) k ≥ 4,
(2) ni ≤ 3 for every i = 1, . . . , k,
(3) if ni = nj = 3, then either 3 < i = j < k − 2 or |i − j| ≥ 3.

We shall argue by induction on k ≥ 4 that if (n1, . . . , nk) is an admissible se-
quence of non–negative integers such that [n1, . . . , nk] = 0 and such that (1), (2)
and (3) above hold, then

(n1, . . . , nk) = (1, 2, . . . , 2, 1).

If k = 4 one immediately sees that, by Lemma 2.2 and Assumption (3),

(n1, n2, n3, n4) = (1, 2, 2, 1).

Now suppose k > 4. By Lemma 2.2, ni > 0 for every i = 1, . . . , k and nj = 1
for some index j > 1. We claim that j = k. In fact, suppose j < k. If j = 2
or j = k − 1, then Assumption (3) implies nj−1 = nj+1 = 2. By Lemma 2.2 this
is impossible, because two blowdowns would give a string of length bigger than 1
containing 0. Therefore we have 2 < j < k − 1. Blowing down once yields the
sequence

(n1, . . . , nj−1 − 1, nj+1 − 1, . . . , nk),
which still satisfies the three assumptions. Therefore, by induction

(n1, . . . , nj−1 − 1, nj+1 − 1, . . . , nk) = (1, 2, . . . , 2, 1).

But then nj−1 = nj+1 = 3, which goes against Assumption (3). We conclude that
j = k. Blowing down once yields the sequence

(n1, . . . , nk−1 − 1),
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which satisfies the assumptions if and only if nk−3 < 3. Notice that if nk−3 < 3,
we can apply induction and reach the conclusion. Blowing down two more times
yields the sequence

(n1, . . . , nk−3 − 1),
which satisfies the assumptions, so by induction we get nk−3 = 2. �

We need the following elementary facts about continued fractions (see e.g. [22,
Appendix] for the proofs):

• Let p > q ≥ 1 be coprime integers, and suppose that
p

q
= [a1, a2, . . . , ah], a1, . . . , ah ≥ 2.

Then,
[ah, ah−1, . . . , a1] =

p

q
,

where p > q ≥ 1 and qq ≡ 1 mod p.
• If (n1, . . . , nk) is an admissible k–tuple of positive integers, then

[n1, n2, . . . , nk] = 0

if and only if
[nk, nk−1 . . . , n1] = 0.

Lemma 2.4. Let (n1, . . . , nk) be an admissible k–tuple of positive integers such
that

[n1, n2, . . . , nk] = 0, k ≥ 3.

Suppose that there is exactly one index j ∈ {1, . . . , k} such that nj = 1. Then, there
are coprime integers m and n such that

[n1, n2, . . . , nj−1, 2, nj+1, . . . , nk] =
m2

mn + 1
.

Proof. We argue by induction on k ≥ 3. For k = 3, the assumptions and Lemma 2.2
imply

(n1, n2, n3) = (2, 1, 2),
and

[2, 2, 2] =
4
3

is of the stated form. Now suppose k > 3. Since, by Lemma 2.2, (n1, . . . , nk) must
be obtained from (2, 1, 2) by a sequence of strict blowups, we have

n1 = 2, nk > 2, or n1 > 2, nk = 2.

Observe that

[n1, n2, . . . , nj−1, 2, nj+1, . . . , nk] =
m2

mn + 1
if and only if

[nk, nk−1, . . . , nj+1, 2, nj−1, . . . , n1] =
m2

m(m − n) + 1
.

Therefore, without loss of generality we may assume

n1 = 2 and nk > 2.

Under these assumptions we claim that

(2.1) [n2, . . . , nk − 1] = 0.
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In order to prove the claim, we argue by induction on k ≥ 4. If k = 4 we must have

(n1, n2, n3, n4) = (2, 2, 1, 3),

and the claim is clear. If k > 4, observe that, since by Lemma 2.2, (n1, . . . , nk) is
a blowup of (2, 2, 1, 3), we must have j > 2. Then, blowing down once yields the
string

(n1 = 2, . . . , nj−1 − 1, nj+1 − 1, . . . , nk),
to which we may apply induction to conclude

[n2, . . . , nj−1 − 1, nj+1 − 1, . . . , nk − 1] = 0

if j < k − 1, and
[n2, . . . , nk−2 − 1, nk − 2] = 0

if j = k − 1. Blowing up again proves the claim (2.1).
Now induction applied to (2.1) gives

[n2, . . . , nj−1, 2, nj+1, . . . , nk − 1] =
n2

nh + 1
,

with n, h coprime integers. Since

(1 + nh)(1 − nh) ≡ 1 mod n2,

we have

[nk − 1, . . . , nj+1, 2, nj−1, . . . , n2] =
n2

n(n − h) + 1
,

therefore

[nk, . . . , nj+1, 2, nj−1, . . . , n2] =
n2

n(n − h) + 1
+ 1 =

2n2 − nh + 1
n(n − h) + 1

.

Thus, since

(n2 − nh + 1)(2nh − h2 + 2) = (2n2 − nh + 1)(nh − h2 + 1) + 1,

we conclude

[n1 = 2, n2, . . . , nj−1, 2, nj+1, . . . , nk] = 2 − 2(nh + 1) − h2

2n2 − nh + 1
=

m2

mn + 1
,

where m = 2n − h. �

Proof of Corollary 1.2. (a) Let p > q ≥ 1 be coprime and such that
p

p − q
= [b1, . . . , bk], b1, . . . , bk ≥ 2,

with k ≥ 4, b2, . . . , bk−2 ≥ 3 and bk ≥ k − 2. Let r ∈ Z, 0 ≤ r ≤ k − 4. Then,

nr = (1,

r︷ ︸︸ ︷
2, . . . , 2, 3,

k−4−r︷ ︸︸ ︷
2, . . . , 2, 1, k − 2 − r) ∈ Zp,q.

One can easily check that

(2.2) χ (Wp,q(nr)) = 5 +
k∑

i=1

(bi − 3) + r.

Then, Equation (2.2) and Theorem 1.1 imply that (L(p, q), ξst) admits at least k−3
smoothly minimal symplectic fillings up to homotopy equivalence.
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(b) If
p

q
= [a1, . . . , ah], a1, . . . , ah ≥ 5,

then by Lemma 2.3
Zp,q = {(1, 2, . . . , 2, 1)}.

The conclusion follows by Theorem 1.1.
(c) Suppose that

p

p − q
= [b1, . . . , bk].

It is easy to check that the attaching circle of each two–handle of Wp,q(n) is homo-
logically non–trivial in S1 × S2. Therefore, b2(Wp,q(n)) = 0 if and only if there is
exactly one index j ∈ {1, . . . , k} such that nj = 1, and

(b1, . . . , bk) = (n1, n2, . . . , nj−1, 2, nj+1, . . . , nk).

Then, by Lemma 2.4,
p

p − q
=

m2

mn + 1
,

with m and n coprime. Therefore q = mh − 1, with h = m − n. �

3. Compactifications of symplectic fillings

The purpose of this section is to prove Theorem 3.2 below. In order to state the
theorem, we need a definition.

Definition 3.1. Let (X, ω) be a symplectic four–manifold. A symplectic string in
X is an immersed symplectic surface

Γ = C0 ∪ C1 ∪ · · · ∪ Ck ⊂ X,

where:

• Ci is a connected, embedded symplectic sphere for i = 0, . . . , k;
• Ci and Ci+1 intersect transversely and positively at a single point, for

i = 0, . . . , k − 1;
• Ci ∩ Cj = ∅ if |i − j| > 1, for i, j = 0, . . . , k.

We say that Γ as above is of type (m0, . . . , mk) if, furthermore,

• Ci · Ci = mi for i = 0, . . . , k.

Theorem 3.2. Let p > q ≥ 1 be coprime integers, and suppose that
p

p − q
= [b1, . . . , bk], b1, . . . , bk ≥ 2.

Let (W, ω) be a symplectic filling of (L(p, q), ξst). Then, for some integer M ≥ 0, W
is orientation preserving diffeomorphic to the complement of a regular neighborhood
of a symplectic string

Γ = C0 ∪ C1 ∪ · · · ∪ Ck ⊂ CP
2#MCP

2

of type (1, 1 − b1,−b2, . . . ,−bk), where CP2#MCP
2

is endowed with a symplectic
blowup ωM of the standard Kähler form on CP2, and C0 is a complex line in CP2.
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Theorem 3.2 will be used in Section 4. We start with an auxiliary construction
of a suitable symplectic form on (0,∞) × L(p, q).

The function

ρ : C2 −→ (0, +∞),
(z1, z2) �→ |z1|2 + |z2|2

is a Kähler potential for the standard symplectic form ω0, i.e.

ω0 =
i

2

2∑
k=1

dzk ∧ dzk =
i

2
∂∂ρ.

Let J0 be the standard complex structure on C
2, and consider the one–form

σ0 = −1
4
dρ ◦ J0 = − i

4
(∂ρ − ∂ρ) = − i

4

2∑
k=1

(zkdzk − zkdzk).

Let i : S3 = ρ−1(1) ↪→ C
2 be the inclusion map, and define α0 = i∗σ0 ∈ Ω1(S3).

Since the standard contact structure ξst on S3 is given by complex tangent lines,
we have ξst = {α0 = 0} ⊂ TS3. Define π : C2 \ {(0, 0)} → S3 by setting:

π(z) =
z

ρ(z)
1
2
.

The pair (ρ, π) induces an orientation preserving diffeomorphism:

(ρ, π) : C
2 \ {(0, 0)} → (0, +∞) × S3.

The diffeomorphism (ρ, π) sends the standard symplectic form ω0 to the form
d(tα0), where t is the coordinate on the first factor. To see this, notice that

(i ◦ π)∗σ0 = − i

4

2∑
k=1

(
zkd

(
zk

ρ(z)
1
2

)
− zkd

(
zk

ρ(z)
1
2

))
=

1
ρ
σ0,

and therefore:

(3.1) (ρ, π)∗d(tα0) = d(ρπ∗i∗σ0) = dσ0 = − i

4
(
∂∂ρ − ∂∂ρ

)
=

i

2
∂∂ρ.

Since U(2) acts on C
2 via norm–preserving complex linear transformations, σ0 and

ω0 are clearly U(2)–invariant, while α0 is invariant under the naturally induced
action on S3. Moreover, (ρ, π) is U(2)–equivariant in an obvious sense, so we have:

• a symplectic form ω0 induced by ω0 on C2 \{(0, 0)}/Gp,q, where Gp,q is the
subgroup of U(2) defined by (1.1),

• a contact form α0 induced by α0 on L(p, q) = S3/Gp,q, and
• a symplectomorphism

(3.2)
(
C

2 \ {(0, 0)}/Gp,q, ω0

) ∼= ((0, +∞) × L(p, q), d(tα0)) .

With the notation of Section 1, we have ξst = {α0 = 0}. The action

S1 × S3 −→ S3,(3.3)

(eiθ, z) �−→ eiθz(3.4)

commutes with the action of Gp,q, so it induces a fixed–point free S1–action:

(3.5) S1 × L(p, q) −→ L(p, q).
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There is also an obviously induced S1–action on (0, +∞) × L(p, q). Since α0 is
U(2)–invariant, the symplectic form d(tα0) is invariant under this S1–action.

The hypersurfaces

{t} × L(p, q) ⊂ (0, +∞) × L(p, q)

satisfy an important property with respect to the S1–invariant symplectic form
d(tα0). We shall establish this property after recalling its general context.

Let (X, ω) be a symplectic four–manifold and Y ⊂ X a separating hypersurface
endowed with a fixed–point free S1–action. Following [21], we say that Y is ω–
compatible if the orbits of the S1–action lie in the null directions of ω|Y . In general,
we say that an embedding j : Y ↪→ X is ω–compatible if j(Y ) ⊂ X is a separating
ω–compatible hypersurface.

An ω–compatible hypersurface Y has a canonical co–orientation. In fact, if
N ∈ TpY , p ∈ Y , is the vector field generating the S1–action on Y then, for every
vector V ∈ TpX transverse to Y , ω(N, V ) �= 0, for otherwise ω would be degenerate
on TpX. Thus,

TpX \ TpY = T+
p X ∪ T−

p X,

where

T+
p X = {V ∈ TpX | ω(N, V ) > 0}, T−

p X = {V ∈ TpX | ω(N, V ) < 0}.
This allows one to distinguish the two components of X \ Y by setting X+ to be
the component with inward pointing normal vector V ∈ T+

p X, for all p ∈ Y , and
X− to be remaining component. Thus, we have:

X = X− ∪Y X+.

The importance of the ω–compatibility condition is due to the fact that symplec-
tic four–manifolds can be glued along ω–compatible hypersurfaces. More precisely,
J. McCarthy and J. Wolfson proved the following result:

Theorem 3.3 ([21], Theorem 4.2). Let Y be a closed, oriented three–manifold with
a fixed–point free S1–action. Let (Xi, ωi), i = 1, 2, be symplectic four–manifolds and
let ji : Y → Xi, i = 1, 2, be ω–compatible embeddings. Then, there is a symplectic
structure ω on a smooth four–manifold

X = X−
1 ∪Y X+

2

obtained by gluing X−
1 to X+

2 along Y . Moreover, there are neighborhoods νi(ji(Y ))
of Y in Xi, i = 1, 2, such that

ω|X+
2 \ν2(Y ) = ω2 and ω|X−

1 \ν1(Y ) = cω1

for some constant c > 0. �
The idea of the proof of Theorem 3.2 is to show that any symplectic filling (W, ω)

of (L(p, q), ξst) can be compactified in a suitable way. In order to do that, we first
need to establish the following:

Proposition 3.4. Let (W, ω) be a symplectic filling of (L(p, q), ξst). Let (X, η) be a
symplectic four–manifold and j : L(p, q) → X an embedding which is η–compatible
with respect to the S1–action (3.5). Then, there is a symplectic form ω on a smooth
four–manifold

Z = W ∪∂W=∂X− X−

obtained by gluing X− to W along their boundaries.
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Proposition 3.4 will be proved after the next two lemmas.

Lemma 3.5. For every t ∈ (0, +∞), the hypersurface

{t} × L(p, q) ⊂ (0, +∞) × L(p, q)

is S1–invariant and d(tα0)–compatible with respect to the action (3.5). Moreover,

[(0, +∞) × L(p, q)]+ =(0, t] × L(p, q),

[(0, +∞) × L(p, q)]− =[t, +∞) × L(p, q).

Proof. The hypersurface {t}×L(p, q) is clearly S1–invariant for every t ∈ (0, +∞).
In order to see that it is also d(tα0)–compatible, we first show that the S1–invariant
hypersurface

ρ−1(t) ⊂ C
2 \ {(0, 0)}

is ω0–compatible. Given z ∈ ρ−1(t), we have

d

dθ

∣∣∣
θ=0

(
eiθz
)

= iz.

Equivalently, the vector field

(3.6) N = J0

(
z1

∂

∂z1
+ z2

∂

∂z2

)
generates the S1–action. Since σ0 is invariant,

(3.7) 0 = LNσ0 = diNσ0 + iNdσ0,

and since dρ =
∑

k zkdzk + zkdzk, we have

iNσ0 = −1
4
dρ(J0(N)) =

ρ

4
.

Therefore, by (3.7) we have

(3.8) iNdσ0|ρ−1(t) = iNω0|ρ−1(t) = 0.

Equation (3.8) says that
ρ−1(t) ⊂ C

2 \ {(0, 0)}
is ω0–compatible. Therefore, by U(2)–invariance and (3.2) the hypersurface

{t} × L(p, q) ⊂ (0, +∞) × L(p, q)

is d(tα0)–compatible.
In order to prove the second part of the statement, by U(2)–invariance it is

enough to check that, with respect to the S1–action (3.3) and the d(tα0)–compatible
hypersurface

{t} × S3 ⊂ (0, +∞) × S3,

we have[
(0, +∞) × S3

]+
= (0, t] × S3,

[
(0, +∞) × S3

]−
= [t, +∞) × S3.

In fact, the vector field

V = z1
∂

∂z1
+ z2

∂

∂z2

is transverse to every hypersurface {t} × S3 and points inwardly with respect to

[t, +∞) × S3.
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Since N = J0V , we have

ω0(N, V ) = ω0(J0V, V ) = −ω0(V, J0V ) < 0.

This concludes the proof. �

Lemma 3.6. Let (W, ω) be a symplectic filling of (L(p, q), ξst). Then, there exists
a symplectic four–manifold (W̃ , ω̃) with one end E such that:

(a) (E , ω̃|E) is symplectomorphic to

((D, +∞) × L(p, q), d(tα0))

for some constant D > 0;
(b) W̃ \ E is orientation preserving diffeomorphic to W .

Proof. Choose an open collar C ⊂ W around ∂W , and let

ϕ : C \ ∂W ∼= (0, +∞) × L(p, q)

be an orientation preserving diffeomorphism such that, if we keep denoting by ω
the push–forward of ω to

(0, +∞) × L(p, q)

and we identify {1}×L(p, q) with L(p, q), we have ω|ξst
�= 0. In fact, we claim that

there exists a contactomorphism

c : (L(p, q), ξst) → (L(p, q), ξst)

which reverses the orientation of ξst. Consequently, we can choose the identification
of {1} × L(p, q) with L(p, q) so that ω|ξst

> 0.
In order to prove the claim, recall that the standard contact structure ξst on S3

has a natural orientation induced by the standard complex structure on C2. The
orientation on ξst induces an orientation on ξst. Moreover, the map C2 → C2 given
by complex conjugation induces a contactomorphism

c : (S3, ξst) → (S3, ξst)

which reverses the orientation of ξst. Since c ◦ A = A−1 ◦ c for every element A of
the group Gp,q defined in (1.1), c induces the contactomorphism c.

Since L(p, q) has no non–trivial real two–cohomology, ω is exact. Eliashberg [5,
Proposition 3.1] proved that in this situation there exist a contact form α ∈
Ω1(L(p, q)) defining ξst, a constant C > 1 and a symplectic form Ω on

(0, +∞) × L(p, q)

which coincides with d(tα) on

[C, +∞) × L(p, q)

and is equivalent to ω near {1} × L(p, q).
Eliashberg’s argument is the following. Since ω|ξst

> 0, we have

(3.9) ω|ξst
= hdα0|ξst

for some smooth function h : L(p, q) → (0, +∞). Let α = hα0. The restriction
of ω to L(p, q) is of the form dα + dβ for some β ∈ Ω1(L(p, q)), and it follows
from (3.9) that d(tα)+dβ is a symplectic form near {1}×L(p, q). By the Symplectic
Tubular Neighborhood Theorem, there exists a self–diffeomorphism ψ of a tubular
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neighborhood of {1} × L(p, q) which is the identity restricted to {1} × L(p, q) and
which sends ω to d(tα) + dβ. Let

g : (0, +∞) → [0, 1]

be a smooth function which is identically 1 on (0, 1] and vanishes on [C, +∞) for
some constant C > 1. Then, if |g′(t)| is sufficiently small the two–form

Ω = d(tα) + d(gβ)

is a symplectic form on
(0, +∞) × L(p, q).

The condition on g′(t) is easily fulfilled as long as C is sufficiently large, so Ω is the
desired symplectic form.

Now consider the diffeomorphism

F : (0, +∞) × L(p, q) −→ (0, +∞) × L(p, q),
(t, x) �−→ (th(x), x) .

Then, F ∗(d(tα0)) = d(tα). By first gluing via ψ near {1} × L(p, q) and then via F

near {C + 1} × L(p, q), we obtain (W̃ , ω̃). �

Proof of Proposition 3.4. The statement is an immediate consequence of Theo-
rem 3.3, Lemma 3.5 and Lemma 3.6. �

Lemma 3.7. Let p > q ≥ 1 be coprime integers, and suppose that
p

p − q
= [b1, . . . , bk], b1, . . . , bk ≥ 2.

Let N = 1 +
∑k

i=1(bi − 1). Then, there exist a symplectic form ω on

XN := CP
2#NCP

2

and an embedding
L(p, q) ↪→ XN

which is ω–compatible with respect to the S1–action (3.5), such that X−
N is a com-

pact, regular neighborhood of a symplectic string of type

(1, 1 − b1,−b2, . . . ,−bk)

in XN .

Proof. The proof of the lemma is a simple adaptation of [21, Theorem 2.1 and
Corollary 2.1]; therefore we only outline the argument here, and refer to [21] for
details. The point is to show that there exist:

(1) an S1–Hamiltonian symplectic form ω on XN , and
(2) a Hamiltonian H : XN → R for ω and a regular value c ∈ R of H,

such that
X− = {H ≥ c}.

Let S−1 be a ruled surface over CP1 with zero section Z0 and infinity section Z∞
satisfying Z0 · Z0 = −1 and Z∞ · Z∞ = 1. There is a standard S1–action on S−1

which rotates the fibers and fixes Z0 and Z∞, and an S1–Hamiltonian symplectic
structure on S−1 with a Hamiltonian function H : S−1 → [0, 1] such that H(Z0) = 0
and H(Z∞) = 1. Fix a point x ∈ Z0. The union of Z0, Z1 and a fiber of the fibration
S−1 → CP1 through the point x is a symplectic string of type (−1, 0, 1). Blowing up
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at x and taking proper transforms yields an S1–Hamiltonian symplectic structure
on Ŝ−1 together with a symplectic string of type (−2,−1,−1, 1). We can keep
blowing up at the intersection points of the proper transforms of Z0 until the initial
part of the string looks like this:

(−a1,−a2, . . . ,−ah,−1, . . .),

where the integers ai ≥ 2 are chosen so that
p

q
= [a1, . . . , ah].

Using Riemenschneider’s point rule [25] it is easy to check that this can be done so
that the whole string is of the following:

(−a1,−a2, . . . ,−ah,−1,−bk,−bk−1, . . . ,−b2, 1 − b1, 1).

Now the resulting blowup of S−1 is XN . As explained in the proof of [21, The-
orem 2.1] (see also [21, Lemmas 2.3] and [21, Lemmas 2.4]), XN carries an S1–
Hamiltonian symplectic form ω with Hamiltonian

H : XN → R,

there is a regular value c of H such that

X+ = {H ≤ c}
is a regular neighborhood of a symplectic string Γ1 of type

(−a1, . . . ,−ah),

and
X− = {H ≥ c}

is a regular neighborhood of a symplectic string Γ2 of type

(1, 1 − b1,−b2, . . . ,−bk).

Moreover, H−1(c) is isomorphic, as an S1–manifold, to L(p, q) endowed with the
S1–action (3.5). This is because the S1–action (3.5) is the action induced on L(p, q)
when the lens space is viewed as the boundary of the S1–equivariant plumbing
determined by the weighted graph dual to Γ1, which coincides, by [21, Corollary 2.1],
with the S1–action induced on H−1(c). �

Proof of Theorem 3.2. By Lemma 3.7 we can find a symplectic structure ω on a
rational symplectic four–manifold X and an embedding L(p, q) ↪→ X which is
ω–compatible with respect to the S1–action (3.5) and such that X− is a regular
neighborhood of a symplectic string

Γ̃ = C̃0 ∪ C̃1 ∪ · · · C̃k ⊂ X

of type (1, 1 − b1,−b2, . . . ,−bk). Applying Proposition 3.4 we can construct a
symplectic manifold of the form

(XW = W ∪∂W=∂X− X−, ω).

By [19], if (M, ω) is a closed symplectic four–manifold containing an embedded
symplectic two–sphere C of self–intersection +1 such that M \ C is minimal, then
(M, ω) is symplectomorphic to CP2 with the standard Kähler form. Moreover,
the symplectomorphism can be chosen such that it sends C to a complex line.
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Since C̃0 ⊂ XW has self–intersection +1, and since non–minimal symplectic four–
manifolds can be reduced to minimal ones by blowing down exceptional symplectic
spheres, we conclude that, for some M ≥ 0, there is a symplectomorphism

ψ : (XW , ω) → (CP
2#MCP

2
, ωM )

sending C̃0 to a complex line C0 ⊂ CP2. Clearly,

Γ = C0 ∪ · · · ∪ Ck = ψ(Γ̃) ⊂ CP
2#MCP

2

is a symplectic string of type (1, 1 − b1,−b2, . . . ,−bk). �

4. Complements of symplectic strings

The purpose of this section is to prove Theorem 1.1(1), which follows immediately
from Theorem 3.2 combined with the following result:

Theorem 4.1. Let ωM be a symplectic form on XM = CP
2#MCP

2
obtained from

the standard Kähler form on CP2 by symplectic blowups. Let

Γ = C0 ∪ C1 ∪ · · · ∪ Ck ⊂ XM

be a symplectic string of type

(1, 1 − b1,−b2, . . . ,−bk), k ≥ 2, b1, . . . , bk ≥ 1,

and such that C0 ⊂ CP2 is a complex line. Let si, for i = 1, . . . , k, denote one half
of the cardinality of the set

Si := {e ∈ H2(XM ; Z) | e · e = −1, e · [Ci] �= 0, e · [Cj ] = 0 for j ∈ {0, . . . , k} \ {i}}
and let ni := bi − si. Then, n := (n1, . . . , nk) ∈ Zp,q, and the complement of
a regular neighborhood of Γ is orientation preserving diffeomorphic to a smooth
blowup of Wp,q(n).

Theorem 4.1 will follow from Theorem 4.2 below.

Theorem 4.2. Let ωM be a symplectic form on XM = CP
2#MCP

2
obtained from

the standard Kähler form on CP2 by symplectic blowups. Let

Γ = C0 ∪ C1 ∪ · · · ∪ Ck ⊂ XM

be a symplectic string of type

(1, 1 − b1,−b2, . . . ,−bk), k ≥ 2, b1, . . . , bk ≥ 1,

and such that C0 ⊂ CP
2 is a complex line. Then, there is a sequence of symplectic

blowdowns

(CP
2#MCP

2
, ωM ) → (CP

2#(M − 1)CP
2
, ωM−1) → · · · → (CP

2, ω0)

with ω0 diffeomorphic to the standard Kähler form and such that Γ descends to a
symplectic string of type (1, 1) in (CP2, ω0).

Before proving Theorems 4.1 and 4.2 we need to establish some auxiliary results.

Lemma 4.3. Let {l, f1, . . . , fM} ⊆ H2(CP
2#MCP

2
; Z) be a set of generators which

are orthogonal with respect to the intersection form, with l being the homology class
of a complex line in CP2 and with each fi having square −1. Let α1, . . . , αk ∈
H2(CP2#MCP

2
; Z), k ≥ 2, be homology classes of the form

α1 = l − e1
1 − e1

2 − · · · − e1
b1 , αi = ei

1 − ei
2 − · · · − ei

bi
, i = 2, . . . , k,



ON SYMPLECTIC FILLINGS OF LENS SPACES 781

where bi ≥ 1 for i = 1, . . . , k, ei
j ∈ {f1, . . . , fM} for every i, j and ei

j �= ei
j′ if j �= j′.

Suppose also that

αi · αj =

{
1 if |i − j| = 1,

0 if |i − j| > 1

and let A1 = {e1
1, . . . , e

1
b1
} and Ai = {ei

2, . . . , e
i
bi
} for i = 2, . . . , k. Then,

(1) for every j = 2, . . . , k, there is an index i with 1 ≤ i < j such that

ej
1 ∈ Ai.

Moreover, if ej
1 ∈ Ai with i < j − 1,

eh
1 ∈ Ai ∩ Aj

for some index h with i < h < j;
(2) for every 1 ≤ i < j ≤ k we have

Ai ∩ Aj ⊆ {e2
1, . . . , e

k
1}.

Proof. (1) We argue by induction on k ≥ 2. For k = 2, (1) applies only to j = 2,
in which case the statement clearly holds because α1 · α2 = 1.

Now suppose that k > 2 and the statement to be true for α1, . . . , αk−1. Clearly,
it suffices to prove the statement for j = k. Since αk−1 · αk = 1, either ek

1 ∈ Ak−1,
in which case we are done, or ek−1

1 ∈ Ak. In the latter case, we set j1 = k − 1, and
the induction hypothesis implies ek−1

1 ∈ Aj2 for some j2 < j1. Thus, Aj2 ∩ Ak �= ∅
and, since αj2 · αk = 0, we either have ek

1 ∈ Aj2 , in which case, setting i = j2 and
h = k − 1, we are done because ek−1

1 ∈ Aj2 ∩ Ak or ej2
1 ∈ Ak. Continuing in this

fashion we obtain a maximal, strictly decreasing sequence of indexes

k = j0 > k − 1 = j1 > j2 > · · · > jr ≥ 1

such that ejs

1 ∈ Ajs+1 ∩Ak for s = 1, . . . , r−1. Then, ek
1 ∈ Ajr . In fact, if ek

1 �∈ Ajr ,
then, since α1 · αk = 0, we would have jr > 1; therefore the sequence could be
extended, contradicting its maximality. This proves (1) setting i = jr and, when
jr < k − 1, h = jr−1.

(2) The proof is again an induction on k ≥ 2. For k = 2, α1 · α2 implies
A1 ∩ A2 = ∅, so suppose k > 2 and the statement to be true for α1, . . . , αk−1.

Observe that, since αi · αk ≥ 0 for i < k,

ek
1 �∈ {e1

1, . . . , e
k−1
1 }.

This implies that ek
1 belongs to at most one of the sets A1, A2, . . . , Ak−1, because

ek
1 ∈ Ai ∩ Aj for 1 ≤ i < j ≤ k − 1 implies

Ai ∩ Aj �⊆ {e2
1, . . . , e

k−1
1 },

contrary to the induction hypotheses.
Arguing by contradiction, suppose the statement to be false for α1, . . . , αk. By

the induction hypothesis, for some 1 ≤ i ≤ k − 1 we have

Ai ∩ Ak �⊆ {e2
1, . . . , e

k
1}.

We claim that i �= k−1. In fact, if i = k−1, then αk−1 ·αk = 1 and Ak−1∩Ak �= ∅
imply ek

1 ∈ Ak−1 and ek−1
1 ∈ Ak. But by (1) there is an index i′ < k − 1 such that

ek−1
1 ∈ Ai′ . Thus, since αi′ · αk = 0, ek

1 ∈ Ak−1, and by the induction hypothesis

Ai′ ∩ Ak−1 ⊆ {e2
1, . . . , e

k−1
1 },
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we have eh
1 ∈ Ak. Now we can apply (1) again with j = i′ and argue in the same

way. After a finite number of similar steps we are forced to conclude ek
1 ∈ A1, which

is incompatible with ek
1 ∈ Ak−1.

We can now finish the proof assuming i �= k−1. Since αi ·αk = 0, either ei
1 ∈ Ak

or ek
1 ∈ Ai. In the latter case, by (1) we have eh

1 ∈ Ai ∩ Ak for some index h
with i < h < k. But Ai ∩ Ak �⊆ {e2

1, . . . , e
k
1} implies that Ai ∩ Ak has at least two

elements. Therefore, in any case we have ei
1 ∈ Ak. Repeated applications of (1)

starting with j = i and j = k−1 respectively, yield two maximal strictly decreasing
sequences

i = h0 > h1 > · · · > hr ≥ 1, k − 1 = l0 > l1 > · · · > ls ≥ 1,

such that
ehn
1 ∈ Ahn+1 ∩ Ak, n = 0, . . . , r − 1,

and
elm
1 ∈ Alm+1 ∩ Ak, m = 0, . . . , s − 1.

Maximality implies ehr
1 �∈ Akif hr > 1, els

1 �∈ Ak if ls > 1, and ek
1 ∈ Ahr ∩ Als .

Since ek
1 belongs to at most one of the sets A1, . . . , Ak−1, we must have hr = ls.

Therefore there exist n with 0 ≤ n < r and m with 0 ≤ m < s such that hn �= lm
but hn+1 = lm+1. This implies that each of the distinct elements ehn

1 and elm
1

belong to Ahn+1 ∩Ak. Since αhn+1 ·αk = 0, we must have e
hn+1
1 ∈ Ak, ek

1 ∈ Ahn+1 ,
and therefore r = n + 1 = m + 1 = s, which is incompatible with ehr

1 �∈ Ak. �

Proposition 4.4. Let XM = CP
2#MCP

2
be endowed with a blowup ωM of the

standard Kähler form on CP2, and let

Γ = C0 ∪ C1 ∪ · · · ∪ Ck ⊂ XM

be a symplectic string of type

(1, 1 − b1,−b2, . . . ,−bk), b1, . . . , bk ≥ 1.

Let {l, f1, . . . , fM} ⊆ H2(CP2#MCP
2
; Z) be a set of generators which are orthogo-

nal with respect to the intersection form, with l being the homology class of a complex
line in CP2 and with each fi having square −1. Suppose that [C0] ∈ H2(XM ; Z) is
equal to the homology class l. Then,

(4.1) [C1] = l − e1
1 − e1

2 − · · · − e1
b1 , [Ci] = ei

1 − ei
2 − · · · − ei

bi
, i = 2, . . . , k,

where ei
j ∈ {f1, . . . , fM} for every i, j and ei

j �= ei
j′ if j �= j′ .

Proof. We can write

[Ci] = δ1il +
M∑

j=1

ai
jfj

for some coefficients ai
j ∈ Z, i = 1, . . . , k, where δ1i is Krönecker’s delta. Since each

Ci is symplectic,

〈c1(XM ), [Ci]〉 = 2 + Ci · Ci for i = 1, . . . , k,

which is equivalent to:

(4.2)
M∑

j=1

(
ai

j + (ai
j)

2
)

= 2(1 − δ1i).
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We assume k ≥ 1 and prove the statement by induction on k. Equation (4.2)
implies immediately that a1

j ∈ {0,−1} for j = 1, . . . , M . Therefore, the statement
holds for k = 1.

Now suppose that k ≥ 2 and that the classes [Ci] have the form given in the
statement for i = 1, . . . , k − 1. By Equation (4.2) for i = k, there is exactly one
index j0 ∈ {1, . . . , M} such that ak

j0
∈ {1,−2}, while ak

j ∈ {0,−1} for j �= j0.
We claim that the equality ak

j0
= −2 leads to a contradiction. In fact, since

Ck · Ck−1 = 1, if all the coefficients ak
j are non–positive, then we must have k > 2

and ak−1
1 ∈ Ak. By Lemma 4.3(1) applied for j = k − 1, ek−1

1 ∈ Ai for some
i < k − 1. Since Ci · Ck = 0 and all the coefficients ak

j are non–positive, we must
have i > 1 and ai

1 ∈ Ak. Now we can apply Lemma 4.3(1) again for j = i, and
argue in the same way. Clearly, after a finite number of similar steps we reach a
contradiction. �
Lemma 4.5. Under the assumptions of Theorem 4.2, let J be an almost complex
structure tamed by ωM and such that Γ is J–holomorphic. Then, there exists an
embedded J–holomorphic sphere Σ ⊂ XM such that [Σ] · [C0] = 0 and [Σ] · [Σ] =
−1. Moreover, there exists such a Σ disjoint from Γ if and only if there exists a
symplectic sphere S ⊂ XM of square −1 such that [S] · [Ci] = 0 for i = 0, . . . , k.

Proof. Since the symplectic 4–manifold XM is obtained by blowing up CP2, there
exists a symplectic sphere S ⊂ XM of square −1 orthogonal to l = [C0]. By [19,
Lemma 3.1], the homology class [S] is either represented by an embedded J–
holomorphic sphere Σ or by a J–holomorphic cusp–curve

S1 ∪ · · · ∪ Sn,

i.e. a union of (not necessarily embedded) J–holomorphic spheres. In the first
case, the first part of the lemma is proved. In the second case notice that, since
[S] · [C0] = 0, by positivity of intersections [20] we have

[Si] · [C0] = 0 for i = 1, . . . , n.

Therefore
[Si] · [Si] ≤ −1 for i = 1, . . . , n.

Moreover,

1 = χ(S) + S · S = 〈c1(XM ), [S]〉 =
n∑

i=1

〈c1(XM ), [Si]〉 =
n∑

i=1

(χ(Si) + [Si] · [Si]),

which implies [Sj ]·[Sj ] = −1 for at least one index j ∈ {1, . . . , n}. By the adjunction
formula [19], Σ := Sj is embedded. Hence, the first part of the lemma is proved.
If [S] is orthogonal to all the classes [Ci], then by positivity of intersections so is
[Σ], and therefore Σ must be disjoint from Γ. This proves the second part of the
lemma. �
Proof of Theorem 4.2. Let J be an almost complex structure tamed by ωM and
such that Γ is J–holomorphic. If there exists an embedded symplectic sphere S ⊂
XM such that [S] · [Ci] = 0, i = 0, . . . , k, then by Lemma 4.5 there is an embedded
J–holomorphic sphere Σ ⊂ XM \Γ with self–intersection Σ ·Σ = −1. Therefore, we
may blow down Σ and reapply the same argument to XM−1. After a finite number
of similar steps we get Γ ⊂ XM ′ , with the property that for every symplectic
sphere S ⊂ XM the class [S] intersects non–trivially at least one of the classes [Ci].
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Applying Lemma 4.5 again, we know that there exists an embedded J–holomorphic
sphere Σ ⊂ XM ′ such that [Σ] · [C0] = 0 and Σ ∩ Γ �= ∅. By Proposition 4.4, the
homology classes [Ci] have the form (4.1). Since [Σ] · [C0] = 0, [Σ] must coincide
with one of the classes ei

j .
Now we argue by induction on k ≥ 2. Clearly, either for some s ≥ 2 we have

bs = 1 and [Σ] = [Cs], or [Σ] · Ci ∈ {0, 1} for every i = 1, . . . , k.
If bs = 1 and [Σ] = [Cs], by positivity of intersections we must have Σ = Cs. In

this case we can blow down Σ, and Γ descends to a symplectic string Γ1 ⊂ XM ′−1

of length strictly less than the length of Γ. If k = 2, then s = 2, b1 = b2 = 1
and Γ1 = C0 ∪ C ′

1 is a symplectic string of type (1, 1) with [C ′
1] = l. Since the

complement of C0 is minimal, the conclusion follows immediately from the results
of [19] as in the proof of Theorem 3.2. If k > 2, since the intersection form of
XM ′−1 restricted to the orthogonal complement of the class l is negative definite,
Γ1 satisfies the hypothesis of the theorem. By induction, the statement holds for
Γ1 and therefore for Γ.

If [Σ] ·Ci ∈ {0, 1} for every i = 1, . . . , k, we must have Σ ·Ci = 1 for at least one
index i > 0. By Lemma 4.3(2), in this case there is exactly one such index, so Σ
must intersect Γ \C0 transversely at one smooth point. As before, if we blow down
Σ, then Γ descends to a symplectic string Γ1 ⊂ XM ′−1 satisfying the hypothesis of
the theorem. Now we can go through the same process starting from the beginning,
thus showing that Γ1 descends to a symplectic string Γ2 ⊂ XM ′−2. After a finite
number of similar steps we arrive at a symplectic string of length strictly less than
the length of Γ, and the induction argument works as before. �

Proof of Theorem 4.1. By Theorem 4.2, there is a sequence of symplectic blow-
downs

(4.3) (CP
2#MCP

2
, ωM ) → (CP

2#(M − 1)CP
2
, ωM−1) → · · · → (CP

2, ω0)

with ω0 diffeomorphic to the standard Kähler form, and such that Γ descends to
a symplectic string of type (1, 1) in (CP2, ω0). Since we want to determine the
complement of a regular neighborhood of Γ up to diffeomorphisms, we may assume
that ω0 is the standard Kähler form on CP

2.
Let J0 be an almost complex structure in CP2 tamed by ω0 and such that l0

and l′0 are J0–holomorphic. The results of [12] show that if {Jt}t∈[0,1] is a generic
path of tamed almost complex structures connecting J0 to the standard complex
structure J1, then there are families {lt}t∈[0,1] and {l′t}t∈[0,1] of smooth, embedded
and distinct Jt–holomorphic spheres connecting l0, respectively l′0, to standard
complex lines l1 and l′1. This shows that the string l0 ∪ l′0 is symplectically isotopic
to a pair l1 ∪ l′1 of distinct standard complex lines.

Thus, in order to determine the diffeomorphism type of the complement of a
regular neighborhood of Γ, one may replace Γ with the proper transform of a pair of
distinct complex lines in CP2 under the sequence of complex blowups corresponding
to (4.3). In fact, by analyzing the construction of Sequence (4.3) in the proof of
Theorem 4.2 and using Kirby calculus and Lemma 2.2, it is easy to see that there
is an orientation preserving diffeomorphism

W ∼= Wp,q(n)#rCP
2
,

with n ∈ Zp,q as in the statement and r = M −
∑k

i=1(bi − ni). �
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5. Stein structures on Wp,q(n)

In this section we construct Stein structures on the smooth four–manifolds with
boundary Wp,q(n) defined in Section 1. The proof is based on Legendrian surgery [4,
11].

A knot K in a contact three–manifold (Y, ξ) is called Legendrian if K is every-
where tangent to the distribution ξ. The contact structure induces a framing of
K, usually called the contact framing and denoted by tb(K). Assume that ξ is
oriented. Given an oriented Legendrian knot K in (Y, ξ) and a non–zero section v
of ξ along K, the rotation number rotv(K) is the winding number of the oriented
tangent vector to K with respect to v in the oriented plane ξ.

Let (n1, . . . , nk) be an admissible sequence of positive integers such that

[n1, . . . , nk] = 0.

We fix once and for all a sequence of strict blowdowns

(5.1) (n1, . . . , nk) → · · · → (0)

as in Lemma 2.2. We can realize this sequence of operations geometrically, by
viewing each step as a blowdown in the sense of the Kirby calculus on framed
links, starting from the framed link L =

⋃k
i=1 Li of Figure 1 and ending with the

zero–framed unknot. Such a sequence corresponds to an orientation preserving
diffeomorphism

(5.2) ϕ : N(n) → S1 × S2,

where N(n) = N(n1, . . . , nk) is the closed oriented three–manifold obtained by
surgery along the framed link L ⊂ S3. Let ν(L) ⊂ S3 be a small tubular neigh-
borhood of L. Then, the complement S3 \ ν(L) can be identified with a subset C
of N(n), i.e. the complement of the surgered solid tori. Every link in C ⊂ S3 is
therefore endowed with a canonical framing. We shall use this canonical framing
to identify any framing with a k–uple of integers.

The smooth manifolds Wp,q(n) are obtained by first attaching a one–handle
to the four–ball, and then attaching two–handles to the boundary of the resulting
S1×D3. The standard tight contact structure ζ0 on S1×S2 = ∂(S1×D3) is obtained
from the standard contact structure ξst on S3 by removing two smooth balls and
gluing the resulting boundaries in a suitable way. Moreover, each Legendrian link
in (S1 × S2, ζ0) is contact isotopic to a Legendrian link in standard form in the
sense of [11]. In particular, there is a nowhere vanishing section of ζ0, denoted by
∂
∂x in [11], along any Legendrian link in standard form. The section ∂

∂x extends as
a nowhere vanishing section v of ζ0 to all of S1×S2. The contact structure ζ0 has a
natural orientation coming from the natural complex orientation on ξst. Therefore,
the rotation numbers with respect to the section v are well–defined.

Using Eliashberg’s Legendrian surgery construction [4, 11], we will now prove
that there are Stein structures on each Wp,q(n) by showing that the attaching
circles of the two–handles are isotopic to Legendrian knots

Ki ⊂ (S1 × S2, ζ0)

and the two–handles are attached with framings tb(Ki) − 1.
Let ζ̃0 = ϕ∗(ζ0) be the tight contact structure on N(n) obtained by pulling back

ζ0 via the diffeomorphism (5.2). Observe that ζ̃0 does not depend on the choice of
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ϕ because S1 × S2 carries only one tight contact structure up to isotopy. Let τ be
the pull–back of the nowhere zero section v by the diffeomorphism (5.2).

Recall from Section 1 that, given two coprime integers

p > q ≥ 1, with
p

p − q
= [b1, . . . , bk],

we defined the set

Zp,q = {(n1, . . . , nk) ∈ Z
k | [n1, . . . , nk] = 0, 0 ≤ ni ≤ bi, i = 1, . . . , k}.

Theorem 5.1. Let p > q ≥ 1 be coprime integers with p
p−q = [b1, . . . , bk], and let

n = (n1, . . . , nk) ∈ Zp,q. Let

L =
k⋃

i=1

Li ⊂ C = S3 \ ν(L)

be the “thick” link drawn in Figure 3. Then, there exists a Legendrian link

L =
k⋃

i=1

Li ⊂ (C, ζ̃0|C)

with the following properties:
(a) L is smoothly isotopic to L inside C.
(b) L has contact framing equal to the canonical framing induced by the inclu-

sion C ⊂ S3.
(c) Define rotτ (Li) to be 0 for i < 1 and i > k. Then, L admits an orientation

such that rotτ (L1) = 0, and

rotτ (Li−1) + rotτ (Li+1) − ni rotτ (Li) =

⎧⎪⎨⎪⎩
1 if i = 1,

0 if 1 < i < k,

−1 if i = k.

L1 L2 Lk−1 Lk

n1 n2 nk−1 nk

. . . .

Figure 3. The link L

Proof. We argue by induction on k ≥ 1. When k = 1 we have p
p−q = [b1] and

[n1] = 0, therefore b1 = p, q = p− 1, n1 = 0 and ϕ is the identity. The formulas for
the Thurston–Bennequin and the rotation number of a Legendrian link in standard
form [11] show that the Legendrian link L of Figure 4 satisfies (a), (b) and (c).
Now assume k > 1, and suppose that the statement holds for every four–manifold
of the form Wp′,q′(m), where m = (m1, . . . , mk−1). Let

n = (n1, . . . , ns−1, 1, ns+1, . . . , nk) → n′ = (n1, . . . , ns−1 − 1, ns+1 − 1, . . . , nk)
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p strands

Figure 4. The link L when k = 1

be the first element of the sequence of strict blowdowns (5.1). By definition of a
strict blowdown, s > 1. Redraw Figure 3 as Figure 5, where the thin horizontal
arcs in the picture are the strands of the braid β = σ2

1σ
2
2 · · ·σ2

k−1 ∈ Bk. Observe
that the closure of β is isotopic to the thin link L of Figure 3. We orient L as shown
in Figure 5.

L1

L2

Ls−1

Ls

Ls+1
Lk−1

Lk

n1

n2

ns−1

1
ns+1

nk−1

nk

Figure 5. The link L redrawn and oriented

We now prove the statement assuming s �= k, which is the harder case. At the
end we will briefly say how to deal with the easier case s = k, omitting some obvious
details.

Blowing down the s–th component of the thin link L yields Figure 6. The
resulting thick link L̃ is the disjoint union of L′ and L′′

s , where L′ =
⋃

i �=s L′
i is

the collection of thick unknots, each of which is linked to a single strand of the
thin braid, on the left–hand side of the picture, and L′′

s is the only thick unknot
which links two strands. We can view the link L̃ as sitting inside the oriented
three–manifold N(n′) obtained by surgery in S3 along the thin framed link of
Figure 6, which we call L′. The diffeomorphism ϕ of (5.2) is the composition of
two diffeomorphisms:

N(n)
ψ−→ N(n′)

ϕ′

−→ S1 × S2.

Here ψ is determined by the first element in the sequence (5.1), and ϕ′ by the
remaning elements. Let ζ̃ ′0 be the pull–back to N(n′) of ζ0 via ϕ′. Observe that the
oriented knot L′′

s is isotopic to an oriented band connected sum of the oriented knots
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L′
1

L′
2

L′
s−1 L′′

s

L′
s+1

L′
k−1

L′
k

n1

n2

ns−1 − 1
ns+1 − 1

nk−1

nk

Figure 6. The link L blown down

B

L′
s−1 L′′

s

L′
s+1

ns−1 − 1

ns+1 − 1

Figure 7. The band connected sum

L′
s−1 and L′

s+1 as shown in Figure 7. By the induction hypothesis, the oriented
link L′ =

⋃
i �=s L′

i is isotopic in the complement of L′ to a link which is Legendrian

with respect to ζ̃ ′0 and satisfies conditions (b) and (c) of the statement. Therefore,
without loss of generality we may assume L′ to be a Legendrian link L′ =

⋃
i �=s L′

i,
with each of its components having contact framing equal to the canonical framing,
and the rotation numbers with respect to the section v′ = (ϕ′)−1

∗ (τ ) satisfying the
stated relations (c).

Since any two sufficiently small Legendrian arcs in a contact three–manifold are
contact isotopic (see e.g. [7]), without loss of generality we may assume that (i)
there is a contactomorphism g between the dotted three–ball B in Figure 7 and
a ball centered at the origin of R

3 endowed with the standard contact structure
{dz + xdy = 0} and (ii) the intersection of B with L′

s−1 and L′
s+1 is sent by the

contactomorphism onto two horizontal arcs sitting in the yz–plane, one above and
the other below the xy–plane, as in the left–hand side of Figure 8. The right–
hand side of Figure 8 describes, in the language of front projections (cf. [11]), how
to perform a Legendrian band connected sum of L′

s−1 and L′
s+1. The result is

a Legendrian knot L′′
s smoothly isotopic to L′′

s in C. Using the standard formula
computing the Thurston–Bennequin number of a Legendrian knot from its front
projections, it is easy to check that L′′

s has contact framing equal to its canonical
framing minus one. On the other hand, the diffeomorphism ψ−1 sends the canonical
framing of L′′

s to the canonical framing plus one, while the canonical framings of
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Figure 8. The Legendrian band connnected sum

L′
i, for i �= s, are sent by ψ−1 to the canonical framings. This implies that each

component of L = ψ−1(L′∪L′
s) has canonical framing equal to the contact framing

with respect to ζ̃0 = ψ−1(ζ̃ ′0), concluding the proof of (a) and (b) when s �= k.
To prove (c) when s �= k, let v′ = (ϕ′

∗)−1(v). Induction applied to the oriented
Legendrian link L′ inside N(n′) gives the relations:

(5.3) rotv′(L′
i−1)+rotv′(L′

i+1)−ni rotv′(L′
i) =

⎧⎪⎨⎪⎩
1, i = 1,

0, 1 < i < k, i �= s, s ± 1,

−1, i = k,

and

rotv′(L′
s−2) + rotv′(L′

s+1) − (ns−1 − 1) rotv′(L′
s−1) =

{
1, s = 2,

0, 2 < s < k,
(5.4)

rotv′(L′
s−1) + rotv′(L′

s+2) − (ns+1 − 1) rotv′(L′
s+1) =

{
0, 1 < s < k − 1,

−1, s = k − 1.

(5.5)

On the other hand, by Figure 8 and the formula for the rotation number of an
oriented Legendrian knot in terms of its front projections [11], we have

(5.6) rotv′(L′
s−1) + rotv′(L′

s+1) − rotv′(L′′
s ) = 0.

Now set Li = ψ−1(L′
i) for i �= s, and Ls = ψ−1(L′′

s ). The relations (5.3), (5.4),
(5.5) and (5.6) provide, when pulled–back via ψ, the stated relations for L =

⋃
i Li.

This concludes the proof when s �= k.
When s = k the argument is similar but simpler. The main difference is that

Figure 8 should be replaced with Figure 9. The rest of the argument is essentially
the same, so we omit the details. �

Corollary 5.2. Let p > q ≥ 1 be coprime integers with p
p−q = [b1, . . . , bk], and let

n = (n1, . . . , nk) ∈ Zp,q. Fix a diffeomorphism ϕ as in (5.2), and let L =
⋃

i Li be
an oriented Legendrian link as in Theorem 5.1. Let L̃ ⊂ (N(n), ζ̃0) be a Legendrian
link consisting of bi − ni distinct Legendrian push–offs of each component Li of L,
for i = 1, . . . , k. Then, Wp,q(n) carries a Stein structure obtained by performing
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Figure 9. The case s = k

Legendrian surgery along the Legendrian link

ϕ(L̃) ⊂ (S1 × S2, ζ0).

Proof. The statement follows immediately from Theorem 5.1 using Legendrian
surgery [4, 11]. �

6. Contact structures on ∂Wp,q(n)

In this section we prove Theorem 1.1(2). The main ingredient of the proof will
be the following result.

Theorem 6.1. Let p > q ≥ 1 be coprime integers and n ∈ Zp,q. Let J be a Stein
structure on Wp,q(n) constructed as in Corollary 5.2, and let ω be a symplectic
form on Wp,q(n) compatible with J . Then, (Wp,q(n), ω) is a symplectic filling of
(L(p, q), ξst).

Given a Stein structure J on Wp,q(n), the distribution

ξ = T∂Wp,q(n) ∩ JT∂Wp,q(n)

of complex lines tangent to the boundary is a contact structure. Therefore, if ω is
a symplectic form on Wp,q(n) compatible with J , then (Wp,q(n), ω) is a symplectic
filling of (∂Wp,q(n), ξ). We shall establish Theorem 6.1 by proving that if J is
constructed as in Corollary 5.2, then the contact three–manifold (∂Wp,q(n), ξ) is
isomorphic to (L(p, q), ξst).

The contact structure ξ is tight [6]. Therefore, in view of the classification
of the tight contact structures on L(p, q) [9, 14], to show that (∂Wp,q(n), ξ) and
(L(p, q), ξst) are isomorphic it suffices prove that, after a suitable identification
∂Wp,q(n) = L(p, q), ξ and ξst induce the same Spinc structure on L(p, q), i.e. are
homotopic as two–plane fields in the complement of a point. In order to do this we
shall use Gompf’s Γ–invariant.

Let M be a closed, oriented three–manifold and denote by S(M) the set of spin
structures on M . Given an oriented two–plane field ξ on a M , Gompf [11] defines
a map

Γ(ξ, ·) : S(M) → H1(M ; Z)
which depends only on the homotopy class [ξ]. Moreover, reversing the orientation
of M reverses the sign of Γ(ξ, s) for fixed s, and fixing q ∈ M , Γ(·, s) classifies
oriented two–plane fields on M \ {q} up to homotopy.
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As shown in [11, Theorem 4.12], it is possible to compute Γ when ξ is the
distribution of complex lines tangent to the boundary of an almost complex four–
manifold. We will need a slight generalization of that result.

Let X∗ be a smooth four–manifold obtained by attaching two–handles to B4

along a framed link Λ ⊂ S3. Let Λ1 ⊂ Λ be a sublink, and let X∗
1 ⊂ X∗ be

the submanifold obtained by attaching the two–handles corresponding to Λ1. We
may think of X∗ as obtained by attaching two–handles along Λ2 = Λ \ Λ1 to the
boundary of X∗

1 . Suppose that the boundary of X∗
1 is a connected sum of S1×S2’s,

so that ∂X∗
1 = ∂X1, where X1 is obtained by attaching one–handles to B4. Then,

the smooth four–manifold X = X1 ∪ (X∗ \ X∗
1 ) is well–defined because every self–

diffeomorphism of ∂X1 extends to X1. Suppose that X carries an almost complex
structure J , and denote by ξ the distribution of complex lines tangent to ∂X. Fix
a complex trivialization τ of TX over X1. Restricting to ∂X1, τ determines a Spin
structure s0 on ∂X1, and since the boundaries of X1 and X∗

1 are identified, there is
a canonically associated characteristic sublink Λ0 ⊂ Λ1 representing the Poincaré
dual to the second Stiefel–Whitney class of TX∗

1 relative to s0 [13]. Similarly, to
any Spin structure s on ∂X = ∂X∗ one can canonically associate a characteristic
sublink Λ(s) ⊂ Λ. Choose an orientation for Λ, let K1, . . . , Kn be its components
and let α1, . . . , αn ∈ H2(X∗; Z) be the corresponding two–homology classes. The
following statement can be proved by an almost word–for–word repetition of the
proof of [11, Theorem 4.12].

Theorem 6.2 ([11]). The Poincaré dual to Γ(ξ, s) is equal to the restriction of the
class ρ ∈ H2(X∗; Z) determined by the evaluations:

〈ρ, αi〉 =
ri + lk(Ki, Λ0 + Λ(s))

2
, i = 1, . . . , n,

where ri is equal to zero if Ki ⊂ Λ1, and to the integer obstruction to extending the
trivialization τ over the corresponding two–handle if Ki ⊂ Λ2. �
Remark 6.3. (a) Theorem 6.2 reduces to [11, Theorem 4.12] when X1 is endowed
with a standard Stein structure, X is obtained by Legendrian surgery along a
Legendrian link Λ2 in “standard form”, and the restriction of τ to ∂X1 is induced
by the vector field “ ∂

∂x” (cf. [11]). In this case each component Ki of the oriented
link Λ2 has a well–defined rotation number – the relative winding number of an
oriented tangent vector to Ki with respect to ∂

∂x – which coincides with the number
ri as defined above.

(b) As observed in [11], after the statement of Theorem 4.12, replacing Λ0 +Λ(s)
in the formula by any smooth one–cycle carried by Λ and agreeing with Λ0 + Λ(s)
modulo 2 does not change the restriction of ρ. Thus, after such a replacement
Theorem 6.2 still holds.

(c) Theorem 6.2 applies to another particular case, i.e. when Λ1 = ∅ and X∗
1 =

X1 = B4. In this case Λ0 = ∅ and for every Ki ⊂ Λ2 we have ri = 〈c1(J), αi〉.
We are going to apply Theorem 6.2 when the link Λ is the framed link L∪ �L ⊂ S3

of Figure 2, with Λ1 = L and Λ2 = �L, respectively, the “thin” and the “thick” link.
We choose an orientation for Λ as follows. Represent L ∪ �L as in Figure 5. Orient
�L as shown in the picture. Orient L so that each of its components has linking
number +1 with one of the corresponding thick meridians shown in Figure 5.

In this case X1 is S1 × D3 and X is Wp,q(n). Let s be a Spin structure on
∂Wp,q(n) determined by a characteristic sublink Λ(s) ⊂ Λ. Observe that s is
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uniquely specified by a sequence (s1, . . . , sk), where si ∈ {0, 1} is equal to 1 if the
i–th component of L belongs to Λ(s) and to 0 otherwise. In fact, since Λ(s) is
characteristic, it is easy to check that the components of �L belonging to Λ(s) are
determined by the components of L belonging to Λ(s).

Denote by µi ∈ H1(∂Wp,q(n); Z), i = 1, . . . , k, homology classes corresponding
to positively oriented meridians of the components of L. The classes {µi} generate
the first homology of ∂Wp,q(n) and satisfy the relations

(6.1) biµi = µi−1 + µi+1, i = 1, . . . , k,

where µi is to be interpreted as the zero class for i < 0 and i > k.

Proposition 6.4. Let p > q ≥ 1 be coprime integers, and let n ∈ Zp,q. Let J
be a Stein structure on Wp,q(n) constructed as in Corollary 5.2, and let ξ be the
contact structure induced on the boundary. Let s be the Spin structure on ∂Wp,q(n)
determined by the sequence (s1, . . . , sk), and set si = 0 for i < 1 and i > k. Then,

PDΓ(ξ, s) =
k∑

i=1

si−1 + si+1 + bi(1 − si)
2

µi −
k∑

i=2

µi.

Proof. Let W ∗ be the four–manifold with boundary obtained by attaching two–
handles to B4 according to the framed link Λ = L ∪ L of Figure 2. According to
Theorem 5.1, L is isotopic in the complement of L to a link L, Legendrian with
respect to the contact structure ζ̃0.

Let s0 be the unique spin structure on S1 ×S2 which extends over a two–handle
attached along S1 × {p} if and only if the corresponding framing is even. Fix a
diffeomorphism ϕ as in (5.2), and let s̃0 be the pull–back of s0 under ϕ. Let L0 ⊂ L
be the characteristic sublink corresponding to s̃0.

Let α1, . . . , αk ∈ H2(W ∗; Z) be the homology classes determined by the compo-
nents L1, . . . , Lk of L, and let {βji

i | i = 1, . . . , k, ji = 1, . . . , bi − ni} ⊂ H2(W ∗; Z)
be the classes determined by the components Lji

i of L. Let L(s) ⊂ Λ be the
characteristic sublink corresponding to the Spin structure s determined by the se-
quence (s1, . . . , sk). Then, by Theorem 6.2, PDΓ(ξ, s) is equal to the restriction to
∂W ∗ = ∂Wp,q(n) of the class ρ ∈ H2(W ∗; Z) determined by the values:

〈ρ, αi〉 =
1
2

lk(Li, L0 + L(s)),

〈ρ, βji

i 〉 =
1
2
(ri + lk(Lji

i , L0 + L(s))).

Notice that
1
2
(ri + lk(Lji

i , L0 + L(s))) =
1
2
(ri + lk(Li, L0 + L(s)))

for every ji = 1, . . . , bi − ni, where Li is the i–th component of the link L given in
Theorem 5.1. Setting

Ci =
1
2

lk(Li, L0 + L(s)), Di =
1
2
(ri + lk(Li, L0 + L(s))),

we have:

(6.2) PD Γ(ξ, s) =
k∑

i=1

(Ci + Di(bi − ni))µi.
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Observe that when bi = ni there is no component Lji

i , but the number Di is still
well–defined. Hence, Equation (6.2) holds in any case. If we extend the definition of
Ci and Di by setting Ci = Di = 0 for i < 0 and i > k, in view of the relations (6.1)
we have:

PDΓ(ξ, s) =
k∑

i=1

Ciµi +
k∑

i=1

Di(µi−1 + µi+1 − niµi)

=
k∑

i=1

(Ci + Di−1 + Di+1 − niDi)µi.

(6.3)

The following identities are easy to check:

lk(Li−1, Lj) + lk(Li+1, Lj) − ni lk(Li, Lj) + lk(Li, Lj) = 0, i, j = 1, . . . , k,

lk(Li, L(s)) = 2si − 1, i = 1, . . . , k,

lk(Li, L(s)) = bi − ni + si(2ni − bi) − si−1 − si+1, i = 1 . . . , k.

Here a linking number is to interpreted as zero if there is an index less than 1 or
bigger than k. In view of Theorem 5.1(c), a simple calculation using the identities
above gives:

2(Ci + Di−1 + Di+1 − niDi) =

{
s2 + s0 + b1(1 − s1), i = 1,

si+1 + si−1 + bi(1 − si) − 2, i = 2, . . . , k.

The statement follows immediately substituting these values in (6.3). �

Proof of Theorem 6.1. Let ξ be the contact structure on ∂Wp,q(n) given by the
tangent complex lines. As explained at the beginning of the section, in order to
prove the rest of the statement it suffices to show that, after the choice of a suitable
identification ∂Wp,q(n) = L(p, q), for any Spin structure s on L(p, q) we have:

Γ(ξ, s) = Γ(ξst, s).

Recall that (L(p, q), ξst) is the link of a cyclic quotient singularity. Let Rp,q be a
regular neighborhood of the exceptional divisor inside the canonical resolution of
such a singularity. Then Rp,q is diffeomorphic to a plumbing of type (−a1, . . . ,−ah),
with

(6.4) 〈c1(Rp,q), xi〉 = 2 − ai, i = 1, . . . , h,

where xi ∈ H2(Rp,q; Z) is the obvious generator represented by an embedded ratio-
nal curve Ci with self–intersection −ai (see e.g. [1]). Equations (6.4) follow from
the adjunction formula.

If we start with an immersed curve in CP
2 which is the union l1∪l2 of two distinct

complex lines, we can successively blow up the curve and its proper transforms at
points not of l1, until we obtain a string C of curves of type (1, 1−b1,−b2, . . . ,−bk)
inside CP

2#NCP
2
. As the proof of Lemma 3.7 shows, there is a natural orientation

preserving diffeomorphism ϕ between the complement Z of a regular neighborhood
ν(C) of C and Rp,q . Moreover, since the natural generators of H2(Z; Z) are complex
curves, by the adjunction formula ϕ must preserve the first Chern classes. Since
Rp,q is simply connected, this implies that ϕ preserves the complex structures up
to homotopy. It follows that the distribution of complex lines tangent to ∂Z is
homotopic to ξst.
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The oriented three–manifold ∂ν(C) has a surgery presentation given by a chain
of k+1 unknots U0, . . . , Uk framed, respectively, 1, 1−b1, . . . ,−bk. A Spin structure
on ν(C) is encoded by a characteristic sublink of

⋃k
i=0 Ui (see [13, Section 5.7]),

which can be identified with a (k +1)–tuple (t0, t1, . . . , tk), ti ∈ {0, 1}, by requiring
that Uj belongs to the sublink if and only if tj = 1.

Blowing down U0 gives an identification

ν(C) = −L(p, q) = L(p, p − q).

By looking at the effect of the Kirby move on the Spin structure [13, pp. 190–191],
one sees that t0 = 1 − t1.

We shall compute

ΓL(p,q)(ξst, s) = −ΓL(p,p−q)(ξst, s)

applying Theorem 6.2 to the almost complex four–manifold ν(C).
Define

b′i =

⎧⎪⎨⎪⎩
1, i = 0,

−b1 + 1, i = 1,

−bi, i = 2, . . . , k.

By Remark 6.3(b) and (c), we can apply Theorem 6.2 with L0 = ∅ and the sign of
L(s) reversed. There are natural generators

ν0, . . . , νk ∈ H1(∂ν(C); Z)

corresponding to the meridians of U0, . . . , Uk, such that

PD ΓL(p,p−q)(ξst, s) =
k∑

i=0

2 + b′i(1 − si) − ti−1 − ti+1

2
νi

=
2 + (1 − t0) − t1

2
ν0 +

2 − (b1 − 1)(1 − t1) − t0 − t2
2

ν1

+
k∑

i=2

2 − bi(1 − ti) − ti−1 − ti+1

2
νi.

(6.5)

Blowing down all the (−1)–unknots in Figure 2 identifies the boundary of Wp,q(n)
with L(p, q) = −∂ν(C). Under this identification a Spin structure (s1, . . . , sk) on
∂Wp,q(n) corresponds to

(t0, t1, . . . , tk) = (1 − s1, s1, . . . , sk),

and each generator µi is sent to νi, i = 1, . . . , k.
Since ν0 = −ν1 and t0 = 1 − t1, Equation (6.5) and Proposition 6.4 give

PDΓL(p,q)(ξst, s) = PD ΓL(p,q)(ξ, s).

This concludes the proof. �

The following is a restatement of Theorem 1.1(2).

Corollary 6.5. For every n ∈ Zp,q, Wp,q(n) carries a symplectic form ω such that
(Wp,q(n), ω) is a symplectic filling of

(
L(p, q), ξst

)
. Moreover, the homology group

H2(Wp,q(n); Z) contains no classes of self–intersection −1.
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Proof. The first part of the statement follows from Theorem 6.1, because a Stein
four–manifold with boundary is well–known to carry a symplectic form compati-
ble with the complex structure. Therefore, by Theorems 6.1 and 3.2 there exists
a symplectic string Γ of type (1, 1 − b1,−b2, . . . ,−bk) inside a rational symplectic
four–manifold XM such that Wp,q(n) is orientation preserving diffeomorphic to the
complement XM \ ν(Γ). If H2(Wp,q(n); Z) contained a class of square −1, then by
Lemma 4.5 Wp,q(n) would contain a smooth (−1)–sphere. But by Corollary 5.2
Wp,q(n) carries a Stein structure, and a Stein four–manifold does not contain em-
bedded (−1)–spheres [18, Proposition 2.2]. This proves the second part of the
statement. �

7. The proof of Theorem 1.1

Let p > q ≥ 1 be coprime integers, with p
p−q = [b1, . . . , bk], and let Rp,p−q

be a regular neighborhood of the exceptional divisor in the canonical resolution
of the cyclic quotient singularity of type (p, p − q). Rp,p−q is diffeomorphic to a
plumbing of 2–disk bundles over 2–spheres of type (−b1, . . . ,−bk), and there is a
natural identification ∂Rp,p−q = L(p, p− q). By [2], given an orientation preserving
diffeomorphism

f : L(p, p − q) → L(p, p − q),
the isotopy class of f is uniquely determined by the induced homomorphism

f∗ : H1(L(p, p− q); Z) −→ H1(L(p, p − q); Z).

Moreover, f∗ can only be multiplication by 1, −1, q or −q, and if f∗ is multiplication
by ±q, then q2 ≡ 1 mod p. Let x1, . . . , xk ∈ H2(Rp,p−q; Z) be the natural generators
represented by smooth rational curves with self–intersections −b1, . . . ,−bk.

Lemma 7.1. Let p > q ≥ 1 be coprime integers. Let f : ∂Rp,p−q → ∂Rp,p−q be an
orientation preserving diffeomorphism such that the induced homomorphism

f∗ : H1(∂Rp,p−q ; Z) → H1(∂Rp,p−q; Z)

is multiplication by q. Then, f is the restriction of a diffeomorphism

F : Rp,p−q → Rp,p−q

such that
F∗(xi) = xk+1−i, i = 1, . . . , k.

Proof. It suffices to prove that if q2 ≡ 1 mod p, then the four–manifold Rp,p−q

admits a self–diffeomorphism which preserves the orientation and induces multipli-
cation by q on H1(L(p, p − q); Z).

The condition q2 ≡ 1 mod p is equivalent to

(b1, b2, . . . , bk) = (bk, bk−1, . . . , b1).

Therefore, when q2 = 1 mod p the pair (S3, L) has an involution which can be
visualized (after an isotopy of L) as a π–rotation around an axis perpendicular
to the plane of the picture. The resulting self–diffeomorphism of Rp,p−q induces
multiplication by q on H1(L(p, p−q); Z). To see this, observe that H1(L(p, p−q); Z)
is generated by the classes µ1, . . . , µk of oriented meridians of L1, . . . , Lk satisfying
Relations (6.1) with −bi instead of bi, for i = 1, . . . , k. The relations imply that µ1

is a generator, and µk = qµ1, and the diffeomorphism sends µ1 to µk. �
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Lemma 7.2. Let p > q ≥ 1 be coprime integers and n ∈ Zp,q. For every
integer r ≥ 0, the smooth four–manifold Ŵp,q(n) = Wp,q(n)#rCP

2
admits an

orientation preserving self–diffeomorphism which induces multiplication by −1 on
H1(∂Wp,q(n); Z).

Proof. Rotation by π around a horizontal axis going through each component of
the thin link in Figure 2 induces an orientation preserving diffeomorphism

ψ : Wp,q(n) −→ Wp,q(n).

Blowing down all the (−1)–framed unknots gives in identification

∂Wp,q(n) = L(p, q),

where L(p, q) is viewed as the boundary of Rp,p−q with reversed orientation. It fol-
lows that H1(∂Wp,q(n); Z) is generated by meridians µ1, . . . , µk of the components
of the thin link in Figure 2 satifying Relations (6.1). Since µ1 is a generator and ψ
sends µ1 to −µ1, it follows that ψ induces multiplication by −1 on H1(∂Wp,q(n); Z).
The same conclusion applies to Ŵp,q(n), because we can add r disjoint, unlinked
(−1)–framed unknots U1, . . . , Ur to Figure 2 and repeat the above argument. The
fact that the link

⋃
i Ui is invariant up to isotopy under the π–rotation implies that

ψ extends to Ŵp,q(n). �

Proof of Theorem 1.1. Theorem 4.1 and Corollary 6.5 give, respectively, (1) and
(2). Therefore we only need to prove (3).

If (p′, s) = (p, r) and (q′,n′) = (q,n), then clearly

(7.1) Wp,q(n)#rCP
2 ∼= Wp′,q′(n′)#sCP

2
.

If (p′, s) = (p, r) and (q′,n′) = (q,n), we have
p

p − q
= [b1, . . . , bk],

p

p − q′
= [b′1, . . . , b

′
k] = [bk, . . . , b1].

It follows from the definitions that

Wp,q(n) = Wp,q(n);

therefore (7.1) still holds.
Conversely, suppose that (7.1) holds. Then, by Part (2) we have r = s. Also, (7.1)

implies that L(p, q) ∼= L(p′, q′), and therefore p′ = p and either q′ = q or q′ = q.
Let us first suppose that q′ = q. By Theorem 3.2 there exists a rational sym-

plectic four–manifold
XM

∼= CP
2#MCP

2

and a symplectic string

Γ = C0 ∪ C1 ∪ · · · ∪ Ck ⊂ XM

of type
(1, 1 − b1,−b2, . . . ,−bk)

such that
Wp,q(n)#rCP

2

is orientation preserving diffeomorphic to the complement XM \ ν(Γ) of a regular
neighborhood of Γ in XM . The same holds for

Wp,q(n′)#rCP
2
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with respect to a symplectic string

Γ′ = C ′
0 ∪ C ′

1 ∪ · · · ∪ C ′
k ⊂ XM ′

of the same type. Since (7.1) holds, we must have M = M ′ and an induced
diffeomorphism

ψ : XM \ ν(Γ) → XM \ ν(Γ′).
Up to composing ψ with the automorphism of

XM \ ν(Γ′) ∼= Wp,q(n)#rCP
2

of Lemma 7.2, we may assume that the induced homomorphism ψ∂
∗ on the first

homology of the boundary is either the identity or multiplication by q. Observe
that

ν(Γ) ∼= ν(Γ′) ∼= CP
2#Rp,p−q .

By Lemma 7.1, the diffeomorphism induced on the boundary by ψ can be extended
to a diffeomorphism F : Rp,p−q → Rp,p−q . Then, it is easy to see that F can be
extended to a diffeomorphism

F̂ : CP
2#Rp,p−q → CP

2#Rp,p−q

such that, under the natural isomorphism

H2(CP
2#Rp,p−q ; Z) = H2(CP

2; Z) ⊕ H2(Rp,p−q; Z),

F̂∗ =
(

Id 0
0 F∗

)
.

It follows that ψ is the restriction of a diffeomorphism

ψ̂ : XM → XM

such that if ψ∂
∗ is the identity, then

(7.2) ψ̂∗[Ci] = [C ′
i], i = 0, . . . , k,

and if ψ∂
∗ is multiplication by q, then q2 ≡ 1 mod p and

ψ̂∗[C0] = [C ′
0], ψ̂∗[C1] = [C ′

k] + [C ′
0],

ψ̂∗[Ci] = [C ′
k−i+1], i = 2, . . . , k − 1, ψ̂∗[Ck] = [C ′

1] − [C ′
0].

(7.3)

By Theorem 4.1, n = (n1, . . . , nk) is uniquely determined by the homology classes
[C1], . . . , [Ck], and the same holds for n′ and the classes [C ′

i]. Therefore, if Equa-
tions (7.2) hold, then

bi − ni = bi − n′
i, i = 1, . . . , k,

hence n′ = n. If q2 ≡ 1 mod p and Equations (7.3) hold, then

bi − ni = b′k+1−i − n′
k+1−i = bi − n′

k+1−i,

therefore n′ = n. This shows that if q′ = q, then either (q′,n′) = (q,n) or q2 ≡
1 mod p and (q′,n′) = (q,n), i.e. (q′,n′) = (q,n), which is what we needed to prove.

If q′ = q, then, since

Wp,q(n′)#rCP
2

= Wp,q(n′)#rCP
2
,

by (7.1) and the case q′ = q just proved, (q,n′) is equal to either (q,n) or (when
q2 ≡ 1 mod p) (q,n), i.e. (q′,n′) is equal to either (q,n) or (q,n). �
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