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ASYMPTOTIC SPECTRAL ANALYSIS
OF GROWING REGULAR GRAPHS

AKIHITO HORA AND NOBUAKI OBATA

Abstract. We propose the quantum probabilistic techniques to obtain the
asymptotic spectral distribution of the adjacency matrix of a growing regular
graph. We prove the quantum central limit theorem for the adjacency matrix
of a growing regular graph in the vacuum and deformed vacuum states. The
condition for the growth is described in terms of simple statistics arising from
the stratification of the graph. The asymptotic spectral distribution of the
adjacency matrix is obtained from the classical reduction.

Introduction

Spectral analysis of a finite graph has a long history along with algebraic graph
theory and combinatorics; see, e.g., Bannai–Ito [4], Biggs [6], Cvetković–Doob–
Sachs [9]. As for infinite graphs such as lattices and homogeneous trees, most of
the detailed study has been made with harmonic analysis of discrete groups and
with probability theory (theory of random walks) tracing back to Kesten [29]; see
also Kesten [30], Woess [36], and references cited therein. Most of these works
concentrate on the fine structure of the spectrum of a fixed graph, but, in contrast,
this paper focuses on a growing family of graphs and its asymptotic spectrum. Our
problem is motivated also by the asymptotic combinatorics proposed by Vershik
[37] and by the study of evolution of networks, e.g., Dorogovtsev–Mendes [10].

In this paper, employing quantum probabilistic techniques, we shall derive the
asymptotic spectral distribution of the adjacency matrix Aν of a growing graph
G(ν) = (V (ν), E(ν)) as a consequence of the quantum central limit theorem. Our
basic tool is the quantum decomposition of the adjacency matrix:

Aν = A+
ν + A−

ν + A◦
ν .

The quantum components Aε
ν are noncommutative; however, the quantum decom-

position happens to gain a clear insight into the asymptotic nature of Aν . In fact,
equipped with the vacuum or the deformed vacuum state, Aν and its quantum
components become considered as algebraic random variables and the formulation
of the (quantum) central limit theorem meets our problem. The main results are
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stated in Theorems 6.1 and 6.2 for the vacuum state and Theorem 7.4 for the de-
formed vacuum state. It is our achievement that these results are proved under
the conditions (A1)–(A4) described in terms of simple statistical data of a grow-
ing graph. These conditions are newly formulated and are satisfied by concrete
examples in the previous papers (see below). Moreover, the scaling balance for the
quantum central limit theorem in the deformed vacuum state is summarized into
a single condition (A4) q

√
κ ∼ γ and the coherent state naturally emerges in the

limit. As a result, the former argument according to the situation is extremely
simplified. The main results lead to new central limit theorems with potential
connections with q-deformed probability theory too.

This paper is organized as follows: In Section 1 the main problem is formulated.
In Section 2 the vacuum and deformed vacuum states are defined. In Section 3
we introduce the stratification of a graph and the quantum decomposition of the
adjacency matrix. Section 4 assembles some basic results on interacting Fock prob-
ability spaces and orthogonal polynomials. In Section 5 we formulate conditions
(A1)–(A3) controlling how the graph under consideration grows. Section 6 contains
the quantum central limit theorem in the vacuum state and its proof. In Section
7 we introduce condition (A4) and prove the quantum central limit theorem in the
deformed vacuum state. Section 8 contains two guiding examples (homogeneous
trees and Hamming graphs) for illustrating how our approach is applied to a con-
crete problem. Section 9 is devoted to a technical result concerning conditions
(A1)–(A3).

The quantum probabilistic approach to the spectral analysis of graphs traces
back to Hora [18], where the vacuum spectral distribution of the adjacency ma-
trix of a distance-regular graph was derived. The method therein is not based upon
the quantum decomposition but requires some classical results. Hashimoto–Obata–
Tabei [16] applied the method of quantum decomposition to Hamming graphs and
obtained the limit distributions (Gaussian and Poisson distributions) without the
combinatorial arguments required in the classical method. Hashimoto [14] ap-
plied the same idea to Cayley graphs and developed a general theory. Later on,
Hashimoto–Hora–Obata [15] studied limit distributions for distance-regular graphs
in general and derived the exponential distributions (Laguerre polynomials) and the
geometric distributions (Meixner polynomials) from Johnson graphs. The deformed
vacuum states were discussed by Hora [20, 22, 23]; in particular, compound Poisson
distributions of exponential and geometric ones were derived from Johnson graphs.
A general theory for a growing family of regular graphs was developed by Hora–
Obata [24, 25]. Some new examples are studied by Igarashi–Obata [27]. Finally,
the asymptotic representation theory of symmetric groups by Kerov [28], Biane [5],
Hora [19, 21] and others is interesting also from our aspect since a particular graph
arising from Young diagrams is relevant to spectral analysis of symmetric groups.

1. Main problem

Let G = (V, E) be a graph, where V is a non-empty set of vertices and E is
a set of edges, i.e., E ⊂ {{x, y} ; x, y ∈ V, x �= y}. Two vertices x, y ∈ V are
called adjacent if {x, y} ∈ E, and in this case we write x ∼ y. A finite sequence
x0, x1, . . . , xn ∈ V is called a walk of length n (connecting x0 and xn) if xi ∼ xi+1

for i = 0, 1, . . . , n − 1. In a walk some of x0, x1, . . . , xn may occur repeatedly. A



ASYMPTOTIC SPECTRAL ANALYSIS 901

graph is called connected if any pair of distinct vertices is connected by a walk.
The degree or valency of a vertex x ∈ V is defined by κ(x) = |{y ∈ V ; y ∼ x}|.
A graph is called locally finite if κ(x) < ∞ for all x ∈ V , uniformly locally finite if
sup{κ(x) ; x ∈ V } < ∞, and regular if κ(x) ≡ κ < ∞ is a constant.

Convention. Throughout the paper, unless otherwise specified, a graph is always
assumed to be connected and locally finite.

The graph structure is fully represented by the adjacency matrix A = (Axy)
defined by

(1.1) Axy =

{
1, x ∼ y,

0, otherwise.

Let A(G) be the set of matrices expressible by a polynomial in A with complex
coefficients, where the usual matrix operations are performed thanks to the local
finiteness. Then, A(G) becomes a commutative ∗-algebra with identity, which is
called the adjacency algebra of G. Note that the adjacency matrix is symmetric,
i.e., A = A∗.

Let 〈·〉 be a state on A(G); that is, a �→ 〈a〉 ∈ C is a linear functional on A(G),
positive (〈a∗a〉 ≥ 0 for all a ∈ A(G)), and normalized (〈1A〉 = 1). It follows from
Hamburger’s theorem that there exists a probability distribution µ on R such that

(1.2) 〈Am〉 =
∫ +∞

−∞
xmµ(dx), m = 1, 2, . . . .

Uniqueness of µ does not hold in general (known as the determinate moment prob-
lem). We call µ the spectral distribution of A in the given state.

Our main interest is to study the spectral distribution of a growing graph. Con-
sider a growing family of graphs

G(ν) = (V (ν), E(ν)),

where a growing parameter ν runs over a directed set (for simplicity, we write ν →
∞ for the limit). Let Aν denote the adjacency matrix of G(ν) and suppose that each
adjacency algebra A(Gν) is given a state 〈·〉ν . Let µν be a (not necessarily uniquely
determined) probability distribution determined as in (1.2). We are interested in
the limit of µν as ν → ∞ with suitable scaling suggested by limit theorems in
probability theory. Namely, a natural normalization is given by

(1.3)
Aν − 〈Aν〉ν

Σν(Aν)
, Σ2

ν(Aν) = 〈(Aν − 〈Aν〉ν)2〉ν .

(The suffix ν is cumbersome and will occasionally be dropped.) Our goal is to
determine a probability distribution µ satisfying

(1.4) lim
ν→∞

〈(
Aν − 〈Aν〉

Σ(Aν)

)m〉
=
∫ +∞

−∞
xmµ(dx), m = 1, 2, . . . .

The above µ, in general not uniquely determined, is called the asymptotic spectral
distribution of Aν in the state 〈·〉ν .
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2. Vacuum and deformed vacuum states

In fact, we consider the vacuum state and its deformation. Let G = (V, E) be
a graph. Let �2(V ) be the Hilbert space of square-summable functions on V and
C0(V ) the dense subspace of functions with finite supports. The inner product of
�2(V ) is defined by

〈f, g〉 =
∑
x∈V

f(x) g(x), f, g ∈ �2(V ).

For x ∈ V define a function δx by

δx(y) =

{
1, if y = x,

0, otherwise.

Then, {δx ; x ∈ V } becomes a complete orthonormal basis of �2(V ) and C0(V ) its
linear span. The adjacency algebra A(G) acts in a natural manner on C0(V ).

By analogy of an interacting Fock space (Section 4) we give the following

Definition 2.1. Let o ∈ V be a fixed origin of a graph G = (V, E). The vector
state on A(G) defined by

(2.1) 〈a〉o = 〈δo, aδo〉, a ∈ A(G),

is called the vacuum state at o ∈ V .

It is noted that 〈Am〉o is the number of m-step walks from o ∈ V to itself. More
generally, for x, y ∈ V , we see that (Am)xy = 〈δx, Amδy〉 is the number of m-step
walks connecting y and x.

We next define a deformed vacuum state. Let ∂(x, y) be the graph distance;
i.e., ∂(x, y) for distinct points x, y ∈ V is the shortest length of walks connecting
them and ∂(x, x) = 0 by definition. Given q ∈ R, consider a linear function
A(G) � a → 〈a〉q defined by

(2.2) 〈a〉q =
∑
x∈V

q∂(x,o)〈δx, aδo〉,

where the right hand side is, in fact, a finite sum and is well defined. Note that
〈1〉q = 1 so that 〈·〉q is a normalized linear function. It is convenient to introduce
a matrix

Q = Qq = (q∂(x,y))x,y∈V .

For q = 0 we tacitly understand Q to be the identity matrix (00 = 1). Then (2.2)
can be written as

(2.3) 〈a〉q = 〈Qδo, aδo〉, a ∈ A(G).

Strictly speaking, the right hand side of (2.3) is no more an inner product of �2(V )
but is understood to be the canonical sesquilinear form on C0(V )∗ ×C0(V ), where
C0(V )∗ is the space of formal linear combinations of δx with x running over V .
Although the positivity of 〈·〉q is questionable, being slightly free from the strict
wording, we give the following

Definition 2.2. The normalized linear function 〈·〉q defined in (2.3) is called a
deformed vacuum state on A(G).

Thus, a deformed vacuum state is not necessarily a state. As a simple sufficient
condition for the positivity we prove the following.
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Proposition 2.3. A deformed vacuum state 〈·〉q is positive on A(G) if the following
two conditions are fulfilled:

(Q1) Q is a positive definite kernel on V , i.e., 〈f, Qf〉 ≥ 0 for all f ∈ C0(V );
(Q2) QA = AQ. (Note that the matrix elements of both sides are well defined.)

Proof. Let a ∈ A(G). Since a is a polynomial in A, (Q2) implies that Qa = aQ.
Then,

〈a∗a〉q = 〈Qδo, a
∗aδo〉 = 〈aQδo, aδo〉 = 〈Qaδo, aδo〉 ≥ 0,

where the last inequality is by (Q1). �

As for (Q1) we only mention the following two results. The proofs are easy and
omitted; for a relevant discussion see Bożejko [7].

Proposition 2.4. Let G = (V, E) be a graph with |V | ≥ 2. In order that Q =
(q∂(x,y)) be a positive definite kernel on V it is necessary that −1 ≤ q ≤ 1.

Proposition 2.5 (Bożejko’s quadratic embedding test). If a graph G = (V, E)
admits a quadratic embedding, i.e., if there is a map F from V into a finite dimen-
sional Euclidean space RN such that

‖F (x) − F (y)‖2 = ∂(x, y), x, y ∈ V,

then Q = (q∂(x,y)) is positive definite for all 0 ≤ q ≤ 1.

As for (Q2) we only mention the following

Proposition 2.6. Let G = (V, E) be a graph. If for any pair of vertices x, y ∈ V
there exists an automorphism α ∈ Aut (G) satisfying α(x) = y and α(y) = x, then
QA = AQ.

3. Stratification and quantum decomposition

Let G = (V, E) be a graph. As soon as an origin o ∈ V is chosen, a natural
stratification is introduced:

(3.1) V =
∞⋃

n=0

Vn, Vn = {x ∈ V ; ∂(o, x) = n}.

If Vm = ∅ happens for some m ≥ 1, then Vn = ∅ for all n ≥ m. We then define
three matrices A+, A−, A◦ by

(Aε)yx =

{
Ayx = 1, if y ∼ x and ∂(o, y) = ∂(o, x) + ε,

0, otherwise,
x, y ∈ V,

where ε takes values +1,−1, 0 according as ε = +,−, ◦ (see Figure 1). Obviously,

(A+)∗ = A−, (A◦)∗ = A◦,

and

(3.2) A = A+ + A− + A◦.

This is called the quantum decomposition of A and each Aε a quantum component.
A quantum decomposition depends on the stratification (3.1) and hence on the
choice of an origin o ∈ V . The ∗-algebra generated by {A+, A−, A◦} is denoted by
Ã(G) and is called the extended adjacency algebra.
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Figure 1. Quantum decomposition: A = A+ + A− + A◦

Given a stratification (3.1), we next define an orthonormal set in �2(V ). For
each n ≥ 0 with Vn �= ∅ we set

(3.3) Φn = |Vn|−1/2
∑

x∈Vn

δx.

Let Γ(G) ⊂ �2(V ) be the subspace spanned by {Φn}. Let us observe that Γ(G) is
not necessarily kept invariant under the actions of the quantum components. For
x ∈ V and ε ∈ {+,−, ◦} we define

(3.4) ωε(x) = |{y ∈ V ; y ∼ x, ∂(o, y) = ∂(o, x) + ε}|.

In other words, ωε(x) is the set of vertices which are adjacent to x and lie in the
upper, lower or level stratum according as ε = +,−, ◦. Obviously,

κ(x) = ω+(x) + ω−(x) + ω◦(x), x ∈ V.

It follows from the definitions that

|Vn|1/2A+Φn =
∑

x∈Vn

A+δx =
∑

y∈Vn+1

ω−(y) δy,

and hence

(3.5) A+Φn = |Vn|−1/2
∑

y∈Vn+1

ω−(y) δy.

In a similar fashion we obtain

A−Φn = |Vn|−1/2
∑

y∈Vn−1

ω+(y) δy,(3.6)

A◦Φn = |Vn|−1/2
∑

y∈Vn

ω◦(y) δy.(3.7)

It is obvious from (3.5)–(3.7) that Γ(G) is invariant under the actions of Aε if and
only if ωε(y) is constant on each stratum Vn. Our interest lies in the case where
Γ(G) is “asymptotically invariant” under Aε.
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4. Interacting fock probability space

Definition 4.1. A sequence {ωn} is called a Jacobi sequence if {ωn ; n = 1, 2, . . . }
is an infinite sequence of positive numbers; or if there exists m0 ≥ 1 such that
{ωn ; n = 1, 2, . . . , m0 − 1} is a finite sequence of positive numbers (or an empty
sequence if m0 = 1). The former case is called infinite type and the latter finite
type.

Given a Jacobi sequence {ωn} of infinite or finite type, we consider a Hilbert
space of infinite or m0-dimension with a complete orthonormal basis {Ψn ; n =
0, 1, 2, . . . }. Let Γ be a subspace spanned by this basis and define linear operators
B± acting on Γ by

B+Ψn =
√

ωn+1 Ψn+1, n = 0, 1, 2, . . . ;(4.1)

B−Ψ0 = 0, B−Ψn =
√

ωn Ψn−1, n = 1, 2, . . . .(4.2)

These are called the creation operator and annihilation operator, respectively. If
{ωn} is of finite type, we understand that B+Ψm0−1 = 0. Hence it is often con-
venient to identify a Jacobi sequence of finite type with an infinite sequence by
concatenating a zero sequence.

Definition 4.2. For a Jacobi sequence {ωn}, the quadruple (Γ, {Ψn}, B+, B−) is
called an interacting Fock space (of one mode) and is denoted by Γ{ωn}.

Definition 4.3. A Jacobi coefficient is a pair of sequences ({ωn}, {αn}), where
{ωn ; n = 1, 2, . . . } is an infinite sequence of positive numbers and {αn ; n =
1, 2, . . . } is an infinite sequence of real numbers (infinite type); or there exists
m0 ≥ 1 such that {ωn ; n = 1, 2, . . . , m0 − 1} is a finite sequence of positive num-
bers (or an empty sequence if m0 = 1) and {αn ; n = 1, 2, . . . , m0} is a finite
sequence of real numbers (finite type). Let J be the set of all Jacobi coefficients.

With each Jacobi coefficient ({ωn}, {αn}) ∈ J, we associate an interacting Fock
space Γ{ωn} = (Γ, {Ψn}, B+, B−) and a diagonal operator defined by

B◦Ψn = αn+1Ψn, n = 0, 1, 2, . . . .

We often write B◦ = αN+1 with N being the number operator defined by NΨn =
nΨn for n = 0, 1, 2, . . . . It is easy to see that

〈B+Ψm, Ψn〉 = 〈Ψm, B−Ψn〉, 〈B◦Ψm, Ψn〉 = 〈Ψm, B◦Ψn〉.
In other words, B+ and B− are mutually adjoint and B◦ is symmetric. The ∗-
algebra generated by {B+, B−, B◦} is called the interacting Fock algebra associated
with a Jacobi coefficient ({ωn}, {αn}) and is considered as an algebraic probability
space equipped with the vacuum state, i.e., the vector state corresponding to Ψ0.
The distribution of B+ + B− + B◦ in the vacuum state is fundamental.

Let us recall the orthogonal polynomials. Let Pfm(R) denote the set of probabil-
ity distributions which admit moments of all orders. Given µ ∈ Pfm(R), we obtain
the orthogonal polynomials {Pn(x) = xn + . . . } by the standard Gram-Schmidt
orthogonalization. Then there exists a Jacobi coefficient ({ωn}, {αn}) ∈ J such
that

(4.3)

⎧⎪⎨
⎪⎩

P0(x) = 1,

P1(x) = x − α1,

xPn(x) = Pn+1(x) + αn+1Pn(x) + ωnPn−1(x), n = 1, 2, . . . .
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We call ({ωn}, {αn}) the Jacobi coefficient of µ. Note that the map Pfm(R) → J

is surjective but not injective. If the counterimage of a Jacobi coefficient consists
of a single distribution µ, we say that µ is the solution of a determinate moment
problem. If µ has a compact support, it is the solution of a determinate moment
problem. In particular, if µ is a finite sum of δ-measures, or equivalently if the
associated Jacobi coefficient is of finite type, µ is the solution of a determinate
moment problem. Carleman’s condition for µ being the solution of a determinate
moment problem is that

∑∞
n=1 ω

−1/2
n = +∞; see Shohat–Tamarkin [35, Section

2.17].

Theorem 4.4. Given ({ωn}, {αn}) ∈ J, let Γ{ωn} = (Γ, {Ψn}, B+, B−) and B◦

be the associated interacting Fock space and diagonal operator, respectively. Then
there exists a probability distribution µ ∈ Pfm(R) such that

〈Ψ0, (B+ + B− + B◦)mΨ0〉 =
∫ +∞

−∞
xmµ(dx), m = 1, 2, . . . .

Moreover, the Jacobi coefficient of µ is ({ωn}, {αn}).

The first half is due to Hamburger’s theorem (see, e.g., [35]). The second half
is by comparison of the actions of Bε and the three-term recurrence relation (4.3);
see Accardi–Bożejko [2]. By definition the correspondence between probability
measures µ ∈ Pfm(R) and Jacobi coefficients ({ωn}, {αn}) ∈ J is indirect. A more
direct correspondence is given by the Stieltjes transform.

Theorem 4.5. Let ({ωn}, {αn}) be a Jacobi coefficient and µ be an associated
probability distribution. If µ is the solution of a determinate moment problem, the
Stieltjes transform admits a continued fraction expansion:

(4.4)
∫ +∞

−∞

µ(dx)
z − x

=
1

z − α1 −
ω1

z − α2 −
ω2

z − α3 −
ω3

z − α4 − · · · ,

which converges in {Im z �= 0}.

As a direct application to the spectral analysis of a graph, we only mention the
following

Proposition 4.6. Let G = (V, E) be a graph with a fixed origin o ∈ V . Let A =
A+ +A−+A◦ be the quantum decomposition of the adjacency matrix. If Γ(G) is in-
variant under the actions of the quantum components Aε, then (Γ(G), {Φn}, A+, A−)
becomes an interacting Fock space and A◦ a diagonal operator.

The proof is straightforward from (3.5)–(3.7). A (finite or infinite) distance-
regular graph satisfies the conditions in Proposition 4.6; for a relevant discussion
see also Section 8.

5. Growing regular graphs

Let G = (V, E) be a graph with a fixed origin o ∈ V . As before, consider the
stratification V =

⋃∞
n=0 Vn and define

ωε(x) = |{y ∈ V ; y ∼ x, ∂(o, y) = ∂(o, x) + ε}|, x ∈ V, ε ∈ {+,−, ◦}.
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The statistics of ωε(x) play a crucial role. We define

M(ωε|Vn) =
1

|Vn|
∑

x∈Vn

ωε(x),

Σ2(ωε|Vn) =
1

|Vn|
∑

x∈Vn

{ωε(x) − M(ωε|Vn)}2,

L(ωε|Vn) = max{ωε(x) ; x ∈ Vn}.

Namely, M(ωε|Vn) is the mean value of ωε(x) when x runs over Vn, and Σ2(ωε|Vn)
is its variance.

Let G(ν) = (V (ν), E(ν)) be a growing regular graph, where the growing parameter
ν runs over an infinite directed set. The degree of G(ν) is denoted by κ(ν). For each
graph G(ν) we fix an origin oν ∈ V (ν) and consider as usual the stratification:

(5.1) V (ν) =
∞⋃

n=0

V (ν)
n , V (ν)

n = {y ∈ V (ν); ∂(o, y) = n}.

(V (ν)
n = ∅ may occur.) Then, for n = 0, 1, 2, . . . we define a unit vector in �2(V (ν))

by

(5.2) Φ(ν)
n = |V (ν)

n |−1/2
∑

x∈V
(ν)

n

δx.

Let Γ(G(ν)) denote the linear span of {Φ(ν)
0 , Φ(ν)

1 , . . . }. Let Aν denote the adjacency
matrix of G(ν). According to the stratification (5.1) we have a quantum decomposi-
tion:

(5.3) Aν = A+
ν + A−

ν + A◦
ν .

We do not assume that Γ(G(ν)) is invariant under the actions of quantum com-
ponents Aε

ν , but we need asymptotic invariance. This requirement is fulfilled by
natural conditions on how the graph grows.

For a growing regular graph G(ν) = (V (ν), E(ν)) we consider:

(A1) limν κ(ν) = ∞;
(A2) for each n = 1, 2, . . . there exists a limit

(5.4) ωn = lim
ν

M(ω−|V (ν)
n ) < ∞

and

lim
ν

Σ2(ω−|V (ν)
n ) = 0,(5.5)

sup
ν

L(ω−|V (ν)
n ) < ∞;(5.6)

(A3) for each n = 0, 1, 2, . . . there exists a limit

(5.7) αn+1 = lim
ν

M

(
ω◦√
κ(ν)

∣∣∣∣∣V (ν)
n

)
= lim

ν

M(ω◦|V (ν)
n )√

κ(ν)
< ∞
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and

lim
ν

Σ2

(
ω◦√
κ(ν)

∣∣∣∣∣V (ν)
n

)
= lim

ν

Σ2(ω◦|V (ν)
n )

κ(ν)
= 0,(5.8)

sup
ν

L(ω◦|V (ν)
n )√

κ(ν)
< ∞.(5.9)

Remark 5.1. Condition (A2) for n = 1 and (A3) for n = 0 are always satisfied.
Obviously, ω1 = 1 and α1 = 0.

Remark 5.2. If G(ν) is a finite graph, V
(ν)
n = ∅ happens for large n and M(ωε|V (ν)

n ) is
not defined for all n. This causes, however, no trouble in defining infinite sequences
{ωn} and {αn}. In fact, as is proved in Proposition 5.3 below, conditions (A1),
(5.6) and (5.9) imply that for each n ≥ 1 there exists νn such that V

(ν)
n �= ∅ for all

ν ≥ νn.

The meaning of (A1) is clear. Condition (A2) means that, in each stratum most
of the vertices have the same number of downward edges, and the fluctuation of
that number tends to zero as the graph grows. Condition (A3) is for edges lying in
each stratum. The number of such edges may increase as the graph grows, but the
growth rate is bounded by κ(ν)1/2. Roughly speaking, conditions (A1), (5.6) and
(5.9) control the growth rate of the number of edges sprouting from a “generic”
vertex x ∈ V

(ν)
n as follows:

ω+(x) = O(κ(ν)), ω◦(x) = O(κ(ν)1/2), ω−(x) = O(1).

Proposition 5.3. Let G(ν) = (V (ν), E(ν)) be a growing regular graph satisfying
conditions (A1)–(A3). Then, ({ωn}, {αn}) defined in these conditions is a Jacobi
coefficient of infinite type.

Proof. It follows from (A1) that there exists ν1 such that V
(ν)
1 �= ∅ for all ν > ν1.

Take x ∈ V
(ν)
1 and consider the obvious equality:

ω+(x)
κ

+
ω−(x)

κ
+

ω◦(x)
κ

= 1.

By (5.6) and (5.9) there exists ν2 > ν1 such that the first term is positive for all
ν > ν2; namely, V

(ν)
2 �= ∅. By induction, we can find ν1 < ν2 < · · · < νn < . . .

such that V
(ν)
n �= ∅ for all ν > νn, n = 1, 2, . . . . Then, for any x ∈ V

(ν)
n we have

ω−(x) ≥ 1; hence M(ω−|V (ν)
n ) ≥ 1. Consequently, ωn ≥ 1 for all n. �

Moreover, we have the following noteworthy consequence. The proof is deferred
to the Appendix.

Proposition 5.4. The notation and assumptions being the same as in Proposition
5.3, the Jacobi sequence {ωn} defined therein consists of positive integers.

6. Quantum central limit theorem in the vacuum state

The main result in this section is stated in the following

Theorem 6.1 (QCLT in the vacuum state). Let G(ν) = (V (ν), E(ν)) be a growing
regular graph satisfying conditions (A1)–(A3) and Aν its adjacency matrix. Let
(Γ, {Ψn}, B+, B−) be the interacting Fock space associated with {ωn} and B◦ the
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diagonal operator defined by {αn}, where {ωn} and {αn} are given in conditions
(A1)–(A3). Then we have

(6.1) lim
ν

Aε
ν√

κ(ν)
= Bε, ε ∈ {+,−, ◦},

in the sense of stochastic convergence with respect to the vacuum states, i.e.,

(6.2) lim
ν

〈
Φ(ν)

0 ,
Aεm

ν√
κ(ν)

. . .
Aε1

ν√
κ(ν)

Φ(ν)
0

〉
= 〈Ψ0, B

εm . . . Bε1Ψ0〉,

for any ε1, . . . , εm ∈ {+,−, ◦} and m = 1, 2, . . . .

As a classical reduction we immediately obtain the following

Theorem 6.2 (CLT in the vacuum state). The notation and assumptions being
the same as in Theorem 6.1, let µ be a probability distribution of which the Jacobi
coefficient is ({ωn}, {αn}). Then it holds that

lim
ν

〈
Φ(ν)

0 ,

(
Aν√
κ(ν)

)m

Φ(ν)
0

〉
=
∫ +∞

−∞
xmµ(dx), m = 1, 2, . . . .

In other words, µ is the asymptotic spectral distribution of Aν in the vacuum state.

In fact, we prove the following result, which is more general than Theorem 6.1,
and which will be used in the next section too.

Theorem 6.3 (QCLT in a general form). The notation and assumptions being the
same as in Theorem 6.1, we have

(6.3) lim
ν

〈
Φ(ν)

j ,
Aεm

ν√
κ(ν)

. . .
Aε1

ν√
κ(ν)

Φ(ν)
n

〉
= 〈Ψj , B

εm . . . Bε1Ψn〉,

for any ε1, . . . , εm ∈ {+,−, ◦}, m = 1, 2, . . . , and j, n = 0, 1, 2, . . . .

For (6.3) we need to study
Aεm

√
κ

. . .
Aε1

√
κ

Φn.

The explicit actions of the quantum components Aε are given in (3.5)–(3.7). They
are rephrased by using the mean values M(ωε|Vn) as follows: for n = 0, 1, 2, . . . ,

A+Φn = M(ω−|Vn+1)
(
|Vn+1|
|Vn|

)1/2

Φn+1(6.4)

+
1√
|Vn|

∑
y∈Vn+1

(ω−(y) − M(ω−|Vn+1))δy,

A−Φn = M(ω+|Vn−1)
(
|Vn−1|
|Vn|

)1/2

Φn−1(6.5)

+
1√
|Vn|

∑
y∈Vn−1

(ω+(y) − M(ω+|Vn−1))δy,

A◦Φn = M(ω◦|Vn)Φn(6.6)

+
1√
|Vn|

∑
y∈Vn

(ω◦(y) − M(ω◦|Vn))δy,
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where we understand that A−Φ0 = 0 for the second formula. We want to unify the
above three formulae (6.4)–(6.6). We set

γ+
n = M(ω−|Vn)

(
|Vn|

κ|Vn−1|

)1/2

, n = 1, 2, . . . ,(6.7)

γ−
n = M(ω+|Vn)

(
|Vn|

κ|Vn+1|

)1/2

, n = 0, 1, 2, . . . ,(6.8)

γ◦
n =

M(ω◦|Vn)√
κ

, n = 0, 1, 2, . . . ,(6.9)

and

S+
n =

1√
κ|Vn−1|

∑
y∈Vn

(ω−(y) − M(ω−|Vn))δy, n = 1, 2, . . . ,

S−
n =

1√
κ|Vn+1|

∑
y∈Vn

(ω+(y) − M(ω+|Vn))δy, n = 0, 1, 2, . . . ,

S◦
n =

1√
κ|Vn|

∑
y∈Vn

(ω◦(y) − M(ω◦|Vn))δy, n = 0, 1, 2, . . . .

Then by definition
S−

0 = S◦
0 = 0.

We tacitly set
S+

0 = γ−
−1Φ−1 = S−

−1 = 0.

With this notation (6.4)–(6.6) are unified in the following form:

(6.10)
Aε√

κ
Φn = γε

n+εΦn+ε + Sε
n+ε, ε ∈ {+,−, ◦}, n = 0, 1, 2, . . . .

Then its repeated action is expressible in a concise form:
Aεm

√
κ

. . .
Aε1

√
κ

Φn(6.11)

= γε1
n+ε1γ

ε2
n+ε1+ε2 . . . γεm

n+ε1+···+εm
Φn+ε1+···+εm

+
m∑

k=1

γε1
n+ε1 . . . γ

εk−1
n+ε1+···+εk−1︸ ︷︷ ︸

(k − 1) times

Aεm

√
κ

. . .
Aεk+1

√
κ︸ ︷︷ ︸

(m − k) times

Sεk
n+ε1+···+εk

.

For the estimate of the second term of (6.11) we define

M−
n,q = max

{
q∏

j=1

L(ω−|Vkj
) ; 1 ≤ k1, k2, . . . , kq ≤ n

}
,(6.12)

M◦
n,q = max

{
q∏

j=1

L(ω◦|Vkj
)√

κ
; 1 ≤ k1, k2, . . . , kq ≤ n

}
,(6.13)

M−
n,0 = M◦

n,0 = 1,(6.14)

where n, q = 1, 2, . . . .
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Lemma 6.4. Let m, n = 1, 2, . . . . If ε1, . . . , εm ∈ {+,−, ◦} satisfy

(6.15) n + ε1 ≥ 0, n + ε1 + ε2 ≥ 0, . . . , n + ε1 + ε2 + · · · + εm ≥ 0,

then, denoting respectively by p, q and r the numbers of +, − and ◦ in {ε1, . . . , εm},
we have

∣∣∣∣
〈

Φn+p−q,
Aεm

√
κ

. . .
Aε1

√
κ

S+
n

〉∣∣∣∣(6.16)

≤ Σ(ω−|Vn)M−
n+p,qM

◦
n+p,r

κp+ r−m−1
2 |Vn|√

|Vn+p−q||Vn−1|
,

∣∣∣∣
〈

Φn+p−q,
Aεm

√
κ

. . .
Aε1

√
κ

S−
n

〉∣∣∣∣(6.17)

≤ {Σ(ω−|Vn) + Σ(ω◦|Vn)}M−
n+p,qM

◦
n+p,r

κp+ r−m−1
2 |Vn|√

|Vn+p−q||Vn+1|
,

∣∣∣∣
〈

Φn+p−q,
Aεm

√
κ

. . .
Aε1

√
κ

S◦
n

〉∣∣∣∣(6.18)

≤ Σ(ω◦|Vn)M−
n+p,qM

◦
n+p,r

κp+ r−m−1
2

√
|Vn|√

|Vn+p−q|
.

Proof. Note first that

Aεm

√
κ

. . .
Aε1

√
κ

S+
n(6.19)

=
1√

κ|Vn−1|
∑

y∈Vn

(ω−(y) − M(ω−|Vn))
Aεm

√
κ

. . .
Aε1

√
κ

δy

=
κ−m/2√
κ|Vn−1|

∑
y∈Vn

(ω−(y) − M(ω−|Vn))Aεm . . . Aε1δy.

We use a new notation. For y, z ∈ V and ε ∈ {+,−, ◦} we write y
ε→ z if z ∼ y and

∂(z, o) = ∂(y, o) + ε. For y, z ∈ V we put

w(y; ε1, . . . , εm; z)

= |{(z1, . . . , zm−1) ∈ V m−1 ; y
ε1→ z1

ε2→ z2 · · ·
εm−1→ zm−1

εm→ z}|.

This counts the walks from y to z along edges with directions ε1, . . . , εm. Then
(6.19) becomes

=
κ−m/2√
κ|Vn−1|

∑
y∈Vn

∑
z∈Vn+p−q

(ω−(y) − M(ω−|Vn))w(y; ε1, . . . , εm; z)δz.
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Therefore, 〈
Φn+p−q,

Aεm

√
κ

. . .
Aε1

√
κ

S+
n

〉
(6.20)

=
1√

|Vn+p−q|
κ−m/2√
κ|Vn−1|

×
∑

y∈Vn

∑
z∈Vn+p−q

(ω−(y) − M(ω−|Vn))w(y; ε1, . . . , εm; z).

Let y ∈ Vn be fixed. Then

(6.21)
∑

z∈Vn+p−q

w(y; ε1, . . . , εm; z)

coincides with the number of walks from y to a certain point in Vn+p−q along m
edges with directions ε1, . . . , εm in order. Consider an intermediate point ξ ∈ Vk in
such a walk. The number of edges from ξ with − direction is bounded by L(ω−|Vk),
with ◦ direction by L(ω◦|Vk), and with + direction by κ. Given (ε1, . . . , εm), the
+, − and ◦ directions appear p, q and r times, respectively, and the intermediate
point ξ lies in V0 ∪ V1 ∪ · · · ∪ Vn+p. Hence by (6.12) and (6.13) we obtain∑

z∈Vn+p−q

w(y; ε1, . . . , εm; z) ≤ κp+ r
2 M−

n+p,qM
◦
n+p,r.

Noting that the right hand side is independent of y ∈ Vn, we estimate (6.20) as
follows:∣∣∣∣

〈
Φn+p−q,

Aεm

√
κ

. . .
Aε1

√
κ

S+
n

〉∣∣∣∣
≤

κp+ r
2 M−

n+p,qM
◦
n+p,r√

|Vn+p−q|
κ−m/2√
κ|Vn−1|

∑
y∈Vn

|ω−(y) − M(ω−|Vn)|

≤
κp+ r

2−
m
2 − 1

2 M−
n+p,qM

◦
n+p,r√

|Vn+p−q||Vn−1|

( ∑
y∈Vn

|ω−(y) − M(ω−|Vn)|2
)1/2

|Vn|1/2

= Σ(ω−|Vn)M−
n+p,qM

◦
n+p,r

κp+ r−m−1
2 |Vn|√

|Vn+p−q||Vn−1|
.

This proves inequality (6.16). The proofs of (6.17) and (6.18) are similar. �

Lemma 6.5. Let G = (V, E) be a regular graph with degree κ. Fix an origin o ∈ V
and consider the stratification as usual. Then, for any n = 1, 2, . . . with Vn �= ∅ we
have

(6.22) |Vn| = κn
n∏

j=1

M(ω−|Vj)−1
n−1∏
j=0

(
1 − M(ω−|Vj)

κ
− M(ω◦|Vj)

κ

)
.
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Proof. By counting the edges connecting two strata Vn and Vn−1, we have

κ|Vn−1| =
∑

x∈Vn−1

{ω+(x) + ω−(x) + ω◦(x)}

=
∑

y∈Vn

ω−(y) +
∑

x∈Vn−1

ω−(x) +
∑

x∈Vn−1

ω◦(x)

= M(ω−|Vn)|Vn| + M(ω−|Vn−1)|Vn−1| + M(ω◦|Vn−1)|Vn−1|.
Hence,

(6.23) |Vn| = κM(ω−|Vn)−1|Vn−1|
(

1 − M(ω−|Vn−1)
κ

− M(ω◦|Vn−1)
κ

)
.

Noting that Vn �= ∅ implies Vn−1 �= ∅, . . . , V1 �= ∅, we obtain (6.22) by repeated
application of (6.23). �

Lemma 6.6. Let G(ν) = (V (ν), E(ν)) be a growing regular graph satisfying (A1)–
(A3). Then, for any n = 1, 2, . . . we have

(6.24) lim
ν

|V (ν)
n |

κ(ν)n
=

1
ωn . . . ω1

.

Proof. By Lemma 6.5 we have

lim
ν

|V (ν)
n |

κ(ν)n
= lim

ν

n∏
j=1

M(ω−|V (ν)
j )−1

n−1∏
j=0

(
1 −

M(ω−|V (ν)
j )

κ(ν)
−

M(ω◦|V (ν)
j )

κ(ν)

)
.

The first product converges to (ωn . . . ω1)−1 by (A2) and the second one to 1 by
(A3) so that (6.24) follows. �

Proof of Theorem 6.3. Let Gν = (V (ν), E(ν)) be a growing regular graph as stated
therein. Given ε1, . . . , εm ∈ {+,−, ◦}, m = 1, 2, . . . , and n, j = 0, 1, 2, . . . we
consider

(6.25)
〈

Φ(ν)
j ,

Aεm
ν√
κ(ν)

. . .
Aε1

ν√
κ(ν)

Φ(ν)
n

〉
.

Let p, q, r be the numbers of +,−, ◦ appearing in {ε1, . . . , εm}, respectively. In
view of the up-down action of Aε we see easily that (6.25) is zero unless (6.15) and
j = n + p − q hold. On the other hand, in that case it follows by the definition of
an interacting Fock space Γ{ωn} = (Γ, {Ψn}, B+, B−) that

〈Ψj , B
εm . . . Bε1Ψn〉 = 0.

We have thus proved (6.3) for the case where (6.15) or j = n+ p− q is not fulfilled.
Now we consider the case where both (6.15) and j = n+p−q are fulfilled. Using

(6.11), we obtain〈
Φ(ν)

j ,
Aεm

ν√
κ(ν)

. . .
Aε1

ν√
κ(ν)

Φ(ν)
n

〉
(6.26)

= γε1
n+ε1

γε2
n+ε1+ε2

. . . γεm
n+ε1+···+εm

+
m∑

k=1

γε1
n+ε1 . . . γ

εk−1
n+ε1+···+εk−1

〈
Φ(ν)

j ,
Aεm

ν√
κ(ν)

. . .
A

εk+1
ν√
κ(ν)

Sεk
n+ε1+···+εk

〉
.
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Recall that the coefficient γε
n depends on ν. The explicit expressions of γε

n being
given in (6.7)–(6.9), with the help of Lemma 6.6 and conditions (A1)–(A3) we arrive
at

lim
ν

γ+
n = lim

ν

√
M(ω−|Vn) =

√
ωn,(6.27)

lim
ν

γ−
n = lim

ν
{κ − M(ω−|Vn) − M(ω◦|Vn)}

√
M(ω−|Vn+1)

κ
=
√

ωn+1,(6.28)

lim
ν

γ◦
n = αn+1.(6.29)

Then by the definition of Bε we obtain

lim
ν

γε1
n+ε1

γε2
n+ε1+ε2

. . . γεm
n+ε1+···+εm

= 〈Ψj , B
εm . . . Bε1Ψn〉.

Thus, for (6.3) it is sufficient to show that the second term of (6.26) vanishes in
the limit. Since it is a finite sum, we need only to show that

(6.30) lim
ν

〈
Φ(ν)

j ,
Aεm√
κ(ν)

. . .
Aεk+1√

κ(ν)
Sεk

n+ε1+···+εk

〉
= 0.

For this it is sufficient to show that the right hand sides of (6.16)–(6.18) in Lemma
6.4 vanish in the limit, i.e.,

lim
ν

Σ(ω−|Vn)M−
n+p,qM

◦
n+p,r

κp+ r−m−1
2 |Vn|√

|Vn+p−q||Vn−1|
= 0,(6.31)

lim
ν
{Σ(ω−|Vn) + Σ(ω◦|Vn)}M−

n+p,qM
◦
n+p,r

κp+ r−m−1
2 |Vn|√

|Vn+p−q||Vn+1|
= 0,(6.32)

lim
ν

Σ(ω◦|Vn)M−
n+p,qM

◦
n+p,r

κp+ r−m−1
2

√
|Vn|√

|Vn+p−q|
= 0.(6.33)

First note that M−
n+p,qM

◦
n+p,r converges to a finite limit, as is seen from (6.12)–

(6.14) and conditions (A1)–(A3). On the other hand, we see by Lemma 6.6 that

κp+ r−m−1
2 |Vn|√

|Vn+p−q||Vn−1|
= O(1),

κp+ r−m−1
2 |Vn|√

|Vn+p−q||Vn+1|
= O(κ−1),

κp+ r−m−1
2

√
|Vn|√

|Vn+p−q|
= O(κ−1/2).

Then, again by (A2) and (A3), we may see (6.31)–(6.33) with no difficulty. Thus
the proof is complete. �

7. Quantum central limit theorem in the deformed vacuum state

In this section we focus on the deformed vacuum state introduced in Section 2.
Let G = (V, E) be a regular graph with degree κ and A its adjacency matrix. Given
a deformed vacuum state 〈·〉q on A(G), by a simple computation we obtain

〈A〉q = κq,(7.1)

Σ2
q(A) = κ(1 − q)(1 + q + qM(ω◦|V1)).(7.2)
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For normalization we need Σ2
q(A) > 0 so that we assume that

(7.3) − 1
1 + M(ω◦|V1)

< q < 1.

(Here we do not assume the positivity of 〈·〉q.) Then the normalized adjacency
matrix becomes

(7.4)
A − 〈A〉q
Σq(A)

=
Ã+

Σq(A)
+

Ã−

Σq(A)
+

Ã◦

Σq(A)
,

where
Ã± = A±, Ã◦ = A◦ − 〈A〉q,

and
A = A+ + A− + A◦

is the quantum decomposition.
Let G(ν) = (V (ν), E(ν)) be a growing regular graph and Aν the adjacency matrix.

Suppose that for each ν the adjacency algebra A(G(ν)) is given a deformed vacuum
state with parameter q = q(ν) satisfying (7.3). We consider the normalization of
Aν as in (7.4). Then we are interested in

(7.5) lim
ν

〈
Ãεm

ν

Σq(Aν)
. . .

Ãε1
ν

Σq(Aν)

〉
q

= lim
ν

〈
Qδo,

Ãεm
ν

Σq(Aν)
. . .

Ãε1
ν

Σq(Aν)
δo

〉
.

We consider the following condition:
(A4) limν q(ν) = 0 and there exists a limit

(7.6) γ = lim
ν

q(ν)
√

κ(ν).

As will be seen below, this is a unique scaling balance which yields a meaningful
limit for (7.5).

Lemma 7.1. Let G(ν) = (V (ν), E(ν)) be a growing regular graph and keep the
notation as above. Under conditions (A1)–(A4) with γ > −1/α2 we have

lim
ν

Σ2
q(Aν)
κ(ν)

= 1 + γα2,(7.7)

lim
ν

〈Aν〉q
Σq(Aν)

=
γ√

1 + γα2

,(7.8)

lim
ν

qn
√
|Vn| =

γn√
ωn . . . ω1

,(7.9)

where {ωn}, {αn} and γ are defined in (A2)–(A4).

Proof. It follows from (7.2) that

Σ2
q(A)
κ

= (1 − q)(1 + q + qM(ω◦|V1))

= (1 − q)

(
1 + q + q

√
κ

M(ω◦|V1)√
κ

)
.
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Then, (7.7) follows from condition (A3) and (7.6). By (7.1) and (7.7) we have

lim
ν

〈Aν〉q
Σq(Aν)

= lim
ν

κq√
κ(1 + γα2)

=
γ√

1 + γα2

,

which proves (7.8). Finally, using Lemma 6.6, we have

lim
ν

q2n|Vn| = lim
ν

q2nκn
n∏

k=1

M(ω−|Vk)−1 =
γ2n

ωn . . . ω1
,

from which (7.9) follows. �

Lemma 7.2. The notation and assumptions being the same as in Lemma 7.1, let
Γ{ωn} = (Γ, {Ψn}, B+, B−) be the interacting Fock space associated with {ωn} and
B◦ the diagonal operator associated with {αn}. Define

B̃± =
B±√

1 + γα2

, B̃◦ =
B◦ − γ√
1 + γα2

.

Then we have

(7.10) lim
ν

〈
Φ(ν)

j ,
Ãεm

ν

Σq(Aν)
. . .

Ãε1
ν

Σq(Aν)
Φ(ν)

n

〉
= 〈Ψj , B̃

εm . . . B̃ε1Ψn〉,

for any ε1, . . . , εm ∈ {+,−, ◦}, m = 1, 2, . . . , and j, n = 0, 1, 2, . . . .

Proof. This follows directly from Theorem 6.3 by changing constant factors with
the help of (7.7) and (7.8) in Lemma 7.1. �

We are now in a position to study (7.5). In view of the up-down actions of Ãε
ν

we see that

(7.11)
〈

Qδo,
Ãεm

ν

Σq(Aν)
. . .

Ãε1
ν

Σq(Aν)
δo

〉
=

m∑
n=0

qn
√
|Vn|

〈
Φn,

Ãεm
ν

Σq(A)
. . .

Ãε1
ν

Σq(A)
Φ0

〉
.

Namely, although Qδo is an infinite (formal) sum:

Qδo =
∑
x∈V

q∂(o,x)δx =
∞∑

n=0

qn
√
|Vn|Φn,

only the partial sum up to n = m (independent of ν) contributes to the inner
product in the left hand side of (7.11). It then follows immediately from Lemmata
7.1 and 7.2 that

(7.12) lim
ν

〈
Qδo,

Ãεm
ν

Σq(A)
. . .

Ãε1
ν

Σq(A)
δo

〉
=

m∑
n=0

γn√
ωn . . . ω1

〈Ψn, B̃εm . . . B̃ε1Ψ0〉.

The next definition is useful.

Definition 7.3. Let Γ{ωn} = (Γ, {Ψn}, B+, B−) be an interacting Fock space as-
sociated with a Jacobi sequence {ωn}. A generalized vector defined by

(7.13) Ωγ = Ψ0 +
∞∑

n=1

γn√
ωn . . . ω1

Ψn, γ ∈ C,

is called a coherent vector. A normalized linear function a �→ 〈Ωγ , aΨ0〉, where
a runs over the ∗-algebra generated by B± and a diagonal operator, is called a
coherent state (disregarding the positivity).



ASYMPTOTIC SPECTRAL ANALYSIS 917

If {ωn} is of infinite type, the coherent vector Ωγ is a generalized eigenvector of
B−, i.e., B−Ωγ = γΩγ . Obviously, the right hand side of (7.12) coincides with

〈Ωγ , B̃εm . . . B̃ε1 Ψ0〉.
Summing up,

Theorem 7.4 (QCLT in the deformed vacuum state). Let G(ν) = (V (ν), E(ν)) be
a growing regular graph with a fixed origin oν ∈ V (ν) and Aν = A+

ν + A−
ν + A◦

ν the
quantum decomposition of its adjacency matrix. Let each adjacency algebra A(G(ν))
be given a deformed vacuum state with q = q(ν). Define

Ã±
ν = A±

ν , Ã◦
ν = A◦

ν − 〈Aν〉q.
Assume that conditions (A1)–(A4) are satisfied with γ > −1/α2. Let (Γ, {Ψn}, B+,
B−) be the interacting Fock space associated with {ωn} and B◦ the diagonal operator
associated with {αn}. Define

B̃± =
B±√

1 + γα2

, B̃◦ =
B◦ − γ√
1 + γα2

.

Then for any ε1, . . . , εm ∈ {+,−, ◦} and m = 1, 2, . . . , we have

(7.14) lim
ν

〈
Ãεm

ν

Σq(A)
. . .

Ãε1
ν

Σq(A)

〉
q

= 〈Ωγ , B̃εm . . . B̃ε1 Ψ0〉.

In particular,

(7.15) lim
ν

〈(
Aν − 〈Aν〉q

Σq(Aν)

)m〉
q

=
〈

Ωγ ,

(
B+ + B− + B◦ − γ√

1 + γα2

)m

Ψ0

〉
,

for any m = 1, 2, . . . .

If the deformed vacuum state 〈·〉q on A(G(ν)) is positive, then there exists a
probability distribution µ such that

lim
ν

〈(
Aν − 〈Aν〉q

Σq(Aν)

)m〉
q

=
∫ +∞

−∞
xmµ(dx), m = 0, 1, 2, . . . .

The above µ is called the asymptotic spectral distribution in a deformed vacuum
state, and to find this µ is our main question; see Section 1. In that case, we see
from (7.15) that the coherent state in the right hand side is also positive on the
algebra generated by B+ + B− + B◦. Thus, our question is reduced to finding a
probability distribution µ satisfying the identity:∫ +∞

−∞
xmµ(dx) =

〈
Ωγ ,

(
B+ + B− + B◦ − γ√

1 + γα2

)m

Ψ0

〉
, m = 0, 1, 2, . . . .

This question is to be solved within the theory of interacting Fock spaces and
orthogonal polynomials. Simple examples are found in the next section.

8. Examples and comments

We discuss two guiding examples of distance-regular graphs (see, e.g., Bannai–
Ito [4] for the fundamentals) to illustrate how our approach is applied to a concrete
problem.

Let G(ν) = (V (ν), E(ν)) be a (finite or infinite) growing distance-regular graph
with intersection numbers pk

ij(ν). Since Γ(G(ν)) is invariant under the quantum
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components Aε
ν , the conditions (A1)–(A3) are reduced to much simpler forms:

(DA1) limν κ(ν) = limν p0
11(ν) = ∞;

(DA2) for each n = 1, 2, . . . the limit ωn = limν pn
1,n−1(ν) < ∞ exists;

(DA3) for each n = 0, 1, 2, . . . the limit αn+1 = limν

pn
1,n(ν)√
p0
11(ν)

< ∞ exists.

It is also noteworthy that AQ = QA holds for any distance-regular graph. Hence,
the deformed vacuum state 〈·〉q is positive whenever Q is a positive definite kernel
on V ; see Proposition 2.3.

Example 8.1 (Homogeneous trees). A homogeneous tree with degree κ = 2, 3, . . . ,
denoted by Tκ, is a distance-regular graph with intersection numbers:

p0
11 = κ, pn

1,n−1 = 1, pn
1,n = 0,

from which we see that conditions (DA1)–(DA3) are fulfilled with {ωn ≡ 1} and
{αn ≡ 0}. Hence the limit is described in terms of the free Fock space Γfree =
(Γ, {Ψn}, B+, B−). In particular, for m = 1, 2, . . . we have

lim
κ→∞

〈
δo,

(
Aκ√

κ

)m

δo

〉
= 〈Ψ0, (B+ + B−)mΨ0〉

=
1
2π

∫ +2

−2

xm
√

4 − x2 dx;

that is, the spectral distribution in the vacuum state is the Wigner semicircle law.
We know, from a different aspect, that this is a prototype of the free central limit
theorem due to Voiculescu [38]. The spectral distribution of Tκ in the vacuum state
(for each κ) is also obtained by our method, and Kesten’s result [29] is reproduced.
As for the deformed vacuum state, we first recall that Q is a positive definite kernel
on Tκ for all −1 ≤ q ≤ 1, which is due to Haagerup [12]; see also Bożejko [7]. We
often call 〈·〉q the Haagerup state. Thus, as a direct consequence of Theorem 7.4,
for any γ ∈ R we have

(8.1) lim
κ→∞
q→0

q
√

κ→γ

〈(
Aν − 〈A〉q
Σq(Aν)

)m〉
q

= 〈Ωγ , (B+ + B− − γ)mΨ0〉, m = 1, 2, . . . ,

where Ωγ is the coherent vector. To obtain the asymptotic spectral distribution
µ = µγ we need to manipulate the right hand side of (8.1). In fact, employing the
following interesting formula for the free Fock space:

〈Ωγ , (B+ + B− − γ)mΨ0〉 = 〈Ψ0, (B+ + B− − γB+B−)mΨ0〉, m = 1, 2, . . . ,

we see that µγ is an affine transformation of the free Poisson distribution; for the
definition see, e.g., Hiai–Petz [17]. We also remark that µγ was first obtained by
Hashimoto [13] by means of a Fourier transform and Bessel functions.

Example 8.2 (Hamming graphs). Let d ≥ 1, N ≥ 1 be a pair of integers and set

V = {x = (ξ1, . . . , ξd) ; ξi ∈ {1, 2, . . . , N}}, E = {{x, y} ; x, y ∈ V, ∂(x, y) = 1},
where ∂(x, y) is the Hamming distance. The graph (V, E) is called the Hamming
graph and denoted by H(d, N). Among the intersection numbers we note that

p0
11 = d(N − 1), pn

1,n−1 = n, pn
1,n = n(N − 2).
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In order that conditions (DA1)–(DA3) are fulfilled, for the growing parameter ν =
(d, N) we take the following limit:

(8.2) d → ∞,
N

d
→ τ ∈ [0,∞).

In that case we have {ωn = n} and {αn =
√

τ (n − 1)}. Therefore the limit
is described by means of the Boson Fock space ΓBoson = (Γ, {Ψn}, B+, B−) and
the diagonal operator B◦ associated with {αn}. Note also that B◦ =

√
τ N =√

τ B+B−, where N is the number operator. Thus, for the asymptotic spectral
distribution in the vacuum state we have

lim
(8.2)

〈
Φ0,

(
Ad,N√
κd,N

)m

Φ0

〉
= 〈Ψ0, (B+ + B− +

√
τ B+B−)mΨ0〉, m = 1, 2, . . . .

The right hand side is the m-th moment of the standard Gaussian distribution for
τ = 0 or of an affine transformation of the Poisson distribution with parameter
τ−1 for τ > 0; see Hashimoto–Obata–Tabei [16] for an explicit description. Note
next that Q is a positive definite kernel on V for 0 ≤ q ≤ 1 since a Hamming
graph admits a quadratic embedding [20]. Hence the deformed vacuum state 〈·〉q
is positive for 0 ≤ q ≤ 1. As a direct consequence from Theorem 7.4, we have

lim
(8.2)

q
√

κ→γ

〈(
Ad,N − 〈Ad,N 〉q

Σq(AN,d)

)m〉
q

=
〈

Ωγ ,

(
B+ + B− +

√
τ B+B− − γ√

1 + γ
√

τ

)m

Ψ0

〉
,

where γ ≥ 0 and Ωγ is the coherent vector of the Boson Fock space. The asymp-
totic spectral distribution is computed by transforming the right hand side to an
expression in terms of the vacuum state. In fact, this can be done by using the
formulae:

〈Ωγ , (B+ + B−)mΨ0〉 = 〈Ψ0, (B+ + B− + γ)mΨ0〉,

〈Ωγ , {(B+ + λ)(B− + λ)}mΨ0〉

=
〈
Ψ0,

{(
B+ +

√
λ(λ + γ)

)(
B− +

√
λ(λ + γ)

)}mΨ0

〉
, λ ≥ 0.

As a result, the asymptotic spectral distribution in a deformed vacuum state is
the standard Gaussian distribution or an affine transformation of the Poisson dis-
tribution, depending on the parameters τ and γ; see Hora [20] for the explicit
expressions.

We wish to emphasize that the argument in the above examples is much simpler
and clearer than that in the previous papers. Moreover, conditions (A1)–(A4) give
a clear insight into a growing regular graph from the viewpoint of spectral analysis.

9. Appendix: Rephrasing conditions (A1)–(A3)

Proposition 9.1. In the conditions (A1)–(A3), we may replace (5.4), (5.5) with
a single condition: for each n = 1, 2, . . . there exists a constant number ωn inde-
pendent of ν such that

(9.1) lim
ν

|{x ∈ V
(ν)
n ; ω−(x) = ωn}|

|V (ν)
n |

= 1.
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Proof. Throughout the proof, n = 1, 2, . . . is fixed arbitrarily. We first prove that
(9.1) implies (5.4) and (5.5). Divide V

(ν)
n into two parts:

U (ν)
reg = {x ∈ V (ν)

n ; ω−(x) = ωn}, U
(ν)
sing = {x ∈ V (ν)

n ; ω−(x) �= ωn},
where the index n is omitted for simplicity. The average of ω−(x) is given by

M(ω−|V (ν)
n ) =

1

|V (ν)
n |

( ∑
x∈U

(ν)
reg

ω−(x) +
∑

x∈U
(ν)
sing

ω−(x)

)

=
|U (ν)

reg |
|V (ν)

n |
ωn +

1

|V (ν)
n |

∑
x∈U

(ν)
sing

ω−(x).

In view of (5.6) we set
Wn = sup

ν
L(ω−|V (ν)

n ) < ∞.

Then ω−(x) ≤ Wn for x ∈ V
(ν)
n and we obtain

|M(ω−|V (ν)
n ) − ωn| ≤

(
1 − |U (ν)

reg |
|V (ν)

n |

)
ωn +

|U (ν)
sing|

|V (ν)
n |

Wn ≤
|U (ν)

sing|
|V (ν)

n |
(ωn + Wn).

Since

(9.2) lim
ν

|U (ν)
sing|

|V (ν)
n |

= 0,

by (9.1), we obtain

(9.3) lim
ν

M(ω−|V (ν)
n ) = ωn,

which proves (5.4). We next consider the variance. By Minkowski’s inequality, we
obtain

Σ(ω−|V (ν)
n )

=
{

1

|V (ν)
n |

∑
x∈V

(ν)
n

(ω−(x) − M(ω−|V (ν)
n ))2

}1/2

≤
{

1

|V (ν)
n |

∑
x∈V

(ν)
n

(ω−(x) − ωn)2
}1/2

+
{

1

|V (ν)
n |

∑
x∈V

(ν)
n

(ωn − M(ω−|V (ν)
n ))2

}1/2

=
{

1

|V (ν)
n |

∑
x∈U

(ν)
sing

(ω−(x) − ωn)2
}1/2

+
∣∣ωn − M(ω−|V (ν)

n )
∣∣.

Since |ω−(x) − ωn| ≤ ω−(x) + ωn ≤ Wn + ωn for x ∈ V
(ν)
n , we have

Σ(ω−|V (ν)
n ) ≤

( |U (ν)
sing|

|V (ν)
n |

)1/2

(Wn + ωn) +
∣∣ωn − M(ω−|V (ν)

n )
∣∣,

and hence (5.5) follows by (9.2) and (9.3).
We next show that (9.1) is derived from (5.4) and (5.5). By (5.4), for any ε > 0

there exists ν0 such that

|M(ω−|V (ν)
n ) − ωn| < ε, ν ≥ ν0.
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If x ∈ V
(ν)
n satisfies |ω−(x) − ωn| ≥ 2ε, we have∣∣ω−(x) − M(ω−|V (ν)

n )
∣∣ ≥ |ω−(x) − ωn| − |ωn − M(ω−|V (ν)

n )| ≥ ε.

Hence

|{x ∈ V
(ν)
n ; |ω−(x) − ωn| ≥ 2ε}|

|V (ν)
n |

≤
|{x ∈ V

(ν)
n ;

∣∣ω−(x) − M(ω−|V (ν)
n )

∣∣ ≥ ε}|
|V (ν)

n |
.

By Chebyshev’s inequality and (5.5) we have

(9.4)
|{x ∈ V

(ν)
n ; |ω−(x) − ωn| ≥ 2ε}|

|V (ν)
n |

≤ Σ2(ω−|V (ν)
n )

ε2
→ 0, ν → ∞.

We prove that ωn is an integer. Suppose otherwise. Then, since ω−(x) is always
an integer, we can choose a sufficiently small ε > 0 such that

V (ν)
n = {x ∈ V (ν)

n ; |ω−(x) − ωn| ≥ 2ε}.
But this contradicts (9.4) and hence ωn is an integer. Since ω−(x) and ωn are all
integers, we may choose a sufficiently small ε > 0 such that

(9.5)
|{x ∈ V

(ν)
n ; ω−(x) �= ωn}|

|V (ν)
n |

=
|{x ∈ V

(ν)
n ; |ω−(x) − ωn| ≥ 2ε}|

|V (ν)
n |

.

As is shown in (9.4), the right hand side of (9.5) tends to 0 as ν → ∞. Therefore

lim
ν

|{x ∈ V
(ν)
n ; ω−(x) �= ωn}|

|V (ν)
n |

= 0

and (9.1) follows. �

Combining Proposition 5.3, we see that {ωn} is necessarily an infinite sequence
of positive integers (Proposition 5.4).
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(98e:60018)

38. D. Voiculescu, K. Dykema and A. Nica, Free Random Variables, CRM Monograph Series,
Amer. Math. Soc., 1992. MR1217253 (94c:46133)

Graduate School of Natural Science and Technology, Okayama University,

Okayama, 700-8530 Japan

E-mail address: hora@ems.okayama-u.ac.jp

Current address: Graduate School of Mathematics, Nagoya University, Nagoya, 464-8602
Japan

E-mail address: hora@math.nagoya-u.ac.jp

Graduate School of Information Sciences, Tohoku University, Sendai, 980-8579 Japan

E-mail address: obata@math.is.tohoku.ac.jp


