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QUANTUM SYMMETRIC Lp DERIVATIVES

J. MARSHALL ASH AND STEFAN CATOIU

Abstract. For 1 ≤ p ≤ ∞, a one-parameter family of symmetric quantum
derivatives is defined for each order of differentiation as are two families of
Riemann symmetric quantum derivatives. For 1 ≤ p ≤ ∞, symmetrization
holds, that is, whenever the Lp kth Peano derivative exists at a point, all of
these derivatives of order k also exist at that point. The main result, desym-
metrization, is that conversely, for 1 ≤ p ≤ ∞, each Lp symmetric quantum
derivative is a.e. equivalent to the Lp Peano derivative of the same order. For
k = 1 and 2, each kth Lp symmetric quantum derivative coincides with both
corresponding kth Lp Riemann symmetric quantum derivatives, so, in partic-
ular, for k = 1 and 2, both kth Lp Riemann symmetric quantum derivatives

are a.e. equivalent to the Lp Peano derivative.

1. Introduction

A real-valued function f has a Peano derivative of order k at x ∈ R, i.e., f ∈
tk (x), if there are constants f0 (x) , f1 (x) , . . . , fk (x) such that

f (x + h) = f0 (x) + f1 (x)h + · · · + fk (x)
hk

k!
+ o
(
hk
)

as h → 0.

In particular, call fk (x) the kth Peano derivative of f at x. Thus f ∈ tk (x)
means that f is well approximated near x by a kth degree polynomial. This is a
very natural generalization of the geometric interpretation of the first derivative’s
existence at x meaning that the function is well approximated by a line near x. In
fact, for a function continuous at x (which guarantees that f0 (x) = f (x)), having
an ordinary derivative at x and belonging to t1 (x) are equivalent conditions. For
higher values of k, the definitions are different. For example,

f2 (x) = lim
h→0

f (x + h) − f0 (x) − f1 (x) h

h2/2
.

This difference is much more than a formality. Although Peano first proved a
strong version of Taylor’s theorem which asserts that the existence of the ordinary
kth derivative of f at x implies that f ∈ tk (x), the converse implication is far from
true: When k ≥ 2, there is a set E of positive Lebesgue measure and a function
having k Peano derivatives everywhere on E but not having k ordinary derivatives
at any point of E.
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It is our feeling that the Peano derivative is “more natural” than the corre-
sponding ordinary derivative. As evidence for this claim we will look at a large
number of generalized derivatives and find that most have already been shown to
be a.e. equivalent to the corresponding Peano derivative. In fact we conjecture
(and expect) that ultimately this a.e. equivalence will be proven to hold for all
of our generalized derivatives. To be more explicit about this, every generalized
derivative we will consider will be stronger than Peano differentiation in the sense
that the existence of the kth Peano derivative at a point will imply the existence of
every kth generalized derivative at that point. Conversely, a generalized derivative
will be said to be a.e. equivalent to the kth Peano derivative if for every function,
the set where the function is differentiable in that sense but is not Peano differen-
tiable of the same order has measure zero. (Measure will always mean Lebesgue
measure.)

The remarks above all refer to the ordinary or L∞ derivatives. There is an
analogous scheme for Lp derivatives. (The index p will always be a real parameter
satisfying 1 ≤ p < ∞.) For example, f has k Peano derivatives in Lp at x, f ∈ tpk (x),
if there are constants f0p (x) , f1p (x) , . . . , fkp (x) so that(

1
h

∫ h

0

∣∣∣∣f (x + t) −
{

f0p (x) + f1p (x) t + · · · + fkp (x)
tk

k!

}∣∣∣∣p dt

)1/p

= o
(
hk
)

as h → 0. Lp Peano differentiation is strictly stronger than L∞ Peano differenti-
ation. It is clear that L∞ Peano differentiation implies Lp Peano differentiation
pointwise. However, there is a set E of positive Lebesgue measure and a function
having k Lp Peano derivatives on E but not having even one L∞ Peano derivative
at any point of E.[A2]

We will consider four basic types of generalized derivatives:
(1) additive L∞ derivatives such as the second Riemann derivative

R2f (x) = lim
h→0

f (x + 2h) − 2f (x + h) + f (x)
h2

,

(2) additive Lp derivatives such as the second Riemann Lp derivative R2pf (x)
which satisfies(
1
h

∫ h

0

∣∣f (x + 2t) − 2f (x + t) + f (x) − R2pf (x) t2
∣∣p dt

)1/p

= o
(
h2
)

as h → 0,
(3) quantum L∞ derivatives such as the second quantum Riemann derivative

(1.1) QR2f (x) = lim
q→1

f
(
q2x
)
− (1 + q) f (qx) + qf (x)

(q − 1)2 x2
,

and
(4) quantum Lp derivatives such as the second quantum Riemann Lp derivative

QRp
2f (x) which satisfies(

1
q − 1

∫ q

1

∣∣∣f (t2x)− (1 + t) f (tx) + tf (x) − QRp
2f (x) (t − 1)2 x2

∣∣∣p dt

t

)1/p

= o
(
(q − 1)2

)
as q → 1.
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1.1. Additive L∞ derivatives.

1.1.1. Definitions. The additive L∞ derivatives are of two types: the generalized
Riemann kth derivatives which have the form

(1.2) lim
h→0

h−k
k+e∑
i=0

wif (x + uih)

where the weights {wi} and base points {ui} satisfy

(1.3)
k+e∑
i=0

wiu
j
i =

⎧⎨⎩ 0 if j = 0, 1, . . . , k − 1,

k! if j = k,

and the symmetric kth derivatives S+
k f (x) which are defined inductively and satisfy

f (x + h) + (−1)k
f (x − h)

2
=

∑
j≡k mod 2

0≤j≤k

S+
j f (x)

hj

j!
+ o
(
hk
)
.

The conditions (1.3) arise naturally when each f (x + uih) in equation (1.2) is
Taylor expanded about x; see reference [A] for details. Notice that the exis-
tence of S+

k f (x) requires only the existence of lower order symmetric derivatives of
the same parity–e.g., the existence of the three lower order symmetric derivatives
S+

0 f (x) , S+
2 f (x) , and S+

4 f (x) is a prerequisite for the existence of S+
6 f (x). Two

important special cases of generalized kth Riemann derivatives are the kth Riemann
derivative itself where e = 0, wi =

(
k
i

)
(−1)k−i and ui = i and the kth symmetric

Riemann derivative with the same wi but with ui = i− k
2 . Some of the additive L∞

derivatives must have been investigated very early since Leibniz’s dkf
dxk notation is

suggestive of a kth difference divided by the kth power of the differencing variable.
This is highly suggestive of the Riemann derivative since if k = 2, and we put
h = ∆x,

f (x + 2h) − 2f (x + h) + f (x)
h2

=
∆2f (x, h)

(∆x)2
=

∆1
(
∆1f (x, h)

)
(∆x)2

,

where ∆1f (x, h) = f (x + h) − f (x).
The integer e, which is necessarily non-negative, is called the excess. The Rie-

mann derivatives and the auxiliary derivatives used in the proofs below all have
e = 0. Generalized Riemann derivatives with e > 0 arise for technical reasons in
[A] and are often used in numerical analysis [AJJ], [AJ].

1.1.2. Results. The consistency condition asserts that whenever the kth Peano de-
rivative exists at a point, then all the corresponding generalized derivatives also
exist at that point and are equal to it. The consistency condition is a simple cal-
culation for both the generalized kth Riemann derivatives and the symmetric kth
derivatives. The a.e. converse is also true.[A] Historically, this was first proved for
the kth Riemann derivative and the kth symmetric Riemann derivative.[MZ] As a
corollary we also have the a.e. converse for the kth symmetric derivative, since a
very short and simple calculation shows that whenever the kth Symmetric deriv-
ative exists at a point, then the kth symmetric Riemann derivative also exists at
that point and is equal to it.
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1.2. Additive Lp derivatives.

1.2.1. Definitions. The additive Lp derivatives are defined in a completely analo-
gous way to the L∞ ones. For instance Gkpf (x) denotes the generalized Riemann
Lp derivative of f at x if∥∥∥∥∥

k+e∑
i=0

wif (x + uit) − Gkpf (x) tk

∥∥∥∥∥
p

(h) = o
(
hk
)
,

where ‖g (t)‖p (h) is defined to be
(

1
h

∫ h

0
|g (t)|p dt

)1/p

and the {wi} and {ui} are

as in the L∞ case; and the symmetric Lp derivative S+
kpf (x) is defined inductively

by ∥∥∥∥∥∥∥∥
f (x + t) + (−1)k f (x − t)

2
−

∑
j≡k mod 2

0≤j≤k

S+
jpf (x)

j!
tj

∥∥∥∥∥∥∥∥
p

(h) = o
(
hk
)
.

1.2.2. Results. Essentially the same simple calculations as in the L∞ case show
consistency with the kth Lp Peano derivative for both the generalized Riemann Lp

derivative and the symmetric Lp derivative. The a.e. converse is also true here.[A]
The history of the converse here is slightly different. First Mary Weiss proved the
a.e. converse for the symmetric Lp derivative[W]; the next and last step was the
general theorem.

1.3. Quantum derivatives.

1.3.1. Definitions. The quantum L∞ derivatives are of two types. The first are the
generalized Riemann kth quantum derivatives which have the form

lim
q→1

∑k+e
i=0 wi (q) f (quix)

(q − 1)k xk

where the weights {wi (q)}, which are measurable functions of q, and the exponents
{ui} satisfy

lim
q→1

k+e∑
i=0

wi (q) (qui)j =

⎧⎨⎩ 0 if j = 0, 1, . . . , k − 1,

k! if j = k.

Notice that there is an annoying detail here; the definition does not make sense when
x = 0. Whenever discussing any quantum derivative of any kind, we shall always
suppose implicitly that x �= 0. Again it is not hard to establish consistency with
the ordinary kth Peano derivative.[R] An important special case is the generalized
Riemann kth quantum derivative,

QRkf (x) = lim
q→1

∑k
i=0 (−1)k [k

i

]
q
q(i−1)i/2f

(
qk−ix

)
q(k−1)k/2 (q − 1)k xk

,
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where the q-binomial coefficient
[
k
i

]
q

satisfies[
k

−1

]
q

=
[
k

�

]
q

= 0 for all � > k ≥ 0, and for all k ≥ i ≥ 0,(1.4)

[
k

i

]
q

=
[k]q!

[i]q! [k − i]q!
, [i]q! =

⎧⎨⎩
1 if i = 0,

[1]q [2]q · · · [i]q if i > 0;
(1.5)

and, temporarily (see also definition (1.7) below),

(1.6) [k]q =
qk − 1
q − 1

, for k = 1, 2, . . . .

In particular, if k = 2 ,

QR2f (x) = lim
q→1

f
(
q2x
)
− (1 + q) f (qx) + qf (x)

(q − 1)2 x2

as was mentioned in formula (1.1) above. A somewhat symmetrical version of this,
namely

lim
q→1

∑k
i=0 (−1)k [k

i

]
q
q(i−1)i/2f

(
qk/2−ix

)
q(k−1)k/2 (q − 1)k xk

,

was also studied in [ACR], where it was called the generalized symmetric Riemann
kth quantum derivative. In this paper, we will define and study other generalized
derivatives that are more deserving of that name.

Since this paper will focus on symmetric quantum derivatives, from this point
onward we will redefine the quantity [k]q in a symmetrical way,

(1.7) [k]q =
qk/2 − q−k/2

q1/2 − q−1/2
, for k = 0,±1,±2, . . . ,

while keeping the relationships (1.4) and (1.5) in force so as to also give more
symmetrical definitions to

[
k
i

]
q

and [i]q!. We will also define a family of symmetric
quantum nth derivatives Sa

nf = Sa
nf (x) inductively by

(1.8)
q−

a
2 f (qx) + (−1)n q

a
2 f
(
q−1x

)
2an

=
∑

k≡n mod2
0≤k≤n

Sa
kf (x)

∆k

k!
+ o (∆n) ,

where ∆ =
(
q1/2 − q−1/2

)
x, a is an integer and

2an =
{

2, if n ≡ a mod2,
[2] = [2]q = q

1
2 + q−

1
2 otherwise.

Note that Taylor expanding the left hand sides about x shows that whenever f ∈
tn (x),

Sa
nf (x) =

1
2an

(
[2]qn−a fn(x) +

n [n − a − 1]q
x

fn−1(x)
)

,
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provided the jth Peano derivative fj exists at x. Notice that the values a = −1, 0,
and 1 are distinguished by the relations

S0
j f (x) = fj(x), j = 0, 1,

S1
j f (x) = fj (x) , j = 0, 2,(1.9)

S−1
j f (x) = fj (x) , j = 0.

The relation Sa
j f (x) = fj (x) holds in general for no other pairs (a, j). We will

denote by Sa
j (x) the class of functions for which Sa

j f (x) exists, so that f ∈ Sa
j (x)

if and only if Sa
j f (x) exists. We will follow this convention for all of the different

generalized derivatives to be considered.
The quantum symmetric derivative definitions are not canonical, unlike the situa-

tion in the additive case. We will discuss the question of whether they are “natural”
in Subsection 2.2 below.

To discuss Lp quantum differentiation, we will need a little notation. Recall that

‖f (t)‖p (h) means
(
h−1

∫ h

0
|f (t)|p dt

)1/p

. Similarly, ‖f (t)‖p (q) will be defined by

‖f (t)‖p (q) :=
(

1
q − 1

∫ q

1

|f (t)|p dt

t

)1/p

.

The factor 1/t in this definition will be seen to be very convenient for our work,
but has no effect on the various definitions and estimates occurring in this paper
since q will always be close to one. Also there is an obvious notational clash
between the classical additive notation and the quantum notation which differ only
alphabetically. Mentioning this here should be sufficient to avoid confusion. To
each L∞ quantum symmetric derivative corresponds an Lp one in the obvious way.
For example, Sa

nf (x) = Sa∞
n f (x) is the number satisfying∣∣∣∣∣∣∣∣

q−
a
2 f (qx) + (−1)n q

a
2 f
(
q−1x

)
2an

−
∑

j≡n mod 2
0≤j≤n

Sa
j f (x)

∆j

j!

∣∣∣∣∣∣∣∣ = o (∆n)

as q → 1, while Sap
n f (x) is the number satisfying∥∥∥∥∥∥∥∥

t−
a
2 f (tx) + (−1)n

t
a
2 f
(
t−1x

)
2an

−
∑

j≡n mod 2
0≤j≤n

Sap
j f (x)

∆j

j!

∥∥∥∥∥∥∥∥
p

(q) = o (∆n)

as q → 1.
The last derivatives that we need to define are the quantum symmetric Riemann

derivatives. In the quantum case, for each integer a, the nth a-quantum Riemann
symmetric derivative of f at x is defined to be the limit

Ra
nf(x) = Ra∞

n f(x) = lim
q→1

∑n
k=0(−1)k

[
n
k

]
q−(n

2 −k)af(q
n
2 −kx)(

q
1
2 − q−

1
2

)n

xn
.

If f is n times differentiable at x, then f is a-quantum Riemann symmetric differ-
entiable of order n at x and f (n)(x) = Ra

nf(x). Another family of nth a-quantum
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Riemann symmetric derivatives of f at x, the nth a-quantum pseudo-Riemann sym-
metric derivative of f at x, is defined by

R̂a
nf(x) = lim

q→1

∑n
k=0(−1)k

([
n−1

k

]
+
[
n−1
k−1

])
q−(n

2 −k)af(q
n
2 −kx)(

q
1
2 − q−

1
2

)n

xn
;

and a third family of nth a-quantum Riemann symmetric derivatives of f at x is
the constant coefficient nth a-quantum Riemann symmetric derivative of f at x,
defined by

CRa
nf(x) = lim

q→1

∑n
k=0(−1)k

(
n
k

)
q−(n

2 −k)af(q
n
2 −kx)(

q
1
2 − q−

1
2

)n

xn
.

Notice that the “constant coefficient” has truly constant coefficients only when
a = 0. Replacing the L∞ norm by the Lp norm similarly defines three more
families, Rap

n (x), R̂ap
n (x), and CRap

n (x), for each p ∈ [1,∞). Parallel definitions
of the classes Sap

n (x) complete our menagerie of generalized quantum derivatives
enjoying q ↔ q−1 symmetry.

A new unsymmetrical nth quantum derivative with constant coefficients {wi}
of the form C̃kf (x) = limq→1

(
w0f(x) +

∑n
i=1 wif

(
q2i−1

x
))

/ (q − 1)n will be de-
fined in Section 3 below and play a role similar to the one played by the additive
generalized derivative D̃kf (x) in [MZ].

1.4. Results and open questions. Consistency with the kth Peano derivative
holds for all symmetric quantum kth derivatives in the sense that if f ∈ tk (x),
then f ∈ Sa

k (x) for every integer a. Consistency with each a-indexed quantum
symmetric kth derivative holds for the three corresponding symmetric Riemann
kth quantum derivatives. All of these consistency results are true pointwise, have
purely algebraic proofs, and are true for the Lp cases with the same proofs. These
results are spelled out in Section 2 below.

Converse theorems are much more difficult and at best can be true only a.e. First
we discuss the L∞ situation. The a.e. converse was established in 2002 for passage
from the Riemann kth quantum derivative to the kth Peano derivative.[ACR] It
will be shown below in Theorem 4 that the a.e. converse also holds for passage
from any symmetric kth quantum derivative to the kth Peano derivative. The a.e.
converse in general remains an open question. Several additional cases have been
treated in Rios’ thesis [R].

We also prove in Theorem 1 that the a.e. converse holds for every symmetric
kth quantum Lp derivative. This also proves the a.e. converse for every symmetric
Riemann kth quantum Lp derivative when k = 1 and k = 2, since there is no
distinction between symmetric and symmetric Riemann in those two cases. All
the remaining a.e. converse questions remain open. Our methods are not powerful
enough to treat them, but we would be most astonished if the a.e. converse result
ever failed. The simplest remaining open questions are the a.e. converse results for
the third and fourth symmetric Riemann quantum Lp derivatives. This question
will certainly require new ideas when p is finite.

Actually, both major results in this section can be strengthened from “If f has
k Peano derivatives in the Ly sense, 1 ≤ y ≤ ∞, then f has k derivatives of type X
in the Ly sense. Conversely, if f has k derivatives of type X in the Ly sense on the
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measurable set E, then f has k Peano derivatives in the Ly sense at a.e. point of
E” to “If f is kth order Peano bounded in the Ly sense on the measurable set E,
then f has k derivatives of type X in the Ly sense at a.e. point of E. Conversely, if
f is kth order bounded of type X in the Ly sense on the measurable set E, then f
has k Peano derivatives in the Ly sense at a.e. point of E.” To make this explicit,
we will formulate the strong form of the last mentioned result.

Theorem 1. If there are constants f0p (x) , f1p (x) , . . . , f(k−1)p (x) so that∥∥∥∥f (x + t) −
{

f0p (x) + f1p (x) t + · · · + f(k−1)p (x)
tk−1

(k − 1)!

}∥∥∥∥
p

(h) = O
(
hk
)

as h → 0 every point of the measurable set E, then f has both symmetric and
alternate symmetric kth quantum derivatives in Lp at almost every point of E.
Conversely, if for some integer a∥∥∥∥∥∥∥∥

t−
a
2 f (tx) + (−1)k

t
a
2 f
(
t−1x

)
2ak

−
∑
j≡k

0≤j≤k−2

Sap
j f (x)

∆ (t)j

j!

∥∥∥∥∥∥∥∥
p

(q) = O
(
∆k
)

for every point x of a measurable set E, then f ∈ tpk (x) for almost every x ∈ E.

Remark 1. We have proved (or in some cases conjectured) that for every k = 1, 2 . . . ,
and p, 1 ≤ p ≤ ∞, all Lp kth derivatives are almost everywhere equivalent. What
about improving this result from almost everywhere to everywhere? It is our belief
that everywhere equivalence never holds except when two definitions coincide. For
example, the kth symmetric and the kth Riemann symmetric derivatives coincide
when k = 0, 1, or 2; and the kth quantum symmetric and the kth quantum Riemann
symmetric derivatives coincide when k = 0, 1, or 2. Some easy counterexamples can
be found in [A1] and [R]; any other desired counterexample should be equally easy
to construct.

Symmetrization, by which we mean the passage from Peano bounded to sym-
metric differentiable, is the easier side of Theorem 1. The first step, passage a.e.
from Peano bounded to Peano differentiable, is as follows.

Lemma 1. Let p ∈ [1,∞]. If for every x ∈ E, we have∥∥∥∥f (x + t) −
{

f0p (x) + tf1p (x) + · · · + tn−1

(n − 1)!
f(n−1)p (x)

}∥∥∥∥
p

(h) = ω (x, h) ,

where ω (x, h) = O (1) as h → 0, then the Peano derivative fnp (x) exists for almost
every x ∈ E.

When p = ∞ this is [MZ, Lemma 7] . When p ∈ [1,∞) , this follows from [CZ,
Theorem 10]. The other step of symmetrization is taken in Section 2. Section 3 is
devoted to the proof of the much harder reverse implication.

2. Symmetrization

Here we want to make some consistency connections between Peano, symmetric,
and Riemann differentiation. What should be true at each point is that “Peano
implies symmetric implies Riemann.” These implications should be purely algebraic.
In fact, all of this works, although the quantum versions are somewhat involved.



QUANTUM SYMMETRIC Lp DERIVATIVES 967

2.1. From Peano to quantum symmetric. Replacing f (x + t) and f (x − t) by
their Taylor expansions in definition (1.8) shows that whenever f ∈ tn (x), then f
has an nth symmetric derivative at x, and S+

n f(x) = fn(x). The converse is not
true. For example, f(x) = |x| at x = 0 is not differentiable, but it has symmetric
derivatives of any odd order. It is well-known that if f is n times differentiable at
x, then it is also (n − 1)-times differentiable at x. This is not true for symmetric
derivatives. For example the even function

√
|x| has a symmetric third derivative

at zero, but it has no symmetric second derivative at zero. What is true is that if f
has an nth symmetric derivative at x, then f has an (n − 2) symmetric derivative
at x. Indeed, if n is even, the polynomial in the right side must be an even function
of h, that is, S+

1 f(x) = S+
3 f(x) = ... = S+

n−1f(x) = 0, and if n is odd, the same
polynomial must be an odd function of h, that is, S+

0 f(x) = S+
2 f(x) = ... =

S+
n−1f(x) = 0.
We will next see that similar properties hold in the quantum case, but finding

an appropriate definition of an nth quantum symmetric derivative turned out to be
highly non-trivial. Indeed, in the case of an n times differentiable function f at x,
Taylor expansion about x shows that

q−
a
2 f(qx) + (−1)nq

a
2 f(q−1x) =

n∑
k=0

akxk f (k)(x)
k!

+ o ((q − 1)n) ,

where

ak = q−
a
2 (q − 1)k + (−1)nq

a
2 (q−1 − 1)k

= (q
1
2 − q−

1
2 )k(q

k−a
2 + (−1)n+kq

a−k
2 ).

Since our treatment is based on polynomials in the infinitesimal q
1
2 − q−

1
2 , we will

need the second factor E(q) = q
k−a

2 + (−1)n+kq
a−k

2 to be a Laurent polynomial in
q

1
2 . Therefore, throughout the paper, a will be an integer. There are four cases to

consider:
• If n ≡ k ≡ a mod2, then E(q) is a symmetric polynomial in q and q−1.
• If n + k and k − a are both odd, then E(q) is q

1
2 − q−

1
2 times a symmetric

polynomial in q and q−1.
• If n ≡ k mod 2 and k and a have opposite parities, then E(q) is q

1
2 + q−

1
2

times a symmetric polynomial in q and q−1.
• If n and k have opposite parities and k ≡ a mod2, then E(q) is q − q−1

times a symmetric polynomial in q and q−1.
Since any symmetric polynomial in q and q−1 is a polynomial in the fundamental

symmetric polynomials q + q−1 =
(
q

1
2 − q−

1
2

)2

+ 2 and qq−1 = 1, hence an even

polynomial in q
1
2 − q−

1
2 , the above four cases can be reduced to two:

• If n ≡ a mod2, then ak is a polynomial in q
1
2 − q−

1
2 , for all k. The same is

true for q−
a
2 f(qx) + (−1)nq

a
2 f(q−1x).

• If n and a have opposite parity, then ak is q
1
2 + q−

1
2 times a polynomial in

q
1
2 − q−

1
2 , for all k. The same is true for q−

a
2 f(qx) + (−1)nq

a
2 f(q−1x).

This motivates our definitions of quantum symmetric derivatives: we say that
a function f has an a-quantum symmetric derivative of order n at x, and write
f ∈ Sa

n(x), if there exists a polynomial P (t) = α0 + α1t + · · ·+ αntn, depending on
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x, such that

q−
a
2 f(qx) + (−1)nq

a
2 f(q−1x)

2an
= P (q

1
2 − q−

1
2 ) + o(

(
q

1
2 − q−

1
2

)n

),

where

2an =
{

2, if n ≡ a mod 2,
q

1
2 + q−

1
2 = [2], if n and a have opposite parity.

Interchange q with q−1 to see that P is a polynomial of the same parity as n.
An immediate consequence of the process we have gone through to develop the
definition of Sa

nf (x) is the following consistency result for quantum symmetric
differentiation.

Proposition 1. If f ∈ tn (x), then f ∈ Sa
n (x) for every integer a. This is also

true in Lp.

The converse is not true for any a. For example,

f(x) =

{
x

a+1
2 , if x > 1,

x
a−1
2 , if x ≤ 1,

has a-quantum symmetric derivatives of any odd order at x = 1, but it is not
differentiable at x = 1.

2.2. Why these definitions? Before now there were L∞ quantum symmetric
Riemann derivatives in the literature, for example in [GR], [ACR], and [R]; but
quantum symmetric derivatives had not been studied, except for orders 1 and 2
where the two notions coincide. When we first tried to desymmetrize in Lp (pass
from symmetric to Peano a.e.), we were able to treat the first derivative a = 0

case (which involves
∫ q

1

f(tx)−f(t−1x)
2

dt
t ) fairly easily, but ran into difficulty with

the second derivative a = 0 case (which seemed to involve
∫ q

1

f(tx)+f(t−1x)
2

dt
t ). We

resolved this difficulty by using a = 1 there. The calculations
∫ q

1
t−αf (tx) dt

t =
x−α (G (qx) − G (x)) and

∫ q

1
t−βf

(
t−1x

)
dt
t = xβ

(
H (x) − H

(
q−1x

))
, where G (x)

=
∫ x

1
f (t) dt

t1+α and H (x) =
∫ x

1
f (t) dt

t1−β coincide only if β = −α indicate that from
the viewpoint of integration, the most general candidate for an nth quantum sym-

metric difference should have the form
t−αf(tx)+(−1)ntαf(t−1x)

2 . More compelling
is that this insures t ←→ −t antisymmetry in the odd order cases and t ←→ −t
symmetry in the even order cases. That α should be a half integer does not seem
crucial, but it seems sufficiently general and allows us to use the polynomial meth-
ods introduced in Subsections 2.3 and 2.4 below.

The relationships (1.9) give some support to the idea that “the correct” odd
symmetric derivative is S1

n and “the correct” even symmetric derivative is S0
n. But

this evidence does not feel totally compelling to us.
Both of the early cases n = 1, a = 0 and n = 2, a = 1 were of the sort where

a and n had opposite parity. It was much later when we realized that replacing
the denominator 2 by [2] = t + t−1 was the key to dealing with the cases where
a ≡ n mod2. That is why the integer a is not of constrained parity in Theorems 1
and 4 below.

Using dt
t rather than dt in defining Lp quantum derivatives is optional since t is

always close to 1 and hence bounded above and below but seems more natural for
two reasons. First on the general principle that the situation is multiplicative, and
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second that calculations such as the one yielding formula (3.21) in the last section
work so smoothly.

One annoying technical point (which causes no essential difficulty in practice)
is that the first 0-quantum symmetric derivative is based on f (qx) − f

(
q−1x

)
,

while the first 0-quantum symmetric Riemann derivative is based on f
(
q1/2x

)
−

f
(
q−1/2x

)
. (Of course the substitution q → q1/2 shows that the two concepts are

actually identical.) This sad notational feature follows from the historical accident
that the additive symmetric Riemann derivative is usually written with a step length
of h, so that the first two are based on f

(
x + 1

2h
)
− f

(
x − 1

2h
)

and f (x + h) +
f (x − h) − 2f (x), while the first two additive symmetric derivatives are usually
based on f (x + h) − f (x − h) and f (x + h) + f (x − h).

The derivatives CRa
n are used for technical reasons and are a kind of in-between

object that is neither additive nor quantum. They play a fine role in the proof of the
hardest theorem of this paper, Theorem 1, but they should probably be thought of
only as tools and not useful definitions. A similar remark applies to the derivatives
C̃a

k (f, x) defined in Section 3.
To support our goal of establishing consistency from quantum symmetric dif-

ferentiation to quantum symmetric Riemann differentiation, we will first develop
some algebraic machinery.

2.3. Polynomials and quantum differences. The set F = {f |f : R −→ R} of
all real-valued functions is an R-vector space under addition

(f + g)(x) = f(x) + g(x)

and scalar multiplication
(rf)(x) = rf(x),

for all r, x ∈ R, and f, g ∈ F . The set L(F) of all R-linear mappings on F is an
R-algebra under addition

(L1 + L2)(f) := L1(f) + L2(f),

multiplication
(L1L2)(f) := (L1 ◦ L2)(f),

for all L1, L2 ∈ L(F) and f ∈ F , and natural embedding of R in L(F) given by
1 �→idF . For q ∈ R − {0}, let Lq be the element of L(F) defined by

Lq(f)(x) = f(qx),

and let Mq be the element of L(F) defined by

Mq(f)(x) = qf(x).

Then both Lq and Mq are invertible elements of L(F). In addition, they satisfy
(Lq)n = Lqn , (Mq)n = Mqn , for all n ∈ Z, and Lq ◦ Mq = Mq ◦ Lq. It fol-
lows that the map q �→ Mq, y �→ Lq extends to a unique algebra homomorphism
T : R[q, q−1, y, y−1] −→ L(F). This map is one-to-one. Indeed, if P (q, y) =∑n

i=−n ai(q)yi ∈ R[q, q−1][y, y−1] is so that T (P ) = 0, then

T (P )(f)(x) =
n∑

i=−n

ai(q)f(qix) = 0,
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for all f ∈ F , x ∈ R. By taking

f(t) = fi(t) =
{

1, if t = qix,
0, otherwise,

we deduce that ai(q) = 0, for all i and q. Therefore P = 0, and this makes
T a one-to-one map. Thus T is an algebra isomorphism from R[q, q−1, y, y−1] to
the algebra of two-sided quantum differences T (R[q, q−1, y, y−1]). In particular,
we have R[q, y] ∼= T (R[q, y]), the algebra of one-sided quantum differences, and
R[q + q−1, y + y−1] ∼= T (R[q + q−1, y + y−1]), the algebra of symmetric quantum
differences.

In this paper computations on differences will be routinely reduced to computa-
tions on polynomials via T . This reduction is being used for two specific jobs:

(1) Writing an n-difference as a composition of smaller differences. For ex-
ample, the two-difference D(f)(x) = f(q2x) − (q + 1)f(qx) + qf(x) is a
composition of two one-differences as follows: D = T (y2 − (q + 1)y + q) =
T ((y − 1)(y − q)) = T (y − 1) ◦ T (y − q) = D1 ◦ D2, where D1(f)(x) =
T (y − 1)(f)(x) = (Lq−id)(f)(x) = f(qx) − f(x) and where D2(f)(x) =
T (y − q)(f)(x) = (Lq − q·id)(f)(x) = f(qx) − qf(x).

(2) Checking that a certain difference is a linear combination of shifts of another
difference. If a difference D(f)(x) is written more explicitly as D(f)(q, x),
then a shift of it is any difference of the form D′(f)(x) = D(f)(q, qix),
for some integer i. In terms of polynomials, this means that T−1(D′) =
yiT−1(D). Moreover, a difference D′ is a linear combination of shifts of
another difference D if and only if T−1(D′) divides T−1(D). For example,
since y−1 divides y2−(q+1)y+q, the difference f(q2x)−(q+1)f(qx)+qf(x)
is a linear combination of shifts of the difference f(qx) − f(x). Indeed,
f(q2x) − (q + 1)f(qx) + qf(x) = (f(q2x) − f(qx)) − q(f(qx) − f(x)).

2.4. The correspondence (*a). If a is an arbitrary integer, then the map ta, de-
fined by ta(q) = q and ta(y) = q−

a
2 y, extends uniquely to an algebra isomorphism

ta : R[q, q−1, y, y−1] → R[q, q−1, q−
a
2 y, q

a
2 y−1] ⊆ R[q

1
2 , q−

1
2 , y, y−1]. The composi-

tion Ta = T ◦ ta : R[q, q−1, y, y−1] → T (R[q, q−1, q−
a
2 y, q

a
2 y−1]) is also an algebra

isomorphism. Throughout the paper, the correspondence determined by Ta and
T−1

a will be referred to as the correspondence (*a). For example, the difference

q−
3
2 f(qx) − (q + 1)f(x) + q

3
2 f(q−1x)

under (*−3) corresponds to the polynomial y − (q + 1) + y−1, and under (*0) it
corresponds to the polynomial q−

3
2 y − (q + 1) + q

3
2 .

2.5. From quantum symmetric to quantum Riemann. We prove the second
part of the next proposition because we haven’t seen the statement or proof written
elsewhere and also because it gives an overview as to what must be done in the
more technically complicated quantum cases to follow.

Proposition 2. (i) If f ∈ tk (x), then f ∈ S+
k (x) and S+

k f (x) = tk (x).
(ii) If f ∈ S+

k (x), then f ∈ Rk (x) and R+
k f (x) = S+

k (x).
(iii) The Lp analogues of (i) and (ii) are also valid.

Proof. Part (i) follows immediately upon Taylor expansion of f (x+h) and f(x − h).
For (ii), assume that the kth symmetric L∞ derivative of f exists at x. Using x = 0
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and Sj = S+
j f (0) for convenience, we calculate

2
k∑

n=0

(−1)n

(
k

n

)
f
((

k
2 − n

)
h
)

=
k∑

n=0

(−1)n

(
k

n

)
f
((

k
2 − n

)
h
)

+
k∑

n=0

(−1)k−n

(
k

k − n

)
f
((

n − k
2

)
h
)

=
k∑

n=0

(−1)n

(
k

n

){
f
((

k
2 − n

)
h
)

+ (−1)k
f
((

n − k
2

)
h
)}

=
k∑

n=0

(−1)n

(
k

n

)⎧⎨⎩2
�k/2�∑
i=0

Sk−2i

(k − 2i)!
(

k
2 − n

)k−2i
hk−2i

⎫⎬⎭+ o
(
hk
)

= 2
�k/2�∑
i=0

Sk−2i

(k − 2i)!
hk−2i

{
k∑

n=0

(−1)n

(
k

n

)(
k
2 − n

)k−2i

}
+ o
(
hk
)

= 2Skf (x) hk + o
(
hk
)
,

so that the L∞ Riemann symmetric derivative also exists at x. The Lp argument
is very similar. �

The next result shows that the above three notions of quantum Riemann sym-
metric are somewhat equivalent:

Theorem 2. The following are equivalent:
(i) f has a-Riemann symmetric derivatives of orders n, n− 2, n− 4, ... at x, that

is, f ∈
⋂

{i:n−2i≥0}
Ra

n−2i (x).

(ii) f has constant coefficients a-Riemann symmetric derivatives of orders n, n−
2, n − 4, ... at x, that is, f ∈

⋂
{i:n−2i≥0}

CRa
n−2i (x).

(iii) f has pseudo a-Riemann symmetric derivatives of orders n, n − 2, n − 4, ...

at x, that is, f ∈
⋂

{i:n−2i≥0}
R̂a

n−2i (x).

Proof. The proof is algebraic, based on the polynomial correspondence (*a) defined
in Subsection 2.4. Recall that under this correspondence, say when i = 0, the
numerators in parts (i), (ii), and (iii) correspond to Laurent polynomials

Dn(q, y) = y−n
2

n−1∏
i=0

(y − q
n−1

2 −i),

Dn(1, y) = y−n
2

n−1∏
i=0

(y − 1) =
(
y

1
2 − y− 1

2

)n

, and

(
y

1
2 − y− 1

2

)
Dn−1(q, y) = y−n

2 (y − 1)
n−2∏
i=0

(y − q
n−2

2 −i), respectively.
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We only prove the equivalence of (i) and (ii), say in the odd case. The even case
and the equivalence of (ii) and (iii) are similar. Indeed, since

D2n+1(q, y) =
(
y

1
2 − y− 1

2

) n∏
i=1

[y−1(y − qi)((y − q−i))]

=
(
y

1
2 − y− 1

2

) n∏
i=1

(y + y−1 − qi − q−i)

=
(
y

1
2 − y− 1

2

) n∏
i=1

[(y1/2 − y−1/2)2 − (qi/2 − q−i/2)2]

=
(
y

1
2 − y− 1

2

) n∏
i=1

[(y1/2 − y−1/2)2 − (q1/2 − q−1/2)2[i]2]

=
n∑

k=0

un,k(q)(q1/2 − q−1/2)2k(y1/2 − y−1/2)2n+1−2k

=
n∑

k=0

un,k(q)(q1/2 − q−1/2)2kD2n+1−2k(1, y),

where un,k(q) are symmetric Laurent polynomials in q, and un,0(q) = 1. In partic-
ular, division by (q1/2 − q−1/2)2n+1 yields

D2n+1(q, y)
(q1/2 − q−1/2)2n+1

=
n∑

k=0

un,k(q)
D2n+1−2k(1, y)

(q1/2 − q−1/2)2n+1−2k
.

With the notation ys = D2s+1(q,y)

(q1/2−q−1/2)2s+1 and zs = D2s+1(1,y)

(q1/2−q−1/2)2s+1 , the above relation
written for s = 0, 1, 2, ..., n, yields the system

[yn, yn−1, ..., y0]
T = A [zn, zn−1, ..., z0]

T ,

where A is the upper-triangular matrix (aij)0≤i,j≤n and aij = un−i,j−i(q), for
j ≥ i. With its diagonal elements being 1, matrix A is invertible. Therefore,
knowing the vector y = [yn, yn−1, ..., y0]

T is equivalent to knowing the vector z =
[zn, zn−1, ..., z0]

T . Going back to the function f via the correspondence (*a), and
taking limit as q → 1, this means that (i) is equivalent to (ii), as desired. �

The following example illustrates the main idea of the computations that we will
make later on in this section. Suppose f ∈ S0

4 . Then

f(qx)+f(q−1x)−2f(x) = α2

(
q

1
2 − q−

1
2

)2

+α4

(
q

1
2 − q−

1
2

)4

+o

((
q

1
2 − q−

1
2

)4
)

.

Changing q into q2, this relation becomes:

f(q2x) + f(q−2x) − 2f(x) = α2

(
q − q−1

)2
+ α4

(
q − q−1

)4
+ o

((
q

1
2 − q−

1
2

)4
)

.
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Multiplication of the first equation by
(
q1/2 + q−1/2

)2
= [2]2 and subtraction from

the second will eliminate the α2-term from the right side to produce

f(q2x) −
(
q + 2 + q−1

)
f(qx) + 2

(
q + 1 + q−1

)
f(x)

−
(
q + 2 + q−1

)
f(q−1x) + f(q−2x)

= α4

(
[2]4 − [2]2

)(
q

1
2 − q−

1
2

)4

+ o

((
q

1
2 − q−

1
2

)4
)

.

Since the left side is
4∑

k=0

(−1)k(
[
3
k

]
+
[

3
k−1

]
)f(q2−kx), the above relation implies that

lim
q→1

4∑
k=0

(−1)k(
[
3
k

]
+
[

3
k−1

]
)f(q2−kx)(

q1/2 − q−1/2
)4 = α4

(
24 − 22

)
.

In other words, we proved that f has a quantum pseudo-Riemann symmetric de-
rivative of order 4, that is, f ∈ R̂0

4. In general, for larger n, and any integer a, we
will need to remove more than one α-term from the right side of the quantum sym-
metric relation. We will therefore need two technical results on systems of linear
equations in Laurent polynomials with Vandermonde coefficient matrices. The first
deals with the symmetric case, and the second with the anti-symmetric case.

Lemma 2. (i) There exist β1, β2, ..., βn−1, βn = 1 rational functions in q, such that
n∑

j=1

βj(q
j
2 − q−

j
2 )2i = 0, for all i = 1, 2, ..., n − 1.

(ii) The same β’s satisfy
n∑

j=1

βj(q
ij
2 − q−

ij
2 )2 = 0, for all i = 1, 2, ..., n − 1.

(iii) The Laurent polynomial φ2n(y) =
∑n

j=1 βj(yj + y−j − 2) factors as

φ2n(y) = y−n
n−1∏
i=0

(y − qi)(y − q−i)

=
(
y

1
2 − y− 1

2

) 2n−1∑
i=0

(−1)i

[
2n − 1

i

]
y

2n−1
2 −i

=
2n∑
i=0

(−1)i(
[
2n − 1

i

]
+
[
2n − 1
i − 1

]
)yn−i.

(iv) The coefficients βj in parts (i) – (iii) are given by the expression

βn−j = (−1)j(
[
2n − 1

j

]
+
[
2n − 1
j − 1

]
) = (−1)j

[
2n

j

]
· q

n−j
2 + q−

n−j
2

q
n
2 + q−

n
2

,

for j = 0, 1, ..., n − 1.
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(v) The Laurent polynomial

δ2n(y) = (q
n
2 + q−

n
2 )

n∑
j=1

βj

(
yj + y−j

q
j
2 + q−

j
2

− 1
)

can be written as

δ2n(y) =
2n∑
i=0

(−1)i

[
2n

i

]
yn−i = y−n

2n−1∏
i=0

(y − q
2n−1

2 −i).

Proof. (i) We denote [j] = [j]q1/2 = qj/2−q−j/2

q1/2−q−1/2 , and divide the ith equation by

(q
1
2 − q−

1
2 )2i. The system is then equivalent to

n−1∑
j=1

βj [j]2i = −[n]2i, for all i = 1, 2, ..., n − 1.

This new system has a Vandermonde coefficient matrix ([j]2i)i,j and, by Cramer’s
rule, it has a unique solution β1, β2, ..., βn−1. (ii) Since

(u
1
2 − u− 1

2 )2m = −(−1)m

(
2m

m

)
+

m∑
l=0

(−1)m−l

(
2m

m − l

)
((u

l
2 − u− l

2 )2 + 2)

=
m∑

l=1

(−1)m−l

(
2m

m − l

)
(u

l
2 − u− l

2 )2,

the sets of linearly independent and symmetric in u, u−1-Laurent polynomials{
(u

1
2 − u− 1

2 )2m : m = 1, 2, ..., i
}

and
{
(u

m
2 − u−m

2 )2 : m = 1, 2, ..., i
}

are two bases of the same space of Laurent polynomials. We can then write
(u

i
2 −u− i

2 )2 =
∑i

m=1 γm,i(u
1
2 −u− 1

2 )2m, for all i = 1, 2, ..., n−1, and consequently
n∑

j=1

βj(Q
ij
2 − Q− ij

2 )2 =
n∑

j=1

βj

i∑
m=1

γm,i(Q
j
2 − Q− j

2 )2m

=
i∑

m=1

γm,i

n∑
j=1

βj(Q
j
2 − Q− j

2 )2m =
i∑

m=1

γm,i · 0 = 0.

The first expression in part (iii) follows from a degree argument, since by part (ii)
φn has roots 1 and q±i, for i = 1, 2, ..., n − 1, and the y-symmetry forces 1 to be a
double root. The remaining two expressions are easy applications of the quantum
binomial formula. Part (iv) comes from identification of y-power coefficients and
by easy binomial coefficients computations. The first expression in part (v) comes
easily from part (iv), and the second from the quantum binomial formula. �
Lemma 3. (i) There exist β1, β2, ..., βn−1, βn = 1 rational functions in q, such that

n∑
j=1

βj(q
2j−1

2 − q−
2j−1

2 )2i−1 = 0, for all i = 1, 2, ..., n − 1.

(ii) The same β’s satisfy
n∑

j=1

βj(q
(2i−1)(2j−1)

2 − q−
(2i−1)(2j−1)

2 ) = 0, for all i = 1, 2, ..., n − 1.
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(iii) The Laurent polynomial φ2n−1(y) =
∑n

j=1 βj(y
2j−1

2 −y− 2j−1
2 ) can be written

as

φ2n−1(y) = y− 2n−1
2 (y − 1)

n−1∏
i=1

(y − q2i−1)(y − q−2i+1)

=
(
y

1
2 − y− 1

2

) 2n−2∑
i=0

(−1)i

[
2n − 2

i

]
q2

yn−1−i

=
2n−1∑
i=0

(−1)i(
[
2n − 2

i

]
q2

+
[
2n − 2
i − 1

]
q2

)y
2n−1

2 −i.

(iv) The coefficients βj in parts (i) – (iii) are given by the expression

βn−j = (−1)j(
[
2n − 2

j

]
q2

+
[
2n − 2
j − 1

]
q2

) = (−1)j

[
2n − 1

j

]
q2

· q
2n−1

2 −j + q−
2n−1

2 +j

q
2n−1

2 + q−
2n−1

2

,

for j = 0, 1, ..., n − 1.
(v) The Laurent polynomial

δ2n−1(y) = (q
2n−1

2 + q−
2n−1

2 )
n∑

j=1

βj ·
y

2j−1
2 − y− 2j−1

2

q
2j−1

2 + q−
2j−1

2

can be written as

δ2n−1(y) =
2n−1∑
i=0

(−1)i

[
2n − 1

i

]
q2

y
2n−1

2 −i = y− 2n−1
2

n−1∏
i=−(n−1)

(y − q2i).

Proof. The proof is quite similar to that of Lemma 2 and is included to emphasize
the different nature of the polynomial root q = 1. (i) Dividing the ith equation by
(q

1
2 − q−

1
2 )(2i−1), and with the notation [j] = [j]q1/2 = qj/2−q−j/2

q1/2−q−1/2 , the system is
equivalent to

n−1∑
j=1

βj [2j − 1]2i−1 = −[2n − 1]2i−1, for all i = 1, 2, ..., n − 1.

This system has a solution β1, β2, ..., βn−1, since the columns of the coefficient
matrix are scalar multiples of a Vandermonde matrix. Part (ii) follows from the sets{
y2i−1 − y−2i+1 : i = 1, 2, ..., n − 1

}
and

{
(y − y−1)2i−1 : i = 1, 2, ..., n − 1

}
being

two bases of the same space of Laurent polynomials in y. The first expression in part
(iii) follows from a degree argument, since by part (ii) φ has roots 1 and q±(2i−1),
for i = 1, 2, ..., n − 1. The remaining two are easy applications of the quantum
binomial formula. Part (iv) comes from identification of y-power coefficients and
by easy binomial coefficients computations. The first expression in part (v) comes
easily from part (iv), and the second from the quantum binomial formula. �

We remark that the polynomials δn(y) and φn(y) of the above two lemmas cor-
respond under the isomorphism (*a) to the numerators of the Riemann symmetric
derivatives Ra

nf(x) and R̂a
nf(x), respectively. We are now ready to prove the main

result of this section.
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Theorem 3 (Symmetric implies Riemann symmetric). If f ∈ Sa
n, then f ∈

R̂a
n ∩ Ra

n ∩ CRa
n. In other words, if f has an a-symmetric quantum derivative

of order n at a point x, then f has an a-Riemann symmetric, a pseudo a-Riemann
symmetric, and a constant coefficient a-Riemann symmetric derivative of order n

at x. Similarly, if f ∈ Sap
n , then f ∈ R̂ap

n ∩ Rap
n ∩ CRap

n .

Proof. It suffices to show that f ∈ Sa
N implies either f ∈ R̂a

N or f ∈ RSa
N . Indeed,

this comes from Theorem 2, since f ∈ Sa
N easily implies that f ∈ Sa

N−2i, for each
i such that 0 ≤ 2i ≤ N . We distinguish 4 cases, depending on whether N is even
(in which case we write N = 2n) or N is odd (in which case we write N = 2n − 1)
and whether a is even or odd.

Case 1: N is even. First let f ∈ Sa
2n, where a is even. Then there exist real

numbers α2, α4, ..., α2n such that

q−
a
2 f(qx) + q

a
2 f(q−1x) − 2f(x) = α2

(
q

1
2 − q−

1
2

)2

+ α4

(
q

1
2 − q−

1
2

)4

+ ...

+ α2n

(
q

1
2 − q−

1
2

)2n

+ o

((
q

1
2 − q−

1
2

)2n
)

.

In particular, this is true for qj in place of q, and we have a system of relations:

q−j a
2 f(qjx) + qj a

2 f(q−jx) − 2f(x) = α2

(
q

j
2 − q−

j
2

)2

+ α4

(
q

j
2 − q−

j
2

)4

+ ...

+ α2n

(
q

j
2 − q−

j
2

)2n

+ o

((
q

1
2 − q−

1
2

)2n
)

,

for j = 1, 2, ..., n. We have used the fact that for q near 1, qj/2 − q−j/2 =

[j]
(
q1/2 − q−1/2

)
∼ j
(
q1/2 − q−1/2

)
, so that the conditions o

((
q

1
2 − q−

1
2

)2n
)

and

o

((
q

j
2 − q−

j
2

)2n
)

are equivalent. We multiply the jth relation by βj of Lemma 2

and add these up for j = 1, 2, ..., n to deduce that

2n∑
i=0

(−1)i(
[
2n − 1

i

]
+
[
2n − 1
i − 1

]
)q−2(n−i)af(qn−ix)

= α2n

(
q

1
2 − q−

1
2

)2n n∑
j=1

βj [j]2n + o

((
q

1
2 − q−

1
2

)2n
)

.

The expression in the left side comes from Lemma 2(iii) and the correspondence
(*a). The expression in the right side comes from Lemma 2(i). Thus f ∈ R̂a

2n. The
other subcase when N = 2n and a is odd is done in a similar manner, except for
the fact that Lemma 2(iv) is being used to deduce that f ∈ Ra

2n.
Case 2: N is odd. First let f ∈ Sa

2n−1, where a is odd. Then there exist real
numbers α1, α3, ..., α2n−1 such that

q−
a
2 f(qx) − q

a
2 f(q−1x) = α1

(
q

1
2 − q−

1
2

)
+ α3

(
q

1
2 − q−

1
2

)3

+ ...

+ α2n−1

(
q

1
2 − q−

1
2

)2n−1

+ o

((
q

1
2 − q−

1
2

)2n−1
)

.
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As in the even case, we multiply this equation with q2j−1 in place of q by the βj of
Lemma 3, and add all these relations up for j = 1, 2, ..., n − 1 to deduce that

n−1∑
j=1

βj [q−(2j−1) a
2 f(q2j−1x) − q(2j−1) a

2 f(q−2j+1x)]

=
n∑

i=1

α2i−1

n−1∑
j=1

βj

(
q

2j−1
2 − q−

2j−1
2

)2i−1

+ o

((
q

1
2 − q−

1
2

)2n−1
)

.

Using Lemma 3(iii) and the correspondence (*a) in the left side, and Lemma 3(i)
in the right side, this expression becomes:

2n−1∑
i=0

(−1)i(
[
2n − 2

i

]
q

+
[
2n − 2
i − 1

]
q

)q−(2n−1−2i) a
2 f(q2n−1−2ix)

= α2n−1

(
q1/2 − q−1/2

)2n−1 n−1∑
j=1

βj [2j − 1]2n−1 + o

((
q1/2 − q−1/2

)2n−1
)

.

By taking q1/2 in place of q, this clearly implies that f ∈ R̂a
2n−1. The other subcase

when a is even is done in a similar manner, except for the fact that Lemma 3(iv)
is being used to deduce that f ∈ Ra

2n−1.
The Lp proof is a line by line transposition of the L∞ one just given. �

3. Desymmetrization

The first desymmetrization theorem involves L∞ derivatives. It is the converse
to Proposition 1.

3.1. From quantum symmetric to Peano, the L∞ case.

Theorem 4. If f has an a-quantum symmetric derivative of order k at x, f ∈
Sa

k (x), for every x in a set E of positive measure, then f has a Peano derivative of
order k, f ∈ tk (x), at a.e. x ∈ E.

Proof. Theorem 3 tells us that f has a 0-constant coefficient kth quantum Riemann
symmetric constant coefficient derivative, f ∈ CR0

k (x), at a.e. x ∈ E. We can now
copy quite closely an argument appearing in [MZ].

In L∞, additive translation (
∑

wif (x + uih) �→
∑

wif (x + (ui + α)h)) pre-
serves additive generalized Riemann differentiation a.e. Also, a finite linear combi-
nation of additive translations of

(3.1)
∑k

i=0
(−1)k−i

(
k

i

)
f (x + ih)

can be found which is equal to the difference associated with the additive deriva-
tive D̃kf (x).[MZ] The mapping (+) : f (x + βh) �→ yβ extends to a unique alge-
bra homomorphism into L(F). In particular the image of (3.1) is (y − 1)k and if
Pk (y) = ᾱ0 + ᾱ1y + ᾱ2y

2 + ᾱ3y
4 + · · ·+ ᾱky2k−1

is the image of the difference asso-
ciated with D̃kf (x), then the linear combination fact just mentioned is equivalent
to the existence of a polynomial Q such that Pk (y) = Q (y) (y − 1)k [MZ, §12].
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Now define C̃a
k (f, x) by forming differences c̃k inductively as

c̃a
1f (q, x) = q−af (qx) − f (x) ,

c̃a
i f (q, x) = c̃a

i−1f
(
q2, x

)
− 2i−1c̃a

i−1f (q, x) , i = 2, . . . , k,

and then letting

C̃a
k (f, x) = lim

q→1

c̃a
kf (q, x)

(q − 1)k
.

In L∞, there is a quantum analogue of the additive translation theorem which as-
serts in particular that the multiplicative translation (

∑k
i=0 (−1)k−i (k

i

)
q−iaf

(
qix
)

�→
∑k

i=0 (−1)k−i (k
i

)
q−iaf

(
qi+αx

)
) preserves kth order boundedness a.e.[ACR].

The correspondence (*−2a) maps
∑k

i=0 (−1)k−i (k
i

)
q−iaf

(
qix
)

into (y − 1)k and
c̃a
kf (q, x) into Pk (y) , so from the very same relation Pk (y) = Q (y) (y − 1)k found

in [MZ], it follows that we have a.e.

(3.2) c̃a
kf (q, x) = O

(
(qx − x)k

)
.

�

Lemma 4. If f ∈ tn (x), then for any half-integer a, C̃a
nf (x) exists and has the

form
∑n

i=0 αi (a) fi(x)
xn−i .

Proof. Step 1: We consider three sequences of polynomials in y and q. The first
sequence, c̃a

n = c̃a
n(y, q), corresponds under (*0) to the sequence of differences

c̃a
nf(q, x) defined above. The second sequence, δ̃n = δ̃n(y, q), is defined by

δ̃1(y, q) = y − 1,

δ̃n(y, q) = δ̃n−1(y2, q2) − λn−1δ̃n−1(y, q), n ≥ 2,

where λn = λn(q) =
(
q2n−1

+ 1
)

Πn−2
i=0

(
q2n−1

+ q2i
)
. This corresponds under (*0)

to the sequence of differences ∆̃n(q, x; f) defined in [ACR, Proposition 2]. The third
sequence is d̃n := δ̃n(y, 1); here λn becomes 2n. All three sequences are defined for
n = 0 by setting c̃a

0 = δ̃0 = d̃0 = 1.
Step 2: We claim that there exist αi = αi(q, n, a) Laurent polynomials in q and

βi = βi(q, n) polynomials in q such that

(3.3) c̃a
n =

n∑
i=0

αid̃i(q − 1)n−i, n ≥ 0,

and

(3.4) δ̃n =
n∑

i=0

βid̃i(q − 1)n−i, n ≥ 0.

The case n = 0 is clear. Assume, by way of induction, that n ≥ 1 and

c̃a
n−1(y, q) =

n−1∑
i=0

αi(q)d̃i(y, q)(q − 1)n−1−i
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and calculate

c̃a
n(y, q) = c̃a

n−1(y
2, q2) − 2n−1c̃a

n−1(y, q)

=
n−1∑
i=0

αi(q2)d̃i(y2, q2)(q2 − 1)n−1−i − 2n−1αi(q)d̃i(y, q)(q − 1)n−1−i

=
n−1∑
i=0

αi(q2)
[
d̃i+1(y, q) + 2id̃i(y, q)

]
(q2 − 1)n−1−i

− 2n−1αi(q)d̃i(y, q)(q − 1)n−1−i

=
n−1∑
i=0

αi(q2)(q + 1)n−1−id̃i+1(y, q)(q − 1)n−1−i

+
n−1∑
i=0

[
αi(q2)2i(q + 1)n−1−i − 2n−1αi(q)

]
d̃i(y, q)(q − 1)n−1−i.

The result follows for n, since the last expression under brackets is a Laurent
polynomial in q that has q = 1 as a root, i.e., it is divisible by q − 1, which allows
q − 1 to be factored out. The existence of the second system (3.4) is established in
a similar way.

Step 3: The actual proof. Since β0 = 1, the triangular system of linear equations
defined by relations (3.4) is invertible. Therefore we can write the c̃a

n’s as functions
of the δ̃i’s in the form

c̃a
n(y, q) =

n∑
i=0

ai(q)δ̃i(y, q)(q − 1)n−i, for n ≥ 0.

This corresponds under (*0) to

c̃a
nf(q, x) =

n∑
i=0

ai(q)∆̃i(q, x; f)(q − 1)n−i, for n ≥ 0.

Divide by xn(q − 1)n and take the limit as q → 1. By [ACR, Lemma 1], for each i,

lim
q→1

∆̃i(q, x; f)

(qx − x)i
=

µi

i!
fi(x),

where µi = 2i−1

i−2∏
j=0

(
2i−1 − 2j

)
. This completes the proof of the lemma. �

Lemma 5. If c̃k (q) = c̃a
kf (q, x) = O

(
(qx − x)k

)
for all x ∈ E, then f has k

Peano derivatives at a.e. x ∈ E.
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Proof. Fix f and x ∈ E. For every q ∈ [2/3, 3/2], we have∣∣∣c̃k−1

(
q2
)
− 2k−1c̃k−1

(
q1/20

)∣∣∣ ≤ M
∣∣∣q1/20

− 1
∣∣∣k ,(3.5) ∣∣∣c̃k−1

(
q1/20

)
− 2k−1c̃k−1

(
q1/21

)∣∣∣ ≤ M
∣∣∣q1/21 − 1

∣∣∣k ,

· · ·∣∣∣c̃k−1

(
q1/2n−1

)
− 2k−1c̃k−1

(
q1/2n

)∣∣∣ ≤ M
∣∣∣q1/2n

− 1
∣∣∣k .

Multiply the ith equation by 2(k−1)(i−1), i = 2, . . . , n, and add to the first equation,
noting that the left hand sides telescope, to get∣∣∣c̃k−1

(
q2
)
− 2(k−1)nc̃k−1

(
q1/2n

)∣∣∣ ≤ CM |q − 1|k .

On the right side we have used the inequalities |qε − 1| ≤ 2ε |q − 1| for q ∈
[2/3, 3/2], and 1+

∑n
i=2 2(k−1)(i−1)

(
2 · 1/2i−1

)k ≤ 1+2k
∑∞

i=2 2−(i−1) = 1+2k = C.
Rewrite the last inequality as

(3.6)

∣∣∣∣∣c̃k−1

(
q2
)
−

c̃k−1

(
q1/2n)(

q1/2nx − x
)k−1

{
x

q1/2n − 1
1/2n

}k−1
∣∣∣∣∣ ≤ CM |q − 1|k .

Observation 1. For almost every x ∈ E, if c̃kf (q, x) = O
(
(qx − x)k

)
, then

c̃k−1f (q, x) = O
(
(qx − x)k−1

)
. Proof: By Lemma 5 of [ACR] we may assume

that f is bounded in a neighborhood of x. So inequality (3.6) tells us that

c̃k−1

(
q1/2n)(

q1/2nx − x
)k−1

for n = 0, 1, . . .

is uniformly bounded for q in the annulus
[
b−1, b−1/2

]
∪
[
b1/2, b

]
for some b > 1. As

q varies through the annulus and n varies through the non-negative integers, q1/2n

takes on all values in
[
b−1, b

]
\ {1}.

Observation 2. If f ∈ tk−1 (x) and C̃+
k (x) = lim supq→1

∣∣∣ c̃k(q)

(qx−x)k

∣∣∣ < ∞ on E,
then f is Peano bounded of order k at a.e. x ∈ E. Proof: Because of Lemma 4, we
may assume f0 (x) = · · · = fk−1 (x) = 0. Letting n → ∞ in inequality (3.6), taking

into account that limn→∞
c̃k−1(q1/2n)

(q1/2nx−x)k−1 = 0 by virtue of Lemma 4, and observing

that the quantity in curly brackets tends to x ln q gives c̃k−1

(
q2
)

= O
(
|q − 1|k

)
=

O
(∣∣q2 − 1

∣∣k), that is, c̃k−1 (q) = O
(
|q − 1|k

)
. Because of Observation 1, we may

repeat the whole process k−2 more times to ultimately get that f (qx) = qac̃1 (q) =
O
(
|q − 1|k

)
which by change of variable tells us that f (x + h) = O

(
hk
)
, that is,

f is k Peano bounded.
By Observation 2 and Lemma 1, fk exists for a.e. x ∈ E. �

Corollary 1. If f has an a-quantum constant coefficient Riemann symmetric de-
rivative of order k at x, f ∈ CRa

k(x), for every x in a set E of positive measure,
then f has a Peano derivative of order k, f ∈ tk (x), at a.e. x ∈ E.
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Proof. This follows immediately from the proof of Theorem 4 since the first sentence
of that proof transferred the hypothesis f ∈ Sa

k (x) to the condition f ∈ CRa
k(x)

and the original hypothesis was never used again. �

Corollary 2. If f is a-quantum symmetric bounded of order k for every x in a set
E of positive measure, then f has a Peano derivative of order k, f ∈ tk (x), at a.e.
x ∈ E.

Proof. Just as in the last corollary, observe that at one point in the proof of Theo-
rem 4, we only conclude relation (3.2) when more is actually true, and then nothing
more than (3.2) is used for the rest of the proof. But the argument that produced
(3.2) works line by line from the weaker assumption of a-quantum symmetric bound-
edness. �

3.2. From quantum symmetric to Peano, the Lp case. In our proof of the
converse part of Theorem 1, we will use the following three lemmas.

Lemma 6. Let P be a degree k−1 polynomial of a certain parity. Then whether 2ε

be [2] = t1/2+t−1/2 or 2,
∫ q

1
P
(
t1/2 − t−1/2

)
2ε

dt
t can be written as Q

(
q1/2 − q−1/2

)
+ O

((
q1/2 − q−1/2

)k+2
)

where Q is a polynomial of degree k of parity opposite to
P .

Proof. In the first case, use the change of variable u = t
1
2−t−

1
2 , du = 1

2

(
t

1
2 + t−

1
2

)
dt
t

to evaluate
∫

[2]P (t
1
2 − t−

1
2 )dt

t . The result is immediate and there is no error term.

In the other case, let t (d) =
(
1 + d

(
1
2d + 1

2

√
d2 + 4

))1/2
. Then for small d,

d = t (d)1/2 − t (d)−1/2, so we may expand

(3.7)
1

[2]t
=

1

t (d)
1
2 + t (d)−

1
2

= R (d) + O
(
dk+1

)
,

where R is the Maclaurin polynomial of degree ≤ k and is independent of f . Since
t (d) t (−d) = 1, R is even. We have∫ q

1

P (t
1
2 − t−

1
2 )

dt

t
=
∫ q

1

P (t
1
2 − t−

1
2 )

1
[2]

[2]
dt

t

=
∫ q

1

P (t
1
2 − t−

1
2 )R

(
t

1
2 − t−

1
2

)
[2]

dt

t
+ O

((
q

1
2 − q−

1
2

)k+2
)

.

Now PR is a polynomial of the same parity as P and may be integrated to a
polynomial of the opposite parity and degree at least k as in the first case. �

Lemma 7. Let f be integrable near x and let α be a real number. If G (x) =
G (x, α) =

∫ x

1
f (t) tαdt is k Peano bounded at x, then so is F (x) =

∫ x

1
f (t) dt.

Proof. Apply integration by parts to

F (x + h) − F (x) =
∫ x+h

x

t−α (tαf (t) dt)



982 J. MARSHALL ASH AND STEFAN CATOIU

by letting U = t−α, dV = tαf (t) dt to get

F (x + h) − F (x) = t−αG (t) |x+h
x + α

∫ x+h

x

t−α−1G (t) dt

= (x + h)−α
G (x + h) − x−αG (x)

+ α

∫ h

0

(x + s)−α−1 G (x + s) ds.

As soon as |h| < |x|, the functions (x + h)−α and (x + s)−α−1 are infinitely dif-
ferentiable and hence have arbitrarily long Taylor expansions at x. It is now clear
that the right side can be expanded out to order hk−1 with error O

(
hk
)
. �

Lemma 8. Fix an integer a and a non-negative integer k. If for every x ∈ E,∫ q

1

∣∣∣t− a
2 f (tx) + (−1)k

t
a
2 f
(
t−1x

)∣∣∣p dt

t
= O

(
(q − 1)k

)
,

and if f (x) = 0 on E, then for a.e. x ∈ E,

(3.8)
∫ q

1

|f (tx)|p dt

t
= O

(
(q − 1)k

)
.

By uniformizing, we may assume that there are constants M > 0 and δ ∈ (0, 1)
such that for all x ∈ E and |q − 1| < δ,

(3.9)
∫ q

1

∣∣∣t− a
2 f (tx) + (−1)k

t
a
2 f
(
t−1x

)∣∣∣p dt

t
≤ M (q − 1)k .

It suffices to show that relation (3.8) holds at every point of density of E. To
simplify notation assume that x = 1 is a point of density of f . We will show that
for q ∈ (1, 2) sufficiently close to 1, we have

(3.10)
∫ q

1/q

|f (t)|p dt

t
≤ 2

|a|p
2 +2M (q − 1)k

.

Proof. For specificity, suppose that∫ q

1

|f (t)|p dt

t
≥ 1

2

∫ q

1/q

|f (t)|p dt

t
.

(The treatment of the contrary case
∫ 1

1/q
|f (t)|p dt

t > 1
2

∫ q

1/q
|f (t)|p dt

t is similar.)
For any x in the interval

[
1,
√

q
]

we may write

(3.11)
∫ q

1

|f (t)|p dt

t
≤
∫ q

x

|f (t)|p dt

t
+
∫ x

x2/q

|f (t)|p dt

t
.

Letting respectively t = xs, dt
t = ds

s and t = xs−1, dt
t = −ds

s gives

(3.12)

q∫
x

|f (t)|p dt

t
+

x∫
x2/q

|f (t)|p dt

t
=

q/x∫
1

|f (xs)|p ds

s
+

q/x∫
1

∣∣f (xs−1
)∣∣p ds

s
= A+B.
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Let F be the complement of E, A (x, q) = [x, q] ∩
{
t : x2/t ∈ F

}
, and B (x, q) =[

x2/q, x
]
∩
{
t : x2/t ∈ F

}
. Then

A =
∫

1 ≤ s ≤ q/x
xs−1 ∈ F

|f (xs)|p ds

s
+
∫ q/x

1

∣∣∣f (sx) + (−1)k
saf
(
s−1x

)∣∣∣p ds

s

(3.13)

≤
∫

A(x,q)

|f (t)|p dt

t
+ sup

s∈[1, q
x ]

s
ap
2

∫ q/x

1

∣∣∣s− a
2 f (sx) + (−1)k s

a
2 f
(
s−1x

)∣∣∣p ds

s
(3.14)

and

B =
∫

1 ≤ s ≤ q/x
xs ∈ F

∣∣f (xs−1
)∣∣p ds

s
+
∫ q/x

1

∣∣∣s−af (sx) + (−1)k f
(
s−1x

)∣∣∣p ds

s

≤
∫

B(x,q)

|f (t)|p dt

t
+ sup

s∈[1, q
x ]

s−
ap
2

∫ q/x

1

∣∣∣s− a
2 f (sx) + (−1)k

s
a
2 f
(
s−1x

)∣∣∣p ds

s
.

(3.15)

Combining relations (3.11) to (3.15) and taking

sup
s∈[1, q

x ]
s

ap
2 + sup

s∈[1, q
x ]

s−
ap
2 ≤ 2

|a|p
2 + 2

|a|p
2 = 2

|a|p
2 +1

into account gives
(3.16)∫ q

1

|f (t)|p dt

t
≤
∫

C(x,q)

|f (t)|p dt

t
+2

|a|p
2 +1

∫ q/x

1

∣∣∣s−a
2 f (sx) + (−1)k

s
a
2 f
(
s−1x

)∣∣∣p ds

s

where C (x, q) =
[
x2/q, q

]
∩
{
t : x2/t ∈ F

}
.

If x ∈ E and if

(3.17)
∫

C(x,q)

|f (t)|p dt

t
≤ 1

2

∫ q

1

|f (t)|p dt

t
,

then by inequalities (3.9) and (3.16), relation (3.10) will follow. Thus it suffices to
show that there exists an x ∈

[
1,
√

q
]

for which relation (3.17) holds.
For each x ∈

[
1,
√

q
]
, let Cx be the curve

{(
t, x2/t

)
: x2/q ≤ t ≤ q

}
. Each of

these curves lies in the square S with lower left corner (1/q, 1/q) and upper right
corner (q, q) and joins a point on the top edge of S to a point on the right edge of
S. The curves are all disjoint. The Jacobian of the transformation u = t, v = x2/t
is 2x/t and for all q, x, and t as above, t/(2x) ≤ q/2 ≤ 1, so for any non-negative
measurable function s (u, v) we have

(3.18)
∫ √

q

1

(∫ q

x2/q

s
(
t, x2/t

)
dt

)
dx ≤

∫ q

q−1

∫ q

q−1
s (u, v) dudv.
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Since 1 is a point of density of E, if we let χF be the characteristic function of the
complement of E and define ε = ε (q) by

ε =
1

q − q−1

∫ q

q−1
χF (v) dv,

then ε → 0 as q → 1. Next let s (u, v) = χF (v) |f (u)|p /u and compute
q∫

q−1

q∫
q−1

s (u, v) dudv = ε
(
q − q−1

) q∫
q−1

|f (u)|p du

u
(3.19)

≤ 2ε
(
q − q−1

) q∫
1

|f (u)|p du

u
.

Next observe that

(3.20)
∫

C(x,q)

|f (t)|p dt

t
=
∫ q

x2/q

χF

(
x2/t

)
|f (t)|p dt

t
=
∫ q

x2/q

s
(
t, x2/t

)
dt.

Relations (3.18)-(3.20) lead to

∫
E∩[1,

√
q]

⎧⎪⎨⎪⎩
∫

C(x,q)

|f (t)|p dt

t

⎫⎪⎬⎪⎭ dx ≤

√
q∫

1

⎧⎪⎨⎪⎩
∫

C(x,q)

|f (t)|p dt

t

⎫⎪⎬⎪⎭ dx

≤ 2ε
(
q − q−1

) q∫
1

|f (u)|p du

u
.

So there must be an x ∈ E ∩
[
1,
√

q
]

for which

|E ∩ [1,
√

q]|
∫

C(x,q)

|f (t)|p dt

t
≤ 2ε

(
q − q−1

) q∫
1

|f (u)|p du

u
,

and, because of the inequality

|E ∩ [1,
√

q]| = |[1,
√

q]| − |F ∩ [1,
√

q]|
≥ (

√
q − 1) −

(
q − q−1

)
ε

=
(
q − q−1

)( q(√
q + 1

)
(q + 1)

− ε

)
,

there holds for this x the inequality∫
C(x,q)

|f (t)|p dt

t
≤

⎧⎨⎩ 2ε
q

(√q+1)(q+1)
− ε

⎫⎬⎭
q∫

1

|f (u)|p du

u
.

As q ↘ 1, ε → 0, so the quantity in curly brackets is less than 1/2 for q sufficiently
close to 1. This establishes relation (3.17) and, consequently, completes the proof
of the lemma. �
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We turn now to proving the converse part of Theorem 1.

Proof. Our hypothesis is that at every point x of a measurable set E,∥∥∥∥∥ t−
a
2 f (tx) + (−1)k

t
a
2 f
(
t−1x

)
2ak

− P
(
t1/2 − t−1/2

)∥∥∥∥∥
p

(q) = O
(
(q − 1)k

)
where P is a polynomial of degree k− 2 when k ≥ 2, and P = 0 when k = 1. Since
2ak is bounded we rewrite this as∥∥∥t− a

2 f (tx) + (−1)k
t

a
2 f
(
t−1x

)
− 2akP

(
t1/2 − t−1/2

)∥∥∥
p
(q) = O

(
(q − 1)k

)
.

The polynomial P has only terms of odd (resp. even) order if k is odd (resp. even).
Holder’s inequality implies the existence of a constant Cp so that for q close to 1,∣∣∣∣ 1

q − 1

∫ q

1

g (t)
dt

t

∣∣∣∣ ≤ Cp ‖g (t)‖p (q) ,

so from our original hypothesis it follows that∫ q

1

t−
a
2 f (tx)

dt

t
+ (−1)k

∫ q

1

t
a
2 f
(
t−1x

) dt

t
−
∫ q

1

P
(
t

1
2 − t−

1
2

)
2ak

dt

t
= O

(
dk+1

)
,

where d = q
1
2 − q−

1
2 . Now let

G (x) = G (x, a) :=
∫ x

1

f (t)
dt

ta/2+1
.

The substitution u = tx transforms the first integral into G (qx) − G (x) and the
substitution u = t−1x transforms the second into G (x)−G

(
q−1x

)
. So we have the

relation

G (qx) + (−1)k+1
G
(
q−1x

)
=
[
1 − (−1)k

]
G (x)(3.21)

+
∫ q

1

P
(
t1/2 − t−1/2

)
2ak

dt

t
+ O

(
dk+1

)
.

The integral may be taken to be a polynomial Q of degree k − 1 in d of parity
opposite to P (Lemma 6). In other words, G is k + 1 (a = 0) symmetric quantum
bounded in L∞ and so by Corollary 2 has a k + 1 L∞ Peano derivative a.e. on
E. Integration by parts shows that F (x) :=

∫ x

1
f (t) dt, the indefinite integral of f ,

also has k + 1 L∞ Peano derivatives a.e. on E (Lemma 7).
The final step is to modify an argument of Mary Weiss in a routine way to

conclude that f has a.e. one fewer Lp Peano derivatives than its indefinite integral
F has L∞ ones. From the original hypothesis of

1
q − 1

∫ q

1

∣∣∣∣∣ t−
a
2 f (tx) + (−1)k

t
a
2 f
(
t−1x

)
2ak

− P (t)

∣∣∣∣∣
p

dt

t
= O

(
(q − 1)kp

)
for every x ∈ E, we wish to conclude that for a.e. x ∈ E, there is a polynomial
Q (t) such that

1
h

∫ h

0

|f (x + t) − f (x) − Q (t)|p dt = o
(
hkp
)
.
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As we showed above, we may assume that F , the indefinite integral of f has k + 1
Peano derivatives on E. By a theorem of Marcinkiewicz [Zygmund, Trig. Series,
vol. II, p. 73], there is a perfect set Π ⊂ E, with measure arbitrarily close to that of
E and functions G and L so that F = G+L, G ∈ Ck+1 and L (x) = 0 when x ∈ Π.
Since F has k + 1 Peano derivatives in Π, F is differentiable there, and hence L
is also. Since Π is perfect, L′ (x) = 0 when x ∈ Π. So writing G′ (x) = g (x) and
L′ (x) = � (x), we have

(3.22) f (x) = g (x) + � (x) ,

valid in the set where F ′ (x) exists and equals f (x) (and so a.e.). Here g (x) ∈ Ck

and l (x) = 0 for x ∈ Π. Since g ∈ Ck, the estimate

1
q − 1

∫ q

1

∣∣∣t−a
2 g (tx) + (−1)k

t
a
2 g
(
t−1x

)
− 2akP (t, f)

∣∣∣p dt

t
= O

(
(q − 1)kp

)
holds everywhere, and by the decomposition (3.22), on Π we also have∫ q

1

∣∣∣t−a
2 � (tx) + (−1)k

t
a
2 �
(
t−1x

)∣∣∣p dt

t
= O

(
(q − 1)kp+1

)
.

Applying Lemma 8, we also have for x ∈ Π that∫ 1+h

1

|� (tx)|p dt

t
= O

(
hkp+1

)
.

Since t is close to 1, this implies∫ 1+h

1

|� (tx)|p dt = O
(
hkp+1

)
.

Letting u = tx − x and H = hx∫ H

0

|� (x + u)|p du = O
(
Hkp+1

)
,

which, by a theorem of Calderón and Zygmund, implies that � has a kth Peano Lp

derivative a.e. in Π. Since both g and � do, so does f . �
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[ACR] J. M. Ash, S. Catoiu, and R. Ŕıos-Collantes-de-Terán, On the nth quantum derivative, J.

London Math. Soc., 66(2002), 114-130. MR1911224 (2003h:26009)
[AJ] J. M. Ash and R. Jones, Optimal numerical differentiation using three function evalua-

tions, Math. Comp., 37 (1981), 159-167. MR0616368 (84a:65008)
[AJJ] J. M. Ash, S. Jansen and R. Jones,Optimal numerical differentiation using n function

evaluations , Estratto da Calcolo, 21(1984), 151-169. MR0799618 (86k:65017)
[CZ] A. P. Calderón and A. Zygmund, Local properties of solutions of elliptic partial differential

equations, Studia Math., 20(1961), 171–225. MR0136849 (25:310)
[GR] G. Gasper and M. Rahman, Basic hypergeometric series. Encyclopedia of Mathematics and

its Applications, 96. Cambridge Univ. Press, Cambridge, 2004. MR2128719 (2006d:33028)
[MZ] J. Marcinkiewicz and A. Zygmund, On the differentiability of functions and summability

of trigonometric series, Fund. Math. 26(1936), 1–43.

http://www.ams.org/mathscinet-getitem?mr=0204583
http://www.ams.org/mathscinet-getitem?mr=0204583
http://www.ams.org/mathscinet-getitem?mr=2020192
http://www.ams.org/mathscinet-getitem?mr=2020192
http://www.ams.org/mathscinet-getitem?mr=2177431
http://www.ams.org/mathscinet-getitem?mr=2177431
http://www.ams.org/mathscinet-getitem?mr=1911224
http://www.ams.org/mathscinet-getitem?mr=1911224
http://www.ams.org/mathscinet-getitem?mr=0616368
http://www.ams.org/mathscinet-getitem?mr=0616368
http://www.ams.org/mathscinet-getitem?mr=0799618
http://www.ams.org/mathscinet-getitem?mr=0799618
http://www.ams.org/mathscinet-getitem?mr=0136849
http://www.ams.org/mathscinet-getitem?mr=0136849
http://www.ams.org/mathscinet-getitem?mr=2128719
http://www.ams.org/mathscinet-getitem?mr=2128719


QUANTUM SYMMETRIC Lp DERIVATIVES 987
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