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ON THE UNIQUE REPRESENTATION OF FAMILIES OF SETS

SU GAO, STEVE JACKSON, MIKLOS LACZKOVICH, AND R. DANIEL MAULDIN

ABSTRACT. Let X and Y be uncountable Polish spaces. A C X XY represents
a family of sets C provided each set in C occurs as an z-section of A. We say
that A uniquely represents C provided each set in C occurs exactly once as an
z-section of A. A is universal for C if every z-section of A is in C. A is uniquely
universal for C if it is universal and uniquely represents C. We show that there
is a Borel set in X X R which uniquely represents the translates of Q if and
only if there is a E% Vitali set. Assuming V = L there is a Borel set B C w¥
with all sections F, sets and all non-empty K, sets are uniquely represented
by B. Assuming V = L there is a Borel set B C X x Y with all sections K,
which uniquely represents the countable subsets of Y. There is an analytic set
in X x Y with all sections A9 which represents all the A9 subsets of Y, but no
Borel set can uniquely represent the Ag sets. This last theorem is generalized
to higher Borel classes.

1. INTRODUCTION

Throughout the paper, X, Y will denote uncountable Polish spaces. For A C
X x Y, denote the x-section of A by A, i.e., let

A, ={yeY|(x,y) € A}.

We also call A, a section of A. By a pointclass we mean a collection T" of subsets of
Polish spaces which is closed under inverse images by continuous functions between
Polish spaces.

Definition 1.1. A class of sets C C P(Y) is said to be represented by A if
CC{A,|xe X}

The class C is said to be uniquely represented by A if for every set C € C there is a
unique x € X such that C' = A,. We say A is universal for a class of nonempty
sets C provided A represents C and every non-empty section A, is in C. We say A
is uniquely universal for C if A is universal for C and uniquely represents C.

In this paper we consider various problems concerning the existence of sets pro-
viding unique representations for certain families of sets. The various properties we
consider can be abstracted into the following definition.
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Definition 1.2. Let I’y be a pointclass, and Ca, C3 € P(Y'). We say that the unique
representation property U(T'1,Ca,Cs) holds if there isan A C X xY, A € T'y, such
that all sections A, of A are in Co, and A uniquely represents C3. We define the
representation property R(T'y,Cs,C3) in the same manner except we require in the
last clause only that A represents Cs.

General Problem. For which I'1,Cy,Cs does U(T', Cz,C3) (or R(T'1,C2,Cs)) hold?

We emphasize that Co, C3 need not be pointclasses. We will consider below cases
where they correspond to the collection of countable sets, or to the K, sets.

Note that the statement that the pointclass I' has a universal set is just
R(T,T,T). Of course, a self-dual pointclass such as Aj cannot have a univer-
sal set, but an old theorem of Sierpinski says that there is an analytic set which is
universal for the Borel sets, that is, R(2], A}, A]).

The genesis of our work is the following still unsolved problem of the fourth
author.

Problem 1.3. Is there a Borel subset of X x Y which is uniquely universal for the
class of K, subsets of Y? Or even, is there a Borel set which uniquely represents
the K, sets?

One of the original motivations for the problem comes from a question concerning
the “graphs of multifunctions” and the complexity of the € relation. We comment
on this relationship by noting the next theorem.

Theorem 1.4. Let X be an uncountable Polish space. The following statements
are equivalent:

(i) There is a standard Borel structure B on K,(X) such that the € relation
is in the o-algebra B(X) x B.

(ii) There is a Borel set U in X x X which is uniquely universal for the family
K,(X).

Proof. Assume (i) holds. Let ¢ be a (B(X),B) isomorphism of X onto K,(X).
Let U = {(x,y) : y € ¥(x)}. Note that U is uniquely universal for K,(X) and
U = proji12(W) where W = {(z,y,K) : y € K A(z) = K}. Since W is a Borel set
and projis is 1-to-1 on W, U is a Borel set.

Secondly, assume (ii) holds. Let D = proj;(U). Then by Saint-Raymond’s the-
orem [14], D is a Borel subset of X. Define v : D — K,(X) by v(z) = U,. Let
B = {~(E) : E is a Borel subset of D}. Then B is a standard Borel structure on
K,(X). Also, € = projas(G), where G = {(z,y,K) € X x X x K,(X) : K =
v(x) A (x,y) € U} and projas is 1-to-1 on the Borel set G. O

Of course, we can ask in some generality whether there is a natural Borel struc-
ture on various families of sets. We can consider “natural” to mean that various
operations and relations must be measurable, the most basic relation being the
“belongs to” relation. In particular, we can ask the same question for the F, sets.

Problem 1.5. Is there a Borel subset of X x Y which is uniquely universal (or
even uniquely represents) the class of F,, (= £9) subsets of Y?

Both of these problems remain unsolved. In this paper we obtain some partial
results about them and related problems.

We fix a recursive bijection (n,m) — (n,m) between w X w and w. We let
n — ((n)o, (n)1) denote the inverse of this map. This extends to a homeomorphism
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between w® and (w*)% in a standard way, namely, for (2;)ico € (W¥)¥, let y =
(7i)icw be the real coding them defined by y(n) = z(n),((n)1). For z € w®, let
C(z) = {(2)o, ()1, ...} be the countable set coded by z (so (z),(m) = z({n,m))).
We abuse notation slightly and also use (z,y) — (z,y) and = — ((x)o, (y)o) to
denote homeomorphisms between (w*)? and w*.

With the above notation it is easy to find Borel sets in w* x w* (or R x R) which
represent the class of all non-empty countable subsets of w* (or R).

Remark 1.6. We note that in most cases the Polish space X above is immaterial,
and Y can in some cases be replaced by w*. To see the first statement, suppose
X1, X2 are uncountable Polish spaces and let ¢: X5 — X; be a Borel (in fact Ag)
bijection. If A; C X; x Y, let Ay be defined by As(z,y) < Ai(d(x),y). If T is
closed under Borel preimages (e.g., I' = A7, X1), then A; € T iff Ay € T and A;,
Ajs have the same sections; thus A; is uniquely universal for (or uniquely represents,
etc.) a collection C C P(Y) iff Ay is.

For the second statement, first note that if C is defined for all Polish spaces and
is closed under Borel bijections (e.g., C = countable sets), then there is a Borel (or
analytic, etc.) set in X x Y representing (or uniquely representing, or uniquely
universal for) C iff there is such a set in X x w*. This follows immediately by
considering a Borel bijection between Y and w®. In particular, there is a Borel set
in X x Y with all sections countable and uniquely representing the countable (or
non-empty countable) sets in Y iff there is such a set in w* x w*.

Secondly, suppose Y is an uncountable Polish space. There is a countably infinite
set C = {yn}tnew C Y such that Y \ C is the continuous one-to-one image of w*,
say by ¢: w® — (Y \ C). If A1 Cw® x w¥, define A3 C w® xY by

As(z,y) < [(y ¢ O) A AL((2)0, ¢~ ()] V In [y = yn A ()1(n) = 0].
Clearly A will be Borel (or analytic, etc.) iff A7 is. Suppose Cs is a collection which
is defined for both Y and w® and is closed under continuous one-to-one images and
also unions with countable sets (for example, Co = K,;). Suppose Cs is a collection
defined for Y which is closed under unions and differences with countable sets, that
is, if A € C, then so is AUC and A\ C whenever C is countable (for example, C3 =
countable sets). Then if A; is a Borel (or analytic, etc.) set witnessing U(I'y,Cs,Cs)
for X x w®, then As witnesses U(I'1,C2,C3) for X x Y. So, for example, there is
a Borel set in X x Y with all sections K, which uniquely represents the countable
sets iff there is such a set in w* x w®.

On the other hand, it is not immediately clear if the space Y is relevant in
problems 1.3, 1.5.

We employ a standard coding of Borel sets in a Polish space X. In some straight-
forward manner we view every w € w* as coding a tree T' C (w X w)<% together
with a function which assigns to the terminal nodes s of T" an integer ns which codes
a basic open set N,,_ in X. We say w is a Borel code if the tree T is wellfounded,
in which case w determines a Borel subset B(w) of X in the usual manner [for s
terminal in 7', associate to s the set B(w,s) = N, and for s non-terminal let
B(w,s) = X\ U{B(z,s"n)|s"n € T}. Let B(w) = B(w,0)].

In Section 2 we consider first the existence of a Borel set which uniquely repre-
sents all the translates of Q. The existence of such a set turns out to be equivalent
to the existence of a 33 Vitali set. Furthermore, we show there is no Borel set with
countable sections which uniquely represents the translates of Q.
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In Section 3 we give another proof of the known result (cf. [1]) that there is no
Borel set with countable sections uniquely representing the countable sets (that is,
U (A%,Cctbl,CCtbl) fails, where Cetp is the class of countable sets). Although this
result follows from the results of Section 2, we give a different proof using a forcing
argument similar to one in [5], which gives some extra information. By contrast, it
is a theorem of Becker [1] that it is consistent to have an analytic set with count-
able sections which uniquely represents the countable sets (i.e., U (2%, Cetbl, Cetbl) 18
consistent). We show that it is consistent that there is a Borel set with F,, sections
which uniquely represents the countable or even K, sets. These results serve as
motivation and a warm-up for the main result in Section 4.

In Section 4 we show that it is consistent to have a Borel set with K, sections
which uniquely represents the countable sets. This result seems to be “half-way”
between the negative result of the previous paragraph and problem 1.3.

In Section 5 we show that there is no Borel set with AY 41 sections which even
represents the Ag 41 sets.

As we note below, unique representability results fail in the presence of large
cardinal (or determinacy) axioms. For example, assuming II; determinacy there is
no Borel set uniquely representing the countable sets, which gives a negative answer
to the questions in problems 1.3, 1.5. Thus, the question is whether such results
are consistently true or refutable in ZFC.

2. UNIQUE REPRESENTATIONS OF THE TRANSLATES OF Q

Lemma 2.1. Let B be a Borel subset of X x R. Then C = C(B) = {z :
B, is a translate of Q} is IIi. If, in addition, every section of B is countable,
then C' is a Borel subset of X.

Proof. Notice that
X\ C =proji1(E)Uproji(F),
where
(x,y,2) € E< (2,y),(x,2) E BAy—2¢Q
and
(z,y) € F & (v,y) € BAIq € Q [(z,y +4q) ¢ B

Since B is a Borel set, each of the sets F and F' are Borel sets and therefore C' is
I1}. If each section of B is countable, then for each z € X, both E, and F, are
countable, and therefore C is a Borel set. (]

By a transversal for an equivalence relation F on X we mean a set S C X which
meets every F class in exactly one point. By a Vitali set we mean a transversal for
the equivalence relation z ~ y < (x — y) € Q on the space R.

Theorem 2.2. The following statements are equivalent:

(i) There is a Borel set in X X R which uniquely represents all the translates
of Q.
(ii) There is a X3 Vitali set V.
(iii) There is a K, subset of X x R which uniquely represents the translates of

Q.
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Proof. First, suppose the Borel set B uniquely represents the translates of Q. Let
U be a II7 uniformization of B. Let

V =proj,((C(B) xR)NU).

Then V is a X1 set and V meets each translate of Q in exactly one point. So, V is
a transversal for R/Q.

Second, suppose V is a 2; Vitali set. Let C be a Hi subset of X and f a
continuous one-to-one map of C onto V. Let F = Gr(f). If z € C, then F, =
{f(x)}. Also, let M be a closed subset of X x [0,1] such that if z € C, then M,
is a nonempty compact set lying in Q and if ¢ C, then M, is an uncountable

compact set (cf. [6], [12], and 27.4 of [7]). Let
H=M+yF={(z,y+2):(v,y) € M,(x,2) € F'}.
Then H is a closed subset of X x R. Let

B=|J{(y+q) :(z,y) € H}.
q€Q

Then B is an F,, subset of X x R, and the sections of B over C' uniquely represent
the translates of Q. Also, the other sections of B if nonempty are uncountable. If
X is compact, then B is K, and we are done. In the general case, X contains a
homeomorphic copy of the Cantor space 2¥, and we let B C 2 x R C X x R be as
constructed when the domain space is 2*. This clearly works.

Finally, the third statement trivially implies the first statement. O

We note the following corollary of the preceding theorem.

Theorem 2.3. If V = L, then there is a Borel set which uniquely represents the
translates of Q. If every X5 set is measurable, then there is no such Borel set.

Also, part of the argument of Theorem 2.2 gives the following.

Theorem 2.4. There is no Borel set B C X X R such that all sections of B are
countable and B uniquely represents all the translates of Q.

Proof. Suppose B were such a set. Then the set C'(B) would be a Borel set. Also,
since each section of B is countable, B would have a Borel uniformization U. Then
V = proj2((C(B) x R)NU) would be a Borel transversal for R/Q. O

3. UNIQUE REPRESENTATION OF THE FAMILY OF COUNTABLE SETS

For any uncountable Polish spaces X and Y it follows from remark 1.6 that there
is a Borel set in X xY with countable sections uniquely representing the non-empty
countable subsets of Y if and only if there is a Borel set in X x R with countable
sections uniquely representing the non-empty countable subsets of R. But, since
such a set would uniquely represent the translates of QQ, theorem 2.4 tells us there
is no such Borel set in X x R. Thus we have the following theorem due to Becker
and (according to [1]) independently Blackwell (cf. theorem 1 of [1]).

Theorem 3.1. There is no Borel set B C X XY such that all sections of B are
countable and B uniquely represents all non-empty countable subsets of Y.

We now give another different sort of proof. The argument is similar to one in
[5].
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Proof. From remark 1.6 we may assume that X =Y = w®. Assume such a Borel
set exists in w*” x w* and let w be a Borel code for it, so B = B(w). Consider the
statement

0= o N1 A2
where

0o := Yu,v(By =B, #0 —u=v),
@1 := Yu (B, is countable),
and
o = Y3y [{zn} C B, AVz € Af(w,y) (2 € B, — In(z=1z,))].

Note that ¢ is true in V, and ¢ is II3 by the bounded quantification theorem
(theorem 4D.3 of [13]).

Now consider Cohen forcing, understood as adding w many mutually generic
Cohen reals. Let G be a generic set and « = x¢ code the sequence of Cohen reals.
Let B = (B(w))VI¢). By absoluteness the statement ¢ for B holds in V[G]. From
¢1 we get that (in V[G]) all sections of B are countable. From ¢, and the fact that
all countable Al(w, y) sets contain only Al(w,y) reals we get that B represents all
non-empty countable sets, and then from ¢y we get that B uniquely represents the
non-empty countable sets.

Let y be the unique real witnessing that o holds for the generic real z. By
homogeneity of the forcing notion it can be seen that for any n € w, either
O Ik gn) =0or @Ik gn) = 1. [Suppose p IF g(n) = 0 and ¢ I+ y(n) = 1.
Let 7 be an automorphism of the forcing notion P = []  w<“ such that p is com-
patible with 7(g), and where 7 is of the form m(n,s) = (c(n), s) for some permu-
tation o of w. If G is a generic extending p and 7(g), then for y; the unique real
such that B,, = C(zg) we have y;(n) = 0, and for y, the unique real such that
By2 = C(xr(@)) we have yo(n) = 1. However y; = y» since C(G) = C(n(G)).] In
particular y € V and does not depend on the generic G. Now for two mutually
V-generic Cohen reals 2/, 2" € V[G] it follows that

{a)} = By = {=},
which is absurd. O

The previous Cohen forcing argument can also be recast as a category argument.
Namely, define A(z,y) < C(z) = By. A computation as in ¢y above shows that
A is Borel, and clearly A is also the graph of a function f (note that f is a total
function, that is, dom(f) = w®). We claim that for each n there is an m such
that A, ,, := {z: f(z)(n) = m} is comeager in w*. This implies that f is constant
on a comeager set, which is clearly impossible. If the claim fails, then since each
Apn,m has the Baire property, we have that for some n, some m; # ms, and some
basic open sets N, N, in w* (determined by sequences p,q € w<“) that A, ,,, is
comeager on N, and A,, ,,, is comeager on N,. In countably many steps we may
now build z, y € w* with x extending p, y extending ¢, € Ay ;my, ¥ € Anmas
and C(z) = C(y). This is a contradiction as we must have f(x) = f(y) and yet
F(@)(n) = ma, £(5)(n) = ma.

A simpler version of the above argument gives the next result, which is that there
is no analytic set uniquely representing all non-empty countable sets, assuming
either every E% set has the Baire property or Eé absoluteness holds between V
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and the Cohen extensions V[G]. In the first case, this strengthens theorem 2 of
[1] (which says, in our terminology, that there is no analytic set which is uniquely
universal for the countable sets; however, Becker’s proof also shows the stronger
result).

Theorem 3.2. Assume either (1) every X3 set has the Baire property or (2) X3
absoluteness holds between V' and the Cohen extensions V[G]|. Then there is no
analytic set B C w* X w* which uniquely represents the non-empty countable sets.

Proof. Suppose first that the absoluteness hypothesis holds. Instead of considering
© we consider
Y=o A
where
Yo := Yu,v[Jz (B, =B, =C(z)) - u=v]
and
¢y = VaIy (C(z) = By).
Note that 1) is IT3 and 1); is IT}, so under our hypothesis they are all absolute be-
tween V and V[G], where G is generic for adding w many Cohen reals (equivalently,
one Cohen real). The same forcing argument as before yields a contradiction.

If the Baire property hypothesis holds, we proceed as in the category argument
above except now the relation A giving the graph of f is the conjunction of a E% and
a ITj set. By hypothesis such functions are Baire measurable, and the argument
finishes as before. (]

Thus in particular if MA4—CH holds or if IT{-determinacy holds, there is no
chance of finding unique representations for countable sets, let alone for K, sets or
F, sets.

Corollary 3.3. Let x be Cohen generic over L. Then in L[x] there is a 3} set
which is uniquely universal for the countable sets, but there is no (lightface) X1 set
which even uniquely represents the countable sets.

Proof. Theorem 3 of [1], relativized to x shows that in L[] there is a 31 set with
countable sections which uniquely represents the countable sets. On the other hand,
(lightface) X1 absoluteness holds between L[z] and L[z][y] where y is Cohen generic
over L[z]. [If the ¥} statement ¢ holds in L[z][y], then for some (p,q) € P x P,
(p,q) lFpxp ¢ where P = (w<“, <) is the Cohen partial order. By homogeneity,
0 IFpxp ¢. Since P = P x P, ) IFp ¢, and so ¢ holds in L[z].] Suppose in L[z]
that B C w® x w* were Y1 and uniquely represented the countable sets. Then
the statement 1 from the previous proof would be (lightface) II3, and so absolute
between L[z] and L[z][y]. The same proof as before then yields a contradiction. O

We can also state an analog of theorem 2.2 for the class of countable sets using
the equivalence relation E. on w* defined by zE.y iff C(x) = C(y).

Theorem 3.4. The following are equivalent.

(1) There is a Borel set B C w* X w* which uniquely represents the non-empty
countable subsets of w®.

(2) There is a 3 transversal for the equivalence relation E..

(3) There is an F, set B C w* X w* which uniquely represents the countable
subsets of w*.
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Proof. Suppose B C w” x w* uniquely represents the non-empty countable subsets
of w¥. Define R(z,y) « (B, = C(y)). Easily R € II7. Let R’ € TI; uniformize R.
Define S C w® by

S(y) < 3z R'(z,y).
S € X3 and easily is a transversal for E,.

Suppose now S C w¥ is a Eé transversal for E,. Let A C w® be H% and
f: A — S a continuous one-to-one map from A onto S. In fact, f can be taken
to be the decoding map f(x) = (z)o, so f is the restriction to A of a continuous
function f’: w* — w*. Let M C w* xw* be closed such that if z € A, then M, = ()

and if x ¢ A, then M, is uncountable. Define

B(z,y) < M(z,y) v In [(y = (f'(2))a)].
B is clearly F,. If z ¢ A, then B, is uncountable, and {B, |z € A} uniquely
represents the non-empty countable sets since f is one-to-one and f”A = S, which
is a transversal for E.. It is trivial to now modify B so that the empty set is also
uniquely represented.
The third statement trivially implies the first. (I

Problem 3.5. Is the existence of a Borel subset of R x R uniquely representing
the translates of Q equivalent to the existence of a Borel subset of R x R uniquely
representing the non-empty countable subsets of R?

We guess the answer is no. One reason for feeling this is that the Vitali equiv-
alence relation (which is bireducible to the equivalence relation Ey of eventual
equality on w*) is the minimal “non-smooth” countable Borel equivalence relation
(i.e., not having a Borel selector), whereas every countable Borel equivalence re-
lation embeds into E.. We refer the reader to [4] for further details and precise
statements of these results.

As a corollary to theorem 3.4 we have that if V' = L, then there is an F,
set which uniquely represents the countable sets. In particular, V = L implies
U(A], XY, Cepr)-

Theorem 3.6. Assume V = L. Then there is an F, set B C w* x w* such that
all countable sets are uniquely represented by B.

Proof. Let < be a Al-good wellordering of w* (see section 5A of [13]). Let
R(z) & vy <z (C(y) # C(x)).
Then R is a X} selector for E.. O

A similar argument can show that from V' = L there exists a Borel set with F,
sections and uniquely representing all K, sets, that is, U (A%, 23, K,). To consider
this problem first recall a standard coding of K, subsets of w*. To start with,
all non-empty compact subsets of w* can be coded by non-empty, pruned, finite
splitting trees. These trees form a Borel subset of P(w<“) and thus form a standard
Borel space. It follows that there is a Borel one-to-one correspondence x — T, from
w“ onto the space of all non-empty, pruned, finite-splitting trees on w. Note that
the map x +— [T}] is a Borel one-to-one correspondence from w® onto the space of all
non-empty compact subsets of w*. Now to each x € w¥ we associate a non-empty
K, set
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Theorem 3.7. Assume V = L. Then there is a Borel set B C w¥ x w* such that
all sections of B are F, and all non-empty K, sets are uniquely represented by B.

Proof. Again let < be a good Al wellordering of the reals. Let
R(z) & vy < 2 (K(y) # K ().
Then R is ¥3. Using I} uniformization one can find P C w* which is I} such that
R(z) & 3w P((z,w)) & 3w P({z,w)).

Let S be the complement of P and let F' C w* x w* be closed such that

S(u) & Fv F(u,v).
Consider F' C w* x w* defined by

F'(u,v) & F(u, (v)o).

It is easy to see that F’ is closed and

S(u) < v F'(u,v).

Moreover, if S(u) holds, then the set {v| F'(u,v)} contains a homeomorphic copy
of w* as a closed subset; hence it is not K.
We now define the set B by

B(u,v) < F'(u,v) or letting u = (z,w), v € [T}, ] for some n € w.

Then B is obviously Borel and has F, sections. If x is the <-least real coding
K (x) and w is the unique witness for P((x,w)), then B, .,y = K(x). Otherwise, if
P((z,w)) fails, then F{, is non-empty and therefore not K, by our construction;

thus B, ) is not K,. O
In view of the above theorems one can ask the following question:

Question 3.8. Does there exist a Borel set B C w* x w* with all sections K, and
uniquely representing all countable sets?

We will answer this question in the next section.

4. REPRESENTATION OF SCATTERED SETS AND K, SETS

Many descriptive set theoretic results about countable sets can be generalized
to K,’s. It is a common rule of thumb that K, sets behave more like countable
sets than general F,, sets. One might guess that the answer to question 3.8 is no in
ZFC based on this rule of thumb. However, it is our main result here to show that
the answer is consistently yes.

Theorem 4.1. Assume V = L. Then there is a Borel set B C X x'Y with all
sections K, which uniquely represents the countable subsets of Y.

In other words, we show that U (A%, Ky, Cetp1) is consistent. Note that by re-
mark 1.6 we may assume that X =Y = w®. The rest of this section is devoted to
proving theorem 4.1. We begin with some results about small countable sets, the
scattered sets.

Definition 4.2. A countable subset C of a Polish space is large if there is a non-
empty C* C C such that C* is dense in itself. Otherwise C' is scattered.
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Scattered sets can be characterized by considering the classical Cantor-Bendixson
derivatives. We recall its definition below. Let C be a subset of a Polish space.
Then the (Cantor-Bendizson) derivative of C'is the set C’ of all accumulation points
of C that are in C. For a < wy, the a-th (Cantor-Bendizson) derivative of C, Cy,
is obtained by iterating the derivative operation a times, i.e.,

Cy = C,
OaJrl = (Oa)/a
Cx = Nacr Ca, for limit A

The (Cantor-Bendizson) rank of C is the least « such that C,, = Cp41. Of course,
the rank of C is a countable ordinal. We recall the following classical result (cf.
theorem 4 of §6 of [9]).

Proposition 4.3. Let X be a Polish space. The following are equivalent for C C X :

(i) C is scattered;
(ii) for some a < wy, Cy, = 0;
(iii) C 4s a countable Gs.

It is worth noting that there is no analytic set which is universal for all scattered
sets in an uncountable Polish space Y. In fact, no analytic set can be universal for
any family of scattered sets with unbounded Cantor-Bendixson index.

Theorem 4.4 ([8], [11], [3]). Let X and Y be Polish spaces. If A C X xY is
analytic and all sections of A are scattered, then there is a countable ordinal a such
that the Cantor-Bendixzson orders of all sections of A are bounded by «.

The argument given in [3] actually holds for a general class of inductive operators.
In view of proposition 4.3 we may rephrase theorem 4.4 as saying there is no analytic
set which is universal for the class of countable A9 sets. We will show in Section 5
that there is no analytic set universal for the A} sets.

In contrast it is provable in ZFC that the scattered sets or small countable sets
can be uniquely represented. In the following theorem we show a stronger result.

Theorem 4.5. There is a Borel set B C w¥ x w* such that

(a) all sections of B are K,
(b) all non-empty scattered sets are uniquely represented, and
(c) every section of B is either scattered or else uncountable.

Proof. First fix an enumeration {N;};c., of all basic open sets of w*.
For each w € 2% define a binary relation <, on a subset of w by

m <ypn < w(lm,n)) =1.
The domain of <,, is the set
dom(<y) ={m e wl|In (w({m,n)) =1 or w((n,m)) =1)}.

Let L be the set of all w € 2% such that <,, is a linear order with a least element
and that each n € dom(<,,) has an immediate successor unless it is <,-largest. If
w € L and n € dom(<,,) we denote by n, the immediate successor of n in <, if n
is not <,-largest. If there is no danger of confusion we will omit the subscript and
simply write n*. We also write

m<,yns&Sm<ynorm=n.
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Definition 4.6. We call a real z € w¥ adequate if z = (w, k, x), where w € 2%,
k € w, x € w¥, and the following conditions are satisfied:

(a) we L;
(b) if n & dom(<y), then z, = 0 (the constant 0 element of w*);
(c) if there is no <,-largest element, then k = 0;
(d) if n € dom(<y) is <y-largest and k > 0, then (z,,)m = 0 for all m > k;
(e) letting, for w € L, k € w and n € dom(<,,),

SE ={(xp)m | n <uw p and if p is <,,-largest and k > 0, then m < k}
and
D? = S2\ S7., if n is not largest, and S? otherwise,

we have that:

(el) for each n € dom(<,,), DZ is the set of all isolated points of SZ;

(€2) if (xn)m, (zn); € DZ and m < I, then i,, < 4;, where i,, and 4; are
respectively the smallest indices such that

(e3) for each n € dom(<,,) the smallest index i such that {(x,)o} = N;NSZ
is equal to n.
(ed) for n <, m in dom(<,,), every real in S7, is a limit point of D7.

If z = (w, k, x) is adequate let S, = S? where n is the <,-least element.
Let A be the set of all adequate reals.

Remark 4.7. For adequate z = (w, k, z), x attempts to code the Cantor-Bendixson
derivation sequence of the set S, of reals coded by x. For n € dom(<,,), S is a
candidate for the o™ Cantor-Bendixson derivative, where a is the rank of n in <,,,
and D7 is a candidate for the reals removed at stage o. w attempts to code the
wellorder which is canonically determined from this sequence. (e2) says that the
reals in D7, are coded by z,, in the order corresponding to the basic open sets that
isolate them in SZ. (e3) says that the order <, is the one canonically obtained
from this derivation. (e4) says that every point in SZ, is a limit point of the set DZ
for n <,, m (not just a limit of S?).

Lemma 4.8. A is Borel.

Proof. By straightforward computations one can verify that each condition in the
definition of adequacy is Borel. O

Lemma 4.9. If C is scattered, then there is a unique adequate real z such that
C = S.. Furthermore if z = (w, k, ), then <., is a wellorder.

Proof. Let C' be small or scattered, « be its Cantor-Bendixson rank and {C3}s<q
be the iterated Cantor-Bendixson derivatives of C'. For each 3 < o also let Dg =
C3\ Cpg41. Then Dg is the set of all isolated points of Cz. For each element y € Dg
let i, be the smallest index such that N;, N Cs = {y}. Note that y ~— i, is a
one-to-one function from C' into w. [Suppose y; # vy are in C and iy, = iy, = 1.
Say y1 € Dg,, y2 € Dg, with 81 < 8o. Then {y1} = N;NCp, 2 N; N Cs, = {92},
a contradiction.] Thus Dg can be canonically enumerated according to the natural
order of the set {i, |y € Dg}. When 3+ 1 < « the set Dy is necessarily infinite;
in this case we denote the canonical enumeration of Dg by {72 },,<,. In case «
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is a successor ordinal and 8 + 1 = «a the set Dg might be finite but is certainly
nonempty. Thus the canonical enumeration of Dg takes the form of either {x2 },, .,
or {z },,<x for some k > 0.

We can now define an adequate real z coding the set C. Let dom(<,,) be the
set of all ixﬁ for B < «, and define <,, by

ixg <w ixg S [0 <.

Then <,, is a wellorder with order type «. This defines the first component of z. If
o = 341 and Dg is finite, define k to be the cardinality of Dg. Otherwise let k = 0.
Finally the correct definition of x is obvious from the descriptions in the preceding
paragraph and from the requirements of (b) and (d) in the definition of adequacy.
Let z = (w, k, z). Since C is scattered, it is easy to check that for 8 < v < «, every
real in C is a limit point of Dg, and so (e4) will be satisfied. It is easy to see that
Cc=35,.

To see uniqueness, suppose that 2’ = (w', k', 2’) is adequate and S, = C. We
first show that <, is a wellordering. Suppose not, and let ng >, ny >4 - -
be an infinite decreasing chain. We claim that any real of the form (x,,),, lies
in C, for all countable ordinals «, a contradiction to C' being scattered. Suppose
this claim holds for a. Since n; >, n;y1, (e4) gives that every real of the form
(Zn;)m 1s a limit of reals in C,, and thus in Cy41. Limit stages are trivial, and
this shows the claim. So, <, is a wellordering. Using (el) it is straightforward to
prove by induction on 8 = |n|< ,, for n € dom(<yr), that {(2],)m }mew = Dg. The
definition of adequate, in particular (e2) and (e3), now shows that w’, k', and 2’
can be recovered from the derivation sequence {Dg}s<q, and thus 2’ = z. O

Lemma 4.10. If z = (w,k,x) is adequate and <, is a wellorder, then S, is
scattered.

Proof. If <,, is a wellorder and z = (w, k, x) is adequate, then as in the last para-
graph of the proof of the previous lemma, z codes the iterated Cantor-Bendixson
derivatives of the set S, which terminates with the empty set. Therefore S, is
small. 0

Lemma 4.11. If z = (w,k,z) is adequate and S, is not small, then <, is ill-
founded.

Proof. The proof is immediate from the previous lemma. O
We will also need the following lemma on uniform Borel cofinalities of elements
n <.
Lemma 4.12. There is a Borel function
Cof : {(w,n,j) € L x w?|n € dom(<,)} — w

such that
(a) forweL, nedom(<y) and j € w, Cof(w,n, j) € dom(<,) and Cof(w,n, j)
<w N unless n is the <, -least element;
(b) if w € L and n € dom(<y) has an immediate predecessor in <., then
Cof(w,n, j)f, =n for all j € w;
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(¢) ifwe L, n €dom(<y) is not <-least and n does not have an immediate
predecessor in <,,, then
(c1) if j < 7', then Cof(w,n, j) <4 Cof(w,n,j’), and
(c2) for any q € dom(<,) with ¢ <, n there is a j such that ¢ <4
Cof(w, n, 7).

Proof. Clause (b) gives the definition of Cof in a case characterized by a Borel
condition. Thus we focus on (c) and assume the hypotheses hold. We define
Cof by induction on j. Let Cof(w,n,0) be the smallest element py € dom(<,)
such that pg <, n. Such a py exists since n is not <,-least. In general suppose
p;j = Cof(w,n, j) has been defined for j € w. Define p;y1 = Cof(w,n,j + 1) to be
the smallest element of dom(<,,) such that p; <, pj+1 and pj41 <, n. Such a
Pj+1 exists since n does not have an immediate predecessor in <,,. This finishes
our definition of the function Cof.

Apparently the function is Borel and satisfies clauses (a), (b) and (c1). To see
that (c2) holds, let ¢ <,, n. Note that the sequence {p;},e. is strictly increasing in
the usual order of natural numbers. Let ¢ be maximal such that p; < q. If p; >, q,
we are done. Otherwise, by construction p;11 = g, so in either case p;11 > ¢. O

We next define a Borel set By C A x w* with K, sections. For each n, m € w
we define a Borel set By C A x w* with compact sections, and then we set
By =U,mBy™ Fix z € A, say z = (w,k, x), and fix n, m € w. We inductively
define for s € 2<% sequences ts € w<* with the following properties:

(1) if 1 C S92, then ¢t; C to;

(2) for any s, if t,~g and t,~; are incompatible, then ts =t ,~g Nts~1;

(3) for any s, if t,~o and t,~; are compatible, then the set {ts|s C s} is
linearly ordered by C.

The ts; will thus define a finite splitting subtree T, of w<* (namely, t € T, iff ¢ is
an initial segment of some t5), and (By™), will be the compact set of branches
[T.] C w* through this tree. As we define the t; we will also define reals us € S,
and integers ng. We will have that ¢, is an initial segment of ug, and ug~g; = us
for all j, where 07 is the 0 sequence of length j.

Roughly speaking, T, will be the tree of attempts to find an infinite decreasing
chain in <, starting from n. The tree T, will have the property that if n is in the
illfounded part of <,,, then T, will define an uncountable set, and if n is in the
wellfounded part of <., then [T,] C S.,.

To begin, if n ¢ dom(<,,) or n is maximal in <,, and m > k, then we stop the
construction and set (B;""™), = 0. Otherwise, let up = (21,)m, tg = 0, and ng = n.
For every j, let ug; = ugp.

If ng is <, -least, then make arbitrary definitions of {ts}sc2<~ to maintain that
each t; C ug. Otherwise, consider n’ = Cof(w, ng,0). By our construction, n’ <,
ng. From (e4), uy is an accumulation point of the set DZ,. Hence there exists a
smallest m’ such that (z,),,/ has a nonempty intersection with ug. Recall u( ), = ug
and let u(y = (Tn/)m. Let [y > 0 be the largest such that uy [ lp = uqy [ lp.
Define L0y = w(o) [ (Ip+1) and Ly = u) [ (Ip+1). Let Ny =N, N1y = n’. For
any finite sequence 0 consisting of all 0’s, let Uigy~g = U(1)-

Proceeding by induction on j, suppose we have defined ty;~, C uy~o = up,
toi~1 € Ui~ I is maximal so that ¢y~ [ [ = ¢y~ [ {;, and ty;~, ty;~; have
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length I; + 1. We now make the inductive definitions. Consider n’ = Cof(w, ng, j)
and note that n’ <, ny and that uy is an accumulation point of DZ,. Thus there is
a smallest m’ such that ¢y;~, C (2, )m/, and hence the intersection of (2,)n, with
up has length > I;. Let [;41 > [; be the largest such that (z,/)m [ Lj+1 = ug [ Lj41.
Let wyjt1~; = (n/)m/. We have already defined wy;41~y = ug. Let ty01~o = ug |
(L1 + 1) and tgy41~9 = ugjer~q | (Li41 +1). Let Ngi+1~g) = My Nygi+1~1y = n'.

For the general inductive definition of {ts}sca<w, let s be a sequence ending with
a 1 and suppose t; C us € S, are already defined. If us = (z,,_)m. and ng is <y-
least, then make arbitrary definitions of {¢s }scs to maintain that each ¢ty C ws.
Otherwise, for every j we define t;~gj~q, ts~0i~1, and ug~gi~1 as above but starting
with ¢, instead of ¢y, and using ns in place of n.

This finishes the definition of the sequence {ts}sc2<w. The construction obviously
guarantees clauses (1)-(3) of the desired properties.

Lemma 4.13. If C is scattered, then for the unique z € A with C = S, we have
that (Bo)z g C.

Proof. Let z = (w, k, z). From the construction of By it is clear that every y € (By).
corresponds to a descending sequence in the order <,,. Namely, if y is the limit of
ts for s an initial segment of u € 2%, then for every n such that u(n) = 1 we have
that 1y (n41) <w Nupe and if u(n) = 0, then 1y 41y = Nupp. Now if C' is small,
then <., is a wellorder and every descending sequence in <,, is finite, and thus u
is eventually equal to 0. It follows that each y € (Byp), is an element of S,; thus
(By). CC=85,. |

Lemma 4.14. If z = (w, k,x) € A and <,, is illfounded, then (By). is uncountable.

Proof. Start with an n, m, with n in the illfounded part of <,. By cofinality
Cof(w, n, 7) is in the illfounded part of <,, for some j > 0. By our construction of
By, tyi~o and ty;~; are incompatible and n;~, is also in the illfounded part of <,
(recall ng is the integer such that us = (z,)m, for some mg). More generally, for
each node s € 2<% so that n, is in the illfounded part of <,,, the same argument
shows that for some s’ D s, ty~g and t,~; are incompatible. Thus the tree T,
whose set of branches constitute the set (By™™), contains a perfect subtree, and
therefore the set (Bp), contains a perfect subset. O

Finally we define our Borel set B C w* x w* with the required properties of the
theorem. For (z,y) € w* x w* put (z,y) € B iff

(z¢Aand Vi y(i) <2)or (z € Aand y € S,) or (z,y) € By.

It is easy to see that B is Borel and has K, sections. If C' is a small countable set,
then for the unique z € A with C' = S, we have that B, = C since (By). C C.
If = ¢ A, then B, is compact but perfect. If z = (w,k,x) € A but S, is not
small, then <, is illfounded and (Bjy), is uncountable, and therefore B, is again
uncountable. O

In a parallel development we show that large countable sets can also be uniquely
represented, assuming V' = L. The proof is a combination of the basic techniques
we have been using in the proofs so far.
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Theorem 4.15. Assume V = L. Then there is a Borel set B C w¥ x w* such that

(a) all sections of B are K,
(b) all large countable sets are uniquely represented, and
(¢c) every section of B is either a large countable set or else uncountable.

Proof. We will be overloading some notation from previous definitions. Since they
will be used only in this proof there is no danger of confusion. First note that the
set Tp of all pruned, perfect trees on w is a Borel subset of 2¢°“_ Thus we can fix
a Borel bijection z +— T, from w* onto this set of trees. Similarly there is a Borel
bijection z +— S, from w* onto the set Tr of all trees on w.

Let < be a good A} wellordering of the reals and let

R(z,z) < Vi’ <z(C(z')# C(x)) A (C(x)N[T] is dense in [T3])
AVzZ' < z (C(x) N [T,/] is not dense in [T/]).

Then R is ¥3. By II} uniformization as before there is P C w* which is II} such
that

R(z,z) < Jw P((z,z,w)) & Jlw P({(z,z,w)).

Since the set WF of all wellfounded trees on w is IT{-complete, there is a continuous
reduction f from P to WF. It follows that there is a Borel function u +— S}, = S¢(,,)
from w* into Tr such that P(u) iff S is wellfounded.

In the remaining part of the proof we will define a Borel set By C w¥ x w* with
K, sections. The construction will ensure that, if P(u) and u = (x, z,w), then
(Bo)u € C(z), and if ~P(u), then (By), is uncountable. Eventually we will define
the required B by

(u,y) € B <= (u,y) € By V (u= (z,z,w) Ay € C(x)).

Then B is Borel and all sections of B are K,,. If C'is a large countable set, then there
is a unique u = (x, z,w) € P such that C' = C(z). In this case S} is wellfounded,
and this will guarantee that (By), C C(z). It follows that C = B,. If u € P,
then S7 is illfounded, and this will guarantee (By), is uncountable and therefore
B, is uncountable. If u; = (z1,21,w1) and ug = (3, 22, ws) are both in P and
C(z1) = C(x2), then indeed u; = us. To put all these together, we get that each
large countable set is uniquely represented by B and each countable section of B
is large.

Thus it remains to define the Borel set By. For this we work in a slightly more
general context and prove the following abstract lemma.

Lemma 4.16. There is a Borel function
g:{(S,2,T) € Tr xw* x Tp| C(x) C [T] and is dense in [T]} — Tr

such that, for any (S,z,T) € dom(g),

(1) g(S,z,T) is finite-splitting,
(2) if S is wellfounded, then [¢(S,z,T)] C C(x), and
(3) if S is illfounded, then g(S,x,T) contains a perfect subtree.

Proof. Suppose S, x and T are given. It is easy to modify S so that if it is not
wellfounded, then it contains a perfect subtree; for example, replace S by the tree
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8" = {(no,n1,...,nk): (no,n2,...,Na(k/2)) € S}. Also we assume without loss of
generality that S has the following property: for any 7 € w<¢ if there is n € w
such that 7°n € S, then for all n € w we have 7™n € S. For example, replace S
by S’ = {(ng,n1,...,nk): (no,...,nk—1) € S}. These operations are Borel and do
not affect the wellfoundedness of S.

Fix a continuous function 7 — s, from S into 2<% given by: if 7 = (ng,n1, ...,
ng), then

Sp=0"7170™M 17 70

where 0 denotes the sequence of 4 many 0’s. Let S* be the subtree of 2<“ generated
by the set {s, |7 € S}.

We next define, by induction on s € 2<%, the following: us; € C(z), ls € w,
ts € T, and eventually let g(S,z,T) be generated by {ts}sca<w. In fact, we let
ts = ug [ ls, so it remains to define ug, l5. To begin the definition, let uy: = zq for
all i € w. In particular ug = zo. If (0) ¢ S*, then make arbitrary definitions of all ¢,
so that t; C ug and t5 C ty when s C s’. Then g(S,z,T) is trivially finite-splitting,
S is trivially wellfounded and [g(S,z,T)] = {zo} C C(x). If (0) € S*, then let
m > 0 be the smallest natural number such that for some I > 0, ., [ | = z¢ [ L.
Such an m can be found since C(x) is dense in [T]. Then let u~1y = , and Iy
be the largest such that w~1y [ lp = u(oy [ lp.

To continue we inductively define lp: and wugi~; for all . Note that if (0) € S*,
then 0° € S* for all i. The case i = 0 has been done above. In general suppose
lgi and ugi~; have been defined. Let M = {x,, | x;n, = ugi~1 for some j < i}. Let
m ¢ M be the smallest natural number such that for some [ > lyi, xp, [l = zqi | L.
Define wyit1~; = %, and let lpi+1 be the largest such that wgi+2 [ lpi+r = ugizi~q [
l0i+1 .

Now the general inductive definition for us and [5 can be made in the same fashion
as above, with s replacing (). More precisely, for s ending with 1, let ug~gi = us.
If s70 ¢ S*, then make arbitrary definitions of ¢ty for s C s’ so that ty C us and
ts C tgr when 8 C s”. If s70 € S* is defined, then inductively define l;~g: and
Ug~gi~q for all 7 in the same fashion as we defined ly: and uy:~,. This finishes the
definition of the sequences ug, s and ts.

Since ts C ty when s C ¢, the tree ¢g(S,z,T) generated by {ts}sca<w is well
defined. It is tedious but straightforward to see that g is a Borel function. Also it
is clear that g(S,z,T) is finite-splitting, since each ¢, has at most two immediate
descendants, namely, t,~q and t,~;. It remains to verify clauses (2) and (3) of the
lemma.

To verify (2), suppose S is wellfounded. In this case the only infinite branches
of §* are the sequences which are eventually 0’s. Thus each infinite branch of S*
corresponds to some s € 2<% where ty C u, for all s C s’. It follows from our
construction that [¢(S,z,T)] C {us|s € 2=} C C,.

To verify (3), suppose S is illfounded. By our hypothesis S contains a perfect
subtree. For notational simplicity assume that S itself is perfect. We claim that
the set {ts | s € S*} generates a perfect subtree of g(S,z,T). To see this, let s € S*.
Then for some i # j, we have that both s°0°"1 € S* and 50’1 € S*. By our
construction, tg~gi+1~; and t4~qgij+1~; are incompatible. This finishes the proof of
the lemma. O
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Now to complete the proof of the theorem, simply let
(u,y) € By <= y € [g(Su, 2", T2)],

where u = (x, z,w) and = — x* is a Borel function such that z* = z if C(z) N [1}]
is dense in T, and otherwise C(x*) C [T}] is dense. Then By has all the desired
properties. ([l

Note that for the Borel set just constructed each section is in fact a countable
union of sets, all but one are singletons and the remaining one is compact. A techni-
cal curiosity is whether one can do the same for the Borel set uniquely representing
small countable sets. We do not know the answer to this question.

Putting the Borel sets constructed in the previous two theorems side by side, we
obtain a Borel set with K, sections which uniquely represents all countable sets.
That is, let By be as in theorem 4.5 and Bj as in theorem 4.15. Then let

B(z,y) < (2(0) > 1Ay € 29) V (2(0) = 0A Bo(Z,)) V (2(0) = 1V Bi(Z,y)),
where Z(n) = z(n 4+ 1). This completes the proof of theorem 4.1.

5. UNIVERSAL SETS FOR A SETS

As we mentioned before, results of [8], [11] show that there is no analytic set
which is universal for the countable AY sets (which are the same as the scattered
sets by proposition 4.3). As for the Ag sets in general, we show that there is an
analytic set, but not a Borel set, which is universal for the Ag sets. In other words,
R(A}, A, AY) fails but R(X], A, AJ) holds. We then generalize this to higher
levels of the Borel hierarchy.

We first show the easy result that R(31, AY, AJ) holds in the following propo-
sition.

Proposition 5.1. There is an analytic set in X x Y with all sections AY and which
represents all the Ag subsets of Y.

Proof. By remark 1.6 we may assume X = w*“. As a special instance of our coding
of Borel sets, we view every x € w®“ as coding a tree T, of height 2 which then
determines a X9 set D(z) C Y. Define then

A(z,y) < 3z [z € (D(xo) N D(x1)) V 2 ¢ (D(x0) UD(x1))] V (y € D(x0)).
This easily works. O

We say that x € w*” is a Ag code (with respect to the Polish space V) if, in the
above notation, D(z¢) = Y \ D(z1). In this case, z codes the A set D(xg). The
previous proof was basically just the observation that the set of Ag codes is a H}
set.

We next show the negative result. We first review some facts about AY sets that
we need. If BC Y is Ag and F' C Y is closed, then it cannot be the case that
both B and Y \ B are dense in F (the intersection of two dense Gy4’s in the Polish
space F' must be dense). Hence if we let U = U(F, B) be the union of all basic
open sets N; in Y such that N; N F C B and V = V(F, B) be the union of all basic
open sets N; in Y such that N;NF C Y \ B, then FN(UUV) # (. Define the
resolvable derivative by Dp(F) = F\ (U UYV). So, for closed F', Dp(F) C F and
Dp(F) is also closed. Starting with D% = F and iterating this derivative (taking
intersections at limits as usual), we define the o' resolvable derivative D%. The
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resolvable derivative sequence must stop at a countable ordinal and for B € Ag
we have shown this must stop at the empty set. We call the least @ < w; so that
D% = 0 the resolvable rank of B.

We can view the passage from D% to D%H in two steps: first remove U (D%, B),
and then remove V (D%, B). This defines a monotonically decreasing sequence of
closed subsets Fj3 of Y of length 2 - ap, with Fy =Y and with empty intersection,
namely, Fy.3 = D, Fa511 = D%\ U(D%, B). Clearly y € B iff the least ordinal
/3 such that y ¢ Fs is odd. Recall that a set B is said to be a-II} if there is an a-
length monotonically decreasing sequence of closed sets Fjg with empty intersection
such that y € B iff the least § such that y ¢ Fp is odd. We have thus proved the
classical result of Hausdorff that B € AY iff B is a-IT{ for some a < w;. The reader
can consult §37 of [9] for a more detailed discussion.

In general, given a decreasing sequence of subsets {Ag}s<q of a Polish space Y
with empty intersection, let D({As}s<q) denote the corresponding difference set;
that is, y € D({Ag}p<q) iff the least 5 such that y ¢ Ag is odd.

By an operator M on a Polish space X we mean a function M: P(X) — P(X).
We say M is monotone if whenever A C B, then M(A) C M(B). We say M is
a TI7 operator if the relation z € M(A) is IIj(z, A), where the notion of being
II}(x, A) is defined in a natural way (the precise definition is given in [3]). Any
monotone operator M gives rise to an increasing sequence of subsets of X defined
by E® = 0, E*T' = M(E®), and E* = {Js_,, EP for the limit o. The closure
ordinal of M is the least an¢ such that F*M = E*M+1 and the least fixed point
is E(M) := E®*_ A main result of [3] says that if M is a II} operator on a Polish
space, then the least fixed point E(M) is Hi, the closure ordinal a4 satisfies
am < wi, and the following boundedness principle holds: if A € E(M) is ], then
there is an o < wy such that A C E*(M).

Theorem 5.2. There is no Borel set B C X x Y with all sections Ag which
represents all the Ag subsets of Y.

Proof. Suppose B C X xY is a Borel set with all sections Ag. We show that there
is a bound «a < w; on the resolvable ranks of the sections of B. This shows that B
cannot be universal for the A} sets as the resolvable ranks of AJ sets are unbounded
in w;. We can show this boundedness claim either by a direct computation along
the lines of [8] or by appealing to the theory of II{ monotone operators as presented
in [3] and reviewed above. For variety, we take the second approach.

Consider the operator M on the Polish space X x Y defined by

(z,y) € M(A) &(z,y) € AVIiew {(y € N)A
(VzeY [(z€ N; A (z,2) ¢ A) — (z,2) € B]
VVzeY [(z€ N;A(z,2) ¢ A) — (z,2) ¢ B])}.

By inspection M is a H% operator, using the fact that B is Borel, and it is easily
monotone. M acts on each z-section of the product space X x Y separately, and
for every x € X, the restricted operator M, builds up the sets EY =Y \ D% where
D2 is the o resolvable derivative of the section B, (so all sections of any E are
open in Y). The closure ordinal of M, is just the resolvable rank of B,. Since all
sections of B are Ag, the least fixed point of M is the entire space X x Y. Since
this is a Borel set, the boundedness principle for H} monotone operators mentioned
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above implies that the closure ordinal axq of M is countable. Clearly axs bounds
the resolvable ranks of all the sections of B. O

The technique of enlarging the Polish topology to make certain Borel sets clopen
has many applications; see, for example, [7]. One application is to extend the
difference hierarchy result mentioned above to higher levels. This gives the following
well-known result, whose proof we sketch since we need it.

Lemma 5.3. Let o < wy. Then a set A C Y s AgH iff it is in the difference

hierarchy over TI2, that is, there is a decreasing sequence {Ag}s<, C IIO (for some
countable ordinal v) with A =D({As}s<~)-

Proof. Let A € A2, ;. Write A = |J, An, and B := Y \ A = |J, By, where
A,, B, € Hg. Let 7 denote the original Polish topology on Y. Let 7/ D 7
be the canonical larger Polish topology making all the A,, B, closed (see [7]).
Thus A is AJ in 7/. Let {Az}3<, be a decreasing sequence of 7/ closed sets with
A =D({Ap}p<,). Each closed set in 7/, however, is II", in 7, so we are done. ~[J

The point we need to observe is that from Borel codes for A and Y \ A we can
effectively describe the basic open sets in 7.

If ACY is A2, the resolvable rank of A will denote the least o < wy such
that there is a decreasing sequence {Ag}s<o C o with A = D({Ag}s<a). The
resolvable ranks of the A” 11 sets are unbounded in w; by the same arguments as
for AJ.

We now combine and generalize proposition 5.1 and theorem 5.2 into the follow-
ing.

Theorem 5.4. Let a < wyi. Then there is an analytic, but not a Borel, set B C
X xY which is universal for the AZH sets.

Proof. The existence of an analytic B follows just as in proposition 5.1, now using
a coding x — B(x) of Agﬂ sets and the fact that the relation B(y) =Y \ B(x) is
still II3.

Suppose towards a contradiction that there were a Borel B C X x Y universal
for the A2, subsets of Y. Again, we employ the coding w — D(w) (w € w*) of
the A2, subsets of Y obtained as a specialization of the Borel coding discussed
in the introduction, using now just trees of height « + 1. We call w € w¥ a Ag 11
code for D(w).

First note that there is a Borel function f: X — w® such that for all x € X
f(z)is a Agﬂ code for the set B, C Y. To see this, first suppose without loss
of generality that B € Al. By Louveau’s theorem [10], for every z € X there is a
Al(z) real z € w* which is a A2 code for B,. Consider the relation

R(z,w) & (w € Al(z)) A (wis a A, code) A (D(w) = B,).
R is I and so has a IT] uniformization R’. Then R’ is actually Borel since
~R/(@,w) & 3z € Al(@) [R (,2) A (= £ w)],

which is also H% by bounded quantification. Clearly R’ is then the graph of a Borel
function f.

From z € X we can in a uniformly Borel manner compute f(z) and then
{N?}icw, which is a base for the topology 7, := the canonical enlargement of the
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given Polish topology 7 on Y which makes B, a Ag set (as in lemma 5.3). Note
that 7, is canonically defined from the Borel code f(z) for B,. We now consider
the operator M on X x Y defined exactly as in the proof of theorem 5.2 except
we replace the N; there with NF. The operator M is still a TI} operator since
the relation A(z,z,4) <> z € NF is Borel. As in theorem 5.2 we get an oy < wi
which bounds the resolvable ranks of all the B, as Ag sets in the 7, topology, and
hence bounds their resolvable ranks as A’ 41 sets. This is a contradiction since the
resolvable ranks of the A2 41 sets are unbounded in w;. O
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