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UNITARY DUAL OF THE NON-SPLIT INNER FORM OF Sp(8, F)

MARCELA HANZER

ABSTRACT. We classify the non-cuspidal part of the unitary dual of the non-
quasi-split inner form of Sp(8, F'), where F' is a non-archimedean field of char-
acteristic zero. We obtain a conjectural description of the discrete L-packets
which contain representations of Sp(4, F') and its non-split inner form.

1. INTRODUCTION

We are interested in the classification of the non-cuspidal part of the unitary dual
of the non-split inner form of the group Sp(8, F'), where F is p-adic field of char-
acteristic zero. We denote this hermitian quaternionic group by Ga(D, 1), where
D is a quaternionic division algebra over F. We obtain a complete classification
modulo a standard conjecture about the transfer of the Plancherel measure. The
analysis of the principal series representations relies mainly on the knowledge of the
corresponding Jacquet modules, and in a calculation of those we use the structure
of a U—Hopf module on the sum of the Grothendieck groups of the smooth, finite
length representations of the hermitian quaternionic groups. We will briefly recall
this structure ([20],[5]). The unitary dual of the group G2(D, 1) has an interesting
feature: There is an isolated representation in the unitary dual, and it is a local
component of an automorphic representation which lies in the residual spectrum
of this group. The consequence of the analysis of the representations which have
a cuspidal support on the non-Siegel maximal parabolic subgroup is a conjectural
description of the discrete L—packets that contain the representations of Sp(4, F)
and its non-split inner form G;(D, 1).

In the preliminaries we recall the definition of the hermitian quaternionic group
and the structure of its Levi subgroups. We also recall the aforementioned structure
of the Y—Hopf module on the representations. In the second section we analyze
the principal series representations, and determine all the subquotients. The case
of the principal series representations where the inducing representation of the
Levi subgroup D* x D* is of the form 7 ® 75, for higher dimensional irreducible
representations 7;, ¢ = 1,2 of D*, is the same as for the non-split inner form of the
group SO(8, F), and they are classified in [5]. In the third section we determine
all the unitarizable subquotients of these principal series. In the fourth section we
calculate the points of reducibility for the representations supported on the Siegel
maximal parabolic subgroup and in the fifth section we calculate reducibility points
for the representations supported on the non-Sigel maximal parabolic subgroup.
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E. Lapid for turning my attention to the result of Waldspurger.

2. PRELIMINARIES

For an admissible representation o of any group we consider, we denote by w,
its central character (if it exists). We will denote the Steinberg representation of
the group G by Stg, and the trivial representation of that group by 1. We denote
by A a basis of the root system on the reductive group G with respect to some
maximal split torus (over F). Let 6 be a subset of A. We denote the corresponding
standard parabolic subgroup by Py, and the corresponding standard Levi subgroup
by My. For an admissible representation o of the group Mjy, let Indgeo be the
parabolically induced representation (normalized induction). Let w be an element
of the Weyl group such that w(f) C A. Then, we will denote by A, (c) a standard
intertwining operator between the representations Indgea and Indgw (e)w(a). We
denote by ay,c the complexified Lie algebra of a standard torus Ag. Then, v € ay
defines a character of the Levi subgroup My by the Harish—-Chandra homomorphism
Hp,, and a standard intertwining operator for such a “twisted” representation is
denoted A, (v,0). The reflection in the Weyl group corresponding to a positive
root « is denoted by w,.

Let F be a non-archimedean local field of characteristic zero, having residual
field with ¢ elements. We choose a uniformizer of the field and denote it by @. Let
D be a quaternionic algebra, central over F' and let 7 be an involution, fixing the
center of D (involution of the first kind). The division algebra D defines a reductive
group G over F as follows. Let

Vo=eD®---®e,DPe,1DDB--- P e D

be a right vector space over D. Fix € € {1,—1}. The relations (e;, ea—jy1) =
05 for i =1,2,...,n define a hermitian form on V,,:

(v,0") =er((v',v)),v,0v € V,, e €{-1,1},
(va,v'z") = 7(x) (v, 0" )2, x, 2" € D.

Let G, (D, ¢) be the group of the isometries of the form (-,-). We are interested in
the case € = 1, when the group G, (D, 1) is the non-split inner form of the group
Sp(4n, F). We will fix a maximal F-split torus Ag of the group G,,(D,1):

At
A2

AO(F): :)\iEF*

At

At

We denote by s; an element of the Weyl group which interchanges A; and A\;41, and
by c; the one which interchanges A; and )\j_l, for the element of the torus Ag of the
above form.
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For g = (¢9i5) € GL(n,D), we denote by ¢g* an involution ¢* = (7(g;;)), and
g~* = (7(gj;))~". Then, for an admissible representation m of GL(n,D), we
define representation 7* on the same representation space in the following way:
7*(g) = 7(g~*). Mui¢ and Savin observed ([12]) that, for an irreducible admissible
representation 7 of GL(n, D), the following holds:

=

™

1

We choose and fix a minimal F—parabolic subgroup of G,,(D, 1) consisting of the
upper-triangular matrices, so the standard Levi F—parabolic subgroups are of the
following form:

A,
My(F) = e An, € GL(n;, D),
’ g geG/(D,1)
ni
B,
for some integers n1,...,nk,r such that > n; +r = n, and r can be zero. Here, for
the matrices B,,, we have B,, = JniA;i*Jni, t=1,...,k, where J,, are n; by n;

matrices with 1’s on the opposite diagonal, and zeroes everywhere else.

For admissible representations o;, ¢ = 1, ...k, of the groups GL(n;, D), with n =
ni+- - -+ng, a normalized parabolically induced representation IndgL(n’D)al R ®
oy, of the group GL(n, D) will be denoted by o1 X o9 X« - - X o). Here, P is a standard
parabolic subgroup with Levi subgroup isomorphic to GL(ny, D) X - - - X GL(ng, D).

Analogously, for admissible representations o;, ¢ = 1,...,k, of the groups
GL(n;, D), and an admissible representation 7 of the group G, (D, 1), such that n =
ni+---+ng+r, a normalized parabolically induced representation Indg"(D’l)al ®
-+~ ®0 QT of the group G, (D, 1) will be denoted by 01 X0 - - - X o 7. The Jacquet
module of the representation 7 of the group G, (D, 1) with respect to the standard
parabolic subgroup P of the above form, will be denoted by 5(,,; n,,....n,) (7).

We will denote by v a p—adic norm on F', or the composition of the norm homo-
morphism from D* to F* with the p-adic norm. The standard representations are
then of the following form:

o1V°! X 09U°%2 X -+ X oV X T,

where the representations o;, i = 1,..., k, are irreducible discrete series represen-
tations, the representation 7 is irreducible tempered, and s;, i = 1,...,k, are real
numbers such that s; > so--- > s > 0. The corresponding Langlands quotient is
then denoted by L(o1v%t, 09v®2, ... opv®;T).

For an irreducible, cuspidal representation o of the group GL(n,D) there is
a discrete series representation ¢’ of the group GL(2n,F) attached to it by the
Jacquet-Langlands correspondence. Depending on whether this representation ¢’ is
cuspidal, or non-cuspidal, we define v, = v or v, = 12 as a ‘distance’ in the cuspidal
segments ([2]). We will be mainly interested in the case n = 1, and in that case,
if o is a character, then v, = v?, and if o is a higher-dimensional representation
of D*, we have v, = v. When p is a cuspidal, irreducible representation of the
group GL(n, D), the induced representation pv, x p of the group GL(2n, D) (which
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has length equal to two) has a unique irreducible subrepresentation, which is an
essentially square integrable representation. We denote it by 6(pv,, p).

If 7 is an irreducible representation of the group D*, such that the representation
T X 1 of the group G1(D, 1) reduces for some positive real number sg, then the
representation 7% x 1 has a unique subrepresentation, which is a square integrable,
and we denote it by §[rr®0;1].

We denote by R,, the Grothendieck group of smooth representations of finite
length of the group GL(n, D). Let R = €, Ry. For two finite-length admissible
representations 71 and o of the groups GL(ni, D) and GL(ns, D), respectively,
we define the multiplication by m(m;, m2) = 71 X 72, and then extend linearly to a
mapping m : R® R — R. For a smooth, finite length representation = of GL(n, D),
we define

m*(m) = s.s(rgy(n)) € R® R
k=0

Here, ) (m) denotes the Jacquet module with respect to the standard maximal
parabolic subgroup of GL(n, D) with Levi subgroup equal to

GL(k,D) x GL(n — k, D).

We extend this comultiplication to a mapping m* : R — R ® R. These two
operations define a Hopf algebra structure on R.

Let R(G,(D,1) denote the Grothendieck group of smooth representations of
finite length of the group G, (D, 1), and let R(G) = ,, R(Gn(D,1)). Then,
R(G) is, by parabolic induction, a module for the algebra R, and the left multipli-
cation by elements of R is, as before, denoted by x. For a smooth, finite length
representation o of the group G, (D, 1) we put

pi(o) =Y s.s(s)(0)).
k=0

We extend p* by linearity to R(G). We denote by s : R® R — R® R a linear
map such that s(m; ® m3) = 7o ® my for the representations 7y and mo. The ring
homomorphism ¥ : R — R ® R is given as the following composition:

U=(m®l)o(*®m*)osom™.

In the previous formula, m is a multiplication, m* is a comultiplication on R, and
* is an involution, defined above for the representations of the GL(-, D)-groups.
Then, the structure of a ¥—Hopf module on R(G) is the following ([5],[20]):

(> o) = V() x p* (o).

3. THE PRINCIPAL SERIES

We shall first analyze the principal series of the form 7 = x1v% x x2v/® x 1, where
Xi, © = 1,2, are unitary characters of D*, and «, § are real numbers. It is easy to
see (using intertwining operators) that there is a standard representation, unique
up to isomorphism, which has the same composition series as the representation
m; we denote it by 7°. The following lemma is an easy consequence of the results
obtained in [12].
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Lemma 3.1. Let x be a unitary character of D*, and s € R. Then we have the
following:
(i) If x® # 1, the representation xv° x 1 of the group G1(D, 1) is irreducible for
every s € R, and then xv® x1 = L(xv!*l;1) if s # 0, and the representation
x X 1 is tempered.
(i) If x® = 1, but x # 1, the representation xv* x 1 reduces only for s =0, and
in that case, it is a sum of two non-equivalent, tempered representations.
(iii) If x = 1, v® x 1 reduces only for s = i%, and then (in the appropriate
Grothendieck group) vEE x 1= L(V%; 1)+ 5[u%; 1] =1¢,(p,1) + Sta,(p,1)-

Using the factorization of the long intertwining operator ([18], see also [19]), we
obtain that the representation y;v® x xgyﬂ x 1 reduces if and only if some of the
representations

(lea)il v 17 (Xgl/ﬁ)il % 1’ (lea)il % (Xzyﬁ)il

reduce. So, having in mind the previous lemma and the criterion for the reducibility
of the principal series of GL(2, D) mentioned in the previous section, we see that
if the representation yv® x yv” x 1 reduces, then

o orﬂE{O,:I:g}, or tatf=2

We describe the reducibility points and the decomposition of this kind of prin-
cipal series in the next several lemmas.

Proposition 3.2. Let m = xy1v® x x1v°t2 x 1.
If X3 # 1, the length of  is two, and

7= LT, ™)) + x T L(v, v ) x 1.

The second summand is the Langlands quotient of the standard representation mw*.
For a = —1 the first summand is a tempered representation.
If x3 = 1, then the following hold:

(i) Assume x1 = 1. Then, if o ¢ {0,£3}, the representation © has length
equal to two, and, analogous to the case X3 # 1, we have

=Lt Us(, v 1) + v L(v, vt 3 1

Moreover, we have the following (in the appropriate Grothendieck group):
(a) If a =0, then:

V2 x 1 x1=L(vStere.p)l) + Lv? 1 x1).
(b) If =3, then:

T 3
2 2

vz Xxv2xl= L(V%;Stcl(p)l)) + L(V%StGL(Q,Dﬁ 1) + L(V%vyg; 1) + StG2(D71)‘
(c) If a = =3, then:
Vi xvixl= L(V%StGL(Q)D); 1)+ L(V%;Stgl(DJ)) + L(V%,V%; 1) + 71,

where m 1S a square integrable representation.
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(ii) Assume x1 # 1. If a ¢ {0, -2}, the representation m has length two, and
it has the composition series analogous to the case x3 # 1.
If a =0 (or a = —2) we have

x1v? x x1 ¥ 1= L(x1v* 1) + L(xa1v*; Te) 4+ 2L(x1vStgrie,py; 1) + T2 + w3,

where x1 X 1 =Ty + 15, a sum of two non-equivalent irreducible tempered
representations, and mo and w3 are square integrable representations.

Proof. In the following analysis, we extensively use Remark 3.2. and Lemma 3.7.
from [21]. The Jacquet modules of the representation involved are

s2) vt x 1)

=x1* (v, H @1+ Xl_ll/*(o‘“)é(y, v )@l+x v x xr el
and
5(1)(X1Va+16(u, v x1) =Py 1+ xT T @ xar XL

We obtain that the reducibility of the representation y;v*T1§(v,v~1) x 1 depends
on whether the representations Xl_lz/’a x x1v°72, x1v® x 1 and x1v°72 x 1 are
irreducible or not. If x? # 1, all these representations are irreducible, forcing the
representation X]_Va—‘rlStGL(Q’D) x 1 and, by the Aubert involution, the represen-
tation X11/O‘+11GL(2)D) x 1, to be irreducible. So we are left to deal with the cases
described in the proposition. In the case

P x1xl

we apply Proposition 6.3 of [21] and obtain the irreducibility of the representation
vStar(z,p)y X 1. For a = f%, we have
V2 x 2 x1
_1 _1 1 1
=V QStGL(g)D) X1+v 21GL(2,D) Xx1l=v2x StGl(D,l) +vz X 1G1(D,1)-
We analyze the Jacquet module

TD*XGl(D,l)(V% X StGl(D,l)) = l/% ® V% x 1+ I/% ® StGl(D,l) + I/_% & StGl(D,1)~

So, the length of the representation Ve X Sta,(p,1) is at most three. If we assume it
is three, then the representation vi@uixlisal acquet module of an irreducible
subquotient of the representation Vi xS ta,(p,1)- But, by checking all the possibil-
ities for the rg (2, py~Jacquet module of that subquotient, and then calculating the
Jacquet module for the minimal parabolic subgroup, we see that this is impossible.
We conclude that in the Grothendieck group we have

1 1
v% X Stg,(p1y = L(v?; Stg,(p,1)) + 71,

for some irreducible representation 7;. Analyzing the possibilities for the Jacquet
module of the representation w1, we find out that

TD*XG1(D,1)(7T1) = V% & 1/% X1+ V% ® StG1(D,1)~

This forces m; to be a square integrable representation. For a0 = % we obtain

the representation v x v2 x 1, and by the well-known results (for example [3]),
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we get that the length of this representation is four, that it has a square inte-
grable subquotient (the Steinberg representation), and the Langlands quotient of
this representation is the trivial representation of the group Gao(D,1). The other
two subquotients are easily identified. For x; # 1, the only more complicated case
is a € {0, —2}. We denote x1 x 1 =T; + T», where T;, i = 1,2, are non-equivalent,
irreducible tempered representations. Then the discussion, which mainly includes
the analysis of the Jacquet modules, is very similar to the one in the case of the
principal series of the group Ga2(D,—1) ([5]). There we faced a similar situation
examining the principal series representation 7v X 7 x 1, where 7 is a selfcontragre-
dient representation of D* of dimension greater than one with a non-trivial central
character. (]

Proposition 3.3. We consider a representation m = V3 x Xov® x 1. If x3 # 1, the
representation w has length equal to two, and we have

3
vz X xor® X1 = xov% % 1G1(D,1) + xov® X StGl(D,1)~

The first summand above is the Langlands quotient of the representation 7%, and the
second is L(x2v1°l; Sta, (p.1)). (For a =0 this summand is an irreducible tempered
representation).

If X3 = 1 we have

(i) If we assume that x2 = 1, then if o ¢ {£3,+£2} the representation T
has length equal to two and the composition series equivalent to the case
X3 #1. Ifa e {:l:%,:l:%} we obtain the representations analyzed in the
previous proposition.

(ii) If we assume that x2 # 1, then if a # 0, the representation m has length
equal to two, and the composition series is analogous to the case x3 # 1.
In the case a = 0, we denote xo x 1 =Ty + Ty, for Ty and Ty irreducible
tempered representations, and we have

Vs x X2 X 1= L(V%;Tl) —|—L(V%;T2) + T4+ Ty.
The representations T4 and T, are non-equivalent, irreducible tempered rep-
resentations such that xo X Stg,(p,1)y = Ty +T}.

Proof. We consider the following Jacquet modules:

3 « « — —
TGy (D) (XaV* X Sta, (1) =V 2 @x2v* x 14+ x20*®St e, (p1)+Xa v “®Ste, (p.1),

rGaLee,p)(XeV™ X Sta,(p,1)) = X2V X vE @1+ Xglu_a xvE @l

Again, by [21], if we assume that the representations xav® X v, Xo T X vt

and x2v® x 1 are irreducible, then the irreducibility of the representation yov® x
Sta,(p,1) and, by the Aubert involution, of the representation y2v* x lg, (p 1),
follows. If these condition are violated, then the only representation left to consider,
besides the ones considered in the previous proposition, are the following ones:

V%XV%X]].a,ndXQXI/% X1,
with x2 = 1, x2 # 1. Consider the first one. We have

T'GL(Z’D)(V% X StGl(D,l)) = I/% X I/% ®1+ l/_%
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We conclude that the length of Vs % Sta,(p,1) is at most two. So, we assume that
V3 x Sta,(p,1) = L(V%;StGI(D)l)) + o, where o is some irreducible representation.
From the expression for the GL(2, D)-Jacquet module we have rgr2,p)(0) = v x
v2 ® 1. But when we try to reconcile that with the choices for the Jacquet module
with respect to the D* x G1(D,1)-Levi subgroup, we find that this is impossible.
So, V2 x Sta,(p.1) = L(V%;StGI(D’l)). In the second case, we have

szz/% 1=y ><1T1—|—1/% x Ty
= X2 X Stg,(p,1) + X2 X lg,(D,1)-

Because the representations L(v3;7T) and L(v2;T}) have to be subquotients of
X2 X 1lg,(p,1), the length of x2 X 1g,(p,1) is at least two, but by looking at the
GL(2, D)-Jacquet module of the representation yo x Stg(p,1) we obtain that the
representation xo X Stg(p,1) has length at most two. So the result follows. O

Proposition 3.4. For x? =1, x1 # 1 and unitary character x2, we consider the
representation ™ = xov® X x1 X 1. We also denote x1 x 1 =T, ®Ts. The following
holds:

(a) If x2 # 1, the length of the representation T is two, and we have:
7= Lxov'® Ty) 4 L(x2v/?: Ty), for a # 0.

For a = 0, the representation w is a sum of two non-equivalent irreducible
tempered representations.
(b) If x3 =1, then

(i) Assume that xo = 1. Then, if a ¢ {£3}, the representation 7 has
length equal to two, and the composition series are analogous to the
case X3 # 1. If a = %, this case was covered in the previous proposi-
tion.

(ii) Assume that xo # 1. If a # 0, the representation m has length equal
to two and the composition series are analogous to the case x3 # 1; if
a = 0 we have: if x1 = x2 the length of m is two, and it is a sum of
two non-equivalent tempered representations, and if x1 # X2, T s a
sum of four non-equivalent tempered representations.

Proof. We have

X2V X x1 X 1 = xov® X Ty + xov™ x Ts.
Then

Tpexy (D) (x2r® X T1) = x1 @ x2v™ X L+ x2v* @ T1 + x5 'v ™ * @ Th.
Also
rare,p)(xav® X T1) = x2r* x x1 ®@ 1+ x5 v " x x1 ® 1.
If we assume irreducibility of the representations 2% x X1, X5 ly=2 x y1 and
X2v® % 1, by [21], it follows that the representation 7 has length equal to two.
Dropping these assumptions, the only new cases left to consider are
X1 X x1 %1

and

X1 X xe @1 ifx3 =1, xa # 1, x2 # x1-
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The former one has length two and the latter four by [6], and all the summands
appearing are non-equivalent. (Il

Now we turn to the mixed case. We denote m = yv® x 707 x 1, where y is a
unitary character of D*, and 7 is a unitary representation of D* of dimension greater
than one. The representation 7 reduces only if at least one of the representations
xv® x 1 or 70”7 % 1 reduces. Then we have the following

Proposition 3.5. (i) If TvP x 1 is irreducible, then the representation TV x
v: x 1 has length two and

™ = TVB X ]-Gl(D,l) + L(TV‘m; StGl(D,l))v

where the first summand is the Langlands quotient of the representation w*°;
the second is tempered if f = 0.
i) Assume that T 27T and w, = 1. Then

where T4 15 a square integrable representation.
(iii) Assume that T 27T and w, # 1. Then

Ve X T 1:L(I/%;Tl)—|—L(1/%;T2)—|—T5'—|—T6/,

where 7 X1 =Ty + Ty, and T3 and T} are non-equivalent, irreducible tem-
pered representations such that T x Stg, (p.1) = Ty + Tg.

(iv) Assume that x> = 1 and x # 1, so that x x 1 = Ty + Ty. Then, if the
representation Tv? x 1 does not reduce, the representation m has length
two, and

™= L(TI/'m;Tl) + L(TVW;TQ), if B#0.

If B = 0 the representation m is a sum of two mon-equivalent tempered
representations.
(v) For x> =1, x # 1 with Tv2 % 1 reducible, we have

VI X xx1= L(TV%;Tl) —|—L(TV%;T2) + 15 + T,

where Ty and T} are non-equivalent, irreducible tempered representations
such that x x 6rvz;1] = TL + T},
(vi) For x?> =1, x # 1 with 7 x 1 is reducible, we have

XXTxX1=T§+To+Ti; + T,

and representations on the right hand side of the above equation are in-
equivalent, irreducible and tempered.

(vii) When the representation xv® x 1 is irreducible and Tv° x 1 is reducible, the
representation w has length two, and the analysis of the composition series is
analogous to the previous cases of reducible xv® x1 and irreducible Tv° x 1.

Proof. This is similar to the proof of the previous proposition. We leave the details
to the reader. O

The groups G3(D, 1) and Go(D, —1) have an analogous structure of the U—Hopf
module on the Grothendieck group, and in the groups G1(D, 1) and G1(D,—1) we
have the same reducibilites of the representations 7v% x 1, where dim7 > 1. So,
the composition series of the representations mv® X 7v? x 1, where 7, i = 1,2,
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are unitary representations of D* of dimension greater than one, of the group
G2(D, 1), are analogous to the similar representations of the group Go(D, —1) which
were analyzed in [5]. We just note the results, because we need them for the
unitarizability questions.

Proposition 3.6. Let 71 denote an irreducible, admissible, unitary representation
of D* of dimension greater than one, and let m = Tv®T! x 1v® x 1. If 7 is not a
self-dual representation, the representation m has length equal to two, and we have

7= L(rv* T mr®) x 1+ L(V|a+%‘5(ﬁué,ﬁu*%); 1).

The first summand in the previous relation is the Langlands quotient of the repre-
sentation w°; the second is tempered for a = % Otherwise, we have the following

without loss of generality, we can assume o > —1).
2
(i) If wr, =1 we have the following:

et x v xl

L(v 25(7'1V2 Tvo 2) D+ L(nv;m x 1), ifa=0,
L(wé(mvz, mv~2);1) + L(mw?;6[rv2; 1)) + m4 + L(nw?, mrz; 1), if a = 1
= L(T11/2 [711/5;1])—l—L(TVlé,Tl/l%;l)—i—Tl + Ty, if a:—%,
(
(

|>—l

vetag (T1V%,Tll/_%); 1)+ L(mv*t, mv=21), ifac (—%,0),
Va+§ (TIV%)le_%); 1) + L(T1Va+177-1ya; 1)) ZfO[ € RJ’_ \ {%}

~

-

™~

(ii) If wy, #1 and 71 x 1 = T4 + Ty, then we have the following:

et x v xl
L(mv;TY) + L(rv; T)) + 2L(v26(rvz, mr—2); 1) + 15 + 76, if a = 0,
Lot 28(mv, v 2); 1) + Lt 7o 1), if a > 0,
5(7’1V%,71V_%) X 1-|—L(7'1V%,T11/%; 1), ifa= —%,
Lv*t28(rive, v~ 2);1) + Lnv®t o= 1), if a € (—34,0).

The representations m;, © = 4,5,6, are mutually non-equivalent square—integrable
representations, and T;, i = 1,2, and 5(7’1V%,711/_%) x 1 in the second case are
mutually non-equivalent tempered (non square-integrable) representations.

Proposition 3.7. Let m» be a unitary, irreducible self-dual representation of D* of
dimension greater than one, with w,;, = 1, and let 71 denote a unitary irreducible
representation of D* of dimension greater than one.

(a) If 1 2 71, then we have the following:

v X v 31 =1 x L(TV%; 1)+ L(Tll/la‘;(s[TV%; 1)),

where the first summand is the Langlands quotient of the representation mw°; the
second is tempered for a = 0.

(b) If & 71, then we have the following two cases:

(i) If wy, =1, then we have:

VY X 1w x 1= L(Tll/‘a‘;(S[TgV%; 1) + L(le‘o‘l,rgz/%; 1)



UNITARY DUAL 1015
if lo] € Rg\{0, 5,3}
v X 7'21/% x 1
= L(le/%;(i[rgz/%; 1)) + L(Tzl/%;5[7'11/%; 1)) + L(le/%,rgy%; 1) 4+ 77
if la E % and 71 & To;
1 1 1
% X v 31 = L(nw?;8[nve; 1)) + L(rvZ,mvi; 1)+ T+ Th
if laf = 1 and 7 =2 7;
T X Tov? 31 =1y X 5[7'21/%; 1]+ L(Tgyé;n x 1)
if a = 0; and finally
Tll/a X 7'21/% x 1
= L(1/5(7'11/%,711/*%); 1)+ L(Tll/%;(s[’rl/%; 1)+ 7+ L(Tll/%,’rll/%; 1)
if la| = 2 and 71 = 19, and
1 3 1 3 1
TV X Tov2 X 1 = L(mv2;8[mv2; 1)) + L(mve, pr2; 1)

if |a| = % and 11 2 1o. The representation w7 is a square—integrable representation,

and T1 X 5[721/%; 1] is an irreducible tempered representation.
(ii) If wr, #1 and 71 x 1 = T4 + Ty, then we have:

L(Tlu“"|;5[7'21/%; 1]) + L(rvlel ru3i1)  ifa#0,

1
v X vz X1 =
! ’ {L(TZV%;T?;) + L(rov3;T)) + Ts + Ty if o= 0.

The representations T;, i = 4,5, are irreducible tempered representations.

Proposition 3.8. Let 7o be a unitary irreducible, self-dual representation of D*
such that w,, # 1, so that 7 x 1 = T4 & T, and let 71 be an irreducible unitary
representation of D*. Then, we have the following:

(a) If a« # 0, then we have the following:

TV X 19 X 1
L(nva;Ty) + Lnwes; T + Ta+ Ts if a = +3, 71 27, wr, =1,
L(1ov; T4) + L(mov; T4) + 2L(v2 8(mov2 , 7ov~ 7 ); 1)
+75 + e ile =Ty, a= ila
L(mv1el TY) + L(mv!el; TY), in other cases.

(b) If « =0, then we have the following:

Ts+Tr+Ts+Ty if 1 =71, wry #1, 11 E 7,
7'1X7'2>41: .
Tio+ 7111 in other cases.

The representations T;, i = 6,...,11, are mutually non-equivalent tempered (non-
square-integrable) representations.
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3.1. The summary of all the reducibility points of the principal series
representations. In order to organize the results in a more concise way, we list
all the cases discussed in this section. The tempered subquotients appearing in the
principal series will be denoted by T} (or T7), and the square integrable ones by 7;,

for some 1, j.
A) Let m = x1v%* X 172 x 1, where x; is a unitary character of D, and « € R.

° Ifﬁ#l,orifxlzlanda;é:t% orify2=1,x1 # 1 and a ¢ {0,-2}, 7
is of the length two and:

= LT, v™1);1) + xv* T L(v, v ) x 1.

. Xlzlanda:%:
™= L(V%;StGI(DJ)) + L(VgStGL(ZD); 1) + L(V%,V%; 1) + StGQ(D,1)~
° Xlzlanda:f%:
™ = L(V%StGL(Q’D); ].) + L(V%;Stgl(D71)) + L(U%,V%; ].) + 7.
e x?=1,but x; # 1 and «a € {0, —2}:
7 = L0xav% Th) + L(xav?; Te) + 2L(xavStar(e.py; 1) + w2 + 73,
where y1 x 1 =1T7 + Ts.
B) Let m = 13 x yov® x 1, where y2 is a unitary character of D*.
. Ifxg#Lorif}@:landa%{i%,i%}, orif x3 =1, x2 # 1 and a # 0,
the representation 7 is of length two and
T =x2v" X 1g,(p,1) + L(xov'*l; Sty (p,1))-
o If Y3 =1, but xy2 # 1 and a = 0, we have
m=L3T)) + L3 Ty) + T} + T}
e The remaining cases were covered under A).
C) Let m = x2v® x x1 ¥ 1, where x2 =1, x1 # 1 and 1 x 1 =Ty + T5, and Yo
is a unitary character.
eIfy3#1 orif yo=1anda# +3, orifx3 =1, xo # 1and a # 0, or if
x2 = x1 and o = 0 we have
™= Lxov*; 1) + Lx2v'*; To).

o If x3 =1, x2 # 1, x2 # x1 and a = 0 the representation 7 is a sum of four
non-equivalent tempered representations.
D) Let m = 7T X 70 x 1, where 71 is an irreducible, unitarizable represen-

tation, and dim7y > 1. If 7y & 71 we can assume o > —3.

elf 27, 0orifn 27, wy, =1and o € (—3,+00) \ {3}, or if 7 =
71, wr, # 1 and a € [—1,400) \ {0}, the length of 7 is two and we have

= Lrv*t mr®) x 1+ L(V|a+%‘5(ﬁué,ﬁu_%); 1).

o If 1 =274, wﬁ:landozzé:

m = Lwd(rw?, my~2);1) + L(mw3;8[rv2; 1)) + 1 + L(nvs, mvs; 1),
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e If 1 &7, wy, =land a=—3:
11
T = L(TlV%;(S[TlV%; 1)) + L(rvE,mvi; 1) + Ts + Tp.
o If m 27, wy, #1 and a =0 with 7y x 1 =T34 + T, we have
7= L(rw; TY) + L(rw: T)) + 2L(v2 8(miv? v~ 2); 1) + 5 + 7.

E) Let m = mqv® X ToU? X 1, where 79 2 75, w,, = 1, and 7 is an irreducible
unitarizable representation; dim7; > 1, 1 =1, 2.
e Ifm 27, orify 27, wy =1land |o] e R \{3,3}, orif 7y &7, wr, =
1, mZmand |a| =2, orif 71 27, wr, # 1 and a # 0, the length of 7 is
two and we have

T =T1vr" X L(Tl/%; 1)+ L(le‘al;(S[TV%; 1]).
o Ifm 27, wy, =1, 1 272 and |a)=%:
™= L(Tlu%;é[Tgy%; 1]) + L(Tgyé;é[Tll/%; 1)) + L(Tll/%77'2V%; 1) + 7.

o If 7y &7 and |af = 3:
T = L(TlV%;(S[TlV%; 1]) + L(TV%,TV%; )+ T + T

o If 1 &7 and |af = 3
= L(V(S(TlV%,Tll/_%); 1)+ L(le/%;é[ﬂ/%; 1)) + 74 + L(Tll/%,’ﬁl/%; 1).
o If 7 27, wy, #1 and a =0, with 7 x 1 =T} 4+ T}, we have

™= L(TQV%;T?:) + L(TQI/%;TLD +T5 + Tg.

F) Let m = mv® X 75 x 1, such that dim 7, > 1, i = 1,2, 75 & 75, w,, # 1, with
To x 1 =T§+T;. Assume o > 0.
e lfm Z7,orifm 27, wy, =1 and |a|7é%,orif7'1%ﬂ, wy, # 1 and
71 Z 7o, or if 71 & 75 and || # 1, we have:
7 = L(nv1h T + Lm!ol 1)),

o If m 27, wyy zlanda::t%:

™= L(leé;Té) + L(Tll/%;Ti) + Ty + Ts.
e The remaining cases were covered in D).

Assume « = 0. The representation 7 is a sum of four non-equivalent tempered
representations if 7; x 1 reduces and 71 2 7. Otherwise, 7 is a sum of two tempered

representations.
G) Let m = xv® x 708 x 1, with x a unitary character and dim7 > 1.
e If 7% x 1 does not reduce, and yv® = z/i%, we have:
=17 % la,(p) + L(rvAl; Sta,(p,1))-
o If 7% x 1 does not reduce, and y x 1 =T} + T5, for @ = 0 we have:
™= L(TVW;Tl) + L(TV"B‘;TQ).

o If T2 x 1 reduces, and xv“ x 1 does not, for § = j:% the representation 7
is of the length two and:

T = xV" X L(Tl/%; 1) + L(xv®; 5[7‘V%; 1)).



1018 MARCELA HANZER

o If 702 x 1 reduces, x = 1 and o = +3 (with 8 = £3):
= L(z/%;(i[rz/%; 1)) + L(TV%;Stgl(D’l)) + L(V%,TV%; 1) 4+ my.
o If T2 x1 reduces, and xy x1 =T, + T (with a =0 and 8 = i%), we have
7 =L(rv?;T1) + L(rv2; T) + TL + T},
o If 7 x1="T]+Ty, and xv* x 1 does not, 7 is of the length two and (with
8 =0):
m = L0/ T]) + Ll 1),
e If 7 x1=T{+T} and y =1, a = £3 (with 8 = 0):

m= L ) + L Ty) + T, + T,

o Ifrx1=T{+T)and x x1=T1+T5 (with « = 8 =0), 7 is a sum of four
tempered representations.

4. UNITARY SUBQUOTIENTS OF THE PRINCIPAL SERIES

By x1 and x2 we denote the unitary characters of the group D*. Let m =
X1V° X xov®2 X 1. We are interested in the unitarizability of the subquotients of
the representation 7, and we can assume (and do, throughout this section) that
$1 > 89 > 0. These subquotients were identified in the previous sections.

Proposition 4.1. Assume that X3 #1, x3 # 1. Then

(i) If x1 # Xzﬂ, or X1 = X2, then the representation ® has an irreducible
hermitian subquotient if and only if s1 = s = 0, and then this subquotient
is a tempered representation.

(ii) If x1 = Xgl, then, for so = 0, the representation m has a hermitian subquo-
tient only if s1 = 0 (and then it is tempered), and for sy > 0, the hermitian
subquotients occur only if s1 = so. Then, for each sy > 0, all the subquo-
tients of the representation 7 are hermitian. For s1 € (0,1) and s1 > 1 we
have ™ = x1v°' x x7 ‘% 11 = L(x1v%, x1 v 1), and this is unitarizable
for sy € (0,1). If sy =1, in the appropriate Grothendieck group we have

7 =x10(v,v™") x 1+ L(x1v, xi 'v; 1),

where the first subquotient is a tempered representation and the second is a
unitarizable non-tempered representation.

Proof. The first case follows from the criterion for hermiticity of the Langlands
quotient, due to Knapp-Zuckerman, and for the second, we just observe that, for
s1 € (0,1), the representation x12° X x1v~*! is in the complementary series of the
group GL(2, D). O

Proposition 4.2. Assume that x2 = 1 and x3 # 1. Then the representation 7
has a hermitian subquotient only when so = 0; in that case all the subquotients are
hermitian. Keeping this assumption, we have: if s = 0, then if x1 # 1 the rep-
resentation ™ is a sum of two non-equivalent irreducible tempered representations,
and if x1 = 1 the representation m is an irreducible tempered representation. If
s1 > 0, then: if x1 # 1 the representation 7 is irreducible non-unitarizable, and if
X1 = 1, w is unitarizable and irreducible for s € (0, %), irreducible non-unitarizable
for s > %, and for s = % the representation m is (in the Grothendieck group) a
sum of a tempered and a non-tempered unitarizable representation. Analogously, it
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follows that in the case x3 # 1, x3 = 1, the hermitian subquotients exist only when
s$1 = 89 = 0, and the representation 7 is then an irreducible tempered representation
if xo =1, or a sum of two irreducible tempered representations if xo # 1.

Proof. This is standard. We just comment on the case y; = 1 and x3 # 1 with s, =
0. The standard intertwining operators Ay, ,(s1) : % X x2 X1 — 7% X xa 1 1
converge for s; > 0. These operators, for s; > %, define a continuous family,
indexed by s1, of the non-degenerate hermitian forms on the compact picture X of
the representation 1 X yo % 1 in the following way:

(fl?fQ)Sl :/K<f1,sl(k)aAw2a+g(sl)f2,s1>dk'

Here, f1 and f, belong to the space X, and f; 5,, ¢ = 1,2, denote the corresponding
holomorphic sections. The indexing set is connected, so, from the unitarizability of
one hermitian form would follow the unitarizability of all of them. Because of the
unboundedness of the matrix coefficients when s; — 00, each hermitian form is non-
unitarizable. In the same way, we can prove unitarizability of the representations
for s1 € [0, %), but this time, we must normalize the standard intertwining operators
Auwsa. 5(51) because, for s; = 0, this operator has a pole. The unitarizability of all
the subquotients at the end of the complementary series follows from the well-known
result of Mili¢i¢. |

Proposition 4.3. Assume that x3 = X2 = 1, and x1 # Xx2. Then all the subquo-
tients of the representation ™ are hermitian.

(i) Assume that x1 = 1 and x2 # 1. The representation ™ has a unitarizable
subquotient only if s1 € [0,3] and sy = 0 (and then all of them are uni-
tarizable). The tempered irreducible subquotients occur for s1 = 0 and for
S1 = 3.

(ii) Assu%e that x1 # 1 and x2 # 1. The unitarizable subquotients appear
only for s1 = so =0, and then w is a sum of four non-equivalent tempered
representations.

(iii) If x1 # 1 and x2 =1, then, under given conditions (s1 > sa > 0), the unita-
rizable subquotients appear only for s; = so = 0, and then the representation
m is a sum of two non-equivalent irreducible tempered representations.

Proposition 4.4. (i) Assume that x1 = x2 = 1. With notation as in Fig-
ure 1 we have: the unitarizable subquotients appear only for (s1,s2) from
the closure of the region i and for the point (s1,s2) = (£,2). In the lat-
ter case the representation ™ has two unitarizable subquotients: the trivial
representation and the Steinberg representation.

(ii) Assume that x2 = 1, x1 # 1, x1 = x2. Then the representation 7 has
a unitarizable subquotient only for s; + so < 2 (and then all of them are

unitarizable).

Proof. We prove (i). Unitarizability of the subquotients of the representation 7 for
(s1, 82) from the closure of the region i follows from unitarizability of the represen-
tations v°1 x v~ of the group GL(2, D) for s; € [0,1). For the point 4 = (I, 3),
we recall a standard fact about the composition series of the representation m which
is induced from the modular character of the minimal parabolic subgroup ([3]): it

has a length four and only two of the subquotients, the Steinberg and the trivial
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representation, are unitarizable. This implies the non-unitarizability of the repre-
sentation m for the open regions v and v. Now consider a family of the standard
intertwining operators

A

s —s5—2

.. ,5+2 s —
wars(8) VI XVIXNT = VT XY X1,

for s € (0, %) It is easy to see that A, (S)|StGL(2 pywetixg 7 0, so this fam-
ily of operators induces a family of the non-degenerate hermitian forms, indexed

by s € (0, %), on the compact picture of the representation Stgr 2 py @ 1. The
representation Stgy, (2, D)I/% x 1 has a non-unitarizable subquotient, so we conclude
that among the representations StGL(Q,D)VS+1 x 1, for s € (0, %), there are no

unitarizable ones. Analogously, if we consider a quotient intertwining operator
Aoy (s): Vs+11GL(2,D) X1l — V_s_llGL(Q,D) X1,

for s € (0,2), we obtain nonunitarizability of the representations "1, p) % 1.
By using Proposition 6.3 from [21], we obtain the irreducibility of the representa-
tion StGL(Q)D)VS+1 x 1 for s = 0. In this way, we obtain the non-unitarizability
of the representations Sty (2, pyv*** % 1 for s € [0, %) After applying the Aubert
involution on the representation Stgr2,pyv ¥ 1, it follows that the representa-
tion vlgr(e,py ¥ 1 is irreducible. We normalize the operators A, ,(s) to re-
move the pole for s = 0 and then pass to the quotient operators, and we anal-
ogously obtain the non-unitarizability of the representation vl py @ 1. This
gives non-unitarizability of all the subquotients on the segment [C, A), and con-

the point B = (%, %), the corresponding representation 7 has length equal to two,
and one of the irreducible subquotients is v: X Stg,(p,1)- The representations
v® % Ste,(p,1) are non-unitarizable for s € (3, %), because they are irreducible
and the representation Vs x Sta,(p,1) has a non-unitarizable subquotient. So we

have, for s € [%, %), a non-degenerate family of the hermitian forms generated by

the standard intertwining operators A(si) : v*' X St (p,1y — v~°' X Stg,(p1)-
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These operators are, for s; € (%, %), the restrictions of the standard operators
Awnosp(s1) 1 V% X v2 x1 — v x v2 x 1. Using the similar arguments as be-
fore, i.e. by eliminating the pole of the operator A, , and then, by passing to
the quotient, we obtain the non-unitarizability of the representation v* x 1, (p 1)
for s € [%, %) Also, for s € (%, %), the non-unitarizability of the representa-
tion v° X 1g,(p,1) = L(V%,ys; 1) follows from the existence of the non-degenerate
hermitian form on this representation generated by the action of the long inter-
twining operator A, (3, s) on the quotient of the representation v x v* x 1, and
from the non-unitarizability of the representation V3 1g,(p,1)- This gives non-
unitarizability on the open region vi. The proof of (ii) is left to the reader. O

Now, we consider the subquotients of the principal series 71v°1 X 712 x 1, for
dim7; > 1,7 = 1,2. Again we denote m = 7v°1 X 79v°2 X 1, and assume that
81 > s > 0. As already mentioned, the irreducible subquotients of these represen-
tations are the same as in the case of the group Go(D, —1). Also, the unitarizable
subquotients are the same as for the group Gao(D, —1) ([5]), but the arguments for
the (non-)unitarizability for some of them are different because we were not able to
establish a direct (non-conjectural) transfer of the Plancherel measure (s, §) to the
Plancherel measure pu(s,d’). In this case, § denotes a discrete series representation
of the group D* x G1(D,1) and ¢’ (one of the) discrete series representations of
GL(2,F) x Sp(4, F) corresponding to 0 by the Langlands correspondence. So, we
discuss the case where the arguments for G3(D, 1) and G2(D, —1) differ.

We now recall the definition of the Plancherel measure for a general reductive
group. If v € ap, and o is a discrete series representation of My (notation as in
the Preliminaires), up to a factor which depends only on the normalization of the
measures on the reductive group G and its parabolic subgroup Py, we have:

Ap-1(Y0," V) Ay(o,v) = p(o,v) 7L

In the above relation, the representation “o of the group M, is defined by

o(m) = o(w™tmw). We define “v analogously. If there is no subscript below

1, we assume that w equals the longest element of the Weyl group.

w

Proposition 4.5. Assume that 71 = 7 and 71 selfcontragredient with w,, = 1.
In Figure 2, considering the open regions, we have the unitarizable subquotients
appearing only on the region I, where we have the non-tempered representations.
On the boundaries, we have a square integrable subquotient for (s1, $2) = (%, %) , and
the tempered subquotients for (s1,s2) € {(%,0) , (%, %) 7(0,0)}. On the boundary
of the region I all the appearing subquotients are unitarizable and the Langlands
quotient L(le/% LTIV 1) is unitarizable.

Proof. The only non-trivial thing is deciding on the unitarizability of the subquo-
tients of the representation 711/% X 711/% x 1. We have:

7'11/% X 7'11/% X1
= Lwd(nv?, v~ 2);1) + ma + L(rv3;0[mv?; 1)) + L(nw?, nu?;1).

The unitarizability of the representation L(le/%,ﬁl/%; 1) is proved using global
methods, modulo a technical condition. This is an isolated unitary representation
in the unitary dual.
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Lemma 4.6. The representation L(Tlvg,Tll/%; 1) is unitarizable.

Proof of Lemma 4.6. Let k be a number field with the following property: there
exist two places of k, v and vq, such that k,, = F, i = 1,2, and a division al-
gebra D over k such that it ramifies only at v;, ¢ = 1,2. Then D ®; F = D.
By Aj we denote the ring of adeles of k. Let 0 = &), 0, be an automorphic
cuspidal representation of D*(A) with the trivial central character, such that
oy, = 11, % = 1,2. We assume that the representation o is realized on the
space of automorphic functions V' on D*(Ay). Let 0/ = @), 0, denote a cuspi-
dal automorphic representation of GL(2, Ax) which is a lift of the representation
o, ie o, = 0,,Yv ¢ {v1,v2} and o, = 0, = 7y, a representation which is a
Jacquet-Langlands lift of 7;. We recall that the condition on the central charac-
ter forces o (and, consequently o’) to be self-contragredient. Let Ga(D,1)(Ay)
be a group of points in the adeles of the hermitian quaternionic group. Then
G2(D,1)(ky) = Sp(8,ky), v & {v1,v2}, and Go(D,1)(k,,) = Go(D,1), i = 1,2.
Let P(Ay) = M(Ay)U(Ag) denote a standard upper triangular parabolic subgroup
with the Levi subgroup M (Ay) isomorphic to D*(Ay) x D*(Ag), and let Aps be the
center of M. Also, let X(Apr) = Homy(An, GL(1)), and apr = X (Ay) @ R. We
denote by A a set of all a € Apr(Ay) such that a, = 1 for v finite, and x(a,) = q,
where a is a positive number independent of v infinite, for all xy € X (Ays). We fix
a maximal compact subgroup K = [[ K, in a usual way.
For each (s1,s2), there is an induced representation

m(s1,82) = Indgi((ﬁ;l))x(%’i)mk)ausl ® ov2.

Here v denotes a product of the local v’s over all the places. These representations
form a fibre bundle of representations and the sections are constructed as follows
([9]): Denote by H the space of functions f on Ga(D, 1)(Ay) satisfying the following
conditions:

(i) f(uvyag) = f(g) for u e U(Ax), v € P(k), a € Ay;
(ii) f is K-finite, and for each k € K the function

m — f(mk)
belongs to the space V ® V of functions on D*(Ay) x D*(Ag).
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We extend the Harish-Chandra Hp function to the entire Go(D,1)(Ay) in the way
that it is K—invariant. Then for each (s1, s2), the representation of G3(D,1)(Ax)
(or of the appropriate Hecke algebra) on the space of functions of the form

g — f(g)exp(Hp(g),s+p), f €H,

is equivalent to 7(s1, s2). We form the corresponding Eisenstein series:

E(g,s1,5, /)= Y, f(y9)exp(Hp(79), 5+ p)-
P(R)\Ga(D,1) (k)

It converges absolutely for s such that the real part of s is in the positive Weyl
chamber shifted by the half-sum of the roots corresponding to the parabolic sub-
group P (the one which has a Levi subgroup isomorphic to D*(Ay) x D*(Ag)). The
poles of the Eisenstein series coincide with the poles of its constant term (along P),
which is given by

EP(ga 51, 82, f) = Z [T(wa slvSQ)f](g)eXp<HP(g)aw(51’ 82) + P>,
weW

where the sum is over an absolute Weyl group of G2(D, 1). For each w, T'(w, $1, s2)
is an intertwining operator from H to H defined by

[T(w, 51, 52) f1(9)exp(H (9), w(s1,52) + p)
— [ fw tug)explH(w ug). s + p)du
and the integral is over
U(k) NwU (k)w™ \ U(Ax) NwU(Ap)w ™.
We can identify these global intertwining operators with

T(w,s1,82) = ® Ty(w, s1, s2),

where T,(w, s1,s2) are analogously defined local intertwining operators. Let S
denote a finite set of places of £ which includes the archimedean places, vy, v,
and all the ramified places, i.e. v ¢ S = o, X g, x 1 is a spherical repre-
sentation. In that case, let f, denote the unique K,—invariant function, normal-
ized with f(e,) = 1, and fv an analogous function in the representation space of
Ty(w, s1,52)(0u®t x 0,v°> x 1). Let f = @), fo be a function in the representation
space of the induced representation, such that for v ¢ S, f, is the function fixed
above. The elements s and ¢ of the Weyl group were defined in the Preliminaries,
where s was denoted by s;. We now use s to avoid confusion with the complex
numbers s1, So. Then we have the following expressions for the global intertwining
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operators :

% Ls(SQ,O') L5(282,1)
Ls(l =+ 82,0) Ls(l + 289, 1)7
Ls(81 — 89,0 X U)

Ls(1+4 81— 82,0 x0)’

(sc2,51,82)f = (QuesTv(sc2, 51,52) fo Dugs fv)

LS(SQ,J) Ls(?Sg,l) Ls(81+82,(7><0)
Ls(1+ s5,0) Lg(1 4 2s2,1) Lg(1+ 81 + 82,0 x 7)’
T'(casc, 81,82) f = (®uesTy(casca, 51, 52) fo Bues fv)

" Ls(s2,0) Lgs(2s2,1) Ls(s1 + 82,0 X o) Ls(s1,0) Ls(2s1,1)
Ls(l + 82,0') Ls(l + 259, 1) Ls(l + 81 + S2,0 X O’) Ls(l + 81,0') Ls(l + 251, 1)’

T'(scasca, s1,52)f = (RvesTv(scascs, 51, 82) fo Qugs fv)
o« Ls(SQ,U) LS(2$27 1) Ls(81 + s9,0 X U) LS(Sl,U) Ls(281, 1)
Ls(l + So, O') LS(I + 259, 1) Ls(l + 81+ 82,0 X O’) Ls(l + 8170') Ls(l + 251, 1)
Lg(s1 — 82,0 X 0)
L5(1+81 — 82,0 X 0’)7
T(cas,51,52) = (®.vesTo(c28, 51,52) fo Dugs fo)
Lg(s1 — 82,0 X 0) Lg(s1,0) Lg(2s1,1)
Ls(1+51752,0'><0) Ls(1+81,0)L5(1+251,1)’
T'(scos,51,52) = (QuesTy(sc28, 51,52) fo Qugs fo)

" Lg(s1 — 82,0 X 0) " Ls(s1,0) Lg(2s1,1) y Ls(s1+ s2,0 X 0)

Ls(1+ sy —sy,0x0)  Lg(1+s1,0) Ls(1+2s1,1) " Lg(l+ s+ s2,0 X0)

T(c2,51,52)f = (®uvesTy(c2, 51,52) fo Dugs fo)

T(S, S1, SQ)f = (®’U€ST’U(87 S1, s?)f’u ®U€S f’U) X

The symbol Lg(-) denotes a partial L function obtained as a product of local L
—functions over all the places except the ones in S. Note that, in the previous
formulas, we have the partial standard L— function, the partial Hecke and Rankin-
Selberg L—functions. We want to study a behavior of the intertwining operators
near the point (s1,s2) = (3,3). We analyze the local intertwining operators for
v € 8. For v € {v1,v2}, we have a standard intertwining operator

31 31
Ty(w, =, =) =Au(=, =
W, 5, 5) = Auls.5)

(using the previous notation), which acts on the standard representation Vs X
Tiv2 x 1, and as such, is holomorphic near that point. If v € S \ {v1,v2}, observe
that o, & o] is a local component of the automorphic cuspidal representation ¢’
of GL(2, Ax). This forces the unitary representation o, to be of the following two
kinds:

(i) o, is a tempered representation,

(ii) o, is a complementary series representation, o, = x,v° X x,v~ %, for s €

(0, %), and some unitary character .

3 1 . . .
In the first case, o,v2 X o,v2 x 1 is a standard representation, and in the second
case, we have

3 1 .1 3 _ 3 1 — 1
o X oyr? X 12 ), "2 X x5 X oy T2 X X2 L



UNITARY DUAL 1025

and the right-hand side is a standard representation of Sp(8, k,), so the operators
Ty (w, %, %), with w € W C W(Sp(8,ky)), are holomorphic. We conclude that all
the possible poles of the global intertwining operators come from the poles of the
partial L—functions. Now, we use the fact that, for the above L—functions, the
global and the partial L-functions have the same poles for Res > 1 ([8]). We
calculate the iterated residues of the partial L—functions for s; = 5 and s = 3.
We see immediately that the iterated residues are non-trivial only for the partial
L—functions which appear in the global intertwining operator associated with the
longest element in the Weyl group, and then only if Lg(%,0") # 0, which is equiv-
alent to L(%7 o') # 0. We now identify the local components of the representations
appearing in these residues. For v ¢ {v1,v2} we have: if o, is a tempered represen-
tation of GL(2, k), then because cascas is the longest element in the relative Weyl
group Wy, where M = GL(2,k,) x GL(2,k,), we have

ol |

31
T, (cascas, 2’ 5)(%1/% X oyr? X 1) = L(CTUI/%,O'UV%; 1).

If 0, = xV® X X~ %, the representation
3 42 1 gl
Yo T2 X X 52 X x 52 X x5 T2 0 1

is a standard representation, but caoscas is not the longest element in the absolute
Weyl group of Sp(8, k), and the operator acts in the following way:

Ty (cascas, g, %) : XEI/SJF% X le/_s"’% X vas+% X xvu_s"‘% x 1

_3 _s—3 1 sl
S XV T2 X Xl T2 X XV T2 X X, % T2 X 1.

But

_3 _
Xst 2 X XoV

_3 _g—3 _3
S 2gXUI/ S 2><X’UVS 2

and

S

_1 _g—1 s
XoV 2><X1)V‘S QngVS

1 s_1
2 X XoV" 2,

so the image of the action of this operator is the same as the image of the action of

the long intertwining operator, i.e., equal to L(xov" T 2,xor 5% % xor T2, x v 572 1).

For v € {v1,v2},

Ty (scasca, g, %)(711/% X 7'11/% x1)= L(T1V%,Tll/%; 1).
We can conclude that in the residual spectrum there is a representation whose
local components are Langlands quotients described above; especially, at the places
v1 and wvg this representation has L(Tll/%,’rll/%; 1) as a local component. This
proves that the representation L(le/% LTIV 1) is unitarizable, provided L(%, o) #
0. But, by the result of Waldspurger ([24], Théoreéme 5) for a cuspidal automorphic
representation of the group GL(2, A;) with the trivial central character, such as
o', and fixed finite set of places V, there exists a quadratic character y such that
Xo = 1 for v € V and L(o’ ® ¥, %) # 0, provided €(o’, %) = 1. So, if we take
v1,v2 € V, we can twist ¢’ by x, but the local components involved remain the
same at v1 and vs. But we can do that provided e(o”’, 3) = 1. O

We now prove the non-unitarizability of the representations L(v8(rvz, rir=2); 1)
and L(7v%;6[rv2;1]). We do that in the following way: For the first one we will
calculate the order of the pole of the Plancherel measure p(s,d (le/%,rly_%)) for
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s =1, and then use this in the calculation of the Jantzen filtrations. This will give
us the non-unitarizability. By A(s) we denote the standard intertwining operator

S

A(s) : (5(7’11/%,7'1V7%)1/S x1l— (5(7‘11/%,7'1V7%)I/7 x 1.

We will prove that the Plancherel measure has a simple pole for s = 1 and that
A(s) has no pole for s = —1. We denote it by § = d(mv2, v 2). We use
the aforementioned result ([12]) which states that p(s,d) = wu(s,d0’). Here, the
representation ¢’ is a discrete series representation of the group GL(4, F'), which is
the Jacquet-Langlands lift of the representation §. The Plancherel measure p(s, d)
is with respect to the group G»(D, 1), and the measure u(s,d’) is with respect with
its split form, namely the group Sp(8, F). The representation ¢’ is generic, so we
can apply the results from [16] and [15] to compute the Plancherel measure in terms
of y—factors. Up to an exponential factor, we have

7(8’6/ap47w) 7(2855/5A2p45¢)
V(L + 5,0, pa, ) ¥(1+25,8", A%py, 1))

Now, using the multiplicativity of y—factors, we obtain
(1 _ q—l—QS)(l _ q1—25)(1 _ q1+25)(1 _ q—1+25)(1 _ q—2rs)(1 _ q2rs)
(]_ _ q2s)(1 _ q72s)(1 _ q72+25)(1 _ q7272s)(1 _ q7T+2Ts)(1 _ q7r72rs)’

where r is some integer. So, the Plancherel measure has a simple pole for s = 1.
Then consider the intertwining operator

:U’(Sa(sl) =

:U’(Sa(sl) =

1 1 eyl el
Avois(8): it x Tl s et x T2 X L

The poles of the operator A(s) are among the poles of the operator A, ,(s)
because Ay, ,(8)|svsx1 = A(s). But, by using the factorization of the operator
Auw,.5(8) ([14]), we see that it has no poles for s = —1. Let X denote the compact
picture of the representation dv° x 1. We will consider the Jantzen filtration of the
space X, for s € [0,1]. For s € (0, 1), the representations év° x 1 are irreducible, and
the interval (0, 1) parameterizes a non-degenerate family of the hermitian forms on
the compact picture X. For s = 0 A(s) is holomorphic, and, normalized, generates
the intertwining algebra of the representation 6 x 1 = T + T5. The operator A(0)
endows the space of this representation with a hermitian form which is of a different
sign on each of the T;’s. This gives us the non-unitarizability of §v* x1 for s € (0,1).
By the theory of Jantzen filtrations ([22]), for s = 1 we consider a filtration

X=X{>X/>--->o.

The spaces X{ are Ga(D,1)-invariant spaces, and each of them is a radical of
the certain hermitian form defined on the previous space ([22]). For s = 1, the
representation X? is a compact picture of the standard representation dr x 1, so,
by the results from [1], the space X is a compact picture of my, which is a square
integrable representation. We will prove that X? = {0}, i.e. that a hermitian form
defined on X{ by

/ T
(/) = lim [ (w(), =

is non-degenerate, so its radical, namely X7, is trivial. As before, v, denotes the
corresponding holomorphic section. Because of the simplicity of the pole of the
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Plancherel measure for s = 1, we have
1
s—1
where h is a holomorphic function in the neighborhood of s = 1, and h(1) # 0.

From this follows that for a non-null v € X such that v{ € 74 we have
limg ., 2 A(s)v), ¢ L(6v,1). Now, we can choose v € X{ such that

s—1
(v,0")1 = lim [ (v(k) !
) 1 — sl X ) s — 1

A(-s)

A(s)vl(k))dk # 0.

If we denote the signature of L(dv,1) by (po,qo) (by [22]), we can obtain the sig-
nature of v* x 1 for s > 1 and for s < 1 in terms of signatures (pg, qo) and (p1,q1)
(which is signature of X7, i.e. of m4, sop; = 0, or ¢ = 0). We have just proved that
(piyqi) = (0,0), ¢ > 2. In more detail, the signature of the representation dv* x 1
for s > 11is (po + p1,90 + q1), and for s < 1is (po + q1,p1 + qo). But if we assume
p1 = 0 or, the same, if we assume ¢; = 0, and knowing that both for s > 1 and for
s < 1 we have the non-unitarizable representations, we conclude py # 0 and ¢o # 0,
which is equivalent to the non-unitarizability of the representation L(dv,1).

The proof of the non-unitarizability of L(rv2;8[rr2;1]) follows the same pat-
tern: First, we will prove that the Plancherel measure u(s1,d[r1v2;1]) has a simple
pole at s; = % Observe that, for the longest element wy from the Weyl group, we
have wy = wWawaWaWe = WRW2a+3 = Waa+aWg. S0, for the standard intertwining
operator

Ay (51,82, 71 @71) ™ X v*2 )1 — v *t x v x 1
the following holds:
Awy (51,82, 71 @ T1) = Awy(—51,52, 71 @ T1) Ay 5 (51,82, 71 @ T1).
From the definition of the Plancherel measure then follows
(1) Paog (=81, 82,71 @ T )by (51,82, 71 @ T1) = pa(s, 82,1 @ 71) 7

Now, we apply a result of Heiermann ([7]), which says that in the case of the
induction from a cuspidal representation such that the obtained representation has
a square integrable subquotient, the corresponding Plancherel measure has a pole
of the order equal to the corank of the Levi subgroup. So, the right hand side of (1)

31

has a zero of order 2 for (s1,s2) = (3,3). The operator A, is induced from the

standard intertwining operator on G1(D, 1), and s0 fiy,,(—3,%,71 ® 71) has a pole

for s, = 3. This means that Pawvses s (51, Lnen)= ,u(sl,d[ﬁz/%; 1]) has a simple
pole for s; = % Now, analogously as for the representation L(I/(S(le/% , le_%); 1),

using the Jantzen filtrations, we prove the non-unitarizability of the representation
L(Tﬂ/% ;0 [7-11/%; 1]). The only Langlands quotient left to settle is

L(nv;m x1l)= V%L(TW%,TW_%) x 1.

We obtain the hermiticity of the representations my = VSL(le/%,TlV*%) x 1 for

s € (0,1) using the action of the long intertwining operator acting on the space
ST x s x 1. But unitarity of the representation w5 for s = % would imply

the unitarizability of all the subquotients for s = 1, which contradicts what we have
just proved. |
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As for the unitary subquotients for the mixed case
T=xv*x 1P 11, o, €RY,
of the principal series, we have the following proposition.

Proposition 4.7. Let m = xyv* x 1P x 1, a, 3 € R}, dimy = 1, dim7 > 1. Then
the following holds:

(i) If none of the representations x, T is self-contragredient, the representa-
tion m has a unitarizable subquotient only when o = 3 = 0; then 7 is an
irreducible tempered representation.

(i) If x®> =1 and 7 27, the unitarizable subquotients appear if and only if 3 =
0 and « € [0, avg], where a = v 1s a unique non-negative point of reducibility
of the representation xv® x 1. Then all the appearing subquotients are
unitarizable.

(iii) If x* # 1 and T = 7, the unitarizable subquotients appear if and only if
a =0 and B € [0, By], where B = By is the unique non-negative point of re-
ducibility of the representation Tv° x 1. Then all the appearing subquotients
are unitarizable.

(iv) If both of the representations are self-contragredient, the unitarizable sub-
quotients appear if and only if o € [0,a0] and B € [0, 5], where o and
Bo are the reducibility points of the corresponding representations. Then all
the subquotients of the representation ™ are unitarizable.

The points of the reducibility oy and By are determined in Lemma 3.1, and the
irreductible subqoutients appearing here are described in Proposition 3.5.

Proof. This is straightforward from the criterion for the hermiticity of the Lang-
land’s quotient. O

5. THE SIEGEL CASE

We are investigating the reducibility points and possible unitarizable subquo-

tients of the representation
ov® x 1, s e Ry,

where o is an irreducible cuspidal representation of GL(2, D). By ¢’ we denote the
Jacquet-Langlands lift of o, and this is a discrete series representation of GL(4, F)
([2]). Although the Jacquet-Langlands lift is between the discrete series representa-
tions of GL(n, D) and the discrete series representations of GL(2n, F'), in the case
n = 2, o' is actually a cuspidal representation, too ([2]). If ¢ & &, then o’ = o’
also holds. But when o is a cuspidal representation, the zeroes and poles of the
Plancherel measure completely determine the reducibility points of the representa-
tion ov® x 1. If o 2 7, it does not reduce for any s € R. So, if o = 7, by ([17]),
there is a unique non-negative s = sg such that the representation ov® x 1 reduces.
We have the following characterization of the reducibility points in terms of the
Plancherel measure:

u(s,0) #0, for s =0 <= o x 1 reduces,
p(s,0) = o0, for s =59 >0 <= ov*° x 1 reduces.
By [12], we know that
p(s,0) = pu(s,o’).
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(We already used that in a calculation in the principal series case.) So, in order
to find a reducibility point of the representation ov® x 1, we have to analyze the
zeroes and the poles of the Plancherel measure p(s,o’). But, the representation o’
is a generic (cuspidal) representation of the group GL(4, F'), and we can use the
results of ([16]) to calculate it in terms of L—functions.

Theorem 5.1. (i) If o 2 7, the representation ov® x 1 has a unitarizable
(even hermitian) subquotient only for s = 0, and then it is an irreducible
tempered representation.

(ii) Ifo 27, the representation ov® x1 reduces only for s = 0 or only for s = %

In more words: The representation o x 1 reduces if and only if L(s, o', A%py)

does not have a pole for s = 0. If it has a pole for s = 0, then the repre-
sentation ov® x 1 reduces for s = % If the reducibility point is s = 0, the
representation ov® X 1 has a unitarizable subquotient only for s = 0; then

o %1 is a sum of two non-equivalent tempered representations. If ov® x 1
reduces for s = %, only for s € [0, %] do the unitarizable subquotients appear.

Then ov® x 1 = L(ov®;1) for s € (0,3), and ovz x 1= Liovz;1) + 7.

Here both of the subquotients are unitarizable, and w7 is a square integrable

representation.

Proof. The reducibility points (when o 2 o) follow directly from a calculation
of the Plancherel measure (a calculation similar to the one done in the previous
section). All the subquotients of the representation ov® x 1 are hermitian, and for
s greater of the reducibility point, there is a family of the hermitian forms on the
representations ov® x 1, which is indexed by an unbounded, connected interval, so if
for some s from this interval the representation is unitarizable, it would have to be
unitarizable for every s from this interval. This is impossible, because the matrix
coefficients of these representations become unbounded for s large enough, as we
can see from their asymptotics, given by the asymptotics of the Jacquet module
coefficients. (]

6. THE NON-SIEGEL CASE OF THE MAXIMAL PARABOLIC SUBGROUP

Let o be an irreducible representation of D* and p an irreducible cuspidal rep-
resentation of G1(D,1). We will consider the representation

s = oV X p,

for s € R. Similarly to the Siegel case, if o 2 &, the representation ov® x p never
reduces. Now, we assume o = ¢ and s > 0, and again, there exists a unique sy > 0
such that ov®® x p reduces ([17]). The following characterization of the reducibility
points in terms of the Plancherel measure is analogous to the one in the Siegel case

w(s,o®p) #0, fors =0 <= o x p reduces,

w(s,oc® p) =o0, for s =59 >0 <= o’ x preduces.
We were unable to transfer directly the Plancherel measure from Ga(D,1) to
Sp(8, F) (as we did in [5] for Ga(D,—1)), so we have to rely on two standard
conjectures in the harmonic analysis on the quasi-split p—adic group: the first one
describes the space of the stable distributions on p-adic group in terms of the sta-
ble tempered characters, and assuming it is true, Shahidi ([16]) proved that the
Plancherel measure of a discrete series representation of the Levi subgroup depends
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only on the (discrete series) L-packet. The second one claims that every tempered
L-—packet is generic (for example, [16]). Also, we assume ([16]) that the Plancherel
measures are the same for inner forms.

So, for a cuspidal representation p of G1(D, 1), let the representation p’ be a
(conjectural) corresponding generic discrete series representation, and, as usual, o’
denotes the Jacquet-Langlands lift of a cuspidal representation o of D*.

Conjecture 6.1.
(u(s,0 @ p) = p(s, 0’ @ p').

Theorem 6.1. Let o denote an irreducible representation of D*, and let p be
an irreducible cuspidal representation of G1(D,1). Let p' denote a (conjectural)
generic discrete series representation of Sp(4, F) which is (one of) the Jacquet-
Langlands lift of the representation p, and let o’ denote the Jacquet-Langlands lift
of the representation o. Assume that Conjecture 6.1 holds. Let ms = ov® X p, s €
R. Then, the representation p' is a cuspidal representation of Sp(4,F), or has a
cuspidal support on F* x SL(2,F), and the following holds:

If o 2 7, the representation ms never reduces, and is unitarizable only for s =0,
and then it is a tempered representation. Assume now that 0 = o and s > 0. Then,
one of the following holds:

(i) Ifdim o > 1 and w,(W) = 1, then the representation 7, reduces for s = =

(ii) Ifdim o > 1 and wy (W) = —1, then ’
(a) If p' is cuspidal, s reduces for s =1 if L(0,0’ X pN’) = 00, or for s =0
if L(0,0” x p') # co.
(b) If p' — x1v x w (for some unitary character x1 of F* and a cuspidal
representation © of SL(2, F)), the representation 7, reduces for s =1
if L(0,0" x T) = 00, or for s =0 if L(0,0’ x 7) # oo.
(iii) Ifdimo =1, i.e. 0 = x, a quadratic character of D*, then
(a) Ifp’ is cuspidal, the representation ms reduces for s = % if L(0, xxp') #
0o or for s =2 if L(0,x x p) = occ.
(b) If p' — x1v x 7, the representation ms reduces for s = g if x = x1, for
52% if X # x1 but x X 7w reduces, 07’f07"8:% if x #x1 and xv X
reduces.

If the representation ws reduces for sg = 0, the unitarizable subquotients appear
only for s = 0, and then g is a sum of two non-equivalent tempered representations.
If sp > 0, the unitarizable subquotients appear if and only if s € [0,s0], and then
all of them are unitarizable. In that case, for s =0, my is irreducible tempered, for
s € (0,80), ms = L(ov®;1), and s, = L(ov®;1) + ms, where ms is an irreducible
square integrable representation.

Proof. Let P = MN be a standard maximal parabolic subgroup of the group
Sp(8, F), such that M = GL(2, F) x Sp(4, F). By *M we denote a corresponding
Levi subgroup in the dual group of Sp(8, F), i.e. in SO(9,C). Let ¢r denote
a non-trivial, additive character of F. The representation of the group “M =
GL(2,C) x SO(5,C) on “n, the Lie algebra of “N, decomposes as

p2 ® ps + Aps.
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Here, p2 denotes the standard representation of GL(2,C) and ps denotes the stan-
dard representation of SO(5,C). By [16] and [15], we have
’7(570-/ X P/»¢F) ’7(257017A2P27¢F)
(14 s,0" x p',¢p) y(1 + 25,07, A2pa, 0hp)
Assume that the representation ¢’ is cuspidal, i.e. dimo > 1. Then, when
wyr (W) = 1, the relation (2) becomes
L1 —s,0' xp)L(1+s,0 xp) (1—¢2) (1—q>)
L(s,0' xp')  L(=s,0’ x p/) (1—=¢q712%) (1 —q71725)

(2) oo ) = -

(3) u(s,0'@p') =

The L-functions L(z, 0’ x p') and L(z,0" x p') are holomorphic for Rez > 0 ([11]),
so it follows that L(1 —s,0’ x p/) and L(1 +s,0’ x p') are holomorphic near s = 0.
This means that u(0,0’ ® p’) = 0, so the representation ¢’ x p’ is irreducible, and
Ldso x) 20 is
. 2
L(—3%,0'xp') = co. But, from Lemma 5.3 of [11], we can conclude that, in the case

o X p is irreducible. On the other hand, for s > 0 the quotient

holomorphic. The right hand side of the relation (3) has a pole for s = %, unless

of cuspidal p’, the only possible pole of L(s, o’ x E’) is s = 0. So, for s = % measure
u(s,0’ @ p’) has a pole, and this pole must be unique, so L(0,0’ x ;’) # o0, and,
for a cuspidal representation p’, we have reducibility for s = % We now consider
the case of a non-cuspidal representation p’.

If p’ has support on the non-Siegel maximal parabolic subgroup, i.e. p —
X1V % 7, for a quadratic character x; and a cuspidal representation = of SL(2, F),
we have

’Y(S,O’l X P/a¢F) = W(S’OJ X X1V, wF)’Y(S)OJ X 7Ta¢F)’Y(SaU/ X Xll/_lawF)
=7(s,0" x T, YF).

Then we have
’Y(SaCT/XTﬂ/)F) L(1+Sa0/Xﬂ-,wF)L(lfsaOJX%awF)

v(1+s,0" x 7, F) L(s,0’ x m,Fp) L(—s,0’ xT,%F)

From Lemma 5.3 of [11] we again conclude that L(—1,0" x &) # o0, so again we
1

have reducibility of ¢’v® x p’ for s = 3.

We will show that there is no need to consider the case of p’ having support on
the minimal parabolic subgroup, or on the Siegel parabolic subgroup.

Now assume that, for ¢’ still cuspidal, wy/ (@) = —1. Then the reducibility
points are completely determined by the L-function L(s, o’ x p’). From the previous
discussion we can conclude: B B

If p’ is cuspidal, we can have L(0,0’ X p’) = co. So, if L(0,0’ x p’') = oo, then
o’ x p is irreducible, and o’v x p/ is reducible. If L(0,0" x p') # oo (then also
L(0,0" x p') # o0) the representation o’ x p’ is reducible.

If p’ has cuspidal support on F* x SL(2, F), i.e. p’ < x1v X 7, we have

v(s,0" x p',r) = (5,0’ x 7, bE),

and the discussion is the same as in the previous case of cuspidal p’.

If we assume that p’ has a cuspidal support on the Siegel parabolic subgroup,
ie. p — T X 1, for selfcontragredient cuspidal representation = of GL(2, F'), we
have y(s,0’ x p/,¢F) = v(s,0’ x wu%)’y(s,a' X 71'1/_%) = 1, because we can take
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o’ 2 . Then the right-hand side of (3) has no poles or zeroes, which is impossible,
so p’ cannot have a cuspidal support on the Siegel maximal parabolic.

Now assume that ¢’ is not cuspidal, i.e. o = x as a representation of D* and
o' = xStare,r). Using the multiplicativity of y-factors, the relation (2) now
becomes

L3 —s,xxp) LG +s,xxp) (1-q>) (1-¢*)
L(s = 5, x X p') L(=L —s,xxp/) (1 —q7172) (1 — ¢ 172)
Assume now that p’ is supported on the minimal parabolic subgroup, i.e. p’ is the

Steinberg representation or p’ «— v€ x £ x 1, where £ is a character of order two
([13]). Then, in the second case, from the previous relation it follows that

(s, xStare,r®p') =

7(87 %7X X anF)2 7(87 %7X X f,l/fF)
Y(s+ 5, x X &Yr) V(s + 5, x X & ¥R)?
1-q*) (1-¢*)
(1 _ q—l+25) (1 _ q—l—Zs) !

The right-hand side of the previous relation is equal to

L(5 —s,xx&? L(5—sxx¢§)
L(=5 +8,x X §? L(—5 +5,x x§)
L3 +s,xx8) LE+sxx8” (1-q¢*) (1-¢*)
L% = s, x € L(-5 — s, x x 2 (L= g 1729) (1 — ¢ %)’
If we assume that x = &, this expression has poles in s = % and s = g, but
this is impossible, so such a discrete series p’ cannot correspond to a cuspidal
representation of G1(D,1). Analogously, if we assume p’ = Stg,,p) and x = 1

(s, XStare,r @p') =

it follows that the expression for the Plancherel measure has poles for s = % and
for s = %, which is also impossible. So, we can conclude that the discrete series
representations of Sp(4, F') supported on the minimal parabolic subgroup are not
split counterparts of the cuspidal representations of G1(D,1).

Assume now that p’ has support on the non-Siegel maximal parabolic subgroup,

ie. p — x1v x 7. Then

’Y(S_ %7)( X X17¢F) /V(S_ %7)( X 7T7¢F)
’7(S+ %7){ X 7T7QZ)F) A/(S—’_ gvX X XlawF)
1—g¢>) (1-¢*)
g 1—q %)

If we assume that x = xi1, we obtain that the Plancherel measure has a unique
positive pole for s = % On the other hand, if x # x1 and x X 7 is reducible
(ie. x =1, 0r x2 = 1, but x ¢ (F*/F)" in the notation of [13]) we obtain
that XStGL(g)F)V% x p’ is reducible. If x # x1, but xv x 7 is reducible (meaning
X € (F*/F5)"), we obtain that XStGL(QVF)I/% x p' is reducible.

If we assume that p’ is cuspidal, then xStgp (2 mv® x p' reduces for s = % if
L(0,x x p') = L(0, x % p') # oo ([16]) or for s = 3 L(0,x x p') = .

Now, when the reducibility points are established, analogously as in the Siegel
case, we see that the unitarizable representations occur only if s = 0, if the re-
ducibility point of the representation 74 is s = 0, otherwise they occur for the

(s, xStar,r ®p') =
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complementary series (s € (0,s0)) and at the end of the complementary series
(s = sg) where a square integrable subrepresentation occurs. O

Remark. The description of the cuspidal support of the representation p’ obtained
this way coincides with the Langlands correspondence. In ([23]) is explained a con-
jectural way in which the discrete series representations of an inner class of a rational
form simultaneously “fill” the L—packets. The inner class of a rational form, in our
case, consists only of the groups Sp(4, F') and G1(D, 1). Each packet should contain
a discrete series representation of Sp(4, F'), and the number of the representations
in it is governed by the centralizer of an admissible homomorphism parameterizing
the L-packet (for example, [10]). The discrete series representations of Sp(4, F)
with the cuspidal support on GL(2, F') are in the same packet with discrete series
representation of G;(D, 1) with cuspidal support on D*, and the representations of
GL(2, F) and D* are corresponding by the Jacquet-Langlands correspondence. The
discrete series representations of Sp(4, F') with the cuspidal support on the minimal
parabolic subgroup are the Steinberg representations and two non-equivalent dis-
crete series subrepresentations of the representation £v x € x 1, for each character
¢ of order two ([13]). Examining the centralizer of the parameter, it follows that in
each of these L-packets we have two representations, so the Steinberg representa-
tion of the group Sp(4, F) is with the Steinberg representation of G1(D), and other
pairs of discrete series of Sp(4, F) exhaust the whole L-packet. This means that
no cuspidal representation of G1(D) can appear in these L-packets. A different
approach can be found in [4].
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