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A NOTE ON L2-ESTIMATES
FOR STABLE INTEGRALS WITH DRIFT

VLADIMIR KURENOK

Abstract. Let X be of the form Xt =
∫ t
0 bsdZs +

∫ t
0 asds, t ≥ 0, where Z

is a symmetric stable process of index α ∈ (1, 2) with Z0 = 0. We obtain
various L2-estimates for the process X. In particular, for m ∈ N, t ≥ 0, and
any measurable, nonnegative function f we derive the inequality

E

∫ t∧τm(X)

0
|bs|αf(Xs)ds ≤ N‖f‖2,m.

As an application of the obtained estimates, we prove the existence of solutions
for the stochastic equation dXt = b(Xt−)dZt + a(Xt)dt for any initial value
x0 ∈ R.

1. Introduction

Let f : R → [0,∞) be a measurable function and X be a stochastic process of
the form

(1.1) Xt = x0 +

t∫

0

bsdZs +

t∫

0

asds, x0 ∈ R, t ≥ 0,

where Z is a one-dimensional symmetric stable process of index α ∈ (0, 2] with
Z0 = 0, and (bs) and (as) are two processes such that the corresponding stochastic
and Lebesgue integrals are well-defined.

In this note we shall prove some global and local L2-estimates for processes of
the form (1.1) when |as| ≤ K|bs|α for a constant K > 0. In particular, let m ∈ N

and τm(X) := inf{t ≥ 0 : |Xt| ≥ m}. Then, for all t ≥ 0, it holds that

(1.2) E
∫ t∧τm(X)

0

|bs|αf(Xs)ds ≤ N‖f‖2,m,

where ‖f‖2,m := (
∫ m

−m
f2(y)dy)1/2, and the constant N depends on K, t, m, and α

only.
The estimates of the form (1.2) are important in the theory of stochastic differen-

tial equations as well as in their applications such as control theory, nonlinear filter-
ing, etc. The above estimates are called Krylov’s estimates because N. V. Krylov
was the first who proved them for processes X of diffusion type [KR], the case
when α = 2. Some generalizations of Krylov’s estimates for diffusion processes
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with jumps were obtained by S. Anulova and H. Pragarauskas [AP], and J. P. Le-
peltier and B. Marchal [LM]. We refer also to [M] where one derived the estimates
of the form (1.2) for some classes of semimartingales X.

H. Pragarauskas [PR] proved a variant of Krylov’s estimates for processes X of
the form (1.1) without drift (a = 0) and α ∈ (1, 2). More precisely, he proved that,
for any m ∈ N, t ≥ 0 and any measurable function f : [0,∞)×R → [0,∞), it holds
that

E
∫ t∧τm(X)

0

|bs|α/2f(s, Xs)ds ≤ N‖f‖2,m,t

where ‖f‖2,m,t =:
( t∫

0

m∫
−m

f2(s, y)dsdy
)1/2

and the constant N depends on m, t, and

α only.
As an application of the estimates (1.2), we prove the existence of solutions of

the time-independent stochastic differential equation

(1.3) dXt = b(Xt−)dZt + a(Xt)dt, X0 = x0 ∈ R, t ≥ 0,

where Z is a symmetric stable process of index α ∈ (1, 2) with Z0 = 0 and a, b :
R → R are measurable functions. We require the diffusion coefficient b to be non-
degenerate and bounded and the drift a to be bounded.

If α = 2, then Z is a Brownian motion process and the equation (1.3) becomes the
Itô equation. In the case of equation (1.3) without drift (a = 0), there are known
necessary and sufficient conditions for the existence and uniqueness of solutions
found by H. J. Engelbert and W. Schmidt [ES2]. The case of equation (1.3) with
drift was considered in [ES1] where one found sufficient conditions for the existence
of (in general, exploding) solutions by using the well-known Zvonkin transformation.

For α �= 2 the process Z is a purely discontinuous Levy process. Moreover, it
is a semimartingale (in particular, a martingale for α > 1) so that the stochastic
integral in (1.3) can be understood in the sense of stochastic integration with respect
to a semimartingale. The equation (1.3) without drift (a = 0) was investigated
by P. A. Zanzotto [Z2]. He completely generalized the results of Engelbert and
Schmidt for the case 1 < α < 2 and obtained some sufficient existence conditions
for α ∈ (0, 1].

A particular case of (1.3), the equation

(1.4) dXt = dZt + a(Xt)dt, X0 = x0 ∈ R, t ≥ 0,

was considered in [TTW] where one required the coefficient a to be continuous and
bounded. More recently, N. I. Portenko [PO] was able to construct a solution of the
equation (1.4) with α ∈ (1, 2) assuming that there exists a number p > (α − 1)−1

such that (
∫

R
|a|p(y)dy)1/p < ∞. The method used by Portenko was a purely

analytical one and based on some estimates for the transition probability density
of a symmetric stable process. Here we use a probabilistic approach that relies on
a version of Krylov’s estimates for stable integrals with drift and the technique of
weak convergence for cádlag processes. We also notice that Portenko’s condition
allows the drift a to be unbounded but globally Lebesgue integrable of the required
power p. On the other hand, it doesn’t guarantee the existence of solutions for
SDE’s with an arbitrary bounded drift a because a bounded function doesn’t need
to be Lebesgue integrable on R. In this note we prove the existence of solutions for
equation (1.4) when the drift a is bounded.
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The paper is organized as follows. Section 2 collects some preliminary facts
about symmetric stable processes and discusses the time change method for sto-
chastic equations with drift driven by symmetric stable processes. In section 3 we
deal with so-called Krylov’s estimates for stochastic integrals with drift. There we
solve the Bellman equation associated with the corresponding optimization problem
controlled by a stable integral with drift, and derive an L2-estimate for the solu-
tion. Section 3 closes with the proof of L2-estimates for processes of the form (1.1).
Finally, as an application of the derived Krylov’s estimates, we prove in section 4
the existence of solutions of equations (1.3) and (1.4) for α ∈ (1, 2).

2. Preliminary remarks

In this section we assume 0 < α ≤ 2 and begin with some definitions. As usual,
we denote by D[0,∞)(R) the Skorokhod space, i.e. the set of all real-valued functions
ω : [0,∞) → R with right-continuous trajectories and with finite left limits (also
called cádlag functions). For simplicity, we shall write D instead of D[0,∞)(R). We
will equip D with the σ-algebra D generated by the Skorokhod topology. Under D

n

we will understand the n-dimensional Skorokhod space defined as D
n = D×· · ·×D

with the corresponding σ-algebra Dn being the direct product of n one-dimensional
σ-algebras D.

Let (Ω,F ,P) be a complete probability space carrying a process Z with Z0 = 0
and let F = (Ft) be a filtration on (Ω,F ,P). The notation (Z,F) means that
Z is adapted to the filtration F. We call (Z,F) a symmetric stable process of
index α ∈ (0, 2] if trajectories of Z belong to D and E (exp (iξ(Zt − Zs)) |Fs) =
exp (−(t − s)|ξ|α) for all t > s ≥ 0 and ξ ∈ R.

A stochastic process (X,F), defined on a probability space (Ω,F ,P) with a
filtration F = (Ft)t≥0 and with trajectories in D, is called a (weak) solution of the
equation (1.3) with initial value x0 ∈ R if there exists a symmetric stable process
(Z,F) such that Z0 = 0 and

(2.1) Xt = x0 +
∫ t

0

b(Xs−) dZs +
∫ t

0

a(Xs)ds, t ≥ 0 P-a.s.

As mentioned above, for all 0 < α ≤ 2, a symmetric stable process Z is a semi-
martingale so that the stochastic integral in (2.1) can be defined for all appropriate
integrands via semimartingale integration theory.

Because Z is a process with independent increaments, it is obviously a Markov
process. Therefore, it can be characterized in terms of Markov processes. For any
function f ∈ L∞(R) and t ≥ 0, define the operator

(Ptf)(x) :=
∫

Ω

f(x + Zt)dP(ω)

where L∞(R) is the Banach space of functions f : R → R with the norm ‖f‖∞ =
ess sup |f(x)|. The family (Pt)t≥0 is called the family of convolution operators
associated with Z. Formally, for a suitable class of functions g(x), we can define
the so-called infinitesimal generator A of the process Z as

(2.2) (Ag)(x) = lim
t↓0

(Ptg)(x) − g(x)
t

.

On another hand, in the case of α ∈ (0, 2), Z is a purely discontinuous Markov
process that can be described by its Poisson jump measure (jump measure of Z on
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the interval [0, t]) defined as

µ(U × [0, t]) =
∑
s≤t

1U (Zs − Zs−),

the number of times before the time t that Z has jumps whose size lies in the set
U . The compensating measure of µ, say ν, is given (see, e.g. [K], Prop. 13.9) by

(2.3) ν(U) = Eµ(U × [0, 1]) =
∫

U

1
|x|1+α

dx.

It is known that for α < 2

(Ag)(x) =
∫

R\{0}

[g(x + z) − g(x) − 1{|z|<1}g
′(x)z]

cα

|z|1+α
dz

for any g ∈ C2, where C2 is the set of all bounded and twice continuously differ-
entiable functions g : R → R and cα is a suitable constant. Contrary to the case of
α ∈ (0, 2), the infinitesimal generator of a Brownian motion process (α = 2) is the
Laplacian, that is, the second derivative operator.

It can be noticed that the use of Fourier transform may simplify the calculations
essentially when working with the infinitesimal generator A. Let g ∈ L1(R) and

Fg(x) :=
∫

R

eizxg(z)dz

be the Fourier transform of g. The following facts will be used later.

Proposition 2.1. Let 0 < α ≤ 2 and let (Pt) and A be the operators as defined
above associated with the symmetric stable process Z. The following statements are
true:

(i) For every function g ∈ L∞ ∩ L1, it holds that

F (Ptg)(x) = e−t|x|αFg(x).

(ii) Assume that g ∈ C2 and Ag ∈ L1. Then, it holds that

F (Ag)(x) = −|x|αFg(x).

Proof. The proof is straightforward. We have for (i):

F (Ptg)(x) =
∫

R

eixzPtg(z)dz = E
(∫

R

eixzg(Zt + z)dz
)

= E
(∫

R

eix(y−Zt)g(y)dy
)

= Ee−ixZt

∫

R

eixyg(y)dy = e−t|x|αFg(x).

The statement (ii) follows from (i) and the definition (2.2):

F (Ag)(x) =
∫

R

eixzAg(z)dz =
∫

R

eixz lim
t↓0

Ptg(z) − g(z)
t

dz

= lim
t↓0

1
t

(∫

R

eixzPtg(z)dz −
∫

R

eixzg(z)dz
)

= lim
t↓0

1
t

(
e−t|x|αFg(x) − Fg(x)

)

= Fg(x) lim
t↓0

e−t|x|α − 1
t

= −|x|αFg(x). �
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Let α ∈ (1, 2), f ∈ C2, and define

Yt =
∫ t

0

hsdZs,

where h lies in a suitable class of integrands so that the stochastic integral exists.
It then follows (see [B], Proposition 2.1) that

(2.4) f(Yt) = f(Y0) + Mt +
∫ t

0

|hs|αAf(Ys−)ds,

where M is a martingale.
Finally, let us point out how one can construct a solution of the equation (1.3)

for any α ∈ (0, 2] using the time change method. Recall first that a process A is
called a F-time change if it is an increasing right-continuous process with A0 = 0
such that At is a F-stopping time for any t ≥ 0 (cf. [K], chapter 6). Define
Tt =: inf{s ≥ 0 : As > t} called the right-continuous inverse process to A. By
definition, T is an increasing process starting at zero. It is easy to see that T is a
F-adapted process if and only if A is a F-time change.

Let Z̄ be any symmetric stable process of index α ∈ (0, 2], x0 ∈ R is any initial
value and consider the equation

(2.5) Yt − x0 = Z̄t +
∫ t

0

a|b|−α(Ys)ds,

where |b|−α = 1/|b|α.

Proposition 2.2. Assume that there exist constants δ1 > 0 and δ2 > 0 such that
δ1 ≤ |b| ≤ δ2. Then, the equation ( 1.3) has a solution if and only if the equation
( 2.5) has a solution.

Proof. Suppose first that X is a solution of the equation (1.3) which means that the
equation (2.1) is satisfied. The integrals on the right side of (2.1) are well-defined
and are P-a.s. finite for all t ≥ 0. Let

At =
∫ t

0

|b|α(Xs)ds

and
Tt = inf{s ≥ 0 : As > t}.

In can be easily verified that the process T satisfies the relation

Tt =
∫ t

0

|b|−α(XTs
)ds.

By definition, the process A is F-adapted so that its right-inverse process T is a
F-time change process defined for all t ≥ 0. We notice that (Tt) is a global time
change1 because A∞ = limt↑∞ At = ∞. Now define

Yt = XTt
, Gt = FTt

.

Applying the time change t → Tt to the semimartingale X in (2.1) (see [J], Chapter
10) and using the change of variables rule in Lebesgue-Stieltjes integral (see ch. 0,
(4.9) in [RY]) yields

Yt = x0 +
∫ Tt

0

b(Xs−)dZs +
∫ t

0

a(Ys)dTs.

1That is, Tt ∈ [0,∞) for all t ≥ 0.
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It remains to notice that the process

Z̄t :=
∫ Tt

0

b(Xs−)dZs

is nothing but a symmetric stable process of the index α (see [RW], Theorem 3.1).
Hence Y is a solution of the equation (2.5).

The proof of the opposite direction is a very similar one. For this, suppose that
the process Y is a solution of the equation (2.5) defined on a probability space
(Ω,G,P) with a filtration G where Z̄ is a symmetric stable process adapted to G.
Define

Tt =

t∫

0

|b|−α(Ys)ds

and let
Xt = YAt

,Ft = GAt

for all t ≥ 0 where A is the right inverse to T and T∞ = limt↑∞ Tt = ∞. By
applying the global time change t → At to the semimartingale Y in (2.5) we obtain

Z̄At
= Xt − x0 −

∫ t

0

a(Xs)ds.

Let Rt = Z̄At
, t ≥ 0, and first consider the case 0 < α < 2. According to the

properties of time change in semimartingales (see, e.g. [J], Chapter 10), R is a
purely discontinuous martingale with the jump measure µR(dt, dx) and its com-
pensator (dual predictable projection of µR) νR(dt, dx). It follows from (2.3) that
the compensator of a symmetric stable process of index α has the form

νZ̄(dt, dx) = dt × dx

|x|α+1
.

Applying a continuous time change to a purely discontinuous martingale gives a
purely discontinuous martingale with the compensator obtained from that of the
original process. We then have

(2.6) νR(dt, dx) = dAt ×
dx

|x|α+1
= |b|α(Xt)dt × dx

|x|α+1
.

Hence R is a purely discontinuous martingale with the compensator (2.6) that is
absolute continuous with respect to the compensator of a symmetric stable process
of index α. The representation theorem for symmetric stable processes (see [Z1])
yields that there exists a symmetric stable process Z defined on the same probability
space such that

(2.7) Rt =
∫ t

0

b(Xs−)dZs.

If α = 2, then the process Z̄At
is a continuous local martingale with the quadratic

variation process 〈Z̄〉t = At =
∫ t

0
b2(Xs)ds so that after applying the classical

representation theorem of Doob (see, e.g. [IW], Ch. 2, Theorem 7.1) we conclude
that there exists a Brownian motion Z such that (2.7) holds as well. Thus we have
shown that X is a solution of the equation (1.3). �
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3. L2 -estimates for stable integrals with drift

In this section we are first going to derive an L2-estimate for solutions of a given
class of quasilinear partial differential equtions. Then, based on that result, we
shall prove some of Krylov’s estimates for stable integrals with drift that will play
a key role in the forthcoming existence theorems.

Let K > 0 be a constant and f be a nonnegative, measurable function such
that f ∈ C∞

0 (R), where C∞
0 (R) denotes the class of all infinitely differentiable real

valued functions with compact support defined on R. Suppose further that Z is a
symmetric stable process of index α ∈ (1, 2) defined on a probability space (Ω,F ,P)
with filtration F. By T we denote the class of all F-predictable processes (γt) such
that |γt| ≤ K.

Consider the controlled processes Xγ defined as

dXγ
t = dZt + γtdt

and, for any λ > 0, define the corresponding value function v(x), x ∈ R, by

v(x) = sup
γ∈T

E

∞∫

0

e−λtf(x + Xγ
t )dt.

The Bellman principle of optimality can be formulated for the controlled pro-
cesses Xγ and the value function v as follows:

For any F-stopping time τ it holds that

v(x) = sup
γ∈T

E
{ τ∫

0

e−λtf(x + Xγ
t )dt + e−λτv(x + Xγ

τ )
}
.

Using standard arguments, one can derive from the principle above the correspond-
ing Bellman equation (γ is deterministic)

sup
γ≤K

{
Av(x) − λv(x) + γvx(x) + f(x)

}
= 0

which holds a.e. in R and vx denotes the first derivative of v. It is easy to see that
the Bellman equation is equivalent to the equation

(3.1) Av − λv + K|vx| + f = 0.

Now, for any measurable function h : R → R, define ‖h‖2 := (
∫

R
h2(x)dx)1/2 to

be the L2-norm of h.

Lemma 3.1. For all x ∈ R, it holds that

(3.2) v(x) ≤ N‖f‖2,

where the constant N depends on K and α only.

Proof. Let q(x) be a nonnegative function such that q ∈ C∞
0 (R) and

∫
R

q(x)dx = 1.
For any function h : R → [0,∞) and any ε > 0 let

h(ε)(x) =
1
ε

∫
R

q(
x − y

ε
)h(y)dy

be the ε-convolution of h with q. For any ε > 0, define

(3.3) f (ε) = −Av(ε) + λv(ε) − K|v(ε)
x |.

Clearly, f (ε) is square integrable and f (ε) → f a.s. as ε → 0.
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It follows from (3.3) that

(Av(ε) − λv(ε))2 = (K|v(ε)
x | + f (ε))2

and ∫

R

(
Av(ε)(x) − λv(ε)(x)

)2

dx =
∫

R

(
K|v(ε)

x |(x) + f (ε)(x)
)2

dx

≤ 2K2

∫

R

(
v(ε)

x (x)
)2

dx + 2
∫

R

(
f (ε)(x)

)2

dx.(3.4)

Using Proposition 2.1, the Parseval-Plancherel equality∫

R

(v(ε)(x))2dx =
1
2π

∫

R

|Fv(ε)(z)|2dz,

and integration by parts, one obtains from (3.4) that

(3.5)
∫

R

|Fv(ε)(x)|2(|x|α +λ)2dx ≤ 2K2

∫

R

|Fv(ε)(x)|2|x|2dx+2
∫

R

(
Ff (ε)(x)

)2

dx.

It is easy to see that there exists a constant µ > 0 such that

(3.6) (|x|α + µ)2 ≥ 4K2|x|2

for all x ∈ R.
The inequalities (3.5) and (3.6) combined yield for all λ ≥ µ

1
2

∫

R

|Fv(ε)(x)|2(|x|α + λ)2dx ≤ 2
∫

R

(
Ff (ε)(x)

)2

dx.

Applying the inverse Fourier transform and the Cauchy-Schwarz inequality, we
finally obtain for all y ∈ R and λ ≥ µ

(
v(ε)(y)

)2

≤ 1
4π2

∫

R

|Fv(ε)(x)|2
(
|x|α + λ

)2

dx

∫

R

(
|x|α + λ

)−2

dx ≤ N

∫

R

(
f (ε)(x)

)2

dx,

where

N =
1
π2

∫

R

(|x|α + λ)−2dx.

The desired estimate then follows by taking the limit ε → 0 in the above inequality
and using the Lebesgue dominated convergence theorem. �

Now, let X be a solution of the equation (1.3). We are interested in L2 - estimates
of the form

E
∫ ∞

0

e−λψuϕuf(x + Xu)du ≤ N‖f‖2,

where ψ and ϕ are some nonnegative predictable processes. We will assume that

(3.7) |a(x)| ≤ K|b(x)|α for all x ∈ R.
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Theorem 3.2. Suppose X is a solution of the equation ( 1.3) with α ∈ (1, 2) and
the condition ( 3.7) is satisfied. Then, for any x ∈ R, λ ≥ µ, and any measurable
function f : R → [0,∞), it holds that

(3.8) E
∫ ∞

0

e−λψu |b(Xu)|αf(x + Xu)du ≤ N‖f‖2,

where ψt =
∫ t

0
|b(Xs)|αds and the constant N depends on K and α only.

Proof. Assume first that f ∈ C∞
0 (R) so that there is a solution v of equation (3.1)

satisfying the inequality (3.2). By taking the ε-convolution on both sides of (3.1),
we obtain

Av(ε) − λv(ε) + K|v(ε)
x | + f (ε) ≤ 0.

Then, for all x ∈ R, applying Itô’s formula (cf. (2.4)) to the expression

v(ε)(x + Xs)e−λψs ,

yields

Ev(ε)(x + Xs)e−λψs − v(ε)(x)

= E
∫ s

0

e−λψu

[
|b(Xu)|αAv(ε) − |b(Xu)|αλv(ε) + a(Xu)v(ε)

x

]
(x + Xu)du

≤ E
∫ s

0

e−λψu |b(Xu)|α
[
Av(ε) − λv(ε) + K|v(ε)

x |
]
(x + Xu)du

≤ −E
∫ s

0

e−λψu |b(Xu)|αf (ε)(x + Xu)du.

Hence using Lemma 3.1 we obtain

E
∫ s

0

e−λψu |b(Xu)|αf (ε)(x + Xu)du ≤ sup
x

v(ε)(x) ≤ N‖f (ε)‖2.

Letting ε → 0 and s → ∞ and using the Fatou’s lemma, we arrive at

E
∫ ∞

0

e−λψu |b(Xu)|αf(x + Xu)du ≤ N‖f‖2.

The latter inequality can be extended in a standard way first to any function f ∈
L2(R) and then to any nonnegative, measurable function using the monotone class
theorem arguments (see, for example, [DM], Theorem 20). �

Corollary 3.3. Suppose X is a solution of the equation ( 1.4) with α ∈ (1, 2) and
|a(x)| ≤ K. Then, for any t ≥ 0 and any measurable function f : R → [0,∞), it
holds that

E
∫ t

0

f(Xu)du ≤ N‖f‖2,

where the constant N depends on K, t, and α only.

Proof. The desired estimate follows immediately from Theorem 3.2 for b = 1. �

One can also easily obtain the local version of the estimate (3.8). For arbitrary
but fixed m ∈ N, define ‖f‖2,m = (

∫
[−m,m]

|f(x)|2dx)
1
2 as the L2-norm of f on

[−m, m].
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Applying (3.8) to the function f̄(y) = f(y)1[−m,m](y), we obtain

Corollary 3.4. Let X be a solution of the equation ( 1.3) with α ∈ (1, 2) and let
the condition ( 3.7) be satisfied. Then, for any t ≥ 0, m ∈ N, and any nonnegative
measurable function f , it holds that

(3.9) E
∫ t∧τm(X)

0

(|b|αf)(Xu)du ≤ N‖f‖2,m,

where N is a constant depending on K, α, m, and t only.

Clearly, the corresponding estimate from Corollary 3.3 also follows for the local
Krylov’s estimate of the form (3.9).

Corollary 3.5. Let X be a solution of the equation ( 1.4) with α ∈ (1, 2) and
|a(x)| ≤ K. Then, for any t ≥ 0, m ∈ N, and any nonnegative measurable function
f , it holds that

(3.10) E
∫ t∧τm(X)

0

f(Xu)du ≤ N‖f‖2,m,

where N is a constant depending on K, α, m, and t only.

4. Existence of solutions for SDE’s with bounded drift

Here we are going to apply the estimates derived in section 3 to prove the exis-
tence of solutions of stochastic equations with drift. We shall prove the existence
of weak solutions of the equation (1.3) for measurable coefficients a and b such that
a is bounded and b is nondegenerate and bounded. More precisely, we assume that
there exists a constant Λ > 0 such that

Λ) 1
Λ ≤ |b(x)| ≤ Λ, |a(x)| ≤ Λ for all x ∈ R.

For α = 2, the existence of weak solutions under the condition Λ) is well-known
(cf. [ES1]). Hencefore, we restrict ourself to the case 1 < α < 2.

Theorem 4.1. Suppose that the coefficients a and b satisfy the assumption Λ) and
α ∈ (1, 2). Then, for any x0 ∈ R, there exists a solution of the equation ( 1.3).

Proof. According to Proposition 2.2, it suffices to prove that the equation

(4.1) dXt = dZt + σ(Xt)dt, X0 = x0 ∈ R, t ≥ 0,

has a solution where σ = a|b|−α such that |σ| ≤ Λ1+α := Λ1.
Using the standard arguments (see, for example, [KR]), for n = 1, 2, . . . , we

can define the sequences of functions σn(x) such that they are globally Lipshitz
continuous, uniformly bounded by the constant Λ1, and σn → σ uniformly as
n → ∞. Then, for any n = 1, 2, . . . , the equation (4.1) has a unique solution, even
a so-called strong solution (see, for example, Theorem 9.1 in [IW]). That is, for any
fixed symmetric stable process Z defined on a probability space (Ω,F ,P), there
exists a sequence of processes Xn, n = 1, 2, . . . , such that

(4.2) Xn
t = x0 + Zt +

∫ t

0

σn(Xn
s )ds, t ≥ 0, P-a.s.

Define

Y n
t =

∫ t

0

σn(Xn
s )ds
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so that
Xn = x0 + Z + Y n, n ≥ 1.

Now we are going to show that the sequence of 3-dimensional processes Hn :=
(Xn, Y n, Z), n ≥ 1, is tight in the sense of weak convergence in (D3,D3). Due to
the well-known Aldous’ criterion ([A]), it suffices to show that

(4.3) lim
l→∞

lim sup
n→∞

P
[

sup
0≤s≤t

‖Hn
s ‖ > l

]
= 0

for all t ≥ 0 and

lim sup
n→∞

P
[
‖Hn

t∧(τn+δn) − Hn
t∧τn‖ > ε

]
= 0

for all t ≥ 0, ε > 0, every sequence of F-stopping times τn, and every sequence of
real numbers δn such that δn ↓ 0. Here ‖·‖ denotes the Euclidean norm of a vector.

It is clear that for this it suffices only to verify that the sequence of processes Y n

is tight in (D,D). But this is trivially fulfilled because of the uniform boundness of
the coefficients σn, n ≥ 1.

From the tightness of the sequence {Hn} we conclude that there exists a sub-
sequence {nk}, k = 1, 2, . . . , a probability space (Ω̄, F̄ , P̄) and the process H̄ on
it with values in (D3,D3) such that Hnk converges weakly (in distribution) to the
process H̄ as k → ∞. For simplicity, let {nk} = {n}.

Next we use the famous embedding principle of Skorokhod (see, e.g. Theorem 2.7
in [IW]) to imply the convergence of the sequence {Hn} a.s. in the following sense:
there exists a probability space (Ω̃, F̃ , P̃) and processes H̃ = (X̃, Ỹ , Z̃), H̃n =
(X̃n, Ỹ n, Z̃n), n = 1, 2, . . . , on it such that

1) H̃n → H̃ as n → ∞ P̃-a.s.
2) H̃n = Hn in distribution for all n = 1, 2, . . . .

Using standard measurability arguments ([KR], chapter 2), one can prove that the
processes Z̃n and Z̃ are symmetric stable processes of the index α with respect to
the augmented filtrations F̃n and F̃ generated by processes H̃n and H̃ , respectively.

Relying on the above properties 1) and 2), and the equation (4.2), one can show
([KR], chapter 2) that

X̃n
t = x0 + Z̃n

t +
∫ t

0

σn(X̃n
s )ds, t ≥ 0, P̃-a.s.

At the same time, from the properties 1), 2) and the quasi-left continuity of the
the processes X̃n it follows that

(4.4) lim
n→∞

X̃n
t = X̃t, t ≥ 0, P̃-a.s.

Hence in order to show that the process X̃ is a solution of the equation (4.1), it is
enough to prove that, for all t ≥ 0,

(4.5) lim
n→∞

∫ t

0

σn(X̃n
s )ds =

∫ t

0

σ(X̃s)ds P̃- a.s.

Now we remark that from the convergence in probability it follows that there is a
subsequence for which the convergence with probability one holds. Therefore, to
verify (4.5), it suffices to show that for all t ≥ 0 and ε > 0 we have

(4.6) lim
n→∞

P̃
[
|
∫ t

0

σn(X̃n
s )ds −

∫ t

0

σ(X̃s)ds| > ε
]

= 0.
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We will need the following lemma.

Lemma 4.2. Let X̃ be the process as defined above. Then, for any Borel measurable
function f : R → [0,∞) and any t ≥ 0, there exists a sequence mk ∈ (0,∞), k =
1, 2, . . . , such that mk ↑ ∞ as k → ∞ and it holds that

Ẽ
∫ t∧τmk

(X̃)

0

f(X̃s)ds ≤ N‖f‖2,mk
,

where the constant N depends on Λ, α, t and mk only.

Proof. Though the proof idea is essentially borrowed from [PZ], we carry out the
proof for the convenience of the reader.

One proves first that there exists a sequence mk ∈ (0,∞), k = 1, 2, . . . , with
mk ↑ ∞ as k → ∞ such that

lim
n→∞

τmk
(X̃n) = τmk

(X̃) P̃-a.s.

It can be seen that the function y → τy(z), y > 0, is increasing for any z ∈ D. That
means that τy(z) can have at most a countable number of points of discontinuity
which we denote by Q ∈ (0,∞). Based on the proporties of the Skorokhod space
D, we conclude that if zn → z as n → ∞ in the Skorokhod topology, then there
exists a sequence mk ∈ (0,∞) \ Q such that

τmk
(zn) → τmk

(z) as n → ∞
for all mk ∈ (0,∞) \ Q. Because of (4.4), we obtain (cf. Lemma 3.2 in [PZ])

(4.7) τmk
(X̃n

· ) → τmk
(X̃·) as n → ∞ P̃-a.s.

Now suppose f is a bounded and continuous function. Using Fatou’s lemma, the
Lebesgue bounded convergence theorem, and Krylov’s estimate (3.10), we obtain

Ẽ
∫ t∧τmk

(X̃)

0

f(X̃s)ds = Ẽ
∫ t

0

lim inf
n→∞

1{s<τmk
(X̃n)}f(X̃n

s )ds

= lim inf
n→∞

Ẽ
∫ t

0

1{s<τmk
(X̃n)}f(X̃n

s )ds ≤ N lim inf
n→∞

‖f‖2,mk
= N‖f‖2,mk

.

To finish the proof of the lemma it suffices to notice that the above estimate is also
true for any Borel measurable function f that can be verified by using the standard
monotone class theorem arguments. �

Without loss of generality, we can assume {mk} = {m}.
Let us prove (4.6). For a fixed k1 ∈ N we have

P̃
[
|
∫ t

0

σn(X̃n
s−)ds −

∫ t

0

σ(X̃s−)ds| > ε
]

≤ P̃
[
|
∫ t

0

σk1(X̃
n
s−)ds −

∫ t

0

σk1(X̃s−)ds| >
ε

3

]

+P̃
[
|
∫ t∧τm(X̃n)

0

[σk1 − σn](X̃n
s−)ds| >

ε

3

]

+P̃
[
|
∫ t∧τm(X̃)

0

[σk1 − σ](X̃s−)ds| >
ε

3

]
+ P̃

[
τm(X̃n) < t

]
+ P̃

[
τm(X̃) < t

]
.
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The first term on the right side of the inequality above converges to 0 as n → ∞
by Chebyshev’s inequality and the Lebesgue bounded convergence theorem. To
show the convergence to 0 as n → ∞ of the second and third terms we first use
Chebyshev’s inequality and then Corollary 3.5 and Lemma 4.2, respectively. We
obtain

(4.8) P̃
[
|
∫ t∧τm(X̃n)

0

[σk1 − σn](X̃n
s−)ds| >

ε

3

]
≤ 3

ε
N‖σk1 − σn‖2,m

and

(4.9) P̃
[
|
∫ t∧τm(X̃)

0

[σk1 − σ](X̃s−)ds| >
ε

3

]
≤ 3

ε
N‖σk1 − σ‖2,m

where the constant N depends on Λ, m, t, and α only. It follows from the definition
of the sequence σn that, for any m ∈ N, σn → σ as n → ∞ in the L2,m-norm.
Then, passing to the limit in (4.8) and (4.9) first n → ∞ and then k1 → ∞, we
obtain that the right sides of (4.8) and (4.9) converge to 0.

Because of the property (4.7),

P̃
[
τm(X̃n) < t

]
→ P̃

[
τm(X̃) < t

]
as n → ∞.

Therefore, the last two terms can be made arbitrarily small by choosing large enough
m for all n due to the fact that the sequence of processes X̃n satisfies the property
(4.3). This verifies (4.6). Thus, we have proven the existence of the process X̃ that
solves the equation (4.1). �
Corollary 4.3. Suppose that the coefficient a is bounded. Then, for any initial
value x0 ∈ R, there exists a solution of the equation ( 1.4).
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