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UNITARY DUAL OF THE NON-SPLIT INNER FORM OF Sp(8, F )

MARCELA HANZER

Abstract. We classify the non-cuspidal part of the unitary dual of the non-
quasi-split inner form of Sp(8, F ), where F is a non-archimedean field of char-
acteristic zero. We obtain a conjectural description of the discrete L-packets
which contain representations of Sp(4, F ) and its non-split inner form.

1. Introduction

We are interested in the classification of the non-cuspidal part of the unitary dual
of the non-split inner form of the group Sp(8, F ), where F is p-adic field of char-
acteristic zero. We denote this hermitian quaternionic group by G2(D, 1), where
D is a quaternionic division algebra over F . We obtain a complete classification
modulo a standard conjecture about the transfer of the Plancherel measure. The
analysis of the principal series representations relies mainly on the knowledge of the
corresponding Jacquet modules, and in a calculation of those we use the structure
of a Ψ–Hopf module on the sum of the Grothendieck groups of the smooth, finite
length representations of the hermitian quaternionic groups. We will briefly recall
this structure ([20],[5]). The unitary dual of the group G2(D, 1) has an interesting
feature: There is an isolated representation in the unitary dual, and it is a local
component of an automorphic representation which lies in the residual spectrum
of this group. The consequence of the analysis of the representations which have
a cuspidal support on the non-Siegel maximal parabolic subgroup is a conjectural
description of the discrete L–packets that contain the representations of Sp(4, F )
and its non-split inner form G1(D, 1).

In the preliminaries we recall the definition of the hermitian quaternionic group
and the structure of its Levi subgroups. We also recall the aforementioned structure
of the Ψ–Hopf module on the representations. In the second section we analyze
the principal series representations, and determine all the subquotients. The case
of the principal series representations where the inducing representation of the
Levi subgroup D∗ × D∗ is of the form τ1 ⊗ τ2, for higher dimensional irreducible
representations τi, i = 1, 2 of D∗, is the same as for the non-split inner form of the
group SO(8, F ), and they are classified in [5]. In the third section we determine
all the unitarizable subquotients of these principal series. In the fourth section we
calculate the points of reducibility for the representations supported on the Siegel
maximal parabolic subgroup and in the fifth section we calculate reducibility points
for the representations supported on the non-Sigel maximal parabolic subgroup.
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2. Preliminaries

For an admissible representation σ of any group we consider, we denote by ωσ

its central character (if it exists). We will denote the Steinberg representation of
the group G by StG, and the trivial representation of that group by 1G. We denote
by ∆ a basis of the root system on the reductive group G with respect to some
maximal split torus (over F ). Let θ be a subset of ∆. We denote the corresponding
standard parabolic subgroup by Pθ, and the corresponding standard Levi subgroup
by Mθ. For an admissible representation σ of the group Mθ, let IndG

Pθ
σ be the

parabolically induced representation (normalized induction). Let w be an element
of the Weyl group such that w(θ) ⊂ ∆. Then, we will denote by Aw(σ) a standard
intertwining operator between the representations IndG

Pθ
σ and IndG

Pw(θ)
w(σ). We

denote by aθ,C the complexified Lie algebra of a standard torus Aθ. Then, ν ∈ aθ

defines a character of the Levi subgroup Mθ by the Harish–Chandra homomorphism
HPθ

, and a standard intertwining operator for such a “twisted” representation is
denoted Aw(ν, σ). The reflection in the Weyl group corresponding to a positive
root α is denoted by wα.

Let F be a non-archimedean local field of characteristic zero, having residual
field with q elements. We choose a uniformizer of the field and denote it by ω. Let
D be a quaternionic algebra, central over F and let τ be an involution, fixing the
center of D (involution of the first kind). The division algebra D defines a reductive
group G over F as follows. Let

Vn = e1D ⊕ · · · ⊕ enD ⊕ en+1D ⊕ · · · ⊕ e2nD

be a right vector space over D. Fix ε ∈ {1,−1}. The relations (ei, e2n−j+1) =
δij for i = 1, 2, . . . , n define a hermitian form on Vn:

(v, v′) = ετ ((v′, v)), v, v′ ∈ Vn, ε ∈ {−1, 1},
(vx, v′x′) = τ (x)(v, v′)x′, x, x′ ∈ D.

Let Gn(D, ε) be the group of the isometries of the form (·, ·). We are interested in
the case ε = 1, when the group Gn(D, 1) is the non-split inner form of the group
Sp(4n, F ). We will fix a maximal F -split torus A0 of the group Gn(D, 1):

A0(F ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1

λ2

. . .
λn

λ−1
n

. . .
λ−1

2

λ−1
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
: λi ∈ F ∗

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

We denote by si an element of the Weyl group which interchanges λi and λi+1, and
by cj the one which interchanges λj and λ−1

j , for the element of the torus A0 of the
above form.
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For g = (gij) ∈ GL(n, D), we denote by g∗ an involution g∗ = (τ (gji)), and
g−∗ = (τ (gji))−1. Then, for an admissible representation π of GL(n, D), we
define representation π∗ on the same representation space in the following way:
π∗(g) = π(g−∗). Muić and Savin observed ([12]) that, for an irreducible admissible
representation π of GL(n, D), the following holds:

π∗ ∼= π̃.

We choose and fix a minimal F–parabolic subgroup of Gn(D, 1) consisting of the
upper-triangular matrices, so the standard Levi F–parabolic subgroups are of the
following form:

Mθ(F ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

An1

. . .
Ank

g
Bnk

. . .
Bn1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
: Ani

∈ GL(ni, D),
g ∈ Gr(D, 1)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

for some integers n1, . . . , nk, r such that
∑

ni + r = n, and r can be zero. Here, for
the matrices Bni

we have Bni
= Jni

A−∗
ni

Jni
, i = 1, . . . , k, where Jni

are ni by ni

matrices with 1’s on the opposite diagonal, and zeroes everywhere else.
For admissible representations σi, i = 1, . . . k, of the groups GL(ni, D), with n =

n1+· · ·+nk, a normalized parabolically induced representation IndGL(n,D)
P σ1⊗· · ·⊗

σk of the group GL(n, D) will be denoted by σ1×σ2×· · ·×σk. Here, P is a standard
parabolic subgroup with Levi subgroup isomorphic to GL(n1, D)×· · ·×GL(nk, D).

Analogously, for admissible representations σi, i = 1, . . . , k, of the groups
GL(ni, D), and an admissible representation τ of the group Gr(D, 1), such that n =
n1 + · · ·+nk + r, a normalized parabolically induced representation IndGn(D,1)

P σ1⊗
· · ·⊗σk⊗τ of the group Gn(D, 1) will be denoted by σ1×σ2 · · ·×σk�τ . The Jacquet
module of the representation π of the group Gn(D, 1) with respect to the standard
parabolic subgroup P of the above form, will be denoted by s(n1,n2,...,nk)(π).

We will denote by ν a p–adic norm on F , or the composition of the norm homo-
morphism from D∗ to F ∗ with the p-adic norm. The standard representations are
then of the following form:

σ1ν
s1 × σ2ν

s2 × · · · × σkνsk � τ,

where the representations σi, i = 1, . . . , k, are irreducible discrete series represen-
tations, the representation τ is irreducible tempered, and si, i = 1, . . . , k, are real
numbers such that s1 ≥ s2 · · · ≥ sk > 0. The corresponding Langlands quotient is
then denoted by L(σ1ν

s1 , σ2ν
s2 , . . . , σkνsk ; τ ).

For an irreducible, cuspidal representation σ of the group GL(n, D) there is
a discrete series representation σ′ of the group GL(2n, F ) attached to it by the
Jacquet-Langlands correspondence. Depending on whether this representation σ′ is
cuspidal, or non-cuspidal, we define νσ = ν or νσ = ν2 as a ‘distance’ in the cuspidal
segments ([2]). We will be mainly interested in the case n = 1, and in that case,
if σ is a character, then νσ = ν2, and if σ is a higher-dimensional representation
of D∗, we have νσ = ν. When ρ is a cuspidal, irreducible representation of the
group GL(n, D), the induced representation ρνρ×ρ of the group GL(2n, D) (which
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has length equal to two) has a unique irreducible subrepresentation, which is an
essentially square integrable representation. We denote it by δ(ρνρ, ρ).

If τ is an irreducible representation of the group D∗, such that the representation
τνs0 � 1 of the group G1(D, 1) reduces for some positive real number s0, then the
representation τνs0 �1 has a unique subrepresentation, which is a square integrable,
and we denote it by δ[τνs0 ; 1].

We denote by Rn the Grothendieck group of smooth representations of finite
length of the group GL(n, D). Let R =

⊕
n≥0 Rn. For two finite-length admissible

representations π1 and π2 of the groups GL(n1, D) and GL(n2, D), respectively,
we define the multiplication by m(π1, π2) = π1 × π2, and then extend linearly to a
mapping m : R⊗R → R. For a smooth, finite length representation π of GL(n, D),
we define

m∗(π) =
n∑

k=0

s.s(r(k)(π)) ∈ R ⊗ R.

Here, r(k)(π) denotes the Jacquet module with respect to the standard maximal
parabolic subgroup of GL(n, D) with Levi subgroup equal to

GL(k, D) × GL(n − k, D).

We extend this comultiplication to a mapping m∗ : R → R ⊗ R. These two
operations define a Hopf algebra structure on R.

Let R(Gn(D, 1) denote the Grothendieck group of smooth representations of
finite length of the group Gn(D, 1), and let R(G) =

⊕
n≥0 R(Gn(D, 1)). Then,

R(G) is, by parabolic induction, a module for the algebra R, and the left multipli-
cation by elements of R is, as before, denoted by �. For a smooth, finite length
representation σ of the group Gn(D, 1) we put

µ∗(σ) =
n∑

k=0

s.s(s(k)(σ)).

We extend µ∗ by linearity to R(G). We denote by s : R ⊗ R → R ⊗ R a linear
map such that s(π1 ⊗ π2) = π2 ⊗ π1 for the representations π1 and π2. The ring
homomorphism Ψ : R → R ⊗ R is given as the following composition:

Ψ = (m ⊗ 1) ◦ (∗⊗m∗) ◦ s ◦ m∗.

In the previous formula, m is a multiplication, m∗ is a comultiplication on R, and
∗ is an involution, defined above for the representations of the GL(·, D)–groups.
Then, the structure of a Ψ–Hopf module on R(G) is the following ([5],[20]):

µ∗(π � σ) = Ψ∗(π) � µ∗(σ).

3. The principal series

We shall first analyze the principal series of the form π = χ1ν
α×χ2ν

β �1, where
χi, i = 1, 2, are unitary characters of D∗, and α, β are real numbers. It is easy to
see (using intertwining operators) that there is a standard representation, unique
up to isomorphism, which has the same composition series as the representation
π; we denote it by πs. The following lemma is an easy consequence of the results
obtained in [12].
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Lemma 3.1. Let χ be a unitary character of D∗, and s ∈ R. Then we have the
following:

(i) If χ2 	= 1, the representation χνs �1 of the group G1(D, 1) is irreducible for
every s ∈ R, and then χνs �1 = L(χν|s|; 1) if s 	= 0, and the representation
χ � 1 is tempered.

(ii) If χ2 = 1, but χ 	= 1, the representation χνs �1 reduces only for s = 0, and
in that case, it is a sum of two non-equivalent, tempered representations.

(iii) If χ = 1, νs � 1 reduces only for s = ±3
2 , and then (in the appropriate

Grothendieck group) ν± 3
2 � 1 = L(ν

3
2 ; 1) + δ[ν

3
2 ; 1] = 1G1(D,1) + StG1(D,1).

Using the factorization of the long intertwining operator ([18], see also [19]), we
obtain that the representation χ1ν

α × χ2ν
β � 1 reduces if and only if some of the

representations

(χ1ν
α)±1 � 1, (χ2ν

β)±1 � 1, (χ1ν
α)±1 × (χ2ν

β)±1

reduce. So, having in mind the previous lemma and the criterion for the reducibility
of the principal series of GL(2, D) mentioned in the previous section, we see that
if the representation χνα × χνβ � 1 reduces, then

α or β ∈ {0,±3
2
}, or ± α ± β = 2.

We describe the reducibility points and the decomposition of this kind of prin-
cipal series in the next several lemmas.

Proposition 3.2. Let π = χ1ν
α × χ1ν

α+2 � 1.
If χ2

1 	= 1, the length of π is two, and

π = L(χ1ν
|α+1|δ(ν, ν−1); 1) + χ1ν

α+1L(ν, ν−1) � 1.

The second summand is the Langlands quotient of the standard representation πs.
For α = −1 the first summand is a tempered representation.

If χ2
1 = 1, then the following hold:

(i) Assume χ1 = 1. Then, if α /∈ {0,±3
2}, the representation π has length

equal to two, and, analogous to the case χ2
1 	= 1, we have

π = L(ν|α+1|δ(ν, ν−1); 1) + να+1L(ν, ν−1) � 1.

Moreover, we have the following (in the appropriate Grothendieck group):
(a) If α = 0, then:

ν2 × 1 � 1 = L(νStGL(2,D); 1) + L(ν2; 1 � 1).

(b) If α = 3
2 , then:

ν
7
2 × ν

3
2 � 1 = L(ν

7
2 ; StG1(D,1)) + L(ν

5
2 StGL(2,D); 1) + L(ν

7
2 , ν

3
2 ; 1) + StG2(D,1).

(c) If α = −3
2 , then:

ν
3
2 × ν

1
2 � 1 = L(ν

1
2 StGL(2,D); 1) + L(ν

1
2 ; StG1(D,1)) + L(ν

3
2 , ν

1
2 ; 1) + π1,

where π1 is a square integrable representation.
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(ii) Assume χ1 	= 1. If α /∈ {0,−2}, the representation π has length two, and
it has the composition series analogous to the case χ2

1 	= 1.
If α = 0 (or α = −2) we have

χ1ν
2 × χ1 � 1 = L(χ1ν

2; T1) + L(χ1ν
2; T2) + 2L(χ1νStGL(2,D); 1) + π2 + π3,

where χ1 � 1 = T1 + T2, a sum of two non-equivalent irreducible tempered
representations, and π2 and π3 are square integrable representations.

Proof. In the following analysis, we extensively use Remark 3.2. and Lemma 3.7.
from [21]. The Jacquet modules of the representation involved are

s(2)(χ1ν
α+1δ(ν, ν−1) � 1)

= χ1ν
α+1δ(ν, ν−1) ⊗ 1 + χ−1

1 ν−(α+1) ˜δ(ν, ν−1) ⊗ 1 + χ−1
1 ν−α × χ1ν

α+2 ⊗ 1

and

s(1)(χ1ν
α+1δ(ν, ν−1) � 1) = χ1ν

α+2 ⊗ χ1ν
α � 1 + χ−1

1 ν−α ⊗ χ1ν
α+2 � 1.

We obtain that the reducibility of the representation χ1ν
α+1δ(ν, ν−1) � 1 depends

on whether the representations χ−1
1 ν−α × χ1ν

α+2, χ1ν
α � 1 and χ1ν

α+2 � 1 are
irreducible or not. If χ2

1 	= 1, all these representations are irreducible, forcing the
representation χ1ν

α+1StGL(2,D) � 1 and, by the Aubert involution, the represen-
tation χ1ν

α+11GL(2,D) � 1, to be irreducible. So we are left to deal with the cases
described in the proposition. In the case

ν2 × 1 � 1

we apply Proposition 6.3 of [21] and obtain the irreducibility of the representation
νStGL(2,D) � 1. For α = −3

2 , we have

ν
3
2 × ν

1
2 � 1

= ν− 1
2 StGL(2,D) � 1 + ν− 1

2 1GL(2,D) � 1 = ν
1
2 � StG1(D,1) + ν

1
2 � 1G1(D,1).

We analyze the Jacquet module

rD∗×G1(D,1)(ν
1
2 � StG1(D,1)) = ν

3
2 ⊗ ν

1
2 � 1 + ν

1
2 ⊗ StG1(D,1) + ν− 1

2 ⊗ StG1(D,1).

So, the length of the representation ν
1
2 �StG1(D,1) is at most three. If we assume it

is three, then the representation ν
3
2 ⊗ ν

1
2 � 1 is a Jacquet module of an irreducible

subquotient of the representation ν
1
2 �StG1(D,1). But, by checking all the possibil-

ities for the rGL(2,D)–Jacquet module of that subquotient, and then calculating the
Jacquet module for the minimal parabolic subgroup, we see that this is impossible.
We conclude that in the Grothendieck group we have

ν
1
2 � StG1(D,1) = L(ν

1
2 ; StG1(D,1)) + π1,

for some irreducible representation π1. Analyzing the possibilities for the Jacquet
module of the representation π1, we find out that

rD∗×G1(D,1)(π1) = ν
3
2 ⊗ ν

1
2 � 1 + ν

1
2 ⊗ StG1(D,1).

This forces π1 to be a square integrable representation. For α = 3
2 we obtain

the representation ν
7
2 × ν

3
2 � 1, and by the well-known results (for example [3]),
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we get that the length of this representation is four, that it has a square inte-
grable subquotient (the Steinberg representation), and the Langlands quotient of
this representation is the trivial representation of the group G2(D, 1). The other
two subquotients are easily identified. For χ1 	= 1, the only more complicated case
is α ∈ {0,−2}. We denote χ1 � 1 = T1 + T2, where Ti, i = 1, 2, are non-equivalent,
irreducible tempered representations. Then the discussion, which mainly includes
the analysis of the Jacquet modules, is very similar to the one in the case of the
principal series of the group G2(D,−1) ([5]). There we faced a similar situation
examining the principal series representation τν × τ � 1, where τ is a selfcontragre-
dient representation of D∗ of dimension greater than one with a non-trivial central
character. �

Proposition 3.3. We consider a representation π = ν
3
2 ×χ2ν

α �1. If χ2
2 	= 1, the

representation π has length equal to two, and we have

ν
3
2 × χ2ν

α � 1 = χ2ν
α � 1G1(D,1) + χ2ν

α � StG1(D,1).

The first summand above is the Langlands quotient of the representation πs, and the
second is L(χ2ν

|α|; StG1(D,1)). (For α = 0 this summand is an irreducible tempered
representation).

If χ2
2 = 1 we have

(i) If we assume that χ2 = 1, then if α /∈ {±1
2 ,±7

2} the representation π
has length equal to two and the composition series equivalent to the case
χ2

2 	= 1. If α ∈ {±1
2 ,±7

2} we obtain the representations analyzed in the
previous proposition.

(ii) If we assume that χ2 	= 1, then if α 	= 0, the representation π has length
equal to two, and the composition series is analogous to the case χ2

2 	= 1.
In the case α = 0, we denote χ2 � 1 = T1 + T2, for T1 and T2 irreducible
tempered representations, and we have

ν
3
2 × χ2 � 1 = L(ν

3
2 ; T1) + L(ν

3
2 ; T2) + T ′

3 + T ′
4.

The representations T ′
3 and T ′

4 are non-equivalent, irreducible tempered rep-
resentations such that χ2 � StG1(D,1) = T ′

3 + T ′
4.

Proof. We consider the following Jacquet modules:

rD∗×G1(D,1)(χ2ν
α�StG1(D,1))=ν

3
2⊗χ2ν

α�1+χ2ν
α⊗StG1(D,1)+χ−1

2 ν−α⊗StG1(D,1),

rGL(2,D)(χ2ν
α � StG1(D,1)) = χ2ν

α × ν
3
2 ⊗ 1 + χ−1

2 ν−α × ν
3
2 ⊗ 1.

Again, by [21], if we assume that the representations χ2ν
α × ν

3
2 , χ−1

2 ν−α × ν
3
2

and χ2ν
α � 1 are irreducible, then the irreducibility of the representation χ2ν

α �
StG1(D,1) and, by the Aubert involution, of the representation χ2ν

α � 1G1(D,1),
follows. If these condition are violated, then the only representation left to consider,
besides the ones considered in the previous proposition, are the following ones:

ν
3
2 × ν

3
2 � 1 and χ2 × ν

3
2 � 1,

with χ2
2 = 1, χ2 	= 1. Consider the first one. We have

rGL(2,D)(ν
3
2 � StG1(D,1)) = ν

3
2 × ν

3
2 ⊗ 1 + ν− 3

2 × ν
3
2 ⊗ 1.
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We conclude that the length of ν
3
2 � StG1(D,1) is at most two. So, we assume that

ν
3
2 � StG1(D,1) = L(ν

3
2 ; StG1(D,1)) + σ, where σ is some irreducible representation.

From the expression for the GL(2, D)–Jacquet module we have rGL(2,D)(σ) = ν
3
2 ×

ν
3
2 ⊗ 1. But when we try to reconcile that with the choices for the Jacquet module

with respect to the D∗ × G1(D, 1)–Levi subgroup, we find that this is impossible.
So, ν

3
2 � StG1(D,1) = L(ν

3
2 ; StG1(D,1)). In the second case, we have

χ2 × ν
3
2 � 1 = ν

3
2 � T1 + ν

3
2 � T2

= χ2 � StG1(D,1) + χ2 � 1G1(D,1).

Because the representations L(ν
3
2 ; T2) and L(ν

3
2 ; T1) have to be subquotients of

χ2 � 1G1(D,1), the length of χ2 � 1G1(D,1) is at least two, but by looking at the
GL(2, D)–Jacquet module of the representation χ2 � StG(D,1) we obtain that the
representation χ2 � StG(D,1) has length at most two. So the result follows. �

Proposition 3.4. For χ2
1 = 1, χ1 	= 1 and unitary character χ2, we consider the

representation π = χ2ν
α ×χ1 � 1. We also denote χ1 � 1 = T1 ⊕T2. The following

holds:
(a) If χ2

2 	= 1, the length of the representation π is two, and we have:

π = L(χ2ν
|α|; T1) + L(χ2ν

|α|; T2), for α 	= 0.

For α = 0, the representation π is a sum of two non-equivalent irreducible
tempered representations.

(b) If χ2
2 = 1, then

(i) Assume that χ2 = 1. Then, if α /∈ {±3
2}, the representation π has

length equal to two, and the composition series are analogous to the
case χ2

2 	= 1. If α = 3
2 , this case was covered in the previous proposi-

tion.
(ii) Assume that χ2 	= 1. If α 	= 0, the representation π has length equal

to two and the composition series are analogous to the case χ2
2 	= 1; if

α = 0 we have: if χ1 = χ2 the length of π is two, and it is a sum of
two non-equivalent tempered representations, and if χ1 	= χ2, π is a
sum of four non-equivalent tempered representations.

Proof. We have
χ2ν

α × χ1 � 1 = χ2ν
α � T1 + χ2ν

α � T2.

Then

rD∗×G1(D,1)(χ2ν
α � T1) = χ1 ⊗ χ2ν

α � 1 + χ2ν
α ⊗ T1 + χ−1

2 ν−α ⊗ T1.

Also
rGL(2,D)(χ2ν

α � T1) = χ2ν
α × χ1 ⊗ 1 + χ−1

2 ν−α × χ1 ⊗ 1.

If we assume irreducibility of the representations χ2ν
α × χ1, χ−1

2 ν−α × χ1 and
χ2ν

α � 1, by [21], it follows that the representation π has length equal to two.
Dropping these assumptions, the only new cases left to consider are

χ1 × χ1 � 1

and
χ1 × χ2 � 1, if χ2

2 = 1, χ2 	= 1, χ2 	= χ1.
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The former one has length two and the latter four by [6], and all the summands
appearing are non-equivalent. �

Now we turn to the mixed case. We denote π = χνα × τνβ � 1, where χ is a
unitary character of D∗, and τ is a unitary representation of D∗ of dimension greater
than one. The representation π reduces only if at least one of the representations
χνα � 1 or τνβ � 1 reduces. Then we have the following

Proposition 3.5. (i) If τνβ � 1 is irreducible, then the representation τνβ ×
ν

3
2 � 1 has length two and

π = τνβ � 1G1(D,1) + L(τν|β|; StG1(D,1)),

where the first summand is the Langlands quotient of the representation πs;
the second is tempered if β = 0.

(ii) Assume that τ ∼= τ̃ and ωτ = 1. Then

ν
3
2 × τν

1
2 � 1 = L(ν

3
2 ; δ[τν

1
2 ; 1]) + L(τν

1
2 ; StG1(D,1)) + L(ν

3
2 , τν

1
2 ; 1) + π4,

where π4 is a square integrable representation.
(iii) Assume that τ ∼= τ̃ and ωτ 	= 1. Then

ν
3
2 × τ � 1 = L(ν

3
2 ; T1) + L(ν

3
2 ; T2) + T ′

5 + T ′
6,

where τ � 1 = T1 + T2, and T ′
5 and T ′

6 are non-equivalent, irreducible tem-
pered representations such that τ � StG1(D,1) = T ′

5 + T ′
6.

(iv) Assume that χ2 = 1 and χ 	= 1, so that χ � 1 = T1 + T2. Then, if the
representation τνβ � 1 does not reduce, the representation π has length
two, and

π = L(τν|β|; T1) + L(τν|β|; T2), if β 	= 0.

If β = 0 the representation π is a sum of two non-equivalent tempered
representations.

(v) For χ2 = 1, χ 	= 1 with τν
1
2 � 1 reducible, we have

τν
1
2 × χ � 1 = L(τν

1
2 ; T1) + L(τν

1
2 ; T2) + T ′

7 + T ′
8,

where T ′
7 and T ′

8 are non-equivalent, irreducible tempered representations
such that χ � δ[τν

1
2 ; 1] = T ′

7 + T ′
8.

(vi) For χ2 = 1, χ 	= 1 with τ � 1 is reducible, we have

χ × τ � 1 = T ′
9 + T ′

10 + T ′
11 + T ′

12,

and representations on the right hand side of the above equation are in-
equivalent, irreducible and tempered.

(vii) When the representation χνα �1 is irreducible and τνβ �1 is reducible, the
representation π has length two, and the analysis of the composition series is
analogous to the previous cases of reducible χνα �1 and irreducible τνβ �1.

Proof. This is similar to the proof of the previous proposition. We leave the details
to the reader. �

The groups G2(D, 1) and G2(D,−1) have an analogous structure of the Ψ–Hopf
module on the Grothendieck group, and in the groups G1(D, 1) and G1(D,−1) we
have the same reducibilites of the representations τνα � 1, where dim τ > 1. So,
the composition series of the representations τ1ν

α × τ2ν
β � 1, where τi, i = 1, 2,
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are unitary representations of D∗ of dimension greater than one, of the group
G2(D, 1), are analogous to the similar representations of the group G2(D,−1) which
were analyzed in [5]. We just note the results, because we need them for the
unitarizability questions.

Proposition 3.6. Let τ1 denote an irreducible, admissible, unitary representation
of D∗ of dimension greater than one, and let π = τ1ν

α+1 × τ1ν
α � 1. If τ1 is not a

self-dual representation, the representation π has length equal to two, and we have

π = L(τ1ν
α+1, τ1ν

α) � 1 + L(ν|α+ 1
2 |δ(τ1ν

1
2 , τ1ν

− 1
2 ); 1).

The first summand in the previous relation is the Langlands quotient of the repre-
sentation πs; the second is tempered for α = 1

2 . Otherwise, we have the following
(without loss of generality, we can assume α ≥ −1

2 ).
(i) If ωτ1 = 1 we have the following:

τ1ν
α+1 × τ1ν

α � 1

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

L(ν
1
2 δ(τ1ν

1
2 , τ1ν

− 1
2 ); 1) + L(τ1ν; τ1 � 1), if α = 0,

L(νδ(τ1ν
1
2 , τ1ν

− 1
2 ); 1) + L(τ1ν

3
2 ; δ[τν

1
2 ; 1]) + π4 + L(τ1ν

3
2 , τ1ν

1
2 ; 1), if α = 1

2 ,

L(τ1ν
1
2 ; δ[τ1ν

1
2 ; 1]) + L(τν

1
2
1 , τν

1
2
1 ; 1) + T1 + T2, if α = −1

2 ,

L(να+ 1
2 δ(τ1ν

1
2 , τ1ν

− 1
2 ); 1) + L(τ1ν

α+1, τ1ν
−α; 1), if α ∈ (−1

2 , 0),
L(να+ 1

2 δ(τ1ν
1
2 , τ1ν

− 1
2 ); 1) + L(τ1ν

α+1, τ1ν
α; 1), if α ∈ R+ \ { 1

2}.

(ii) If ωτ1 	= 1 and τ1 � 1 = T ′
3 + T ′

4, then we have the following:

τ1ν
α+1 × τ1ν

α � 1

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
L(τ1ν; T ′

3) + L(τ1ν; T ′
4) + 2L(ν

1
2 δ(τ1ν

1
2 , τ1ν

− 1
2 ); 1) + π5 + π6, if α = 0,

L(να+ 1
2 δ(τ1ν

1
2 , τ1ν

− 1
2 ); 1) + L(τ1ν

α+1, τ1ν
α; 1), if α > 0,

δ(τ1ν
1
2 , τ1ν

− 1
2 ) � 1 + L(τ1ν

1
2 , τ1ν

1
2 ; 1), if α = −1

2 ,

L(να+ 1
2 δ(τ1ν

1
2 , τ1ν

− 1
2 ); 1) + L(τ1ν

α+1, τ1ν
−α; 1), if α ∈ (−1

2 , 0).

The representations πi, i = 4, 5, 6, are mutually non-equivalent square–integrable
representations, and Ti, i = 1, 2, and δ(τ1ν

1
2 , τ1ν

− 1
2 ) � 1 in the second case are

mutually non-equivalent tempered (non square-integrable) representations.

Proposition 3.7. Let τ2 be a unitary, irreducible self-dual representation of D∗ of
dimension greater than one, with ωτ2 = 1, and let τ1 denote a unitary irreducible
representation of D∗ of dimension greater than one.

(a) If τ1 � τ̃1, then we have the following:

τ1ν
α × τ2ν

1
2 � 1 = τ1ν

α � L(τν
1
2 ; 1) + L(τ1ν

|α|; δ[τν
1
2 ; 1]),

where the first summand is the Langlands quotient of the representation πs; the
second is tempered for α = 0.

(b) If τ1
∼= τ̃1, then we have the following two cases:

(i) If ωτ1 = 1, then we have:

τ1ν
α × τ2ν

1
2 � 1 = L(τ1ν

|α|; δ[τ2ν
1
2 ; 1]) + L(τ1ν

|α|, τ2ν
1
2 ; 1)
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if |α| ∈ R+
0 \ {0, 1

2 , 3
2};

τ1ν
α × τ2ν

1
2 � 1

= L(τ1ν
1
2 ; δ[τ2ν

1
2 ; 1]) + L(τ2ν

1
2 ; δ[τ1ν

1
2 ; 1]) + L(τ1ν

1
2 , τ2ν

1
2 ; 1) + π7

if |α |= 1
2 and τ1 � τ2;

τ1ν
α × τ2ν

1
2 � 1 = L(τ1ν

1
2 ; δ[τ1ν

1
2 ; 1]) + L(τν

1
2
1 , τν

1
2
1 ; 1) + T1 + T2

if |α| = 1
2 and τ1

∼= τ2;

τ1ν
α × τ2ν

1
2 � 1 = τ1 � δ[τ2ν

1
2 ; 1] + L(τ2ν

1
2 ; τ1 � 1)

if α = 0; and finally

τ1ν
α × τ2ν

1
2 � 1

= L(νδ(τ1ν
1
2 , τ1ν

− 1
2 ); 1) + L(τ1ν

3
2 ; δ[τν

1
2 ; 1]) + π4 + L(τ1ν

3
2 , τ1ν

1
2 ; 1)

if |α| = 3
2 and τ1

∼= τ2, and

τ1ν
α × τ2ν

1
2 � 1 = L(τ1ν

3
2 ; δ[τ2ν

1
2 ; 1]) + L(τ1ν

3
2 , τ2ν

1
2 ; 1)

if |α| = 3
2 and τ1 � τ2. The representation π7 is a square–integrable representation,

and τ1 � δ[τ2ν
1
2 ; 1] is an irreducible tempered representation.

(ii) If ωτ1 	= 1 and τ1 � 1 = T ′
3 + T ′

4, then we have:

τ1ν
α × τ2ν

1
2 � 1 =

{
L(τ1ν

|α|; δ[τ2ν
1
2 ; 1]) + L(τ1ν

|α|, τ2ν
1
2 ; 1) if α 	= 0,

L(τ2ν
1
2 ; T ′

3) + L(τ2ν
1
2 ; T ′

4) + T5 + T4 if α = 0.

The representations Ti, i = 4, 5, are irreducible tempered representations.

Proposition 3.8. Let τ2 be a unitary irreducible, self-dual representation of D∗

such that ωτ2 	= 1, so that τ2 � 1 = T ′
3 ⊕ T ′

4, and let τ1 be an irreducible unitary
representation of D∗. Then, we have the following:

(a) If α 	= 0, then we have the following:

τ1ν
α × τ2 � 1

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
L(τ1ν

1
2 ; T ′

3) + L(τ1ν
1
2 ; T ′

4) + T4 + T5 if α = ±1
2 , τ1

∼= τ̃1, ωτ1 = 1,

L(τ2ν; T ′
3) + L(τ2ν; T ′

4) + 2L(ν
1
2 δ(τ2ν

1
2 , τ2ν

− 1
2 ); 1)

+π5 + π6 if τ1
∼= τ2, α = ±1,

L(τ1ν
|α|; T ′

3) + L(τ1ν
|α|; T ′

4), in other cases.

(b) If α = 0, then we have the following:

τ1 × τ2 � 1 =

{
T6 + T7 + T8 + T9 if τ1

∼= τ̃1, ωτ1 	= 1, τ1 � τ2,

T10 + T11 in other cases.

The representations Ti, i = 6, . . . , 11, are mutually non-equivalent tempered (non-
square-integrable) representations.
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3.1. The summary of all the reducibility points of the principal series
representations. In order to organize the results in a more concise way, we list
all the cases discussed in this section. The tempered subquotients appearing in the
principal series will be denoted by Tj (or T ′

j), and the square integrable ones by πi,
for some i, j.

A) Let π = χ1ν
α ×χ1ν

α+2 �1, where χ1 is a unitary character of D, and α ∈ R.
• If χ2

1 	= 1, or if χ1 = 1 and α 	= ±3
2 or if χ2

1 = 1, χ1 	= 1 and α /∈ {0,−2}, π
is of the length two and:

π = L(χ1ν
|α+1|δ(ν, ν−1); 1) + χ1ν

α+1L(ν, ν−1) � 1.

• χ1 = 1 and α = 3
2 :

π = L(ν
7
2 ; StG1(D,1)) + L(ν

5
2 StGL(2,D); 1) + L(ν

7
2 , ν

3
2 ; 1) + StG2(D,1).

• χ1 = 1 and α = −3
2 :

π = L(ν
1
2 StGL(2,D); 1) + L(ν

1
2 ; StG1(D,1)) + L(ν

3
2 , ν

1
2 ; 1) + π1.

• χ2
1 = 1, but χ1 	= 1 and α ∈ {0,−2}:

π = L(χ1ν
2; T1) + L(χ1ν

2; T2) + 2L(χ1νStGL(2,D); 1) + π2 + π3,

where χ1 � 1 = T1 + T2.

B) Let π = ν
3
2 × χ2ν

α � 1, where χ2 is a unitary character of D∗.
• If χ2

2 	= 1, or if χ2 = 1 and α /∈ {±1
2 ,±7

2}, or if χ2
2 = 1, χ2 	= 1 and α 	= 0,

the representation π is of length two and

π = χ2ν
α � 1G1(D,1) + L(χ2ν

|α|; StG1(D,1)).

• If χ2
2 = 1, but χ2 	= 1 and α = 0, we have

π = L(ν
3
2 ; T1) + L(ν

3
2 ; T2) + T ′

3 + T ′
4.

• The remaining cases were covered under A).
C) Let π = χ2ν

α × χ1 � 1, where χ2
1 = 1, χ1 	= 1 and χ1 � 1 = T1 + T2, and χ2

is a unitary character.
• If χ2

2 	= 1, or if χ2 = 1 and α 	= ±3
2 , or if χ2

2 = 1, χ2 	= 1 and α 	= 0, or if
χ2 = χ1 and α = 0 we have

π = L(χ2ν
|α|; T1) + L(χ2ν

|α|; T2).

• If χ2
2 = 1, χ2 	= 1, χ2 	= χ1 and α = 0 the representation π is a sum of four

non-equivalent tempered representations.
D) Let π = τ1ν

α+1 × τ1ν
α � 1, where τ1 is an irreducible, unitarizable represen-

tation, and dim τ1 > 1. If τ1
∼= τ̃1 we can assume α ≥ −1

2 .

• If τ1 � τ̃1, or if τ1
∼= τ̃1, ωτ1 = 1 and α ∈ (−1

2 , +∞) \ { 1
2}, or if τ1

∼=
τ̃1, ωτ1 	= 1 and α ∈ [−1

2 , +∞) \ {0}, the length of π is two and we have

π = L(τ1ν
α+1, τ1ν

α) � 1 + L(ν|α+ 1
2 |δ(τ1ν

1
2 , τ1ν

− 1
2 ); 1).

• If τ1
∼= τ̃1, ωτ1 = 1 and α = 1

2 :

π = L(νδ(τ1ν
1
2 , τ1ν

− 1
2 ); 1) + L(τ1ν

3
2 ; δ[τν

1
2 ; 1]) + π4 + L(τ1ν

3
2 , τ1ν

1
2 ; 1).
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• If τ1
∼= τ̃1, ωτ1 = 1 and α = −1

2 :

π = L(τ1ν
1
2 ; δ[τ1ν

1
2 ; 1]) + L(τν

1
2
1 , τν

1
2
1 ; 1) + T5 + T6.

• If τ1
∼= τ̃1, ωτ1 	= 1 and α = 0 with τ1 � 1 = T ′

3 + T ′
4, we have

π = L(τ1ν; T ′
3) + L(τ1ν; T ′

4) + 2L(ν
1
2 δ(τ1ν

1
2 , τ1ν

− 1
2 ); 1) + π5 + π6.

E) Let π = τ1ν
α × τ2ν

1
2 � 1, where τ2

∼= τ̃2, ωτ2 = 1, and τ1 is an irreducible
unitarizable representation; dim τi > 1, i = 1, 2.

• If τ1 � τ̃1, or if τ1
∼= τ̃1, ωτ1 = 1 and |α| ∈ R+

0 \ { 1
2 , 3

2}, or if τ1
∼= τ̃1, ωτ1 =

1, τ1 � τ2 and |α| = 3
2 , or if τ1

∼= τ̃1, ωτ1 	= 1 and α 	= 0, the length of π is
two and we have

π = τ1ν
α � L(τν

1
2 ; 1) + L(τ1ν

|α|; δ[τν
1
2 ; 1]).

• If τ1
∼= τ̃1, ωτ1 = 1, τ1 � τ2 and |α |= 1

2 :

π = L(τ1ν
1
2 ; δ[τ2ν

1
2 ; 1]) + L(τ2ν

1
2 ; δ[τ1ν

1
2 ; 1]) + L(τ1ν

1
2 , τ2ν

1
2 ; 1) + π7.

• If τ1
∼= τ2 and |α| = 1

2 :

π = L(τ1ν
1
2 ; δ[τ1ν

1
2 ; 1]) + L(τν

1
2
1 , τν

1
2
1 ; 1) + T1 + T2.

• If τ1
∼= τ2 and |α| = 3

2 :

π = L(νδ(τ1ν
1
2 , τ1ν

− 1
2 ); 1) + L(τ1ν

3
2 ; δ[τν

1
2 ; 1]) + π4 + L(τ1ν

3
2 , τ1ν

1
2 ; 1).

• If τ1
∼= τ̃1, ωτ1 	= 1 and α = 0, with τ1 � 1 = T ′

3 + T ′
4, we have

π = L(τ2ν
1
2 ; T ′

3) + L(τ2ν
1
2 ; T ′

4) + T5 + T6.

F) Let π = τ1ν
α × τ2 � 1, such that dim τi > 1, i = 1, 2, τ2

∼= τ̃2, ωτ2 	= 1, with
τ2 � 1 = T ′

3 + T ′
4. Assume α > 0.

• If τ1 � τ̃1, or if τ1
∼= τ̃1, ωτ1 = 1 and |α| 	= 1

2 , or if τ1
∼= τ̃1, ωτ1 	= 1 and

τ1 � τ2, or if τ1
∼= τ2 and |α| 	= 1, we have:

π = L(τ1ν
|α|; T ′

3) + L(τ1ν
|α|; T ′

4).

• If τ1
∼= τ̃1, ωτ1 = 1 and α = ±1

2 :

π = L(τ1ν
1
2 ; T ′

3) + L(τ1ν
1
2 ; T ′

4) + T4 + T5.

• The remaining cases were covered in D).
Assume α = 0. The representation π is a sum of four non-equivalent tempered
representations if τ1�1 reduces and τ1 � τ2. Otherwise, π is a sum of two tempered
representations.

G) Let π = χνα × τνβ � 1, with χ a unitary character and dim τ > 1.

• If τνβ � 1 does not reduce, and χνα = ν± 3
2 , we have:

π = τνβ � 1G1(D,1) + L(τν|β|; StG1(D,1)).

• If τνβ � 1 does not reduce, and χ � 1 = T1 + T2, for α = 0 we have:

π = L(τν|β|; T1) + L(τν|β|; T2).

• If τν
1
2 � 1 reduces, and χνα � 1 does not, for β = ±1

2 the representation π
is of the length two and:

π = χνα � L(τν
1
2 ; 1) + L(χνα; δ[τν

1
2 ; 1]).
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• If τν
1
2 � 1 reduces, χ = 1 and α = ±3

2 (with β = ±1
2 ):

π = L(ν
3
2 ; δ[τν

1
2 ; 1]) + L(τν

1
2 ; StG1(D,1)) + L(ν

3
2 , τν

1
2 ; 1) + π4.

• If τν
1
2 � 1 reduces, and χ � 1 = T1 + T2 (with α = 0 and β = ±1

2 ), we have

π = L(τν
1
2 ; T1) + L(τν

1
2 ; T2) + T ′

7 + T ′
8.

• If τ � 1 = T ′
1 + T ′

2, and χνα � 1 does not, π is of the length two and (with
β = 0):

π = L(χν|α|; T ′
1) + L(χν|α|; T ′

2).
• If τ � 1 = T ′

1 + T ′
2, and χ = 1, α = ±3

2 (with β = 0):

π = L(ν
3
2 ; T ′

1) + L(ν
3
2 ; T ′

2) + T ′
5 + T ′

6.

• If τ � 1 = T ′
1 +T ′

2 and χ � 1 = T1 +T2 (with α = β = 0), π is a sum of four
tempered representations.

4. Unitary subquotients of the principal series

By χ1 and χ2 we denote the unitary characters of the group D∗. Let π =
χ1ν

s1 × χ2ν
s2 � 1. We are interested in the unitarizability of the subquotients of

the representation π, and we can assume (and do, throughout this section) that
s1 ≥ s2 ≥ 0. These subquotients were identified in the previous sections.

Proposition 4.1. Assume that χ2
1 	= 1, χ2

2 	= 1. Then
(i) If χ1 	= χ±1

2 , or χ1 = χ2, then the representation π has an irreducible
hermitian subquotient if and only if s1 = s2 = 0, and then this subquotient
is a tempered representation.

(ii) If χ1 = χ−1
2 , then, for s2 = 0, the representation π has a hermitian subquo-

tient only if s1 = 0 (and then it is tempered), and for s2 > 0, the hermitian
subquotients occur only if s1 = s2. Then, for each s1 > 0, all the subquo-
tients of the representation π are hermitian. For s1 ∈ (0, 1) and s1 > 1 we
have π = χ1ν

s1 ×χ−1
1 νs1 �1 = L(χ1ν

s1 , χ−1
1 νs1 ; 1), and this is unitarizable

for s1 ∈ (0, 1). If s1 = 1, in the appropriate Grothendieck group we have

π = χ1δ(ν, ν−1) � 1 + L(χ1ν, χ−1
1 ν; 1),

where the first subquotient is a tempered representation and the second is a
unitarizable non-tempered representation.

Proof. The first case follows from the criterion for hermiticity of the Langlands
quotient, due to Knapp-Zuckerman, and for the second, we just observe that, for
s1 ∈ (0, 1), the representation χ1ν

s1 ×χ1ν
−s1 is in the complementary series of the

group GL(2, D). �
Proposition 4.2. Assume that χ2

1 = 1 and χ2
2 	= 1. Then the representation π

has a hermitian subquotient only when s2 = 0; in that case all the subquotients are
hermitian. Keeping this assumption, we have: if s1 = 0, then if χ1 	= 1 the rep-
resentation π is a sum of two non-equivalent irreducible tempered representations,
and if χ1 = 1 the representation π is an irreducible tempered representation. If
s1 > 0, then: if χ1 	= 1 the representation π is irreducible non-unitarizable, and if
χ1 = 1, π is unitarizable and irreducible for s ∈ (0, 3

2 ), irreducible non-unitarizable
for s > 3

2 , and for s = 3
2 the representation π is (in the Grothendieck group) a

sum of a tempered and a non-tempered unitarizable representation. Analogously, it
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follows that in the case χ2
1 	= 1, χ2

2 = 1, the hermitian subquotients exist only when
s1 = s2 = 0, and the representation π is then an irreducible tempered representation
if χ2 = 1, or a sum of two irreducible tempered representations if χ2 	= 1.

Proof. This is standard. We just comment on the case χ1 = 1 and χ2
2 	= 1 with s2 =

0. The standard intertwining operators Aw2α+β
(s1) : νs1 × χ2 � 1 → ν−s1 × χ2 � 1

converge for s1 > 0. These operators, for s1 > 3
2 , define a continuous family,

indexed by s1, of the non-degenerate hermitian forms on the compact picture X of
the representation 1 × χ2 � 1 in the following way:

(f1, f2)s1 =
∫

K

〈f1,s1(k), Aw2α+β
(s1)f2,s1〉dk.

Here, f1 and f2 belong to the space X, and fi,s1 , i = 1, 2, denote the corresponding
holomorphic sections. The indexing set is connected, so, from the unitarizability of
one hermitian form would follow the unitarizability of all of them. Because of the
unboundedness of the matrix coefficients when s1 → ∞, each hermitian form is non-
unitarizable. In the same way, we can prove unitarizability of the representations
for s1 ∈ [0, 3

2 ), but this time, we must normalize the standard intertwining operators
Aw2α+β

(s1) because, for s1 = 0, this operator has a pole. The unitarizability of all
the subquotients at the end of the complementary series follows from the well-known
result of Miličić. �

Proposition 4.3. Assume that χ2
1 = χ2

2 = 1, and χ1 	= χ2. Then all the subquo-
tients of the representation π are hermitian.

(i) Assume that χ1 = 1 and χ2 	= 1. The representation π has a unitarizable
subquotient only if s1 ∈ [0, 3

2 ] and s2 = 0 (and then all of them are uni-
tarizable). The tempered irreducible subquotients occur for s1 = 0 and for
s1 = 3

2 .
(ii) Assume that χ1 	= 1 and χ2 	= 1. The unitarizable subquotients appear

only for s1 = s2 = 0, and then π is a sum of four non-equivalent tempered
representations.

(iii) If χ1 	= 1 and χ2 = 1, then, under given conditions (s1 ≥ s2 ≥ 0), the unita-
rizable subquotients appear only for s1 = s2 = 0, and then the representation
π is a sum of two non-equivalent irreducible tempered representations.

Proposition 4.4. (i) Assume that χ1 = χ2 = 1. With notation as in Fig-
ure 1 we have: the unitarizable subquotients appear only for (s1, s2) from
the closure of the region i and for the point (s1, s2) = ( 7

2 , 3
2 ). In the lat-

ter case the representation π has two unitarizable subquotients: the trivial
representation and the Steinberg representation.

(ii) Assume that χ2
1 = 1, χ1 	= 1, χ1 = χ2. Then the representation π has

a unitarizable subquotient only for s1 + s2 ≤ 2 (and then all of them are
unitarizable).

Proof. We prove (i). Unitarizability of the subquotients of the representation π for
(s1, s2) from the closure of the region i follows from unitarizability of the represen-
tations νs1 × ν−s1 of the group GL(2, D) for s1 ∈ [0, 1). For the point A = ( 7

2 , 3
2 ),

we recall a standard fact about the composition series of the representation π which
is induced from the modular character of the minimal parabolic subgroup ([3]): it
has a length four and only two of the subquotients, the Steinberg and the trivial
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Figure 1. νs1 × νs2 � 1

representation, are unitarizable. This implies the non-unitarizability of the repre-
sentation π for the open regions iv and v. Now consider a family of the standard
intertwining operators

Awα+β
(s) : νs+2 × νs � 1 → ν−s × ν−s−2 � 1,

for s ∈ (0, 3
2 ). It is easy to see that Awα+β

(s)|StGL(2,D)νs+1�1 	= 0, so this fam-
ily of operators induces a family of the non-degenerate hermitian forms, indexed
by s ∈ (0, 3

2 ), on the compact picture of the representation StGL(2,D) � 1. The
representation StGL(2,D)ν

5
2 � 1 has a non-unitarizable subquotient, so we conclude

that among the representations StGL(2,D)ν
s+1 � 1, for s ∈ (0, 3

2 ), there are no
unitarizable ones. Analogously, if we consider a quotient intertwining operator

Awα+β
(s) : νs+11GL(2,D) � 1 → ν−s−11GL(2,D) � 1,

for s ∈ (0, 3
2 ), we obtain nonunitarizability of the representations νs+11GL(2,D) � 1.

By using Proposition 6.3 from [21], we obtain the irreducibility of the representa-
tion StGL(2,D)ν

s+1 � 1 for s = 0. In this way, we obtain the non-unitarizability
of the representations StGL(2,D)ν

s+1 � 1 for s ∈ [0, 3
2 ). After applying the Aubert

involution on the representation StGL(2,D)ν � 1, it follows that the representa-
tion ν1GL(2,D) � 1 is irreducible. We normalize the operators Awα+β

(s) to re-
move the pole for s = 0 and then pass to the quotient operators, and we anal-
ogously obtain the non-unitarizability of the representation ν1GL(2,D) � 1. This
gives non-unitarizability of all the subquotients on the segment [C, A), and con-
sequently, on the open regions ii, iii and iv, and on the interval (C, D). As for
the point B = ( 3

2 , 3
2 ), the corresponding representation π has length equal to two,

and one of the irreducible subquotients is ν
3
2 � StG1(D,1). The representations

νs � StG1(D,1) are non-unitarizable for s ∈ ( 3
2 , 7

2 ), because they are irreducible
and the representation ν

7
2 � StG1(D,1) has a non-unitarizable subquotient. So we

have, for s ∈ [32 , 7
2 ), a non-degenerate family of the hermitian forms generated by

the standard intertwining operators A(s1) : νs1 � StG1(D,1) → ν−s1 � StG1(D,1).
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These operators are, for s1 ∈ ( 3
2 , 7

2 ), the restrictions of the standard operators
Aw2α+β

(s1) : νs1 × ν
3
2 � 1 → ν−s1 × ν

3
2 � 1. Using the similar arguments as be-

fore, i.e. by eliminating the pole of the operator Aw2α+β
and then, by passing to

the quotient, we obtain the non-unitarizability of the representation νs � 1G1(D,1)

for s ∈ [32 , 7
2 ). Also, for s ∈ ( 1

2 , 3
2 ), the non-unitarizability of the representa-

tion νs � 1G1(D,1) = L(ν
3
2 , νs; 1) follows from the existence of the non-degenerate

hermitian form on this representation generated by the action of the long inter-
twining operator Aw0(

3
2 , s) on the quotient of the representation ν

3
2 × νs � 1, and

from the non-unitarizability of the representation ν
3
2 � 1G1(D,1). This gives non-

unitarizability on the open region vi. The proof of (ii) is left to the reader. �

Now, we consider the subquotients of the principal series τ1ν
s1 × τ2ν

s2 � 1, for
dim τi > 1, i = 1, 2. Again we denote π = τ1ν

s1 × τ2ν
s2 � 1, and assume that

s1 ≥ s2 ≥ 0. As already mentioned, the irreducible subquotients of these represen-
tations are the same as in the case of the group G2(D,−1). Also, the unitarizable
subquotients are the same as for the group G2(D,−1) ([5]), but the arguments for
the (non-)unitarizability for some of them are different because we were not able to
establish a direct (non-conjectural) transfer of the Plancherel measure µ(s, δ) to the
Plancherel measure µ(s, δ′). In this case, δ denotes a discrete series representation
of the group D∗ × G1(D, 1) and δ′ (one of the) discrete series representations of
GL(2, F ) × Sp(4, F ) corresponding to δ by the Langlands correspondence. So, we
discuss the case where the arguments for G2(D, 1) and G2(D,−1) differ.

We now recall the definition of the Plancherel measure for a general reductive
group. If ν ∈ aθ, and σ is a discrete series representation of Mθ (notation as in
the Preliminaires), up to a factor which depends only on the normalization of the
measures on the reductive group G and its parabolic subgroup Pθ, we have:

Aw−1(wσ,w ν)Aw(σ, ν) = µw(σ, ν)−1.

In the above relation, the representation wσ of the group Mw(θ) is defined by
wσ(m) = σ(w−1mw). We define wν analogously. If there is no subscript below
µ, we assume that w equals the longest element of the Weyl group.

Proposition 4.5. Assume that τ1
∼= τ2 and τ1 selfcontragredient with ωτ1 = 1.

In Figure 2, considering the open regions, we have the unitarizable subquotients
appearing only on the region I, where we have the non-tempered representations.
On the boundaries, we have a square integrable subquotient for (s1, s2) =

(
3
2 , 1

2

)
, and

the tempered subquotients for (s1, s2) ∈
{(

1
2 , 0

)
,
(

1
2 , 1

2

)
, (0, 0)

}
. On the boundary

of the region I all the appearing subquotients are unitarizable and the Langlands
quotient L(τ1ν

3
2 , τ1ν

1
2 ; 1) is unitarizable.

Proof. The only non-trivial thing is deciding on the unitarizability of the subquo-
tients of the representation τ1ν

3
2 × τ1ν

1
2 � 1. We have:

τ1ν
3
2 × τ1ν

1
2 � 1

= L(νδ(τ1ν
1
2 , τ1ν

− 1
2 ); 1) + π4 + L(τν

3
2 ; δ[τ1ν

1
2 ; 1]) + L(τ1ν

3
2 , τ1ν

1
2 ; 1).

The unitarizability of the representation L(τ1ν
3
2 , τ1ν

1
2 ; 1) is proved using global

methods, modulo a technical condition. This is an isolated unitary representation
in the unitary dual.
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Lemma 4.6. The representation L(τ1ν
3
2 , τ1ν

1
2 ; 1) is unitarizable.

Proof of Lemma 4.6. Let k be a number field with the following property: there
exist two places of k, v1 and v2, such that kvi

∼= F, i = 1, 2, and a division al-
gebra D over k such that it ramifies only at vi, i = 1, 2. Then D ⊗k F ∼= D.
By Ak we denote the ring of adeles of k. Let σ =

⊗
v σv be an automorphic

cuspidal representation of D∗(Ak) with the trivial central character, such that
σvi

∼= τ1, i = 1, 2. We assume that the representation σ is realized on the
space of automorphic functions V on D∗(Ak). Let σ′ =

⊗
v σ′

v denote a cuspi-
dal automorphic representation of GL(2, Ak) which is a lift of the representation
σ, i.e. σ′

v
∼= σv, ∀v /∈ {v1, v2} and σ′

v1
∼= σ′

v2
∼= τ ′

1, a representation which is a
Jacquet-Langlands lift of τ1. We recall that the condition on the central charac-
ter forces σ (and, consequently σ′) to be self-contragredient. Let G2(D, 1)(Ak)
be a group of points in the adeles of the hermitian quaternionic group. Then
G2(D, 1)(kv) ∼= Sp(8, kv), v /∈ {v1, v2}, and G2(D, 1)(kvi

) ∼= G2(D, 1), i = 1, 2.
Let P (Ak) = M(Ak)U(Ak) denote a standard upper triangular parabolic subgroup
with the Levi subgroup M(Ak) isomorphic to D∗(Ak)×D∗(Ak), and let AM be the
center of M . Also, let X(AM ) = Homk(AM , GL(1)), and aM = X(AM ) ⊗ R. We
denote by A+ a set of all a ∈ AM (Ak) such that av = 1 for v finite, and χ(av) = a,
where a is a positive number independent of v infinite, for all χ ∈ X(AM ). We fix
a maximal compact subgroup K =

∏
Kv in a usual way.

For each (s1, s2), there is an induced representation

π(s1, s2) = IndG2(D,1)(Ak)
D∗(Ak)×D∗(Ak)σνs1 ⊗ σνs2 .

Here ν denotes a product of the local ν’s over all the places. These representations
form a fibre bundle of representations and the sections are constructed as follows
([9]): Denote by H the space of functions f on G2(D, 1)(Ak) satisfying the following
conditions:

(i) f(uγag) = f(g) for u ∈ U(Ak), γ ∈ P (k), a ∈ A+;
(ii) f is K–finite, and for each k ∈ K the function

m �→ f(mk)

belongs to the space V ⊗ V of functions on D∗(Ak) × D∗(Ak).
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We extend the Harish-Chandra HP function to the entire G2(D, 1)(Ak) in the way
that it is K–invariant. Then for each (s1, s2), the representation of G2(D, 1)(Ak)
(or of the appropriate Hecke algebra) on the space of functions of the form

g �→ f(g)exp〈HP (g), s + ρ〉, f ∈ H,

is equivalent to π(s1, s2). We form the corresponding Eisenstein series:

E(g, s1, s2, f) =
∑

P (k)\G2(D,1)(k)

f(γg)exp〈HP (γg), s + ρ〉.

It converges absolutely for s such that the real part of s is in the positive Weyl
chamber shifted by the half-sum of the roots corresponding to the parabolic sub-
group P (the one which has a Levi subgroup isomorphic to D∗(Ak)×D∗(Ak)). The
poles of the Eisenstein series coincide with the poles of its constant term (along P ),
which is given by

EP (g, s1, s2, f) =
∑

w∈W

[T (w, s1, s2)f ](g)exp〈HP (g), w(s1, s2) + ρ〉,

where the sum is over an absolute Weyl group of G2(D, 1). For each w, T (w, s1, s2)
is an intertwining operator from H to H defined by

[T (w, s1, s2)f ](g)exp〈H(g), w(s1, s2) + ρ〉

=
∫

f(w−1ug)exp〈H(w−1ug), s + ρ〉du,

and the integral is over

U(k) ∩ wU(k)w−1 \ U(Ak) ∩ wU(Ak)w−1.

We can identify these global intertwining operators with

T (w, s1, s2) =
⊗

v

Tv(w, s1, s2),

where Tv(w, s1, s2) are analogously defined local intertwining operators. Let S
denote a finite set of places of k which includes the archimedean places, v1, v2,
and all the ramified places, i.e. v /∈ S ⇒ σvνs1 × σvνs2 � 1 is a spherical repre-
sentation. In that case, let fv denote the unique Kv–invariant function, normal-
ized with f(ev) = 1, and f̃v an analogous function in the representation space of
Tv(w, s1, s2)(σvν

s1 ×σvνs2 �1). Let f =
⊗

v fv be a function in the representation
space of the induced representation, such that for v /∈ S, fv is the function fixed
above. The elements s and c2 of the Weyl group were defined in the Preliminaries,
where s was denoted by s1. We now use s to avoid confusion with the complex
numbers s1, s2. Then we have the following expressions for the global intertwining
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operators :

T (c2, s1, s2)f = (⊗v∈STv(c2, s1, s2)fv ⊗v/∈S f̃v) × LS(s2, σ)
LS(1 + s2, σ)

LS(2s2, 1)
LS(1 + 2s2, 1)

,

T (s, s1, s2)f = (⊗v∈STv(s, s1, s2)fv ⊗v/∈S f̃v) × LS(s1 − s2, σ × σ)
LS(1 + s1 − s2, σ × σ)

,

(sc2, s1, s2)f = (⊗v∈STv(sc2, s1, s2)fv ⊗v/∈S f̃v)

× LS(s2, σ)
LS(1 + s2, σ)

LS(2s2, 1)
LS(1 + 2s2, 1)

LS(s1 + s2, σ × σ)
LS(1 + s1 + s2, σ × σ)

,

T (c2sc2, s1, s2)f = (⊗v∈STv(c2sc2, s1, s2)fv ⊗v/∈S f̃v)

× LS(s2, σ)
LS(1 + s2, σ)

LS(2s2, 1)
LS(1 + 2s2, 1)

LS(s1 + s2, σ × σ)
LS(1 + s1 + s2, σ × σ)

LS(s1, σ)
LS(1 + s1, σ)

LS(2s1, 1)
LS(1 + 2s1, 1)

,

T (sc2sc2, s1, s2)f = (⊗v∈STv(sc2sc2, s1, s2)fv ⊗v/∈S f̃v)

× LS(s2, σ)
LS(1 + s2, σ)

LS(2s2, 1)
LS(1 + 2s2, 1)

LS(s1 + s2, σ × σ)
LS(1 + s1 + s2, σ × σ)

LS(s1, σ)
LS(1 + s1, σ)

LS(2s1, 1)
LS(1 + 2s1, 1)

× LS(s1 − s2, σ × σ)
LS(1 + s1 − s2, σ × σ)

,

T (c2s, s1, s2) = (⊗.v∈STv(c2s, s1, s2)fv ⊗v/∈S f̃v)

× LS(s1 − s2, σ × σ)
LS(1 + s1 − s2, σ × σ)

× LS(s1, σ)
LS(1 + s1, σ)

LS(2s1, 1)
LS(1 + 2s1, 1)

,

T (sc2s, s1, s2) = (⊗v∈STv(sc2s, s1, s2)fv ⊗v/∈S f̃v)

× LS(s1 − s2, σ × σ)
LS(1 + s1 − s2, σ × σ)

× LS(s1, σ)
LS(1 + s1, σ)

LS(2s1, 1)
LS(1 + 2s1, 1)

× LS(s1 + s2, σ × σ)
LS(1 + s1 + s2, σ × σ)

.

The symbol LS(·) denotes a partial L function obtained as a product of local L
–functions over all the places except the ones in S. Note that, in the previous
formulas, we have the partial standard L– function, the partial Hecke and Rankin-
Selberg L–functions. We want to study a behavior of the intertwining operators
near the point (s1, s2) = ( 3

2 , 1
2 ). We analyze the local intertwining operators for

v ∈ S. For v ∈ {v1, v2}, we have a standard intertwining operator

Tv(w,
3
2
,
1
2
) = Aw(

3
2
,
1
2
)

(using the previous notation), which acts on the standard representation τ1ν
3
2 ×

τ1ν
1
2 � 1, and as such, is holomorphic near that point. If v ∈ S \ {v1, v2}, observe

that σv
∼= σ′

v is a local component of the automorphic cuspidal representation σ′

of GL(2, Ak). This forces the unitary representation σv to be of the following two
kinds:

(i) σv is a tempered representation,
(ii) σv is a complementary series representation, σv

∼= χvν
s × χvν

−s, for s ∈
(0, 1

2 ), and some unitary character χv.

In the first case, σvν
3
2 × σvν

1
2 � 1 is a standard representation, and in the second

case, we have

σvν
3
2 × σvν

1
2 � 1 ∼= χvνs+ 3

2 × χvν
−s+ 3

2 × χvνs+ 1
2 × χvν

−s+ 1
2 � 1,
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and the right-hand side is a standard representation of Sp(8, kv), so the operators
Tv(w, 3

2 , 1
2 ), with w ∈ W ⊂ W (Sp(8, kv)), are holomorphic. We conclude that all

the possible poles of the global intertwining operators come from the poles of the
partial L–functions. Now, we use the fact that, for the above L–functions, the
global and the partial L–functions have the same poles for Res ≥ 1 ([8]). We
calculate the iterated residues of the partial L–functions for s1 = 3

2 and s2 = 1
2 .

We see immediately that the iterated residues are non-trivial only for the partial
L–functions which appear in the global intertwining operator associated with the
longest element in the Weyl group, and then only if LS( 1

2 , σ′) 	= 0, which is equiv-
alent to L( 1

2 , σ′) 	= 0. We now identify the local components of the representations
appearing in these residues. For v /∈ {v1, v2} we have: if σv is a tempered represen-
tation of GL(2, kv), then because c2sc2s is the longest element in the relative Weyl
group WM , where M ∼= GL(2, kv) × GL(2, kv), we have

Tv(c2sc2s,
3
2
,
1
2
)(σvν

3
2 × σvν

1
2 � 1) = L(σvν

3
2 , σvν

1
2 ; 1).

If σv
∼= χvνs × χvν−s, the representation

χvνs+ 3
2 × χvν−s+ 3

2 × χvνs+ 1
2 × χvν−s+ 1

2 � 1

is a standard representation, but c2sc2s is not the longest element in the absolute
Weyl group of Sp(8, kv), and the operator acts in the following way:

Tv(c2sc2s,
3
2
,
1
2
) : χvνs+ 3

2 × χvν−s+ 3
2 × χvν

s+ 1
2 × χvν−s+ 1

2 � 1

→ χvνs− 3
2 × χvν−s− 3

2 × χvνs− 1
2 × χvν−s− 1

2 � 1.

But
χvνs− 3

2 × χvν−s− 3
2 ∼= χvν−s− 3

2 × χvνs− 3
2

and
χvνs− 1

2 × χvν−s− 1
2 ∼= χvν−s− 1

2 × χvνs− 1
2 ,

so the image of the action of this operator is the same as the image of the action of
the long intertwining operator, i.e., equal to L(χvνs+ 3

2,χvν−s+ 3
2,χvνs+ 1

2,χvν−s+ 1
2 ; 1).

For v ∈ {v1, v2},

Tv(sc2sc2,
3
2
,
1
2
)(τ1ν

3
2 × τ1ν

1
2 � 1) = L(τ1ν

3
2 , τ1ν

1
2 ; 1).

We can conclude that in the residual spectrum there is a representation whose
local components are Langlands quotients described above; especially, at the places
v1 and v2 this representation has L(τ1ν

3
2 , τ1ν

1
2 ; 1) as a local component. This

proves that the representation L(τ1ν
3
2 , τ1ν

1
2 ; 1) is unitarizable, provided L( 1

2 , σ′) 	=
0. But, by the result of Waldspurger ([24], Théorème 5) for a cuspidal automorphic
representation of the group GL(2, Ak) with the trivial central character, such as
σ′, and fixed finite set of places V , there exists a quadratic character χ such that
χv = 1 for v ∈ V and L(σ′ ⊗ χ, 1

2 ) 	= 0, provided ε(σ′, 1
2 ) = 1. So, if we take

v1, v2 ∈ V , we can twist σ′ by χ, but the local components involved remain the
same at v1 and v2. But we can do that provided ε(σ′, 1

2 ) = 1. �

We now prove the non-unitarizability of the representations L(νδ(τ1ν
1
2 , τ1ν

− 1
2 ); 1)

and L(τν
3
2 ; δ[τ1ν

1
2 ; 1]). We do that in the following way: For the first one we will

calculate the order of the pole of the Plancherel measure µ(s, δ(τ1ν
1
2 , τ1ν

− 1
2 )) for
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s = 1, and then use this in the calculation of the Jantzen filtrations. This will give
us the non-unitarizability. By A(s) we denote the standard intertwining operator

A(s) : δ(τ1ν
1
2 , τ1ν

− 1
2 )νs � 1 → δ(τ1ν

1
2 , τ1ν

− 1
2 )ν−s � 1.

We will prove that the Plancherel measure has a simple pole for s = 1 and that
A(s) has no pole for s = −1. We denote it by δ = δ(τ1ν

1
2 , τ1ν

− 1
2 ). We use

the aforementioned result ([12]) which states that µ(s, δ) = µ(s, δ′). Here, the
representation δ′ is a discrete series representation of the group GL(4, F ), which is
the Jacquet-Langlands lift of the representation δ. The Plancherel measure µ(s, δ)
is with respect to the group G2(D, 1), and the measure µ(s, δ′) is with respect with
its split form, namely the group Sp(8, F ). The representation δ′ is generic, so we
can apply the results from [16] and [15] to compute the Plancherel measure in terms
of γ–factors. Up to an exponential factor, we have

µ(s, δ′) =
γ(s, δ′, ρ4, ψ)

γ(1 + s, δ′, ρ4, ψ)
γ(2s, δ′, Λ2ρ4, ψ)

γ(1 + 2s, δ′, Λ2ρ4, ψ)
.

Now, using the multiplicativity of γ–factors, we obtain

µ(s, δ′) =
(1 − q−1−2s)(1 − q1−2s)(1 − q1+2s)(1 − q−1+2s)(1 − q−2rs)(1 − q2rs)

(1 − q2s)(1 − q−2s)(1 − q−2+2s)(1 − q−2−2s)(1 − q−r+2rs)(1 − q−r−2rs)
,

where r is some integer. So, the Plancherel measure has a simple pole for s = 1.
Then consider the intertwining operator

Awα+β
(s) : τ1ν

s+ 1
2 × τ1ν

s− 1
2 � 1 → τ1ν

−s+ 1
2 × τ1ν

−s− 1
2 � 1.

The poles of the operator A(s) are among the poles of the operator Awα+β
(s)

because Awα+β
(s)|δνs�1 = A(s). But, by using the factorization of the operator

Awα+β
(s) ([14]), we see that it has no poles for s = −1. Let X denote the compact

picture of the representation δνs � 1. We will consider the Jantzen filtration of the
space X, for s ∈ [0, 1]. For s ∈ (0, 1), the representations δνs�1 are irreducible, and
the interval (0, 1) parameterizes a non-degenerate family of the hermitian forms on
the compact picture X. For s = 0 A(s) is holomorphic, and, normalized, generates
the intertwining algebra of the representation δ � 1 = T1 + T2. The operator A(0)
endows the space of this representation with a hermitian form which is of a different
sign on each of the Ti’s. This gives us the non-unitarizability of δνs�1 for s ∈ (0, 1).
By the theory of Jantzen filtrations ([22]), for s = 1 we consider a filtration

X = X0
1 ⊃ X1

1 ⊃ · · · ⊃ 0.

The spaces Xi
1 are G2(D, 1)–invariant spaces, and each of them is a radical of

the certain hermitian form defined on the previous space ([22]). For s = 1, the
representation X0

1 is a compact picture of the standard representation δν � 1, so,
by the results from [1], the space X1

1 is a compact picture of π4, which is a square
integrable representation. We will prove that X2

1 = {0}, i.e. that a hermitian form
defined on X1

1 by

〈v, v′〉1 = lim
s→1

∫
K

〈v(k),
1

s − 1
A(s)v′s(k)〉dk

is non-degenerate, so its radical, namely X2
1 , is trivial. As before, vs denotes the

corresponding holomorphic section. Because of the simplicity of the pole of the
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Plancherel measure for s = 1, we have

A(−s)
1

s − 1
A(s) = h(s)id,

where h is a holomorphic function in the neighborhood of s = 1, and h(1) 	= 0.
From this follows that for a non-null v′ ∈ X such that v′1 ∈ π4 we have
lims→1

1
s−1A(s)v′s /∈ L(δν, 1). Now, we can choose v ∈ X1

1 such that

〈v, v′〉1 = lim
s→1

∫
K

〈v(k),
1

s − 1
A(s)v′s(k)〉dk 	= 0.

If we denote the signature of L(δν, 1) by (p0, q0) (by [22]), we can obtain the sig-
nature of δνs � 1 for s > 1 and for s < 1 in terms of signatures (p0, q0) and (p1, q1)
(which is signature of X1

1 , i.e. of π4, so p1 = 0, or q1 = 0). We have just proved that
(pi, qi) = (0, 0), i ≥ 2. In more detail, the signature of the representation δνs � 1
for s > 1 is (p0 + p1, q0 + q1), and for s < 1 is (p0 + q1, p1 + q0). But if we assume
p1 = 0 or, the same, if we assume q1 = 0, and knowing that both for s > 1 and for
s < 1 we have the non-unitarizable representations, we conclude p0 	= 0 and q0 	= 0,
which is equivalent to the non-unitarizability of the representation L(δν, 1).

The proof of the non-unitarizability of L(τ1ν
3
2 ; δ[τ1ν

1
2 ; 1]) follows the same pat-

tern: First, we will prove that the Plancherel measure µ(s1, δ[τ1ν
1
2 ; 1]) has a simple

pole at s1 = 3
2 . Observe that, for the longest element w0 from the Weyl group, we

have w0 = wβwαwβwα = wβw2α+β = w2α+βwβ . So, for the standard intertwining
operator

Aw0(s1, s2, τ1 ⊗ τ1) : τ1ν
s1 × τ1ν

s2 � 1 → τ1ν
−s1 × τ1ν

−s2 � 1

the following holds:

Aw0(s1, s2, τ1 ⊗ τ1) = Awβ
(−s1, s2, τ1 ⊗ τ1)Aw2α+β

(s1, s2, τ1 ⊗ τ1).

From the definition of the Plancherel measure then follows

(1) µ−1
wβ

(−s1, s2, τ1 ⊗ τ1)µ−1
w2α+β

(s1, s2, τ1 ⊗ τ1) = µ(s1, s2, τ1 ⊗ τ1)−1.

Now, we apply a result of Heiermann ([7]), which says that in the case of the
induction from a cuspidal representation such that the obtained representation has
a square integrable subquotient, the corresponding Plancherel measure has a pole
of the order equal to the corank of the Levi subgroup. So, the right hand side of (1)
has a zero of order 2 for (s1, s2) = ( 3

2 , 1
2 ). The operator Awβ

is induced from the
standard intertwining operator on G1(D, 1), and so µwβ

(−3
2 , ∗, τ1 ⊗ τ1) has a pole

for s2 = 1
2 . This means that µw2α+β

(s1,
1
2 , τ1 ⊗ τ1) = µ(s1, δ[τ1ν

1
2 ; 1]) has a simple

pole for s1 = 3
2 . Now, analogously as for the representation L(νδ(τ1ν

1
2 , τ1ν

− 1
2 ); 1),

using the Jantzen filtrations, we prove the non-unitarizability of the representation
L(τ1ν

3
2 ; δ[τ1ν

1
2 ; 1]). The only Langlands quotient left to settle is

L(τ1ν; τ1 � 1) = ν
1
2 L(τ1ν

1
2 , τ1ν

− 1
2 ) � 1.

We obtain the hermiticity of the representations πs = νsL(τ1ν
1
2 , τ1ν

− 1
2 ) � 1 for

s ∈ (0, 1) using the action of the long intertwining operator acting on the space
τ1ν

s+ 1
2 × τ1ν

s− 1
2 � 1. But unitarity of the representation πs for s = 1

2 would imply
the unitarizability of all the subquotients for s = 1, which contradicts what we have
just proved. �
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As for the unitary subquotients for the mixed case

π = χνα × τνβ � 1, α, β ∈ R+
0 ,

of the principal series, we have the following proposition.

Proposition 4.7. Let π = χνα× τνβ �1, α, β ∈ R+
0 , dimχ = 1, dim τ > 1. Then

the following holds:
(i) If none of the representations χ, τ is self-contragredient, the representa-

tion π has a unitarizable subquotient only when α = β = 0; then π is an
irreducible tempered representation.

(ii) If χ2 = 1 and τ � τ̃ , the unitarizable subquotients appear if and only if β =
0 and α ∈ [0, α0], where α = α0 is a unique non-negative point of reducibility
of the representation χνα � 1. Then all the appearing subquotients are
unitarizable.

(iii) If χ2 	= 1 and τ ∼= τ̃ , the unitarizable subquotients appear if and only if
α = 0 and β ∈ [0, β0], where β = β0 is the unique non-negative point of re-
ducibility of the representation τνβ �1. Then all the appearing subquotients
are unitarizable.

(iv) If both of the representations are self-contragredient, the unitarizable sub-
quotients appear if and only if α ∈ [0, α0] and β ∈ [0, β0], where α0 and
β0 are the reducibility points of the corresponding representations. Then all
the subquotients of the representation π are unitarizable.

The points of the reducibility α0 and β0 are determined in Lemma 3.1, and the
irreducible subqoutients appearing here are described in Proposition 3.5.

Proof. This is straightforward from the criterion for the hermiticity of the Lang-
land’s quotient. �

5. The Siegel case

We are investigating the reducibility points and possible unitarizable subquo-
tients of the representation

σνs � 1, s ∈ R+
0 ,

where σ is an irreducible cuspidal representation of GL(2, D). By σ′ we denote the
Jacquet-Langlands lift of σ, and this is a discrete series representation of GL(4, F )
([2]). Although the Jacquet-Langlands lift is between the discrete series representa-
tions of GL(n, D) and the discrete series representations of GL(2n, F ), in the case
n = 2, σ′ is actually a cuspidal representation, too ([2]). If σ ∼= σ̃, then σ′ ∼= σ̃′

also holds. But when σ is a cuspidal representation, the zeroes and poles of the
Plancherel measure completely determine the reducibility points of the representa-
tion σνs � 1. If σ � σ̃, it does not reduce for any s ∈ R. So, if σ ∼= σ̃, by ([17]),
there is a unique non-negative s = s0 such that the representation σνs � 1 reduces.
We have the following characterization of the reducibility points in terms of the
Plancherel measure:

µ(s, σ) 	= 0, for s = 0 ⇐⇒ σ � 1 reduces,

µ(s, σ) = ∞, for s = s0 > 0 ⇐⇒ σνs0 � 1 reduces.

By [12], we know that
µ(s, σ) = µ(s, σ′).



UNITARY DUAL 1029

(We already used that in a calculation in the principal series case.) So, in order
to find a reducibility point of the representation σνs � 1, we have to analyze the
zeroes and the poles of the Plancherel measure µ(s, σ′). But, the representation σ′

is a generic (cuspidal) representation of the group GL(4, F ), and we can use the
results of ([16]) to calculate it in terms of L–functions.

Theorem 5.1. (i) If σ � σ̃, the representation σνs � 1 has a unitarizable
(even hermitian) subquotient only for s = 0, and then it is an irreducible
tempered representation.

(ii) If σ ∼= σ̃, the representation σνs�1 reduces only for s = 0 or only for s = 1
2 .

In more words: The representation σ�1 reduces if and only if L(s, σ′, Λ2ρ4)
does not have a pole for s = 0. If it has a pole for s = 0, then the repre-
sentation σνs � 1 reduces for s = 1

2 . If the reducibility point is s = 0, the
representation σνs � 1 has a unitarizable subquotient only for s = 0; then
σ � 1 is a sum of two non-equivalent tempered representations. If σνs � 1
reduces for s = 1

2 , only for s ∈ [0, 1
2 ] do the unitarizable subquotients appear.

Then σνs � 1 = L(σνs; 1) for s ∈ (0, 1
2 ), and σν

1
2 � 1 = L(σν

1
2 ; 1) + π7.

Here both of the subquotients are unitarizable, and π7 is a square integrable
representation.

Proof. The reducibility points (when σ ∼= σ̃) follow directly from a calculation
of the Plancherel measure (a calculation similar to the one done in the previous
section). All the subquotients of the representation σνs � 1 are hermitian, and for
s greater of the reducibility point, there is a family of the hermitian forms on the
representations σνs�1, which is indexed by an unbounded, connected interval, so if
for some s from this interval the representation is unitarizable, it would have to be
unitarizable for every s from this interval. This is impossible, because the matrix
coefficients of these representations become unbounded for s large enough, as we
can see from their asymptotics, given by the asymptotics of the Jacquet module
coefficients. �

6. The non-Siegel case of the maximal parabolic subgroup

Let σ be an irreducible representation of D∗ and ρ an irreducible cuspidal rep-
resentation of G1(D, 1). We will consider the representation

πs = σνs � ρ,

for s ∈ R. Similarly to the Siegel case, if σ � σ̃, the representation σνs � ρ never
reduces. Now, we assume σ ∼= σ̃ and s ≥ 0, and again, there exists a unique s0 ≥ 0
such that σνs0 �ρ reduces ([17]). The following characterization of the reducibility
points in terms of the Plancherel measure is analogous to the one in the Siegel case

µ(s, σ ⊗ ρ) 	= 0, for s = 0 ⇐⇒ σ � ρ reduces,

µ(s, σ ⊗ ρ) = ∞, for s = s0 > 0 ⇐⇒ σνs0 � ρ reduces.
We were unable to transfer directly the Plancherel measure from G2(D, 1) to
Sp(8, F ) (as we did in [5] for G2(D,−1)), so we have to rely on two standard
conjectures in the harmonic analysis on the quasi-split p–adic group: the first one
describes the space of the stable distributions on p-adic group in terms of the sta-
ble tempered characters, and assuming it is true, Shahidi ([16]) proved that the
Plancherel measure of a discrete series representation of the Levi subgroup depends



1030 MARCELA HANZER

only on the (discrete series) L-packet. The second one claims that every tempered
L–packet is generic (for example, [16]). Also, we assume ([16]) that the Plancherel
measures are the same for inner forms.

So, for a cuspidal representation ρ of G1(D, 1), let the representation ρ′ be a
(conjectural) corresponding generic discrete series representation, and, as usual, σ′

denotes the Jacquet-Langlands lift of a cuspidal representation σ of D∗.

Conjecture 6.1.

µ(s, σ ⊗ ρ) = µ(s, σ′ ⊗ ρ′).

Theorem 6.1. Let σ denote an irreducible representation of D∗, and let ρ be
an irreducible cuspidal representation of G1(D, 1). Let ρ′ denote a (conjectural)
generic discrete series representation of Sp(4, F ) which is (one of) the Jacquet-
Langlands lift of the representation ρ, and let σ′ denote the Jacquet-Langlands lift
of the representation σ. Assume that Conjecture 6.1 holds. Let πs = σνs � ρ, s ∈
R. Then, the representation ρ′ is a cuspidal representation of Sp(4, F ), or has a
cuspidal support on F ∗ × SL(2, F ), and the following holds:

If σ � σ̃, the representation πs never reduces, and is unitarizable only for s = 0,
and then it is a tempered representation. Assume now that σ ∼= σ̃ and s ≥ 0. Then,
one of the following holds:

(i) If dim σ > 1 and ωσ(ω) = 1, then the representation πs reduces for s = 1
2 .

(ii) If dim σ > 1 and ωσ(ω) = −1, then
(a) If ρ′ is cuspidal, πs reduces for s = 1 if L(0, σ′× ρ̃′) = ∞, or for s = 0

if L(0, σ′ × ρ̃′) 	= ∞.
(b) If ρ′ ↪→ χ1ν � π (for some unitary character χ1 of F ∗ and a cuspidal

representation π of SL(2, F )), the representation πs reduces for s = 1
if L(0, σ′ × π̃) = ∞, or for s = 0 if L(0, σ′ × π̃) 	= ∞.

(iii) If dim σ = 1, i.e. σ = χ, a quadratic character of D∗, then
(a) If ρ′ is cuspidal, the representation πs reduces for s = 1

2 if L(0, χ×ρ′) 	=
∞ or for s = 3

2 if L(0, χ × ρ′) = ∞.
(b) If ρ′ ↪→ χ1ν×π, the representation πs reduces for s = 5

2 if χ = χ1, for
s = 1

2 if χ 	= χ1 but χ � π reduces, or for s = 3
2 if χ 	= χ1 and χν � π

reduces.

If the representation πs reduces for s0 = 0, the unitarizable subquotients appear
only for s = 0, and then π0 is a sum of two non-equivalent tempered representations.
If s0 > 0, the unitarizable subquotients appear if and only if s ∈ [0, s0], and then
all of them are unitarizable. In that case, for s = 0, π0 is irreducible tempered, for
s ∈ (0, s0), πs = L(σνs; 1), and πs0 = L(σνs0 ; 1) + π8, where π8 is an irreducible
square integrable representation.

Proof. Let P = MN be a standard maximal parabolic subgroup of the group
Sp(8, F ), such that M ∼= GL(2, F ) × Sp(4, F ). By LM we denote a corresponding
Levi subgroup in the dual group of Sp(8, F ), i.e. in SO(9, C). Let ψF denote
a non-trivial, additive character of F . The representation of the group LM ∼=
GL(2, C) × SO(5, C) on Ln, the Lie algebra of LN , decomposes as

ρ2 ⊗ ρ5 + Λ2ρ2.
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Here, ρ2 denotes the standard representation of GL(2, C) and ρ5 denotes the stan-
dard representation of SO(5, C). By [16] and [15], we have

µ(s, σ′ ⊗ ρ′) =
γ(s, σ′ × ρ′, ψF )

γ(1 + s, σ′ × ρ′, ψF )
γ(2s, σ′, Λ2ρ2, ψF )

γ(1 + 2s, σ′, Λ2ρ2, ψF )
.(2)

Assume that the representation σ′ is cuspidal, i.e. dim σ > 1. Then, when
ωσ′(ω) = 1, the relation (2) becomes

µ(s, σ′ ⊗ ρ′) =
L(1 − s, σ′ × ρ̃′)

L(s, σ′ × ρ′)
L(1 + s, σ′ × ρ′)

L(−s, σ′ × ρ̃′)

(1 − q−2s)
(1 − q−1+2s)

(1 − q2s)
(1 − q−1−2s)

.(3)

The L–functions L(z, σ′ × ρ′) and L(z, σ′ × ρ̃′) are holomorphic for Rez > 0 ([11]),
so it follows that L(1− s, σ′ × ρ̃′) and L(1 + s, σ′ × ρ′) are holomorphic near s = 0.
This means that µ(0, σ′ ⊗ ρ′) = 0, so the representation σ′ � ρ′ is irreducible, and
σ � ρ is irreducible. On the other hand, for s > 0 the quotient L(1+s,σ′×ρ′)

L(s,σ′×ρ′) 	= 0 is
holomorphic. The right hand side of the relation (3) has a pole for s = 1

2 , unless
L(−1

2 , σ′× ρ̃′) = ∞. But, from Lemma 5.3 of [11], we can conclude that, in the case
of cuspidal ρ′, the only possible pole of L(s, σ′× ρ̃′) is s = 0. So, for s = 1

2 measure
µ(s, σ′ ⊗ ρ′) has a pole, and this pole must be unique, so L(0, σ′ × ρ̃′) 	= ∞, and,
for a cuspidal representation ρ′, we have reducibility for s = 1

2 . We now consider
the case of a non-cuspidal representation ρ′.

If ρ′ has support on the non-Siegel maximal parabolic subgroup, i.e. ρ′ ↪→
χ1ν � π, for a quadratic character χ1 and a cuspidal representation π of SL(2, F ),
we have

γ(s, σ′ × ρ′, ψF ) = γ(s, σ′ × χ1ν, ψF )γ(s, σ′ × π, ψF )γ(s, σ′ × χ1ν
−1, ψF )

= γ(s, σ′ × π, ψF ).

Then we have
γ(s, σ′ × π, ψF )

γ(1 + s, σ′ × π, ψF )
=

L(1 + s, σ′ × π, ψF )
L(s, σ′ × π, ψF )

L(1 − s, σ′ × π̃, ψF )
L(−s, σ′ × π̃, ψF )

.

From Lemma 5.3 of [11] we again conclude that L(−1
2 , σ′ × π̃) 	= ∞, so again we

have reducibility of σ′νs � ρ′ for s = 1
2 .

We will show that there is no need to consider the case of ρ′ having support on
the minimal parabolic subgroup, or on the Siegel parabolic subgroup.

Now assume that, for σ′ still cuspidal, ωσ′(ω) = −1. Then the reducibility
points are completely determined by the L-function L(s, σ′×ρ′). From the previous
discussion we can conclude:

If ρ′ is cuspidal, we can have L(0, σ′ × ρ̃′) = ∞. So, if L(0, σ′ × ρ̃′) = ∞, then
σ′ � ρ′ is irreducible, and σ′ν � ρ′ is reducible. If L(0, σ′ × ρ̃′) 	= ∞ (then also
L(0, σ′ × ρ′) 	= ∞) the representation σ′ � ρ′ is reducible.

If ρ′ has cuspidal support on F ∗ × SL(2, F ), i.e. ρ′ ↪→ χ1ν � π, we have

γ(s, σ′ × ρ′, ψF ) = γ(s, σ′ × π, ψF ),

and the discussion is the same as in the previous case of cuspidal ρ′.
If we assume that ρ′ has a cuspidal support on the Siegel parabolic subgroup,

i.e. ρ′ ↪→ πν
1
2 � 1, for selfcontragredient cuspidal representation π of GL(2, F ), we

have γ(s, σ′ × ρ′, ψF ) = γ(s, σ′ × πν
1
2 )γ(s, σ′ × πν− 1

2 ) = 1, because we can take
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σ′ � π. Then the right-hand side of (3) has no poles or zeroes, which is impossible,
so ρ′ cannot have a cuspidal support on the Siegel maximal parabolic.

Now assume that σ′ is not cuspidal, i.e. σ = χ as a representation of D∗ and
σ′ = χStGL(2,F ). Using the multiplicativity of γ–factors, the relation (2) now
becomes

µ(s, χStGL(2,F )⊗ρ′)=
L( 3

2 − s, χ × ρ̃′)
L(s − 1

2 , χ × ρ′)
L( 3

2 + s, χ × ρ′)

L(−1
2 − s, χ×ρ̃′)

(1 − q−2s)
(1 − q−1+2s)

(1 − q2s)
(1 − q−1−2s)

.

Assume now that ρ′ is supported on the minimal parabolic subgroup, i.e. ρ′ is the
Steinberg representation or ρ′ ↪→ νξ × ξ � 1, where ξ is a character of order two
([13]). Then, in the second case, from the previous relation it follows that

µ(s, χStGL(2,F ) ⊗ ρ′) =
γ(s − 1

2 , χ × ξ, ψF )2

γ(s + 5
2 , χ × ξ, ψF )

γ(s − 3
2 , χ × ξ, ψF )

γ(s + 3
2 , χ × ξ, ψF )2

× (1 − q−2s)
(1 − q−1+2s)

(1 − q2s)
(1 − q−1−2s)

.

The right-hand side of the previous relation is equal to

L( 3
2 − s, χ × ξ)2

L(−1
2 + s, χ × ξ)2

L( 5
2 − s, χ × ξ)

L(−3
2 + s, χ × ξ)

×
L( 5

2 + s, χ × ξ)
L(−3

2 − s, χ × ξ)
L( 3

2 + s, χ × ξ)2

L(−1
2 − s, χ × ξ)2

(1 − q−2s)
(1 − q−1+2s)

(1 − q2s)
(1 − q−1−2s)

.

If we assume that χ = ξ, this expression has poles in s = 3
2 and s = 5

2 , but
this is impossible, so such a discrete series ρ′ cannot correspond to a cuspidal
representation of G1(D, 1). Analogously, if we assume ρ′ = StSp(4,F ) and χ = 1
it follows that the expression for the Plancherel measure has poles for s = 1

2 and
for s = 7

2 , which is also impossible. So, we can conclude that the discrete series
representations of Sp(4, F ) supported on the minimal parabolic subgroup are not
split counterparts of the cuspidal representations of G1(D, 1).

Assume now that ρ′ has support on the non-Siegel maximal parabolic subgroup,
i.e. ρ′ ↪→ χ1ν � π. Then

µ(s, χStGL(2,F ) ⊗ ρ′) =
γ(s − 3

2 , χ × χ1, ψF )
γ(s + 3

2 , χ × π, ψF )
γ(s − 1

2 , χ × π, ψF )
γ(s + 5

2 , χ × χ1, ψF )

× (1 − q−2s)
(1 − q−1+2s)

(1 − q2s)
(1 − q−1−2s)

.

If we assume that χ = χ1, we obtain that the Plancherel measure has a unique
positive pole for s = 5

2 . On the other hand, if χ 	= χ1 and χ � π is reducible
(i.e. χ = 1, or χ2 = 1, but χ /∈ (F ∗/F ∗

π )∧ in the notation of [13]) we obtain
that χStGL(2,F )ν

1
2 � ρ′ is reducible. If χ 	= χ1, but χν � π is reducible (meaning

χ ∈ (F ∗/F ∗
π )∧), we obtain that χStGL(2,F )ν

3
2 � ρ′ is reducible.

If we assume that ρ′ is cuspidal, then χStGL(2,F )ν
s � ρ′ reduces for s = 1

2 if

L(0, χ × ρ′) = L(0, χ � ρ̃′) 	= ∞ ([16]) or for s = 3
2 if L(0, χ × ρ′) = ∞.

Now, when the reducibility points are established, analogously as in the Siegel
case, we see that the unitarizable representations occur only if s = 0, if the re-
ducibility point of the representation πs is s0 = 0, otherwise they occur for the
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complementary series (s ∈ (0, s0)) and at the end of the complementary series
(s = s0) where a square integrable subrepresentation occurs. �

Remark. The description of the cuspidal support of the representation ρ′ obtained
this way coincides with the Langlands correspondence. In ([23]) is explained a con-
jectural way in which the discrete series representations of an inner class of a rational
form simultaneously “fill” the L–packets. The inner class of a rational form, in our
case, consists only of the groups Sp(4, F ) and G1(D, 1). Each packet should contain
a discrete series representation of Sp(4, F ), and the number of the representations
in it is governed by the centralizer of an admissible homomorphism parameterizing
the L-packet (for example, [10]). The discrete series representations of Sp(4, F )
with the cuspidal support on GL(2, F ) are in the same packet with discrete series
representation of G1(D, 1) with cuspidal support on D∗, and the representations of
GL(2, F ) and D∗ are corresponding by the Jacquet-Langlands correspondence. The
discrete series representations of Sp(4, F ) with the cuspidal support on the minimal
parabolic subgroup are the Steinberg representations and two non-equivalent dis-
crete series subrepresentations of the representation ξν × ξ � 1, for each character
ξ of order two ([13]). Examining the centralizer of the parameter, it follows that in
each of these L-packets we have two representations, so the Steinberg representa-
tion of the group Sp(4, F ) is with the Steinberg representation of G1(D), and other
pairs of discrete series of Sp(4, F ) exhaust the whole L–packet. This means that
no cuspidal representation of G1(D) can appear in these L–packets. A different
approach can be found in [4].
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