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SCHREIER SETS IN RAMSEY THEORY

V. FARMAKI AND S. NEGREPONTIS

Abstract. We show that Ramsey theory, a domain presently conceived to
guarantee the existence of large homogeneous sets for partitions on k-tuples of
words (for every natural number k) over a finite alphabet, can be extended to
one for partitions on Schreier-type sets of words (of every countable ordinal).
Indeed, we establish an extension of the partition theorem of Carlson about
words and of the (more general) partition theorem of Furstenberg-Katznelson
about combinatorial subspaces of the set of words (generated from k-tuples of
words for any fixed natural number k) into a partition theorem about com-
binatorial subspaces (generated from Schreier-type sets of words of order any
fixed countable ordinal). Furthermore, as a result we obtain a strengthen-

ing of Carlson’s infinitary Nash-Williams type (and Ellentuck type) partition
theorem about infinite sequences of variable words into a theorem, in which
an infinite sequence of variable words and a binary partition of all the finite
sequences of words, one of whose components is, in addition, a tree, are as-
sumed, concluding that all the Schreier-type finite reductions of an infinite
reduction of the given sequence have a behavior determined by the Cantor-
Bendixson ordinal index of the tree-component of the partition, falling in the
tree-component above that index and in its complement below it.

1. Introduction

Our aim is to extend Ramsey theory so that it applies not only to partitions of
k-tuples of words but more generally to partitions of Schreier-type sets of words
of a fixed countable ordinal number. For a finite non-empty alphabet Σ we de-
note by W k(Σ) (respectively, W k(Σ; υ)) the family of sequences of k many words
(respectively, variable words) over Σ, and by Wω(Σ; υ) the family of infinite se-
quences of variable words over Σ. By a reduction (respectively, variable reduction)
of �w = (wn)n∈N ∈ Wω(Σ; υ) we mean any infinite sequence of words (respectively,
variable words), denoted by �u ≺ �w, obtained from �w by replacing each occurence
of the variable in each wn by one element of the set Σ∪ {υ}, dividing the resulting
sequence into infinitely many finite blocks of consecutive words, and concatenating
the members of each block; the first element (respectively, the first k elements) of
a reduction of �w is called a reduced word (respectively, a finite reductions with k
words) of �w. (These terms will be defined more formally below.) For a natural
number r, an r-coloring (or an r-partition) of a set S is a map χ : S → {1, . . . , r},
and χ(s) is the color of s for s ∈ S. A set T ⊆ S is monochromatic (under χ) if χ
is constant on T .
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The fundamental classical partition theorems of Ramsey theory, namely (a) Carl-
son’s partition theorem (Lemma 5.9 in [C], Corollary 4.6 in [BBH] in strengthened
form), (b) the Furstenberg-Katznelson partition theorem (Theorems 2.7 and 3.1 in
[FK]), and (c) Carlson’s Nash-Williams type infinitary partition theorem (Theorem
2 in [C]), can now be stated as follows:

Theorem 1.1 (Carlson’s theorem, [C], [BBH]). Let χ1 : W 1(Σ) → {1, . . . , r1} and
χ2 : W 1(Σ; υ) → {1, . . . , r2} be finite colorings of the sets W 1(Σ) and W 1(Σ; υ), re-
spectively and �w ∈ Wω(Σ; υ) be an infinite sequence of variable words over Σ. Then
there exists a variable reduction �u ≺ �w of �w such that all the reduced words of �u are
monochromatic under χ1 and all the reduced variable words of �u are monochromatic
under χ2.

Theorem 1.2 (Furstenberg-Katznelson’s theorem, [FK]). Let k be any natural num-
ber, χ1 : W k(Σ) → {1, . . . , r1} and χ2 : W k(Σ; υ) → {1, . . . , r2} be finite colorings
of the sets W k(Σ) and W k(Σ; υ), respectively and �w ∈ Wω(Σ; υ) be an infinite
sequence of variable words over Σ. Then there exists a variable reduction �u ≺ �w of
�w such that all the finite reductions with k words of �u are monochromatic under χ1

and all the finite variable reductions with k variable words of �u are monochromatic
under χ2.

In addition Furstenberg and Katznelson in [FK] introduced the notion of a k-
dimensional combinatorial subspace of W (Σ) for k any natural number and proved
(in Theorem 3.1) a partition theorem about these combinatorial subspaces.

Theorem 1.3 (Carlson’s infinitary partition theorem, [C]). Let U ⊆ Wω(Σ; υ) be a
pointwise closed family (as defined immediately after Theorem 4.6 below) of infinite
sequences of variable words over Σ and �w ∈ Wω(Σ; υ) be an infinite sequence of
variable words over Σ. Then there exists a variable reduction �u ≺ �w of �w over Σ
such that either all the variable reductions of �u are contained in U or all variable
reductions of �u are contained in the complement of U .

As stated, the aim of the present paper is to show that stronger versions of
these partition theorems hold for the family of Schreier-type sets of words of every
countable ordinal, and not just for the family of k-tuples of words, with k restricted
to a natural number. The hierarchy (Aξ)ξ<ω1 of the families of Schreier sets of
natural numbers, defined on the countable ordinals, provides a classification of the
class of all finite subsets of the natural numbers measuring their complexity. The
recursive definition of the Schreier sets (Aξ)ξ<ω1 is as follows (where by [N]<ω

>0 we
denote, as explained in detail in Section 1 below, the set of all non-empty finite
subsets of the set N = {1, 2, . . .} of natural numbers):

We denote by N = {1, 2, . . .} the set of natural numbers, [N]<ω
>0 the set of all

non-empty, finite subsets of N, [N]<ω = [N]<ω
>0 ∪ {∅} and [N]ω the set of all infinite

subsets of N.

Definition 1.4 (The Schreier system, [F1, Def. 7], [F2, Def. 1.5], [F3, Def. 1.3]).
For every non-zero, countable, limit ordinal λ choose and fix a strictly increasing
sequence (λn)n∈N of successor ordinals smaller than λ with supn λn = λ. The
system (Aξ)ξ<ω1 is defined recursively as follows:

(1) A0 = {∅} and A1 = {{n} : n ∈ N};
(2) Aζ+1 = {s ∈ [N]<ω

>0 : s = {n} ∪ s1, where n ∈ N, {n} < s1 and s1 ∈ Aζ};
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(3i) Aωβ+1 = {s ∈ [N]<ω
>0 : s =

⋃n
i=1 si, where n = min s1, s1 < · · · < sn and

s1, . . . , sn ∈ Aωβ};
(3ii) for a non-zero, countable limit ordinal λ,

Aωλ = {s ∈ [N]<ω
>0 : s ∈ Aωλn withn = min s};

and
(3iii) for a limit ordinal ξ such that ωα < ξ < ωα+1 for some 0 < α < ω1,

if ξ = ωαp +
∑m

i=1 ωaipi, where m ∈ N with m ≥ 0, p, p1, . . . , pm

are natural numbers with p, p1, . . . , pm ≥ 1 (so that either p > 1, or p = 1
and m ≥ 1) and a, a1, . . . , am are ordinals with a > a1 > · · · am > 0,
Aξ = {s ∈ [N]<ω

>0 : s = s0 ∪ (
⋃m

i=1 si) with sm < · · · < s1 < s0,
s0 = s0

1 ∪ · · · ∪ s0
p with s0

1 < · · · < s0
p ∈ Aωa , and si = si

1 ∪ · · · ∪ si
pi

with si
1 < · · · < si

pi
∈ Aωai ∀ 1 ≤ i ≤ m}.

Note that in case (3iii) above the Cantor normal form of ordinals is employed
(cf. [KM], [L]).

It is important to note that Ak = [N]k, the family of all k-element subsets of
the natural numbers, for every k ∈ N, i.e. for every finite ordinal k < ω; thus the
families of Schreier sets Aξ for ξ < ω1 constitute the natural transfinite analogues
of the k-element subsets of N. On the other hand, for every ordinal ξ ≥ ω the
family Aξ differs radically from the families Ak for all k < ω, in that it contains
finite sets of arbitrarily large cardinality.

The families Aω = {s ∈ [N]<ω
>0 : s ∈ [N]k, where k = min s}, and Aωn+1 = {s ∈

[N]<ω
>0 : s =

⋃k
i=1 si, where k = min s1, s1 < · · · < sk ∈ Aωn} are determined

uniquely by case (3i) of Definition 1.4. In general however the Schreier families are
not defined in a unique way, but depend ultimately on the choice of the converging
sequence (λn) to the limit ordinals λ. This choice bears directly on case (3ii) and
indirectly on all other cases of Definition 1.4. The first real choice is for the limit
ordinal λ = ω and, assuming that the sequence (λn) converging to ω is the sequence
with λn = n, Aωω = {s ∈ [N]<ω

>0 : s ∈ Aωk with k = min s}. By choosing “natural”
converging sequences λn = ω + n to limit ordinal λ = ω2, . . . , λn = ω(n − 1) + n
to limit ordinal λ = ωω, the families Aωω2 , . . . , Aωωω are defined respectively.
More “natural” converging sequences are considered in Section 2 of [KS] (up to the
ordinal ε0) and in Chapter VII of [KM]. However, it appears impossible to make
canonical, natural choices for all limit ordinals, and it thus seems that the definition
of the recursive system of thin Schreier families (Aξ)ξ<ω1 depends essentially on the
arbitrary choices of (many) converging sequences.

It must be emphasised however that our results (in Sections 2 to 5 below) do
not depend on the particular choice of the converging sequences. The basic feature
that differentiates the Aξ’s from each other is complexity: in fact, irrespectively of
the particular choices of the converging sequences employed for the definition of the
family Aξ, the Cantor-Bendixson index of the compact subset (in the Cantor set
{0, 1}N, under the canonical identification of a set with its characteristic function)
corresponding to Aξ is precisely ξ+1 (as proved in [F3, Proposition 2.9]). Thus the
complexity of the family Aξ, as measured by its Cantor-Bendixson index, is inde-
pendent of the particular choices of the converging sequences (cf. Proposition 4.12).
This invariance is in fact needed for the results in Sections 3 to 5 below.

Although the recursive Schreier system (Aξ)ξ<ω1 is a purely combinatorial entity,
it nevertheless arose gradually in connection with the theory of Banach spaces.



852 V. FARMAKI AND S. NEGREPONTIS

Originally the family Aξ was defined by Schreier ([S]) (for ξ = ω), next by Alspach-
Odell [AO] (for ξ = ωκ, κ a natural number) and Alspach-Argyros [AA] (for ξ =
ωα, α a countable ordinal), and finally by Farmaki [F1], [F2], [F3] and Tomczak-
Jaegermann [TJ] (for ξ any countable ordinal). (The reader is referred to the
introduction of [F3] for more details.)

Schreier sets were first used for the following transfinite extension of the classical
Ramsey partition theorem ([R]), a result about the existence of monochromatic sets
for finite colorations of the family of all k-tuples, with k a natural number:

Theorem 1.5 (Ramsey partition theorem on Schreier sets, ([F2])). Let ξ be a non-
zero countable ordinal number. For any finite coloration χ of the family Aξ and M
an infinite subset of N there exists an infinite subset L of M such that Aξ ∩ [L]<ω

is monochromatic.

Using the family Aξ we define (in Definition 3.1) the families W ξ(Σ), W ξ(Σ; υ)
of Schreier-type sets of words, variable words respectively over Σ, of a fixed count-
able ordinal number ξ. Carlson’s theorem (Theorem 1.1) and the more general
Furstenberg-Katznelson’s theorem (Theorem 1.2) will be extended from k-tuples
to Schreier-type sets of every countable ordinal; this is the content of the main
Theorem in Section 2 (see Theorem 3.3). With the notation and definitions given
in Section 1, it reads as follows:

Theorem A. Let ξ be a countable ordinal, χ1 : W ξ(Σ) → {1, . . . , r1} and χ2 :
W ξ(Σ; υ) → {1, . . . , r2} be finite colorings of the sets W ξ(Σ) and W ξ(Σ; υ), respec-
tively and �w ∈ Wω(Σ; υ) be an infinite sequence of variable words over Σ. Then
there exists a variable reduction �u ≺ �w of �w such that all the finite reductions of �u
in the set W ξ(Σ) are monochromatic under χ1 and all the finite variable reductions
of �u in the set W ξ(Σ; υ) are monochromatic under χ2.

The proof of this result is closer to the method employed by us in proving
Schreier-type extensions of Hindman’s and Milliken-Taylor’s theorems in [FN],
which in turn is inspired by the method invented by Baumgartner to prove Hind-
man’s theorem in [B]; in particular, we do not use topological dynamics (as em-
ployed in [FK]) or idempotent ultrafilters (as employed in [C], [BBH]). Some con-
sequences of the Main Theorem are described in Section 2. Beside the Carlson and
the Furstenberg-Katznelson theorems, Schreier-type extensions of the Hale-Jewett’s
theorem ([HJ]) and consequently of the van der Waerden’s theorem ([vdW]) are ob-
tained.

Theorem A is next used, in conjuction with the tools developed in Section 3, one
of which is a suitable Cantor-Bendixson index, to strengthen Carlson’s infinitary
theorem (Theorem 1.3) to various forms of Nash-Williams type partition theorems
for words and variable words, involving Schreier families. A somewhat weaker ver-
sion of our main results (Theorems 5.2, 5.4) is contained in the following statement,
which also strengthens Theorem 1.3 (see Remark 5.6).

Theorem B. Let G ⊆ W<ω(Σ) and F ⊆ W<ω(Σ; υ) be trees and �w ∈ Wω(Σ; υ)
be an infinite sequence of variable words over Σ. Then either there exists a variable
reduction �u ≺ �w of �w such that all the finite reductions of �u over Σ are contained
in G or there exists a countable ordinal ξ1 = ζG�w such that for all ξ > ξ1 there exists
a variable reduction �u ≺ �w of �w such that all the finite reductions of �u in the set
W ξ(Σ) are contained in the complement of G.
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Furthermore, either there exists a variable reduction �u ≺ �w of �w such that all the
finite variable reductions of �u over Σ are contained in F or there exists a countable
ordinal ξ2 = ζF�w such that for all ξ > ξ2 there exists a variable reduction �u ≺ �w of
�w such that all the finite variable reductions of �u in the set W ξ(Σ; υ) are contained
in the complement of F .

Theorem B is strengthened, involving the Ellentuck topology TE in Theorem 6.2.
A simple consequence of Theorem 6.2 is the characterization of completely Ramsey
partitions of Wω(Σ) and Wω(Σ; υ) in terms of the Baire property in the topology
TE , a result proved with different methods by Carlson in [C].

Let us remark at this point that the attractive alternative approach to Ramsey
theory, via located words rather than ‘classical’ words, given by Bergelson-Blass-
Hindman in [BBH], also admits a Schreier-type extension, analogous to the one
given in the present paper. The details will appear elsewhere.

The extended Ramsey theory developed in the present paper is a more powerful
tool than the ‘classical’ Ramsey theory in that Schreier sets of all countable-ordinal
orders capture a considerable part of analysis, which is beyond the reach of the
arithmetically oriented ‘classical’ Ramsey theory. This is attested by the fact that
the Schreier families have found essential applications in Banach space theory on
such questions as, for example, unconditionality, l1 and c0 embeddability, and dis-
tortion (see e.g. [F1], [O], [AGR], [F4]).

It is also noteworthy that the hereditary family (Aω)∗ = {t ∈ [N]<ω : t ⊆ s
for some s ∈ Aω} ∪ {∅} generated by Aω figures prominently (under the name
of the family of “not large” sets) in questions of mathematical logic related to
concrete realisations of Godel’s incompleteness theorem, specifically in the (Ramsey
type) Paris-Harrington statements, statements true and provable in set-theory but
unprovable in Peano arithmetic (cf. [PH], [KS] and [GRS], pp. 169-180). (Here
the choice of sequences (λn)n∈N increasing to a limit ordinal λ in Definition 1.4
is crucial.) The higher order hereditary Schreier families (Aξ)∗, and specifically a
suitable finitary form of Theorem 1.5 involving sets in these families, might well be
useful in forming and proving statements true but unprovable in certain systems
endowed with induction stronger than that in Peano arithmetic.

The fact that Ramsey theory has found important applications in various branch-
es of mathematics (including mathematical logic, Banach space theory, Ramsey
ergodic theory) makes it reasonable to expect that the Schreier-type extension of
Ramsey theory presented in this paper will have interesting applications.

2. Terminology and notation

We develop in this section the necessary terminology and notation. We denote
by N = {1, 2, . . .} the set of natural numbers, [N]<ω

>0 the set of all non-empty, finite
subsets of N, [N]<ω = [N]<ω

>0 ∪ {∅} and [N]ω the set of all infinite subsets of N.
Let Σ be a finite, non-empty alphabet, and υ /∈ Σ an entity which we call a

variable. A word over Σ is a finite sequence of elements of Σ. The set of all the
words over Σ is denoted by W (Σ); thus

W (Σ) = {w = α1 . . . αk : k ∈ N, α1, . . . , αk ∈ Σ}.

W (Σ) is turned into a semigroup by the operation of concatenation: the concate-
nation of two words w1 = α1 . . . αk, w2 = β1 . . . βl over Σ is defined to be the
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word

w1 ∗ w2 = α1 . . . αkβ1 . . . βl.

For two words w1 = α1 . . . αk, w2 = β1 . . . βl over Σ we write

w1 ∝ w2 iff k < l and αi = βi for i = 1, . . . , k,

and in case w1 ∝ w2 we set w2 − w1 = βk+1 . . . βl ∈ W (Σ).
A variable word over Σ is a word over Σ ∪ {υ} in which υ actually appears. So,

the set W (Σ; υ) of variable words over Σ is defined as

W (Σ; υ) = W (Σ ∪ {υ}) \ W (Σ).

We note that the concatenation of two variable words is also a variable word. If
w is a variable word over Σ and α ∈ Σ ∪ {υ}, then we write w(α) for the result
of replacing every occurence of the variable υ in w by α. Thus w(α) ∈ W (Σ) for
α ∈ Σ and w(υ) = w. For two variable words w1 = α1 . . . αk, w2 = β1 . . . βl over Σ
we write

w1 ∝ w2 iff k < l, αi = βi for i = 1, . . . , k and w2 − w1 = βk+1 . . . βl ∈ W (Σ; υ).

We denote by W<ω(Σ) the family of all finite sequences of words over the al-
phabet Σ, by Wω(Σ) the family of all infinite sequences of words over Σ and by
W<ω(Σ; υ), Wω(Σ; υ) the families of all finite, infinite sequences of variable words
over Σ respectively. Hence,

W<ω(Σ) = {w = (w1, . . . , wl) : l ∈ N, w1, . . . , wl ∈ W (Σ)} ∪ {∅},
W<ω(Σ; υ) = {w = (w1, . . . , wl) : l ∈ N, w1, . . . , wl ∈ W (Σ; υ)} ∪ {∅},
Wω(Σ) = {�w = (wn)n∈N : wn ∈ W (Σ) for every n ∈ N},
Wω(Σ; υ) = {�w = (wn)n∈N : wn ∈ W (Σ; υ) for every n ∈ N}.

The complexity of a finite sequence w = (w1, . . . , wl) ∈ W<ω(Σ∪{υ})\{∅} of words,
with wi = αki

αki+1 . . . αki+1−1 for i = 1, . . . , l, is described by the complexity of
the corresponding finite sequence of natural numbers 1 = k1 < · · · < kl < kl+1 ∈ N,
a complexity that will be described by the Schreier hierarchy; we thus define the
correspondence

d : W<ω(Σ ∪ {υ}) \ {∅} → [N]<ω such that w = (w1, . . . , wl) → d(w)

with d(w) = ∅ if l = 1, and d(w) = {k2 < k3 < · · · < kl} if l > 1.

Analogously, for every infinite sequence �w = (wn)n∈N ∈ Wω(Σ ∪ {υ}) of words,
with wn = αkn

αkn+1 . . . αkn+1−1 for all n ∈ N, the corresponding complexity is
described by the complexity of the infinite sequence 1 = k1 < k2 < k3 < · · · ∈ N of
natural numbers; we thus define the correspondence

d : Wω(Σ ∪ {υ}) → [N]ω with d((wn)n∈N) = (k2 < k3 < · · · < kn < · · · ).

A finite sequence w = (w1, . . . , wl) ∈ W<ω(Σ ∪ {υ}) is an initial segment of the
finite sequence u = (u1, . . . , uk) ∈ W<ω(Σ∪{υ}) iff l < k and ui = wi for i = 1, . . . , l
and w is an initial segment of the infinite sequence �u = (un)n∈N ∈ Wω(Σ ∪ {υ})
if ui = wi for all i = 1, . . . , l. In these cases, extending to sequences the previous
notation for words, we write w ∝ u or w ∝ �u, and we set

u \ w = (ul+1, . . . , uk) and �u \ w = (un)n>l respectively.
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Definition 2.1. (1) (Reduction of an infinite sequence of words by a word) For an
infinite sequence �w = (wn)n∈N ∈ Wω(Σ; υ) of variable words and for a (variable or
non-variable) word t = α1 . . . αk ∈ W(Σ ∪ {υ}) (over the alphabet Σ), we set

�w[t] = w1(α1) ∗ . . . ∗ wk(αk) ∈ W(Σ ∪ {υ}).
The family RW (�w) of all the reduced words and the family V RW (�w) of all the
variable reduced words of �w over Σ are defined as follows:

RW (�w) = {�w[t] : t ∈ W (Σ)} and V RW (�w) = {�w[t] : t ∈ W (Σ; υ)}.
For u1 = �w[t1], u2 = �w[t2] ∈ RW (�w) (resp. u1, u2 ∈ V RW (�w)) we write

u1 ∝ u2 iff t1 ∝ t2.

(2) (Reduction of an infinite sequence of words by a finite sequence of words) For
an infinite sequence �w = (wn)n∈N ∈ Wω(Σ; υ) of variable words and for a finite
sequence of (variable or non-variable) words t = (t1, . . . , tl) ∈ W<ω(Σ∪ {υ}) \ {∅},
with ti = αki

αki+1 . . . αki+1−1 for all i = 1, . . . , l, we set

�w[t] = (u1, . . . , ul) ∈ W<ω(Σ ∪ {υ}),
where

ui = wki
(αki

) ∗ wki+1(αki+1) ∗ . . . ∗ wki+1−1(αki+1−1) for all i = 1, . . . , l.

Also we set �w[∅] = ∅. The finite sequences of words �w[t] for t ∈ W<ω(Σ) are called
finite reductions of �w over Σ, and the finite sequences of variable words �w[t] for
t ∈ W<ω(Σ; υ) are called finite variable reductions of �w over Σ. The set of all the
finite reductions and the set of all the finite variable reductions of �w over Σ are
denoted as follows:

RW<ω(�w) = {�w[t] : t ∈ W<ω(Σ)} and V RW<ω(�w) = {�w[t] : t ∈ W<ω(Σ; υ)}.
We set

d�w : RW<ω(�w) ∪ V RW<ω(�w) \ {∅} → [N]<ω with d�w(�w[t]) = d(t).

Observe that RW<ω(�e) = W<ω(Σ), V RW<ω(�e) = W<ω(Σ; υ) and d�e = d if �e =
(en)n∈N with en = υ for every n ∈ N. Note also that it is not always true that
d�w(u) = d(u) for every u ∈ RW<ω(�w).

(3) (Reduction of an infinite sequence of words by an infinite sequence of words)
For an infinite sequence �w = (wn)n∈N ∈ Wω(Σ; υ) of variable words and for an
infinite sequence �t = (tn)n∈N ∈ Wω(Σ ∪ {υ}) of (variable or non-variable) words,
with tn = αkn

αkn+1 . . . αkn+1−1 for all n ∈ N, we set

�w[�t] = (un)n∈N ∈ Wω(Σ ∪ {υ}),
where

un = wkn
(αkn

) ∗ wkn+1(αkn+1) ∗ . . . ∗ wkn+1−1(αkn+1−1) for all n ∈ N.

An infinite sequence of words �w[�t] for �t ∈ Wω(Σ) is called a reduction of �w over Σ
and for �t ∈ Wω(Σ; υ) a variable reduction of �w over Σ, respectively. The sets of all
the reductions and all the variable reductions of �w over Σ respectively are denoted
as follows:

RWω(�w) = {�w[�t] : �t ∈ Wω(Σ)} and V RWω(�w) = {�w[�t] : �t ∈ Wω(Σ; υ)}.
For �u, �w ∈ Wω(Σ; υ), we write

�u ≺ �w if and only if �u ∈ V RWω(�w).
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Notice that �u ≺ �w if and only if V RW (�u) ⊆ V RW (�w). Hence, �w ≺ �e for every
�w ∈ W<ω(Σ; υ) in case �e = (en)n∈N with en = υ for every n ∈ N. We define

d�w : RWω(�w) ∪ V RWω(�w) → [N]ω with d�w(�w[�t]) = d(�t).

(1*) (Reduction of a finite sequence of words by a word) For a finite sequence
w = (w1, . . . , wn) ∈ W<ω(Σ; υ) of variable words over the alphabet Σ, we define
the sets

RW ((w1, . . . , wn)) = {w1(α1) ∗ . . . ∗ wn(αn) : α1 . . . αn ∈ W (Σ)} and

V RW ((w1, . . . , wn)) = {w1(α1) ∗ . . . ∗ wn(αn) : α1 . . . αn ∈ W (Σ; υ)},

of all the reduced words and variable reduced words, respectively, of (w1, . . . , wn)
over Σ.

Notice that RW ((w1, . . . , wn)), V RW ((w1, . . . , wn)) are finite sets and that for
a sequence �w = (wn)n∈N ∈ Wω(Σ; υ) we have that RW (�w) =

⋃
{RW (w1, . . . , wn) :

n ∈ N} and V RW (�w) =
⋃
{V RW (w1, . . . , wn) : n ∈ N}.

(2*) (Reduction of a finite sequence of words by a finite sequence of words) For
a finite sequence w = (w1, . . . , wn) ∈ W<ω(Σ; υ) of variable words over the al-
phabet Σ, we define analogously the families RW<ω(w) and V RW<ω(w) of all
finite reductions and variable finite reductions, respectively, of w over Σ. So,
(u1, . . . , ul) ∈ RW<ω(w) if there exists t = (t1, . . . , tl) ∈ W<ω(Σ), where ti =
αki

αki+1 . . . αki+1−1 for all i = 1, . . . , l and kl+1 = n + 1, such that

ui = wki
(αki

) ∗ wki+1(αki+1) ∗ . . . ∗ wki+1−1(αki+1−1) for i = 1, . . . , l.

We set dw(u) = {k2, . . . , kl}.

In the sequel we will also employ the following notation. For the families G ⊆
W<ω(Σ), F ⊆ W<ω(Σ; υ) and the words s ∈ W (Σ), t ∈ W (Σ; υ) we set

G(s) = {w ∈ W<ω(Σ) : either w = (w1, . . . , wl) = ∅, s ∝ w1 and

(s, w1 − s, w2, . . . , wl) ∈ G or w = ∅ and (s) ∈ G}, and

F(t) = {w ∈ W<ω(Σ; υ) : either w = (w1, . . . , wl), t ∝ w1 and

(t, w1 − t, w2, . . . , wl) ∈ F , or w = ∅ and (t) ∈ F}.

Also,

G − s = {w ∈ G : either w = (w1, . . . , wl) and s ∝ w1 , or w = ∅} and

F − t = {w ∈ F : either w = (w1, . . . , wl) and t ∝ w1, or w = ∅}.

For the sequence �w = (wn)n∈N ∈ Wω(Σ; υ) and the words t ∈ V RW (�w),
s ∈ RW (�w)) with t ∈ V RW ((w1, . . . , wk)) and s ∈ RW ((w1, . . . , wk)) for some
k ∈ N, we set

�w − t = (w0, wk+2, wk+3, . . .) ∈ V RWω(�w), where w0 = t ∗ wk+1, and

�w − s = (w0, wk+2, wk+3, . . .) ∈ V RWω(�w), where w0 = s ∗ wk+1.

Also, we set �w \ t = �w \ s = (wk+1, wk+2, . . .) ∈ Wω(Σ; υ).
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3. The main partition theorem on Schreier families

The main theorem of this section is Theorem 3.3, given in equivalent form in
Theorem 3.6. This is a partition theorem for the Schreier finite sequences of words
and the Schreier finite sequences of variable words over a finite non-empty alphabet
Σ of every countable order, and constitutes an extension to every countable order
ξ (a) of Carlson’s theorem, Theorem 1.1, corresponding to ordinal level ξ = 0 and
(b) of Theorem 1.2, proved by Furstenberg and Katznelson, corresponding to finite
ordinals ξ < ω.

In order to state Theorem 3.3 we need the following definitions:

Definition 3.1 (The Schreier systems (W ξ(Σ))0≤ξ<ω1 and (W ξ(Σ; υ))0≤ξ<ω1). Let
(Aξ)ξ<ω1 be a Schreier system of families of finite subsets of N and Σ be a finite
alphabet. We will define the families W ξ(Σ) and W ξ(Σ; υ) of the Schreier finite
sequences of words and of variable words over Σ respectively, for every countable
ordinal ξ recursively as follows:

W 0(Σ) = {w = (w1) : w1 ∈ W (Σ)} and W 0(Σ; υ) = {w = (w1) : w1 ∈ W (Σ; υ)},
and for every countable ordinal ξ ≥ 1

W ξ(Σ) = {w = (w1, . . . , wl) ∈ W<ω(Σ) : d((w1, . . . , wl)) ∈ Aξ}; and,

W ξ(Σ; υ) = {w = (w1, . . . , wl) ∈ W<ω(Σ; υ) : d((w1, . . . , wl)) ∈ Aξ}.
For an infinite sequence �w = (wn)n∈N ∈ Wω(Σ; υ) of variable words over Σ, we

define the families of Schreier finite reductions and of variable reductions of �w over
Σ as follows:

RW 0(�w)={u=(u1) : u1 ∈ RW (�w)} and V RW 0(�w)={u = (u1) : u1∈V RW (�w)},
and for every countable ordinal ξ ≥ 1

RW ξ(�w)={u=(u1, . . . , ul) ∈ RW<ω(�w) : d�w((u1, . . . , ul)) ∈ Aξ}; and,

V RW ξ(�w)={u = (u1, . . . , ul)∈V RW<ω(�w) : d�w((u1, . . . , ul)) ∈ Aξ}.

Hence, a finite sequence w ∈ W<ω(Σ) of words over Σ belongs to the family
W ξ(Σ) for some 1 ≤ ξ < ω1 iff w = (w1, . . . , wl) with l > 1, and there exist
1 = k1 < · · · < kl < kl+1 ∈ N with {ki : 2 ≤ i ≤ l} ∈ Aξ and α1, . . . , αkl+1−1 ∈ Σ
such that wi = αki

αki+1 . . . αki+1−1 for all i = 1, . . . , l.
Observe that w = (w) ∈ W 0(Σ) for every w ∈ W (Σ), while w = (w) /∈ W ξ(Σ)

for every ξ > 0. Also observe that W ξ(Σ) = RW ξ(�e) and W ξ(Σ; υ) = V RW ξ(�e)
for every countable ordinal ξ, in case �e = (en)n∈N with en = υ for every n ∈ N, and
that it is not true that W ξ(Σ) = RW ξ(�w) for every �w ∈ Wω(Σ; υ).

The following proposition expresses the recursiveness of the Schreier systems
(W ξ(Σ))0≤ξ<ω1 and (W ξ(Σ; υ))0≤ξ<ω1 .

Proposition 3.2. For every countable ordinal ξ > 0 there exists a concrete se-
quence (ξn)n>1 of countable ordinals with ξn < ξ for every n ∈ N, 1 < n such
that

W ξ(Σ)(s)=W ξn(Σ)∩(W<ω(Σ)−s) and W ξ(Σ; υ)(t)=W ξn(Σ; υ)∩(W<ω(Σ; υ) − t)

for every n ∈ N, 1 < n and s = α1 . . . αn−1 ∈ W (Σ), t = β1 . . . βn−1 ∈ W (Σ; υ).
Moreover, ξn = ζ for every n ∈ N in case ξ = ζ + 1, and (ξn) is a strictly

increasing sequence with supn ξn = ξ in case ξ is a limit ordinal.
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Proof. According to Proposition 1.7 in [F3], for every countable ordinal ξ > 0 there
exists a concrete sequence (ξn) of countable ordinals with ξn < ξ such that

Aξ(n) = Aξn
∩ [{n + 1, n + 2, . . .}]<ω for every n ∈ N ,

where, Aξ(n) = {s ∈ [N]<ω : {n} < s, {n} ∪ s ∈ Aξ} for every n ∈ N. Moreover,
ξn = ζ for every n ∈ N if ξ = ζ + 1, and (ξn) is a strictly increasing sequence with
supn ξn = ξ if ξ is a limit ordinal.

Let n > 1 and s = α1 . . . αn−1 ∈ W (Σ), t = β1 . . . βn−1 ∈ W (Σ; υ). We will
prove that W ξ(Σ)(s) = W ξn(Σ)∩ (W<ω(Σ)− s) for every countable ordinal ξ > 0.
Similarly it can be proved that W ξ(Σ; υ)(t) = W ξn(Σ; υ) ∩ (W<ω(Σ; υ) − t) for
every 0 < ξ < ω1.

For ξ = 1, of course W 1(Σ)(s) = W 0(Σ) ∩ (W<ω(Σ) − s). Let 1 < ξ < ω1.
Then ∅ /∈ W ξ(Σ)(s), since if ∅ ∈ W ξ(Σ)(s), then (s) ∈ W ξ(Σ) for ξ > 0 and of
course ∅ /∈ W ξn(Σ) for every 0 ≤ ξn < ω1. Let w = (w1, . . . , wl) ∈ W<ω(Σ) \ {∅}.
Then there exist 1 = k1 < · · · < kl < kl+1 ∈ N and α1, . . . , αkl+1−1 ∈ Σ such that
wi = αki

αki+1 . . . αki+1−1 for all i = 1, . . . , l.
If w ∈ W ξ(Σ)(s), then s ∝ w1 and (s, w1 − s, . . . , wl) ∈ W ξ(Σ). In case l > 1,

we have that n < k2 and that {n, k2, . . . , kl} ∈ Aξ. So, {k2, . . . , kl} ∈ Aξn
and

consequently (w1, w2, . . . , wl) ∈ W ξn(Σ) ∩ (W<ω(Σ) − s). In case w = (w1) ∈
W ξ(Σ)(s), we have that s ∝ w1 and (s, w1 − s) ∈ W ξ(Σ). Thus {n} ∈ Aξ and
consequently ∅ ∈ Aξn

. This implies ξn = 0 and indeed w ∈ W ξn(Σ)∩(W<ω(Σ)−s).
If w = (w1, . . . , wl) ∈ W ξn(Σ) ∩ (W<ω(Σ) − s) and l > 1, then {k2, . . . , kl} ∈

Aξn
∩ [{n + 1, n + 2, . . .}]<ω ⊆ Aξ(n). Since, {n, k2, . . . , kl} ∈ Aξ, we have that

(s, w1 − s, . . . , wk) ∈ W ξ(Σ) and consequently w ∈ W ξ(Σ)(s). In case w = (w1) ∈
W ξn(Σ) ∩ (W<ω(Σ) − s), we have that ξn = 0 and consequently {n} ∈ Aξ. Hence
(s, w1 − s) ∈ W ξ(Σ) and w ∈ W ξ(Σ)(s). �

Now we can state and prove the main theorem of this section.

Theorem 3.3 (A partition theorem on Schreier sets of words). Let ξ be a count-
able ordinal and Σ a finite non-empty alphabet. For every G ⊆ W<ω(Σ), F ⊆
W<ω(Σ; υ) and every infinite sequence �w ∈ Wω(Σ; υ) of variable words over Σ
there exists a variable reduction �u ≺ �w of �w over Σ such that :

either W ξ(Σ) ∩ RW<ω(�u) ⊆ G, or W ξ(Σ) ∩ RW<ω(�u) ⊆ W<ω(Σ) \ G, and
either W ξ(Σ; υ)∩V RW<ω(�u) ⊆ F , or Wξ(Σ; υ)∩V RW<ω(�u) ⊆ W<ω(Σ; υ)\F .

For the proof of this partition theorem we will make use of a diagonal argument,
contained in the following lemmas.

Lemma 3.4. Let �w = (wn)n∈N ∈ Wω(Σ; υ) be an infinite sequence of variable
words over the alphabet Σ and let Π1 = {(s, �u) : s ∈ RW (�w) and �u ≺ �w \ s}. If a
subset R of Π1 satisfies:

(i) for every (s, �u) ∈ Π1 there exists (s, �u1) ∈ R with �u1 ≺ �u; and
(ii) for every (s, �u1) ∈ R and �u2 ≺ �u1 we have (s, �u2) ∈ R,

then there exists �u ≺ �w such that (s, �s) ∈ R for all s ∈ RW (�u) and �s ≺ �u \ s.

Proof. Let u0 = w1 and �u0 = �w. According to conditions (i) and (ii), there exists
�u1 = (u1

n)n∈N ∈ Wω(Σ; υ) such that �u1 ≺ �w \ u0 and (u0(α), �u1) ∈ R for every
α ∈ Σ. Let u1 = u1

1. Then (u0, u1) ∈ V RW<ω(�w). We assume now that there have
been constructed �u1, . . . , �un ∈ Wω(Σ; υ) and u0, u1, . . . , un ∈ W (Σ; υ) such that
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(u0, u1, . . . , un) ∈ V RW<ω(�w), ui ∈ V RW (�ui), �ui ≺ �ui−1 \ ui−1 for each 1 ≤ i ≤ n
and (s, �ui) ∈ R for all s ∈ RW ((u0, . . . , ui−1)) and 1 ≤ i ≤ n.

We will construct �un+1 and un+1. Let RW ((u0, . . . , un)) = {s1, . . . , sk} for
some k ∈ N. Then (si, �u) ∈ Π1 for every �u ≺ �un \ un and i = 1, . . . , k. According
to condition (i), there exist �u1

n+1, . . . , �u
k
n+1 ∈ Wω(Σ; υ) such that �uk

n+1 ≺ · · · ≺
�u1

n+1 ≺ �un \ un and (si, �u
i
n+1) ∈ R for every 1 ≤ i ≤ k. Set �un+1 = �uk

n+1.
If �un+1 = (un+1

i )i∈N, then set un+1 = un+1
1 . Of course un+1 ∈ V RW (�un+1),

�un+1 ≺ �un \ un, (u0, u1, . . . , un+1) ∈ V RW<ω(�w) and, according to condition (ii),
(si, �un+1) ∈ R for all 1 ≤ i ≤ k.

Set �u = (u0, u1, u2, . . .) ∈ Wω(Σ; υ). Since (u0, u1, . . . , un) ∈ V RW<ω(�w) for
every n ∈ N, we have that �u ≺ �w. Let s ∈ RW (�u) and �s ≺ �u \ s. Then there exists
n ∈ N such that s ∈ RW ((u0, u1, . . . , un)). Thus (s, �un+1) ∈ R. Since �u\s ≺ �un+1,
according to (ii), (s, �u \ s) ∈ R. So (s, �s) ∈ R, since �s ≺ �u \ s. �

Lemma 3.5. Let �w = (wn)n∈N ∈ Wω(Σ; υ) be an infinite sequence of variable
words over the alphabet Σ and Π2 = {(t, �u) : t ∈ V RW (�w) and �u ≺ �w \ t}. If a
subset R of Π2 satisfies:

(i) for every (t, �u) ∈ Π2 there exists (t, �u1) ∈ R with �u1 ≺ �u; and
(ii) for every (t, �u1) ∈ R and �u2 ≺ �u1 we have (t, �u2) ∈ R,

then there exists �u ≺ �w such that (t,�t) ∈ R for all t ∈ V RW (�u) and �t ≺ �u \ t.

Proof. Let u0 = w1 and �u0 = �w. According to condition (i), there exists �u1 =
(u1

n)n∈N ∈ Wω(Σ; υ) such that �u1 ≺ �w \ u0 and (u0, �u1) ∈ R. Let u1 = u1
1. Then

(u0, u1) ∈ V RW<ω(�w). The proof can be continued analogously to the proof of
Lemma 3.4. �

We are now ready to prove Theorem 3.3.

Proof of Theorem 3.3. Let G ⊆ W<ω(Σ), F ⊆ W<ω(Σ; υ) and �w = (wn)n∈N ∈
Wω(Σ; υ). For ξ = 0 the theorem is valid, according to Carlson’s theorem (Theo-
rem 1.1). Let ξ > 0 be a countable ordinal. Assume that the theorem is valid for
every ζ < ξ.

For every reduced word s ∈ RW (�w) of �w over Σ and every variable reduction
�u = (un)n∈N ≺ �w \ s of �w \ s over Σ the variable reduction �us = (s ∗u1, u2, . . .) ≺ �w
of �w over Σ is defined. So, we can define the following set:

R1 = {(s, �u) : s ∈ RW (�w), �u ≺ �w \ s and
either W ξ(Σ)(s) ∩ RW<ω(�us) ⊆ (G ∩ RW<ω(�w))(s),
or W ξ(Σ)(s) ∩ RW<ω(�us) ⊆ W<ω(Σ) \ (G ∩ RW<ω(�w))(s)}.

Of course R1 ⊆ Π1 = {(s, �u) : s ∈ RW (�w) and �u ≺ �w\s} and obviously R1 satisfies
the conditions (ii) of Lemma 3.4. We will prove that R1 also satisfies condition (i)
of Lemma 3.4.

Let (s, �u) ∈ Π1. Then s ∈ RW (�w) ⊆ W (Σ), hence s = α1 . . . αn−1 for some
n ∈ N with n > 1 and α1, . . . , αn−1 ∈ Σ. According to Proposition 3.2, there exists
ξn < ξ such that W ξ(Σ)(s) = W ξn(Σ) ∩ (W<ω(Σ) − s).

If �u = (un)n∈N ≺ �w \ s, then �us = (s ∗ u1, u2, . . .) ≺ �w. Using the induction
hypothesis, there exists a variable reduction �u1 = (u1

n)n∈N ≺ �us of �us over Σ, such
that

either W ξn(Σ) ∩ RW<ω(�u1) ⊆ (G ∩ RW<ω(�w))(s),
or Wξn(Σ) ∩ RW<ω(�u1) ⊆ W<ω(Σ) \ (G ∩ RW<ω(�w))(s).
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Then

either W ξ(Σ)(s) ∩ RW<ω(�u1) ⊆ (G ∩ RW<ω(�w))(s),
or W ξ(Σ)(s) ∩ RW<ω(�u1) ⊆ W<ω(Σ) \ (G ∩ RW<ω(�w))(s).

Since �u1 = (u1
n)n∈N ≺ �us, we have that s ∝ u1

1, so we set �u1 = (u1
1 − s, u1

2, . . .).
Then �u1 ≺ �u ≺ �w \ s and (�u1)s = �u1. Thus (s, �u1) ∈ R1. Hence, R1 satisfies
condition (i) of Lemma 3.4.

According to Lemma 3.4, there exists �w1 = (w1
n)n∈N ≺ �w such that (s, �s) ∈ R1

for all s ∈ RW (�w1) and �s ≺ �w1\s. Thus, for every s ∈ RW (�w1) and �v = (vn)n∈N ≺
�w1 − s, setting �v1 = (v1 − s, v2, . . .), we have that (s,�v1) ∈ R1 and, since (�v1)s = �v,
we have that

either W ξ(Σ)(s) ∩ RW<ω(�v) ⊆ (G ∩ RW<ω(�w))(s),
or W ξ(Σ)(s) ∩ RW<ω(�v) ⊆ W<ω(Σ) \ (G ∩ RW<ω(�w))(s).

Now, defining analogously for every variable reduced word t ∈ V RW (�w1) of �w1

over Σ and every variable reduction �u = (un)n∈N ≺ �w1 \ t of �w1 \ t over Σ the
variable reduction �ut = (t ∗ u1, u2, . . .) ≺ �w1 of �w1 over Σ, we can define the set

R2 = {(t, �u) : t ∈ V RW (�w1), �u ≺ �w1 \ t and

either W ξ(Σ; υ)(t) ∩ V RW<ω(�ut) ⊆ (F ∩ V RW<ω(�w))(t),
or W ξ(Σ; υ)(t) ∩ V RW<ω(�ut) ⊆ W<ω(Σ; υ) \ (F ∩ V RW<ω(�w))(t)}.

Then R2 ⊆ Π2 = {(t, �u) : t ∈ V RW (�w1) and �u ≺ �w1 \ t} and R2 satisfies the
condition (ii) of Lemma 3.5.

Let (t, �u) ∈ Π2. Then t ∈ V RW (�w1) and let t = β1 . . . βn−1 ∈ W (Σ; υ) for some
n ∈ N with n > 1 and β1, . . . , βn−1 ∈ Σ ∪ {υ}. According to Proposition 3.2, there
exists ξn < ξ such that W ξ(Σ; υ)(t) = W ξn(Σ; υ) ∩ (W<ω(Σ; υ) − t).

If �u = (un)n∈N ≺ �w1 \ t, then �ut = (t ∗ u1, u2, . . .) ≺ �w1. Using the induction
hypothesis, there exists a variable reduction �u1 = (u1

n)n∈N ≺ �ut of �ut over Σ with
t ∝ u1

1 such that

either W ξn(Σ; υ) ∩ V RW<ω(�u1) ⊆ (F ∩ V RW<ω(�w))(t),
or W ξn(Σ; υ) ∩ V RW<ω(�u1) ⊆ W<ω(Σ; υ) \ (F ∩ V RW<ω(�w))(t).

Then

either W ξ(Σ; υ)(t)∩ V RW<ω(�u1)(W<ω(Σ; υ)− t) ⊆ (F ∩ V RW<ω(�w))(t),
or W ξ(Σ; υ)(t) ∩ V RW<ω(�u1)(W<ω(Σ; υ) − t)

⊆ W<ω(Σ; υ) \ (F ∩ V RW<ω(�w))(t)

Setting �u1 = (u1
1 − t, u1

2, . . .) we have that �u1 ≺ �u ≺ �w1 \ t and that (t, �u1) ∈ R2.
Hence, R2 also satisfies condition (i) of Lemma 3.5 (replacing �w by �w1).

According to Lemma 3.5, there exists �w2 = (w2
n)n∈N ≺ �w1 ≺ �w such that (t,�t) ∈

R2 for all t ∈ V RW (�w2) and �t ≺ �w2 \ t. Hence, for every s ∈ RW (�w2) ⊆ RW (�w1),
t ∈ V RW (�w2) and �v1 ≺ �w2 − s ≺ �w1 − s, �v2 ≺ �w2 − t, we have

either W ξ(Σ)(s) ∩ RW<ω(�v1) ⊆ (G ∩ RW<ω(�w))(s),
or W ξ(Σ)(s) ∩ RW<ω(�v1) ⊆ W<ω(Σ) \ (G ∩ RW<ω(�w))(s); and

either W ξ(Σ; υ)(t) ∩ V RW<ω(�v2) ⊆ (F ∩ V RW<ω(�w))(t),
or W ξ(Σ; υ)(t) ∩ V RW<ω(�v2) ⊆ W<ω(Σ; υ) \ (F ∩ V RW<ω(�w))(t).

Let
G1 = {s ∈ RW (�w2) : W ξ(Σ)(s) ∩ RW<ω(�w2 − s) ⊆ (G ∩ RW<ω(�w))(s)}, and
F1 = {t ∈ V RW (�w2) : W ξ(Σ; υ)(t)∩ V RW<ω(�w2 − t) ⊆ (F ∩ V RW<ω(�w))(t)}.

We use the induction hypothesis for ξ = 0 (Theorem 1.1). Then, there exists a
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variable reduction �u ≺ �w2 of �w2 such that:
either RW (�u) ⊆ G1, or RW (�u) ⊆ W (Σ) \ G1; and,
either V RW (�u) ⊆ F1, or V RW (�u) ⊆ W (Σ; υ) \ F1.

Since �u ≺ �w2, we have that RW (�u) ⊆ RW (�w2) and V RW (�u) ⊆ V RW (�w2). Thus
either W ξ(Σ)(s)∩RW<ω(�u−s) ⊆ (G∩RW<ω(�w))(s) for every s ∈ RW (�u),
or W ξ(Σ)(s) ∩ RW<ω(�u − s) ⊆ W<ω(Σ) \ (G ∩ RW<ω(�w))(s) for every
s ∈ RW (�u); and,
either W ξ(Σ; υ)(t) ∩ V RW<ω(�u − t) ⊆ (F ∩ V RW<ω(�w))(t) for every t ∈
V RW (�u),
or W ξ(Σ; υ)(t) ∩ V RW<ω(�u − t) ⊆ W<ω(Σ; υ) \ (F ∩ V RW<ω(�w))(t) for
every t ∈ V RW (�u).

Hence,
either W ξ(Σ) ∩ RW<ω(�u) ⊆ G, or W ξ(Σ) ∩ RW<ω(�u) ⊆ W<ω(Σ) \ G; and,
either W ξ(Σ; υ) ∩ V RW<ω(�u) ⊆ F , or W ξ(Σ; υ) ∩ V RW<ω(�u) ⊆ W<ω(Σ; υ) \

F . �

We next give a more general statement of Theorem 3.3.

Theorem 3.6. Let ξ be a countable ordinal, and �w0 ∈ Wω(Σ; υ) be an infinite
sequence of variable words over a finite, non-empty alphabet Σ. For any finite
colorings χ1 : RW ξ(�w0) → {1, . . . , r1} and χ2 : V RW ξ(�w0) → {1, . . . , r2} of the
sets RW ξ(�w0) and V RW ξ(�w0) respectively and any variable reduction �w ≺ �w0 of
�w0 over Σ, there exists a variable reduction �u ≺ �w of �w over Σ such that all the finite
reductions of �w over Σ in the set RW ξ(�w0) are monochromatic under χ1 and all
the finite variable reductions of �w over Σ in the set V RW ξ(�w0) are monochromatic
under χ2.

Proof. Let f : W<ω(Σ ∪ {υ}) → RW<ω(�w0) ∪ V RW<ω(�w0) with f(s) = �w0[s].
Given the finite colorings χ1 : RW ξ(�w0) → {1, . . . , r1} and χ2 : V RW ξ(�w0) →
{1, . . . , r2}, are defined the finite colorings ψ1 : W<ω(Σ) → {1, . . . , r1} with ψ1(s) =
χ1(f(s)) in case s ∈ W ξ(Σ) and ψ1(s) = 1 otherwise and ψ2 : W<ω(Σ; υ) →
{1, . . . , r2} with ψ2(t) = χ2(f(t)) in case t ∈ W ξ(Σ; υ) and ψ2(t) = 1 otherwise.

For a given �w ≺ �w0 there exists �t ∈ Wω(Σ; υ) such that �w = �w0[�t]. According
to Theorem 3.3, there exists a variable reduction �t1 ≺ �t of �t over Σ such that
the set W ξ(Σ) ∩ RW<ω(�t1) is monochromatic under ψ1 and the set W ξ(Σ; υ) ∩
V RW<ω(�t1) is monochromatic under ψ2. Set �u = �w0[�t1] ≺ �w. Then the set
RW ξ(�w0) ∩ RW<ω(�u) is monochromatic under χ1 and V RW ξ(�w0) ∩ V RW<ω(�u)
is monochromatic under χ2. �

We recall that in case �w0 = �e = (en)n∈N with en = υ for every n ∈ N all the
infinite sequences of variable words over Σ are variable reductions of �w0 over Σ and
that RW ξ(�w0) = W ξ(Σ), V RW ξ(�w0) = W ξ(Σ; υ) for every 0 ≤ ξ < ω1. In this
case Theorem 3.6 is identified with Theorem A referred to in the Introduction.

For k ∈ N and �u ∈ Wω(Σ; υ) we have that W k(Σ) ∩ RW<ω(�u) = RW k(�u) and
W k(Σ; υ)∩V RW<ω(�u) = V RW k(�u); hence Theorem 3.6 in case ξ = k ∈ N implies
Theorem 1.2, which essentially has been proved by Furstenberg and Katznelson in
[FK] (Theorems 2.7 and 3.1).

The following theorem is a finitary consequence of Theorem 3.6. It follows from
Theorem 3.6 using a compactness argument. We will need the following notation
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to state it. For a word w = α1 . . . αl over an alphabet Σ let l be the length of w.
We denote by Wl(Σ) the set of all words over Σ with length l. For a countable
ordinal ξ, we denote by W ξ

M (Σ) the set of all finite sequences of words in W ξ(Σ)
such that the sum of the lengths of their words is equal to M .

Theorem 3.7 (Extended Hales-Jewett theorem). For every r, n, k ∈ N, Σ a finite,
non-empty alphabet of k elements, and ξ a countable ordinal, there exists M =
M(r, n, k, ξ) ∈ N such that for every r-coloring of W ξ

M (Σ) there exists a finite
sequence w = (w1, . . . , wn) of variable words over Σ all of whose finite reductions
over Σ in W ξ

M (Σ) are monochromatic.

The classical Hales-Jewett theorem ([HJ]) is a trivial consequence of the case
ξ = 0, n = 1. Since van der Waerden’s theorem ([vdW]) may be obtained as
a corollary of the Hales-Jewett theorem, Theorem 3.7 can be used to obtain a
corresponding extension of van der Waerden’s theorem.

Furstenberg and Katznelson in [FK] introduced the notion of a k-dimensional
combinatorial subspace of W (Σ) for k ∈ N and proved (in Theorem 3.1) a partition
theorem about these combinatorial subspaces. Theorem 3.3 implies an extension
of this partition theorem to every countable ordinal. Let us give the necessary
notation.

Let Σ be a finite, non-empty alphabet. A finite-dimensional combinatorial sub-
space [w] of W (Σ) is defined by a finite sequence w = (w1, . . . , wk) ∈ W<ω(Σ; υ)
of variable words over Σ as follows:

[w] = RW ((w1, . . . , wk)) = {w1(α1) ∗ . . . ∗ wk(αk) : α1, . . . , αk ∈ Σ}.
In the same way, an infinite-dimensional combinatorial subspace [�w] of W (Σ) is

defined by an infinite sequence �w = {(wn)n∈N ∈ Wω(Σ; υ)} as follows:

[�w] = RW (�w) = {w1(α1) ∗ . . . ∗ wk(αk) : k ∈ N, α1, . . . , αk ∈ Σ}.
A finite (or infinite)-dimensional combinatorial subspace of W (Σ) contained in

an infinite-dimensional combinatorial subspace [�w] of W (Σ) is called a finite (or
infinite)-dimensional combinatorial subspace of [�w]. It is not hard to check that
a finite-dimensional combinatorial subspace of [�w] is of the form [u], where u ∈
V RW<ω(�w) and that an infinite-dimensional combinatorial subspace of [�w] is of
the form [�u], where �u ∈ V RWω(�w).

Definition 3.8. Let ξ be a countable ordinal. A ξ-combinatorial subspace [w]
of W (Σ) is a finite-dimensional combinatorial subspace of W (Σ) such that w ∈
W ξ(Σ; υ), and a ξ-combinatorial subspace [w] of an infinite-dimensional combina-
torial subspace [�w] of W (Σ) is a finite-dimensional combinatorial subspace of [�w]
such that w ∈ V RW ξ(�w).

The class of k-combinatorial subspaces of W (Σ), for k ∈ N, coincides with the
class of k + 1-dimensional combinatorial subspaces of W (Σ), while the class of
ξ-combinatorial subspaces of W (Σ), for a countable ordinal ξ ≥ ω, contains finite-
dimensional combinatorial subspaces of W (Σ) of arbitrary large finite dimensions.
Also, observe that although for k ∈ N the k-combinatorial subspaces of [�w] are
exactly the k-combinatorial subspaces of W (Σ) contained in [�w], for a countable
ordinal ξ ≥ ω, it is not always true that every ξ-combinatorial subspace of [�w] is a
ξ-combinatorial subspace of W (Σ), since it is not true that d�w(w) = d(w) for every
w ∈ R<ω(�w).
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We will now state a corollary of Theorem 3.3 which extends Theorem 3.1 in [FK],
corresponding to finite ordinals ξ < ω, to every countable ordinal ξ.

Corollary 3.9 (Combinatorial subspaces partition theorem). Let ξ be a countable
ordinal. For any finite coloring of the set CSξ(Σ) of all ξ-combinatorial subspaces
of W (Σ) and any infinite-dimensional combinatorial subspace [�w] of W (Σ), there
exists an infinite-dimensional combinatorial subspace [�u] of [�w] such that all the
ξ-combinatorial subspaces of W (Σ) contained in [�u] are monochromatic.

Proof. Given the finite coloring χ : CSξ(Σ) → {1, . . . , r}, we define the finite
coloring ψ : Wξ(Σ; υ) → {1, . . . , r} with ψ(s) = χ([s]). Apply Theorem 3.6 for
�w0 = (en)n∈N with en = υ for every n ∈ N. Then for any �w ∈ Wω(Σ; υ), there
exists a variable reduction �u of �w over Σ such that all the elements of the set
W ξ(Σ; υ) ∩ V RW<ω(�u) are ψ-monochromatic. Hence, for any infinite-dimensional
combinatorial subspace [�w] of W (Σ), there exists an infinite-dimensional combi-
natorial subspace [�u] of [�w] such that all the ξ-combinatorial subspaces of W (Σ)
contained in [�u] are χ-monochromatic. �

Corollary 3.10. Let ξ be a countable ordinal, and �w0 ∈ Wω(Σ; υ). For any
finite coloring of all ξ-combinatorial subspaces of [�w0] and any infinite-dimensional
combinatorial subspace [�w] of �w0, there exists an infinite-dimensional combinatorial
subspace [�u] of [�w] such that all the ξ-combinatorial subspaces of [�w0] contained in
[�u] are monochromatic.

Using the previous terminology, we obtain a generalization of Hales-Jewett the-
orem to higher dimensions, as a consequence of Theorem 3.7.

Corollary 3.11. For every r, k ∈ N, Σ a finite, non-empty alphabet of k ele-
ments, and ξ a countable ordinal, there exists M = M(r, k, ξ) ∈ N such that for
any r-coloring of WM (Σ) there exists a monochromatic ξ-combinatorial subspace of
WM (Σ).

4. Basic properties of the Schreier-type families

of the finite sequences of words

This section is preparatory for the results of sections 4 and 5. Here we prove
(a) the thinness of the Schreier-type families of words W ξ(Σ) and variable words
W ξ(Σ; υ) (Proposition 4.2), and (b) the canonical representation of every (infinite
or finite) sequence of (variable) words over Σ with respect to the Schreier-type fam-
ilies (Proposition 4.3). Furthermore we introduce the (strong) Cantor-Bendixson
index of a hereditary subfamily of the family of the finite sequences of (variable)
words (Definition 4.10), and we prove that the index of the hereditary family gen-
erated by the ξ-Schreier-type family of finite sequences of words is ξ + 1 for every
countable ordinal ξ (Proposition 4.12). In addition, in Theorem 4.6, we strengthen
Theorem 3.3 in case the partition family is (not an arbitrary family but) a tree.

Definition 4.1. Let Σ be a finite, non-empty alphabet and F ⊆ W<ω(Σ ∪ {υ})
be a family of finite sequences of words over Σ ∪ {υ}.

(i) F is thin if there are no elements s = (s1, . . . , sk), t = (t1, . . . , tk) ∈ F with
s ∝ t (which means that k < l and si = ti for all i = 1, . . . , k).

(ii) F∗ = F ∪ {t ∈ W<ω(Σ ∪ {υ}) : t ∝ s for some s ∈ F} ∪ {∅}.
(iii) F is a tree if F∗ = F .
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Proposition 4.2. Let �w = (wn)n∈N ∈ Wω(Σ; υ) be an infinite sequence of variable
words over an alphabet Σ. The families W ξ(Σ; υ), W ξ(Σ), V RW ξ(�w), RW ξ(�w)
are thin for every ξ < ω1.

Proof. It follows from the fact that the families Aξ of Schreier finite subsets of N are
thin (which means that if s, t ∈ Aξ and s is an initial segment of t, then s = t). �

Proposition 4.3. Let ξ > 0 be a countable ordinal number.
(i) Every infinite sequence �s = (sn)n∈N ∈ Wω(Σ ∪ {υ}) of words over Σ ∪ {υ}

has canonical representation with respect to W ξ(Σ ∪ {υ}), which means that there
exists a unique strictly increasing sequence (mn)n∈N in N such that (s1, . . . , sm1) ∈
W ξ(Σ ∪ {υ}) and (sn, smn−1+1, . . . , smn

) ∈ W ξ(Σ ∪ {υ}) for every n > 1, where
sn = s1 ∗ . . . ∗ smn−1 .

(ii) Every non-empty finite sequence s = (s1, . . . , sk) ∈ W<ω(Σ ∪ {υ}) of words
over Σ∪{υ} has canonical representation with respect to W ξ(Σ∪{υ}), which means
that either s ∈

(
W ξ(Σ ∪ {υ})

)∗ \ W ξ(Σ ∪ {υ}) or there exist unique n ∈ N, and
m1, . . . , mn ∈ N with m1 < . . . < mn ≤ k such that (s1, . . . , sm1) ∈ W ξ(Σ ∪ {υ}),
(sn, smn−1+1, . . . , smn

) ∈ W ξ(Σ∪{υ}) for every n > 1, where sn = s1 ∗ . . . ∗ smn−1 ,
and in case mn < k, (sn+1, smn+1, . . . , sk) ∈

(
W ξ(Σ∪ {υ})

)∗ \W ξ(Σ∪ {υ}) where
sn+1 = s1 ∗ . . . ∗ smn

.

Proof. (i) Let ξ > 0 and �s = (sn)n∈N ∈ Wω(Σ ∪ {υ}). Then the sequence
d((sn)n∈N) = (kn)n≥2 of natural numbers has canonical representation with respect
to Aξ, which means that there exists a unique strictly increasing sequence (mn)n∈N

in N so that (k2, . . . , km1) ∈ Aξ and (kmn−1+1, . . . , kmn
) ∈ Aξ for every n > 1.

Hence, (s1, . . . , sm1) ∈ W ξ(Σ∪ {υ}) and (sn, smn−1+1, . . . , smn
) ∈ W ξ(Σ∪ {υ}) for

every n > 1, where sn = s1 ∗ . . . ∗ smn−1 .
(ii) Let s = (s1, . . . , sk) ∈ W<ω(Σ ∪ {υ}). Set sn = υ for every n ∈ N with

n > k. The sequence �s = (sn)n∈N ∈ Wω(Σ ∪ {υ}) has canonical representation
with respect to W ξ(Σ ∪ {υ}), according to (i). �

According to Proposition 4.3, every finite or infinite reduction (or variable re-
duction) of a sequence �w = (wn)n∈N ∈ Wω(Σ; υ) has canonical representation
with respect to RW ξ(�w) (or to V RW ξ(�w)), for every 1 ≤ ξ < ω1. For example
u = �w[s] ∈ RW<ω(�w) has canonical representation with respect to RW ξ(�w), as s
has canonical representation with respect to W ξ(Σ).

Now, exploiting the canonical representation of every sequence of words over
Σ ∪ {υ} with respect to W ξ(Σ ∪ {υ}), we will give alternative descriptions of the
dichotomies described in Theorem 3.3.

Proposition 4.4. Let G ⊆ W<ω(Σ), F ⊆ W<ω(Σ; υ) and let ξ be a countable
ordinal. Then, for every infinite sequence �u = (un)n∈N ∈ Wω(Σ; υ) of variable
words over Σ the following are equivalent:

(i) W ξ(Σ) ∩ RW<ω(�u) ⊆ G (resp. W ξ(Σ; υ) ∩ V RW<ω(�u) ⊆ F).
(ii) For every variable reduction �u1 of �u the unique initial segment s = (u1

1, . . . ,
u1

m) of �u1, which is an element of W ξ(Σ; υ), satisfies the property (u1
1(α1), . . . ,

u1
m(αm)) ∈ G for every α1, . . . , αm ∈ Σ (resp. the property s ∈ F).
(iii) Given any sequence (�un)n∈N of infinite sequences of variable words over Σ

such that �u1 ≺ �u and �un+1 ≺ �un for every n ∈ N and any tn ∈ V RW (�un) with
tn ∝ tn+1 for every n ∈ N, there exists m ∈ N such that (t11(α1), . . . , t1m(αm)) ∈
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W ξ(Σ) ∩ G for every α1, . . . , αm ∈ Σ, where t11 = t1 and t1i = ti − ti−1 for i =
2, . . . , m (resp. such that (t11, . . . , t1m) ∈ W ξ(Σ; υ) ∩ F).

Proof. (i) ⇒ (ii). Let �u1 = (u1
n)n∈N be a variable reduction of �u. Using the

canonical representation of �u1 with respect to W ξ(Σ; υ) (Proposition 4.3), there
exists a unique initial segment s = (u1

1, u
1
2, . . . , u

1
m) of �u1 which is an element of

W ξ(Σ; υ). According to (i), (u1
1(α1), . . . , u1

m(αm)) ∈ W ξ(Σ) ∩ RW<ω(�u) ⊆ G for
every α1, . . . , αm ∈ Σ (resp. s ∈ F).

(ii) ⇒ (i). Let s = (s1, . . . , sm) ∈ W ξ(Σ) ∩ RW<ω(�u). There exist unique
sequences 1 = k1 < · · · < km < km+1 ∈ N and α1, . . . , αkm+1−1 ∈ Σ such that
si = uki

(αki
) ∗ . . . ∗ uki+1−1(αki+1−1) for all i = 1, . . . , m. Set u1

i = uki
(υ) ∗

uki+1(αki+1) ∗ . . . ∗uki+1−1(αki+1−1) for all i = 1, . . . , m and u1
m+i = ukm+1−1+i for

every i ∈ N. Then the sequence �u1 = (u1
n)n∈N ∈ Wω(Σ; υ) is a variable reduction

of �u and (u1
1, . . . , u

1
m) ∈ W ξ(Σ; υ). According to (ii), we have that s ∈ G.

If t = (t1, . . . , tm) ∈ W ξ(Σ; υ)∩V RW<ω(�u), then t is the unique initial segment
of a variable reduction �u1 of �u; hence, according to (ii), t ∈ F .

(ii) ⇒ (iii). Let a sequence (�un)n∈N of infinite sequences of variable words over
Σ be such that �u1 ≺ �u and �un+1 ≺ �un for every n ∈ N and tn ∈ V RW (�un) with
tn ∝ tn+1 for every n ∈ N. The sequence �t = (t1n)n∈N with t11 = t1 and t1n = tn−tn−1

for n > 1 is a variable reduction of �u, hence, according to (ii), there exists m ∈ N

such that (t11, . . . , t
1
m) ∈ W ξ(Σ; υ) and (t11(α1), . . . , t1m(αm)) ∈ W ξ(Σ) ∩ G for every

α1, . . . , αm ∈ Σ (resp. and (t11, . . . , t
1
m) ∈ F).

(iii) ⇒ (ii). Let a variable reduction �u1 = (u1
n)n∈N of �u. Use (iii), setting �un = �u1

for every n ∈ N and tn = u1
1 ∗ . . . ∗ u1

n for every n ∈ N. �

We will now give an alternative description for the second horn of the dichotomy
proved in Theorem 3.3, in case the partition family is a tree.

Proposition 4.5. Let G ⊆ W<ω(Σ) be a tree, F ⊆ W<ω(Σ; υ) be a tree and let ξ
be a countable ordinal. Then

W ξ(Σ) ∩ RW<ω(�u) ⊆ W<ω(Σ) \ G if and only if
G ∩ RW<ω(�u) ⊆

(
W ξ(Σ)

)∗ \ W ξ(Σ), and
W ξ(Σ; υ) ∩ V RW<ω(�u) ⊆ W<ω(Σ; υ) \ F if and only if
F ∩ V RW<ω(�u) ⊆

(
W ξ(Σ; υ)

)∗ \ W ξ(Σ; υ).

Proof. Let W ξ(Σ)∩RW<ω(�u) ⊆ W<ω(Σ)\G and s = (s1, . . . , sl) ∈ G ∩RW<ω(�u).
Since s has canonical representation with respect to W ξ(Σ) (Proposition 4.3), either
s ∈

(
W ξ(Σ)

)∗ \ W ξ(Σ), as required, or there exists s1 ∈ W ξ(Σ) such that s1 = s
or s1 ∝ s. The second case is impossible, since then s1 ∈ G ∩ RW<ω(�u) ∩ W ξ(Σ);
a contradiction to our assumption. Hence, G ∩ RW<ω(�u) ⊆

(
W ξ(Σ)

)∗ \ W ξ(Σ).
Obviously, W ξ(Σ)∩RW<ω(�u) ⊆ W<ω(Σ)\G if G∩RW<ω(�u) ⊆

(
W ξ(Σ)

)∗\W ξ(Σ).
Analogously, it can be proved that W ξ(Σ; υ) ∩ V RW<ω(�u) ⊆ W<ω(Σ; υ) \ F if

and only if F ∩ V RW<ω(�u) ⊆
(
W ξ(Σ; υ)

)∗ \ W ξ(Σ; υ). �

A consequence of Proposition 4.5 is the following stronger form of Theorem 3.3
in case the partition families are trees.

Theorem 4.6. Let ξ be a countable ordinal, Σ be a finite non-empty alphabet
and G ⊆ W<ω(Σ), F ⊆ W<ω(Σ; υ) be trees. Then for every infinite sequence
�w ∈ Wω(Σ; υ) of variable words over Σ there exists a variable reduction �u ≺ �w of
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�w over Σ such that:
either W ξ(Σ) ∩ RW<ω(�u) ⊆ G, or G ∩ RW<ω(�u) ⊆

(
W ξ(Σ)

)∗ \ W ξ(Σ), and
either W ξ(Σ; υ)∩V RW<ω(�u) ⊆ F , or F∩V RW<ω(�u) ⊆

(
W ξ(Σ; υ)

)∗\W ξ(Σ; υ).

We will now define a topology on the sets W<ω(Σ), W<ω(Σ; υ), Wω(Σ),
Wω(Σ; υ). We set D = {(n, α) : n ∈ N, α ∈ Σ ∪ {υ}}, which is a countable
set, and we denote by [D]<ω the set of all finite subsets of D.

Each finite sequence w of words over Σ ∪ {υ} corresponds to a unique finite
subset σ(w) of [D]<ω defined as follows: We set σ(∅) = ∅. For w = (w1, . . . , wm) ∈
W<ω(Σ∪{υ}), there exist 1 = k1 < · · · < km < km+1 ∈ N and αj ∈ Σ∪{υ} for all
j = 1, . . . , km+1−1 such that wi = αki

. . . αki+1−1 for all i = 1, . . . , m, hence we set

σ(w) = {{(j, αj) : j ∈ N, ki ≤ j ≤ ki+1 − 1} : i ∈ N, i ≤ m}.
Analogously, for �w = (wn)n∈N ∈ Wω(Σ ∪ {υ}), there exist 1 = k1 < k2 < k3 <
· · · ∈ N and αj ∈ Σ ∪ {υ} for every i ∈ N such that wn = αkn

. . . αkn+1−1 for all
n ∈ N, hence we set σ(�w) = {{(j, αj) : j ∈ N, kn ≤ j ≤ kn+1 − 1} : n ∈ N}.

We identify every sequence (finite or infinite) of words over Σ ∪ {υ} with its
characteristic function in {0, 1}[D]<ω

, via the function:

I : W<ω(Σ ∪ {υ}) ∪ Wω(Σ ∪ {υ}) → {0, 1}[D]<ω

,

with I(w) = xσ(w) for w∈W<ω(Σ ∪ {υ}) and I(�w) = xσ(�w) for �w∈Wω(Σ ∪ {υ}),
Thus, identifying every finite sequence w ∈ W<ω(Σ ∪ {υ}) and every infinite se-
quence �w ∈ Wω(Σ ∪ {υ}) of words over Σ ∪ {υ} with its characteristic function
xσ(w) ∈ {0, 1}[D]<ω

and xσ(�w) ∈ {0, 1}[D]<ω

respectively, we topologize the sets
W<ω(Σ), W<ω(Σ; υ), Wω(Σ), Wω(Σ; υ) by the topology of pointwise convergence
(equivalently by the relative product topology of {0, 1}[D]<ω

). For example we say
that a family F ⊆ W<ω(Σ; υ) is pointwise closed iff the family {xσ(w) : w ∈ F} is
closed in the topology of pointwise convergence; or a family U ⊆ Wω(Σ) is pointwise
closed iff {xσ(�w) : �w ∈ U} is pointwise closed in {0, 1}[D]<ω

.
We next turn our attention to hereditary families of finite sequences of words.

Definition 4.7. Let Σ be a finite, non-empty alphabet and F ⊆ W<ω(Σ; υ).
(i) F∗ = {t ∈ W<ω(Σ; υ) : t ∈ V RW<ω(s) for some s ∈ F∗ \ {∅}} ∪ {∅}.
(ii) F is hereditary if F∗ = F .

Definition 4.8. Let Σ be a finite, non-empty alphabet and G ⊆ W<ω(Σ).
(i) Set 〈∅〉 = ∅, and, for every t = (t1, . . . , tm) ∈ W<ω(Σ; υ), set

〈t〉 = {(t1(α1), . . . , tm(αm)) : α1, . . . , αm ∈ Σ}.
(ii) FG = {t = (t1, . . . , tm) ∈ W<ω(Σ; υ) : 〈t〉 ⊆ G}.
(ii) G∗ = {s = (s1, . . . , sk) ∈ W<ω(Σ) : s ∈ 〈t〉 for some t ∈ (FG)∗}.
(iii) G is hereditary if G∗ = G.

Proposition 4.9. Let �w = (wn)n∈N ∈ W<ω(Σ; υ) be an infinite sequence of vari-
able words over Σ.

(i) If G ⊆ RW<ω(�w) (resp. F ⊆ V RW<ω(�w)) is a tree, then G (resp. F) is
pointwise closed if and only if there does not exist a reduction (resp. a variable
reduction) �u = (un)n∈N of �w such that (u1, . . . , un) ∈ G (resp. (u1, . . . , un) ∈ F)
for all n ∈ N.

(ii) If G ⊆ RW<ω(�w) (resp. F ⊆ V RW<ω(�w)) is hereditary, then G (resp.
F) is pointwise closed if and only if there does not exist a variable reduction �u of
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�w such that RW<ω(�u) ⊆ G (resp. V RW<ω(�u) ⊆ F). Hence, if G (resp. F) is
hereditary and pointwise closed, then every hereditary subfamily of G (resp. of F)
is also pointwise closed.

(iii) The hereditary families
(
W ξ(Σ) ∩ RW<ω(�u)

)
∗,

(
W ξ(Σ; υ) ∩ V RW<ω(�u)

)
∗

and
(
RW ξ(�w)∩RW<ω(�u)

)
∗,

(
V RW ξ(�w)∩ V RW<ω(�u)

)
∗ are pointwise closed for

every countable ordinal ξ and �u ∈ V RWω(�w).

Proof. (i) It follows from the fact that the set RW<ω((w1, . . . , wn)) is finite for
every n ∈ N.

(ii) Let G ⊆ RW<ω(�w) be a hereditary and not pointwise closed family. Then
G∗ = G, thus (FG)∗ = FG . Since G is a tree, according to (i), there exists a
reduction �u = (un)n∈N of �w such that (u1, . . . , un) ∈ G = G∗ for all n ∈ N. Hence,
for every n ∈ N there exist (sn

1 , . . . , sn
n) ∈ FG∩V RW<ω(�w) and αn

1 , . . . , αn
n ∈ Σ such

that ui = sn
i (αn

i ) for every i ≤ n. Since Σ is finite, by a compactness argument
we can find a variable reduction �s = (sn)n∈N of �w and (αn)n∈N ∈ Σ such that
(s1, . . . , sn) ∈ FG ∩V RW<ω(�w) and un = sn(αn) for all n ∈ N. So, �s ∈ V RWω(�w)
and RW<ω(�s) ⊆ G.

(iii) It follows from (ii). �

For hereditary and pointwise closed families G ⊆ RW<ω(�w), F ⊆ V RW<ω(�w)
for some �w ∈ W<ω(Σ; υ), the strong Cantor-Bendixson index sO�u(G) of G and
sO�u(F) of F can be defined with respect to every �u ∈ V RWω(�w).

Definition 4.10. Let �w = (wn)n∈N ∈ Wω(Σ; υ) be an infinite sequence of variable
words over a finite, non-empty alphabet Σ and G ⊆ RW<ω(�w), F ⊆ V RW<ω(�w) be
hereditary and pointwise closed families. For a variable reduction �u = (un)n∈N ≺ �w

of �w over Σ we define the strong Cantor-Bendixson derivatives (G)ξ
�u of G, (F)ξ

�u of
F on �u for every ξ < ω1 as follows:

For every s = (s1, . . . , sk) ∈ G∩RW<ω(�u) and t = (t1, . . . , tk) ∈ F∩V RW<ω(�u)
set

AG
s = {w ∈ RW (�u) : s1 ∗ . . . ∗ sk ∝ w, (s1, . . . , sk, w − (s1 ∗ . . . ∗ sk)) /∈ G};

AF
t = {w ∈ V RW (�u) : t1 ∗ . . . ∗ tk ∝ w, (t1, . . . , tk, w − (t1 ∗ . . . ∗ tk)) /∈ F};

and
AG

∅ = {w ∈ RW (�u) : (w) /∈ G}, AF
∅ = {w ∈ V RW (�u) : (w) /∈ F}.

Then

(G)0�u = {s ∈ G ∩ RW<ω(�u) : AG
s does not contain any sequence (wn)n∈N

with wn ∝ wn+1 for every n ∈ N},
(F)0�u = {t ∈ F ∩ V R<ω(�u) : AF

t does not contain any sequence (wn)n∈N

with wn ∝ wn+1 for every n ∈ N}.

It is easy to verify that (G)0�u, (F)0�u are hereditary, hence pointwise closed (Propo-
sition 4.9, (ii)). So, we can define for every ξ > 0 the ξ-derivatives of G and F
recursively as follows:

(G)ζ+1
�u = ((G)ζ

�u)0�u, (F)ζ+1
�u = ((F)ζ

�u)0�u for all ζ < ω1, and

(G)ξ
�u =

⋂
β<ξ

(G)β
�u, (F)ξ

�u =
⋂
β<ξ

(F)β
�u for ξ a limit ordinal.
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The strong Cantor-Bendixson index sO�u(G) of G on �u is the smallest countable
ordinal ξ such that (G)ξ

�u = ∅ and respectively the strong Cantor-Bendixson index
sO�u(F) of F on �u is the smallest countable ordinal ξ such that (F)ξ

�u = ∅.

Remark 4.11. Let �w = (wn)n∈N ∈ Wω(Σ; υ) and G ⊆ RW<ω(�w), F ⊆ V RW<ω(�w)
be hereditary and pointwise closed families.

(i) The strong Cantor-Bendixson index sO�u(G) and also the index sO�u(F) on a
variable reduction �u ≺ �w of �w over Σ is a countable successor ordinal less than or
equal to the “usual” Cantor-Bendixson index O(G) of G and O(F) of F respectively
into {0, 1}[D]<ω

(see [K]).
(ii) sO�u

(
G ∩ RW<ω(�u)

)
= sO�u(G) and sO�u

(
F ∩ V RW<ω(�u)

)
= sO�u(F).

(iii) sO�u(G1) ≤ sO�u(G2) if G1,G2 ⊆ RW<ω(�w) are hereditary and pointwise
closed families with G1 ⊆ G2 and also sO�u(F1) ≤ sO�u(F2) if F1,F2 ⊆ V RW<ω(�w)
are hereditary and pointwise closed families with F1 ⊆ F2.

(iv) If s = (s1, . . . , sk) ∈ (G)ξ
�u and �u1 ≺ �u ≺ �w, then ∅ ∈ (G)ξ

�u1
and s1 ∈ (G)ξ

�u1

where s1 = (t1, t2− t1, . . . , tl− tl−1) in case {s1, s1 ∗s2, . . . , s1 ∗ . . .∗sk}∩RW (�u1) =
{t1, . . . , tl}, since RW (�u1) ⊆ RW (�u).

(v) If �u1 ≺ �u ≺ �w, then sO�u1(G) ≥ sO�u(G) and sO�u1(F) ≥ sO�u(F), according
to (iv).

(vi) Let �u ≺ �w, σ(�u) = {u1, u1 ∗ u2, u1 ∗ u2 ∗ u3, . . .} and �u1 ≺ �w. If σ(�u1) \ σ(�u)
is a finite set, then sO�u1(G) ≥ sO�u(G) and sO�u1(F) ≥ sO�u(F).

Proposition 4.12. Let �w = (wn)n∈N ∈ Wω(Σ; υ) be an infinite sequence of vari-
able words over Σ, �u1 = (u1

n)n∈N ≺ �u = (un)n∈N ≺ �w be variable reductions of �w
over Σ and ξ ≥ 0 a countable ordinal. Then

sO�u1

((
W ξ(Σ) ∩RW<ω(�u)

)
∗
)

= sO�u1

((
W ξ(Σ; υ) ∩ V RW<ω(�u)

)
∗
)

= ξ + 1, and
sO�u1

((
RW ξ(�w) ∩ RW<ω(�u)

)
∗
)

= sO�u1

((
V RW ξ(�w) ∩ V RW<ω(�u)

)
∗
)

= ξ + 1.

Proof. We will prove only that sO�u1

((
V RW ξ(�w)∩V RW<ω(�u)

)
∗
)

= ξ+1 for every
ξ < ω1, and we will leave the proof of the other equalities to the reader. We mention
that W ξ(Σ) = RW ξ(�e) and W ξ(Σ; υ) = V RW ξ(�e) for every countable ordinal ξ,
in case �e = (en)n∈N with en = υ for every n ∈ N.

For every 0 < ξ < ω1, the families
(
V RW ξ(�w) ∩ V RW<ω(�u)

)
∗ are pointwise

closed (Proposition 4.9, (iii)) and(
V RW ξ(�w) ∩ V RW<ω(�u)

)
(t) = V RW ξn(�w) ∩

(
V RW<ω(�u) − t

)
for some ξn < ξ,

for every t ∈ V RW (�u) with t ∈ V RW (w1, . . . , wn−1) for n ∈ N, n > 1 (Proposi-
tion 3.2).

We will prove by induction that
((

V RW ξ(�w)∩V RW<ω(�u)
)
∗
)ξ

�u1
= {∅} for every

ξ < ω1. Of course,
(
V RW 0(�w)∩V RW<ω(�u)

)
∗ = {(s) : s ∈ V RW (�u)}∪{∅}. Thus

we have that
((

V RW 0(�w) ∩ V RW<ω(�u)
)
∗
)0

�u1
= {∅}.

Let ξ > 0 and assume that
((

V RW ζ(�w)∩V RW<ω(�u)
)
∗
)ζ

�u1
= {∅} for every ζ < ξ

and �u1 ≺ �u. So, if �u1 ≺ �u and t ∈ V RW (�u1) with t ∈ V RW (w1, . . . , wn−1), then((
(V RW ξ(�w) ∩ V RW<ω(�u))(t)

)
∗
)ξn

�u1
=

((
V RW ξn(�w) ∩ (V RW<ω(�u) − t)

)
∗
)ξn

�u1
=

{∅}. This gives that (t) ∈
((

V RW ξ(�w)∩ V RW<ω(�u)
)
∗
)ξn

�u1
. So, in case ξ = ζ + 1 is

a successor ordinal, we have that (t) ∈
((

V RW ξ(�w) ∩ V RW<ω(�u)
)
∗
)ζ

�u1
for every

t ∈ V RW (�u1), hence ∅ ∈
((

V RW ξ(�w) ∩ V RW<ω(�u)
)
∗
)ξ

�u1
. In case ξ is a limit
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ordinal, we have that ∅ ∈
((

V RW ξ(�w)∩V RW<ω(�u)
)
∗
)ξ

�u1
, since ∅ ∈

((
V RW ξ(�w)∩

V RW<ω(�u)
)
∗
)ξn

�u1
for every n ∈ N and sup ξn = ξ.

If {∅} =
((

V RW ξ(�w) ∩ V RW<ω(�u)
)
∗
)ξ

�u1
for some �u1 ≺ �u, then there exist

�u2 ≺ �u1 and t ∈ V RW (�u2) such that
((

(V RW ξ(�w) ∩ V RW<ω(�u))(t)
)
∗
)ξ

�u2
=((

V RW ξn(�w) ∩ (V RW<ω(�u) − t)
)
∗
)ξ

�u2
= {∅} (see Lemma 2.8 in [F3]). This

is a contradiction to the induction hypothesis. Hence, {∅} =
((

V RW ξ(�w) ∩
V RW<ω(�u)

)
∗
)ξ

�u1
and sO�u1

((
V RW ξ(�w) ∩ V RW<ω(�u)

)
∗
)

= ξ + 1 for every ξ < ω1

and �u1 ≺ �u ≺ �w . �

Corollary 4.13. For every �w = (wn)n∈N ∈ Wω(Σ; υ) and countable ordinals ξ1, ξ2

with ξ1 < ξ2 there exists a variable reduction �u ≺ �w of �w over Σ such that:(
W ξ1(Σ)

)
∗ ∩ RW<ω(�u) ⊆

(
W ξ2(Σ)

)∗ \ W ξ2(Σ), and
(
W ξ1(Σ; υ)

)
∗ ∩ V RW<ω(�u) ⊆

(
W ξ2(Σ; υ)

)∗ \ W ξ2(Σ; υ).

Proof. Of course
(
W ξ1(Σ)

)
∗ ⊆ W<ω(Σ) and

(
W ξ1(Σ; υ)

)
∗ ⊆ W<ω(Σ; υ) are trees.

According to Theorem 4.6, for every infinite sequence �w ∈ Wω(Σ; υ) there exists a
variable reduction �u ≺ �w of �w over Σ such that:

either W ξ2(Σ) ∩ RW<ω(�u) ⊆
(
W ξ1(Σ)

)
∗,

or
(
W ξ1(Σ)

)
∗ ∩ RW<ω(�u) ⊆

(
W ξ2(Σ)

)∗ \ W ξ2(Σ); and,
either W ξ2(Σ; υ) ∩ V RW<ω(�u) ⊆

(
W ξ1(Σ; υ)

)
∗,

or
(
W ξ1(Σ; υ)

)
∗ ∩ V RW<ω(�u) ⊆

(
W ξ2(Σ; υ)

)∗ \ W ξ2(Σ; υ).
The first alternative in each of the two dichotomies is impossible, since, otherwise,

according to Proposition 4.12,
ξ2 + 1 = sO�u

((
W ξ2(Σ) ∩ RW<ω(�u)

)
∗
)
≤ sO�u

((
W ξ1(Σ)

)
∗
)

= ξ1 + 1 or

ξ2 + 1 = sO�u

((
W ξ2(Σ; υ) ∩ V RW<ω(�u)

)
∗

)
≤ sO�u

((
W ξ1(Σ; υ)

)
∗
)

= ξ1 + 1; a
contradiction. �

5. Schreier-type extension of Carlson’s Nash-Williams type

partition theorem for words

According to the partition theorem on Schreier families proved in Section 2, for
every countable ordinal ξ, every non-empty, finite alphabet Σ and every partition
G of the set W<ω(Σ) of all the finite sequences of words over Σ, there exists an
infinite sequence �u of variable words over Σ, all of whose finite reductions in the
Schreier family W ξ(Σ) are either in the partition family G itself or in the comple-
ment W<ω(Σ) \ G. However, Theorem 3.3 can naturally provide no information
whatsoever on whether all these finite reductions are in G or in its complement
W<ω(Σ) \ G. In this section we will obtain, for a partition family G that is a tree,
a criterion on this matter, in terms of the strong Cantor-Bendixson index of G: if
this index is greater than ξ + 1, all W ξ(Σ)-finite reductions fall in G, and if less
than ξ, in W<ω(Σ)\G (albeit in a weaker, non-symmetrical manner) (Theorem 5.2
and Theorem 5.4).

It will be observed that the main dichotomy of Theorem 5.2 is non-symmetric,
reflecting the fact that the treeness property is assumed for the family G itself only,
and of course not for its complement W<ω(Σ) \ G. This type of non-symmetric
dichotomy is characteristic of Nash-Williams type partition theorem; in fact, from
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Theorem 5.2 and the analogous Theorem 5.4 for variable words, we will derive in
the sequel various strong forms of Nash-Williams type partition theorems for words
and variable words involving the Schreier-type families of words and the Cantor-
Bendixson index (Theorem B, Corollaries 5.5, 5.7, 5.8, 5.9 ), which imply as well
Carlson’s infinitary partition theorem (Theorem 1.3, [C]).

In the proof of Theorem 5.2 below we use Theorem 3.3 and we also exploit the
properties of the Schreier-type families Wξ(Σ) for ξ < ω1 proved in Section 3.
Toward this purpose we introduce the following definition.

Definition 5.1. Let G ⊆ W<ω(Σ) and F ⊆ W<ω(Σ; υ). We set
(i) G0 = {s ∈ G : s ∈ 〈t〉 for some t ∈ FG}.
(ii) Gh = {s ∈ G0 : in case s ∈ 〈t〉 for some t ∈ FG ; then 〈u〉 ⊆ G for every

u ∈ V RW<ω(t1) for t1 ∝ t} ∪ {∅}.
(iii) Fh = {t ∈ F : V RW<ω(t1) ⊆ F for every t1 ∝ t} ∪ {∅}.

Of course, Gh, Fh are the largest subfamilies of G∪{∅}, F∪{∅} which are hereditary.

Theorem 5.2. Let G ⊆ W<ω(Σ) be a family of finite sequences of words over the
finite, non-empty alphabet Σ which is a tree and let �w ∈ Wω(Σ; υ) be an infinite
sequence of variable words over Σ. We have the following cases:

[Case 1] The family Gh ∩ RW<ω(�w) is not pointwise closed.
Then, there exists a variable reduction �u of �w over Σ such that

RW<ω(�u) ⊆ G.

[Case 2] The family Gh ∩ RW<ω(�w) is pointwise closed.
Then, setting

ζG�w = ξGh

�w = sup{sO�u

(
Gh ∩ RW<ω(�w)

)
: �u ≺ �w} ,

which is a countable ordinal, the following subcases obtain:
2(i) If ξ + 1 < ζG�w, then there exists �u ≺ �w such that

W ξ(Σ) ∩ RW<ω(�u) ⊆ G;

2(ii) if ω1 > ξ + 1 > ξ > ζG�w, then for every �u ≺ �w there exists �u1 ≺ �u such that

W ξ(Σ) ∩ RW<ω(�u) ⊆ W<ω(Σ) \ G

(equivalently G ∩ RW<ω(�u) ⊆
(
W ξ(Σ)

)∗ \ W ξ(Σ)) ; and
2(iii) if ξ + 1 = ζG�s0

or ξ = ζG�s0
, then there exists �u ≺ �w such that

either W ξ(Σ) ∩ RW<ω(�u) ⊆ G, or W ξ(Σ) ∩ RW<ω(�u) ⊆ W<ω(Σ) \ G.

Proof. [Case 1] If the hereditary family Gh ∩ RW<ω(�w) is not pointwise closed,
then, according to Proposition 4.9, there exists �u ≺ �w such that

RW<ω(�u) ⊆ Gh ∩ RW<ω(�w) ⊆ Gh ⊆ G.

[Case 2] If the hereditary family Gh∩RW<ω(�w) is pointwise closed, then the index
ζG�w = ξGh

�w is countable, since the “usual” Cantor-Bendixson index O(Gh∩RW<ω(�w))
of Gh ∩ RW<ω(�w) into {0, 1}[D]<ω

is countable and for every �u ≺ �w we have that
sO�u

(
Gh ∩ RW<ω(�w)

)
≤ O

(
Gh ∩ RW<ω(�w)

)
, according to Remark 4.11(i)and (ii).

2(i) Let ξ + 1 < ζG�w. Then ξ + 1 < ξGh

�w , so there exists �u1 ≺ �w such that
ξ + 1 < sO�u1

(
Gh ∩ RW<ω(�w)

)
. According to Theorem 4.6, there exists a variable
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reduction �u ≺ �u1 of �u1 over Σ such that
either W ξ(Σ) ∩ RW<ω(�u) ⊆ Gh,
or Gh ∩ RW<ω(�u) ⊆

(
W ξ(Σ)

)∗ \ W ξ(Σ) ⊆
(
W ξ(Σ)

)∗.
The second alternative is impossible. Indeed, if Gh ∩RW<ω(�u) ⊆

(
W ξ(Σ)

)∗, then,
according to Remark 4.11 and Proposition 4.12, ξ + 1 < sO�u1

(
Gh ∩ RW<ω(�w)

)
≤

sO�u

(
Gh ∩ RW<ω(�w)

)
= sO�u

(
Gh ∩ RW<ω(�u)

)
and sO�u

(
Gh ∩ RW<ω(�u)

)
≤

sO�u

((
W ξ(Σ)

)∗) = ξ + 1; a contradiction. Hence, W ξ(Σ) ∩ RW<ω(�u) ⊆ Gh ⊆ G.
2(ii) Let ξ + 1 > ξ > ζG�w, and �u ≺ �w. For every countable ordinal ζ with

ζ + 1 > ζG�w, there exists a variable reduction �u1 ≺ �u of �u over Σ such that

W ζ(Σ) ∩ RW<ω(�u1) ⊆ W<ω(Σ) \ Gh.

Indeed, according to the partition theorem on Schreier families (Theorem 3.3), there
exists a variable reduction �u1 ≺ �u of �u over Σ such that

either W ζ(Σ) ∩ RW<ω(�u1) ⊆ Gh, or W ζ(Σ) ∩ RW<ω(�u1) ⊆ W<ω(Σ) \ Gh.

The first alternative is impossible, since if W ζ(Σ)∩RW<ω(�u1) ⊆ Gh, then, accord-
ing to Remark 4.11 and Proposition 4.12, we obtain that

ζ + 1 = sO�u1

((
W ζ(Σ) ∩ RW<ω(�u1)

)
∗
)
≤ sO�u1

(
Gh ∩ RW<ω(�u1)

)
≤ ξGh

�w = ζG�w ;

a contradiction. Hence, there exists a variable reduction �u1 ≺ �u of �u over Σ such
that

W ζG
�w(Σ) ∩ RW<ω(�u1) ⊆ W<ω(Σ) \ Gh.

According to Theorem 3.3, there exists �u2 ≺ �u1 such that

either W ξ(Σ) ∩ RW<ω(�u2) ⊆ G, or W ξ(Σ) ∩ RW<ω(�u2) ⊆ W<ω(Σ) \ G.

We claim that the first alternative does not hold. Indeed, if W ξ(Σ)∩RW<ω(�u2) ⊆
G, then

(
W ξ(Σ) ∩ RW<ω(�u2)

)∗ ⊆ G∗ = G. Using the canonical representation of
every infinite sequence of words over Σ with respect to W ξ(Σ) (Proposition 4.3) we
have that(

W ξ(Σ)
)∗ ∩ RW<ω(�u2) =

(
W ξ(Σ) ∩ RW<ω(�u2)

)∗.
Hence,

(
W ξ(Σ)

)∗ ∩ RW<ω(�u2) ⊆ G. Since ξ > ζG�w, according to Corollary 4.13,
there exists �u3 ≺ �u2 such that(

W ζG
�w(Σ)

)
∗ ∩ RW<ω(�u3) ⊆

(
W ξ(Σ)

)∗ ∩ RW<ω(�u2) ⊆ G.

Thus
(
W ζG

�w(Σ)
)
∗∩RW<ω(�u3) ⊆ Gh, since

(
W ζG

�w(Σ)
)
∗∩RW<ω(�u3) is a hereditary

family. This is a contradiction, since W ζG
�w(Σ) ∩ RW<ω(�u1) ⊆ W<ω(Σ) \ Gh and

�u3 ≺ �u1. Hence, according to Proposition 4.5,

W ξ(Σ) ∩ RW<ω(�u2) ⊆ W<ω(Σ) \ G, and G ∩ RW<ω(�u2) ⊆
(
W ξ(Σ)

)∗ \ W ξ(Σ).

2(iii) In the cases ξ + 1 = ζG�s0
or ξ = ζG�s0

, use Theorem 3.3. �

Remark 5.3. Let G ⊆ W<ω(Σ) be a tree and let �w ∈ Wω(Σ; υ).
(i) That both alternatives may materialize in case ξ + 1 = ζG�w can be seen by

considering two simple examples:
Set F = {t = (t1 < t2 < · · · < t2k+2) ∈ W<ω(Σ; υ) : k ∈ N and min d(t) = k}

and G = {s ∈ W<ω(Σ) : s ∈ 〈t〉 for some t ∈ F∗}. It is easy to see that the
hereditary family G is pointwise closed (according to Proposition 4.9). Analogous
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to Proposition 4.12, it can be proved that sO�u

(
G ∩ RW<ω(�w)

)
= ω + 1 for every

�w ∈ Wω(Σ; υ) and �u ≺ �w. Thus, ζG�w = ξG�w = ω + 1. It is now easy to verify that

Wω(Σ) ∩ RW<ω(�u) ⊆ G for every �u ≺ �w.

Set F = {t = (t1 < t2 < · · · < tk+1) ∈ W<ω(Σ; υ) : k ∈ N and min d(t) = 2k}
and G = {s ∈ W<ω(Σ) : s ∈ 〈t〉 for some t ∈ F∗}. The hereditary family G is
pointwise closed. Setting �w = (wn)n∈N ∈ Wω(Σ; υ) with w1 = υ and wn = υ ∗ υ
for every 1 < n ∈ N, we have that sO�u

(
G ∩ RW<ω(�w)

)
= ω + 1 for every �u ≺ �w.

Thus, ζG�w = ξG�w = ω + 1. It is now easy to see that

Wω(Σ) ∩ RW<ω(�u) ⊆ W<ω(Σ) \ G for every �u ≺ �w,

since G ∩ RW<ω(�u) ⊆
(
Wω(Σ)

)∗ \ Wω(Σ).
(ii) In case the family G ⊆ W<ω(Σ) is hereditary and ξ = ζG�w = ξG�w < ω1, it can

be proved that for every �u ≺ �w there exists �u1 ≺ �u such that

W ξ(Σ) ∩ RW<ω(�u) ⊆ W<ω(Σ) \ G.

For a partition of all the finite sequences of variable words over Σ which is a
tree, an analogous strengthened theorem holds, which in fact is a stronger form of
Carlson’s infinitary partition theorem (Theorem 1.3, [C]). Although, the proof of
this theorem is analogous to the proof of Theorem 5.2, for completeness we will
give a sketch of it.

Theorem 5.4. Let F ⊆ W<ω(Σ; υ) be a family of finite sequences of variable
words over the finite, non-empty alphabet Σ which is a tree and �w ∈ Wω(Σ; υ) be
an infinite sequence of variable words over Σ. We have the following cases:

[Case 1] The family Fh ∩ V RW<ω(�w) is not pointwise closed.
Then, there exists a variable reduction �u of �w over Σ such that

V RW<ω(�u) ⊆ F .

[Case 2] The family Fh ∩ V RW<ω(�w) is pointwise closed.
Then, setting

ζF�w = ξFh

�w = sup{sO�u

(
Fh ∩ V RW<ω(�w)

)
: �u ≺ �w} ,

which is a countable ordinal, the following subcases obtain:
2(i) If ξ + 1 < ζF�w , then there exists �u ≺ �w such that

W ξ(Σ; υ) ∩ V RW<ω(�u) ⊆ F ;

2(ii) if ξ + 1 > ξ > ζF�w , then for every �u ≺ �w there exists �u1 ≺ �u such that

W ξ(Σ; υ) ∩ V RW<ω(�u) ⊆ W<ω(Σ; υ) \ F

(equivalently F ∩ V RW<ω(�u) ⊆
(
W ξ(Σ; υ)

)∗ \ W ξ(Σ; υ)) ; and
2(iii) if ξ + 1 = ζF�s0

or ξ = ζF�s0
, then there exists �u ≺ �w such that

either W ξ(Σ; υ)∩V RW<ω(�u) ⊆ F , or W ξ(Σ; υ)∩V RW<ω(�u) ⊆ W<ω(Σ; υ)\F .

Proof. [Case 1] If the hereditary family Fh ∩ V RW<ω(�w) is not pointwise closed,
then there exists �u ≺ �w with V RW<ω(�u) ⊆ Fh ∩ V RW<ω(�w) ⊆ F (Proposi-
tion 4.9).

[Case 2] If the hereditary family Fh ∩ V RW<ω(�w) is pointwise closed, then the
index ζF�w = ξFh

�w is countable, according to Remark 4.11(i) and (ii).
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2(i) Let ξ + 1 < ζF�w . Then ξ + 1 < sO�u1

(
Fh ∩ V RW<ω(�w)

)
for some �u1 ≺ �w.

Using Theorem 4.6, Remark 4.11 and Proposition 4.12, we have that

W ξ(Σ; υ) ∩ V RW<ω(�u) ⊆ Fh ⊆ F .

2(ii) Let ξ + 1 > ξ > ζF�w and �u ≺ �w. According to Theorem 3.3, Remark 4.11
and Proposition 4.12, there exists a variable reduction �u1 ≺ �u of �u over Σ such that

W ζF
�w (Σ; υ) ∩ V RW<ω(�u1) ⊆ W<ω(Σ; υ) \ Fh.

Again using Theorem 3.3, there exists �u2 ≺ �u1 such that
either W ξ(Σ; υ)∩V RW<ω(�u2) ⊆ F , or W ξ(Σ)∩V RW<ω(�u2) ⊆ W<ω(Σ)\F . We

claim that the first alternative does not hold. Indeed, if W ξ(Σ; υ)∩V RW<ω(�u2) ⊆
F , then, using the canonical representation of every infinite sequence of variable
words over Σ with respect to W ξ(Σ; υ) (Proposition 4.3), it is easy to check that(

W ξ(Σ; υ)
)∗ ∩ V RW<ω(�u2) =

(
W ξ(Σ; υ) ∩ V RW<ω(�u2)

)∗ ⊆ F∗ = F .
Since ξ > ζF�w , according to Corollary 4.13, there exists �u3 ≺ �u2 such that

(
W ζF

�w (Σ; υ)
)
∗ ∩ V RW<ω(�u3) ⊆

(
W ξ(Σ; υ)

)∗ ∩ V RW<ω(�u2) ⊆ F ,

and consequently such that
(
W ζF

�w (Σ; υ)
)
∗ ∩ V RW<ω(�u3) ⊆ Fh. This is a contra-

diction.
2(iii) In the cases ξ + 1 = ζF�w or ξ = ζF�w , use Theorem 3.3. �

That both alternatives may materialize in case ξ + 1 = ζF�w can be seen by
considering the following examples:

Set F = {t = (t1 < t2 < · · · < t2k+2) ∈ W<ω(Σ; υ) : k ∈ N and min d(t) = k}.
The hereditary family F∗ is pointwise closed and sO�u(F∗) = ω + 1 for every �w ∈
Wω(Σ; υ) and �u ≺ �w. Thus, ζF∗

�w = ξF∗
�w = ω + 1. It is now easy to verify that

Wω(Σ; υ) ∩ V RW<ω(�u) ⊆ F∗ for every �u ≺ �w.

Set F = {t = (t1 < t2 < · · · < tk+1) ∈ W<ω(Σ; υ) : k ∈ N and min d(t) = 2k}.
The hereditary family F∗ is pointwise closed and sO�u(F∗) = ω +1 for every �u ≺ �w,
where �w = (wn)n∈N ∈ Wω(Σ; υ) with w1 = υ and wn = υ ∗ υ for every 1 < n ∈ N.
Thus, ζF∗

�w = ξF∗
�w = ω + 1. It is now easy to see that

F∗ ∩ V RW<ω(�u) ⊆
(
Wω(Σ; υ)

)∗ \ Wω(Σ; υ) for every �u ≺ �w.

An immediate consequence of Theorems 5.2 and 5.4 is Theorem B, referred to
in the Introduction, which is a strengthened form of Theorem 3.3 in that the par-
titions are trees. A quite simplified consequence of Theorem 5.4, one not involving
Schreier-type families of countable ordinal index, is equivalent to Carlson’s infini-
tary partition theorem (Theorem 1.3) proved in [C].

Corollary 5.5. Let F ⊆ W<ω(Σ; υ) be a family of finite sequences of variable words
over an alphabet Σ which is a tree. Then for every infinite sequence �w ∈ Wω(Σ; υ)
of variable words over Σ there exists a variable reduction �u ≺ �w of �w over Σ such
that:

either V RW<ω(�u) ⊆ F ,
or for every variable reduction �u1 of �u there exists an initial segment of �u1 which

belongs to W<ω(Σ; υ) \ F .

Proof. The proof follows from Theorem 5.4 (case 1 and subcase 2(ii)) and Propo-
sition 4.4. �
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Remark 5.6. Carlson’s Theorem 1.3 is equivalent to Corollary 5.5. Indeed:
(i) Corollary 5.5 implies Theorem 1.3. Indeed, let U ⊆ Wω(Σ; υ) be a pointwise

closed family of infinite sequences of variable words over Σ and �w ∈ Wω(Σ; υ). Set

FU = {t = (t1, . . . , tk) ∈ W<ω(Σ; υ) : k ∈ N and there exists �t ∈ U with t ∝ �t}.
Since the family FU is a tree, we may use Corollary 5.5. Then we have the following
two cases:

[Case 1] There exists �u ≺ �w such that V RW<ω(�u) ⊆ FU . Then, V RWω(�u) ⊆ U .
Indeed, if �t = (tn)n∈N ∈ V RWω(�u), then (t1, . . . , tk) ∈ FU for every k ∈ N. Hence,
for each k ∈ N there exists �tk = (tkn)n∈N ∈ U such that tkn = tn for every n ∈ N

with n ≤ k. Since (�tk)k∈N converges pointwise to �t and U is pointwise closed, we
have that �t ∈ U and consequently that V RWω(�u) ⊆ U .

[Case 2] There exists �u ≺ �w such that every variable reduction �u1 of �u has an
initial segment belonging to W<ω(Σ; υ) \ FU . Hence, V RWω(�u) ⊆ Wω(Σ; υ) \ U .

(ii) Theorem 1.3 implies Corollary 5.5. Indeed, let F ⊆ W<ω(Σ; υ) which is a
tree and �w ∈ Wω(Σ; υ). Set

UF = {�t = (tn)n∈N ∈ Wω(Σ; υ) : there exists k ∈ N such that (t1, . . . , tk) ∈ F}.
Then Wω(Σ; υ) \ UF is pointwise closed, so, using Theorem 1.3 for the family
Wω(Σ; υ) \ UF , we obtain Corollary 5.5.

In fact Corollary 5.5 holds for arbitrary partitions of W<ω(Σ; υ), not necessarily
trees; this is the content of the next result.

Corollary 5.7. Let F ⊆ W<ω(Σ; υ) be a family of finite sequences of variable
words over an alphabet Σ. Then for every infinite sequence �w ∈ Wω(Σ; υ) of
variable words over Σ there exists a variable reduction �u ≺ �w of �w over Σ such
that:

either V RW<ω(�u) ⊆ F ,
or for every variable reduction �u1 of �u there exists an initial segment of �u1 which

belongs to W<ω(Σ; υ) \ F .

Proof. Let F1 = {t = (t1, . . . , tk) ∈ F : (t1, . . . , tn) ∈ F for all n ≤ k ∈ N} ∪ {∅}.
The family F1 is a tree. According to Corollary 5.5, there exists �u ≺ �w such that:

either V R<ω(�u) ⊆ F1 ⊆ F ,
or for every variable reduction �u1 of �u there exists an initial segment of �u1 which

belongs to W<ω(Σ; υ) \ F1. Let �u1 = (u1
n)n∈N ≺ �u, and let k ∈ N such that

t = (u1
1, . . . , u

1
k) ∈ W<ω(Σ; υ) \ F1 = (F \ F1) ∪ (W<ω(Σ; υ) \ F). Then, either

t ∈ W<ω(Σ; υ) \F , as required, or t ∈ F \F1. In case t ∈ F \F1, by the definition
of F1, there exists n ∈ N with n ≤ k such that (u1

1, . . . , u
1
n) ∈ W<ω(Σ; υ) \ F , as

required. �

The result for families of (constant) words, corresponding to Corollary 5.7, can
now be obtained as a corollary to Theorem 5.2.

Corollary 5.8. Let G ⊆ W<ω(Σ) be a family of finite sequences of words over the
alphabet Σ. Then for every infinite sequence �w ∈ Wω(Σ; υ) of variable words over
Σ there exists a variable reduction �u ≺ �w of �w over Σ such that:

either RW<ω(�u) ⊆ G,
or for every reduction �u1 of �u there exists an initial segment of �u1 which belongs

to W<ω(Σ) \ G.
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Proof. If G is a tree, then the proof follows from Theorem 5.2 (case 1 and subcase
2(ii)) and Proposition 4.4. If not set

G1 = {s = (s1, . . . , sl) ∈ G : (s1, . . . , sk) ∈ G for every k ∈ N with k ≤ l} ∪ {∅}.
The family G1 is a tree and G1 ⊆ G. Hence, there exists �u ≺ �w such that:

either RW<ω(�u) ⊆ G1 ⊆ G,
or for every reduction �u1 of �u there exists an initial segment of �u1 which belongs

to W<ω(Σ) \ G1. Given that for every reduction �u1 of �u there exists an initial
segment s of �u1 which belongs to W<ω(Σ) \ G1 = (W<ω(Σ) \ G) ∪ (G \ G1) we
have that there exists an initial segment of of �u1 which belongs to W<ω(Σ) \ G, as
required. �

Corollary 5.8 is equivalent to the following infinitary partition theorem, which
is the counterpart for (constant) words of Carlson’s infinitary partition theorem
(Theorem 1.3, Corollary 5.5).

Corollary 5.9. Let U ⊆ Wω(Σ) be a pointwise closed family of infinite sequences of
words over a finite non-empty alphabet Σ and �w ∈ Wω(Σ; υ) be an infinite sequence
of variable words. Then there exists a variable reduction �u ≺ �w of �w over Σ, such
that

either RWω(�u) ⊆ U , or RWω(�u) ⊆ Wω(Σ) \ U .

6. Schreier-type version of Carlson’s Ellentuck type

partition theorem for words

In this final section, we establish (in Theorem 6.2) a rather technical strength-
ening of Theorem B (mentioned in the introduction) derived from Theorem 5.4, in-
volving the Ellentuck topology TE , defined on Wω(Σ; υ) (Definition 6.1). A simple
consequence of Theorem 6.2 is the characterization of completely Ramsey partitions
of Wω(Σ; υ) in terms of the Baire property in the topology TE (Corollary 6.7), a
result proved with a different method by Carlson in [C]. A similar characteriza-
tion of completely Ramsey partitions of Wω(Σ) can be proved analogously, as a
consequence of Theorem 5.2.

We start by defining the topology TE on Wω(Σ; υ), an analogue of the Ellentuck
topology on [N]ω, defined in [E]. For simplicity, we write ∅ ∝ �w and �w \ ∅ = �w for
every �w ∈ Wω(Σ; υ).

Definition 6.1. Let TE be the topology on Wω(Σ; υ) with basic open sets of the
form [s, �s] for s ∈ W<ω(Σ; υ) and �s ∈ Wω(Σ; υ), where for s ∈ W<ω(Σ; υ) \ {∅}
[s, �s] = {�w ∈ Wω(Σ; υ) : s ∝ �w and �w \s ≺ �s} and [∅, �s] = {�w ∈ Wω(Σ; υ) : �w ≺ �s}.
The topology TE is stronger than the relative topology of Wω(Σ; υ) with respect
to the pointwise convergence topology of {0, 1}[D]<ω

, which has basic open sets of
the form [s, �e] = {�w ∈ Wω(Σ; υ) : s ∝ �w} for s ∈ W<ω(Σ; υ) and �e = (en)n∈N with
en = υ for every n ∈ N.

We denote by Û and U♦ the closure and the interior respectively of a family
U ⊆ Wω(Σ; υ) in the topology TE . Then it is easy to see that

Û = {�w ∈ Wω(Σ; υ) : [s, �w \ s] ∩ U = ∅ for every s ∝ �w} ; and

U♦ = {�w ∈ Wω(Σ; υ) : there exists s ∝ �w such that [s, �w \ s] ⊆ U} .

Now we can state the main theorem of this section. For s = (s1, . . . , sk), t =
(t1, . . . , tl) ∈ W<ω(Σ; υ) we set s� t = (s1, . . . , sk, t1, . . . , tk) and ∅� t = t�∅ = t.
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Theorem 6.2. Let U ⊆ Wω(Σ; υ), s ∈ W<ω(Σ; υ) and �s ∈ Wω(Σ; υ). Then
either there exists �u ≺ �s such that [s, �u] ⊆ Û ,
or there exists a countable ordinal ξ0 = ζU(s,�s) such that for every ξ > ξ0 there

exists �u ≺ �s with [s� t,�t\ t] ⊆ Wω(Σ; υ) \U for every �t ≺ �u and t ∈ W ξ(Σ; υ) with
t ∝ �t.

For the proof of this theorem we will make use of the following lemma, which is
analogous to Lemma 3.5.

Lemma 6.3. Let R ⊆ {[s, �s] : s ∈ W<ω(Σ; υ), �s ∈ Wω(Σ; υ)} with the properties:
(i) for every (s, �s) ∈ W<ω(Σ; υ)×Wω(Σ; υ) there exists �s1 ≺ �s such that [s, �s1] ∈

R; and,
(ii) for every [s, �s1] ∈ R and �s2 ≺ �s1 we have [s, �s2] ∈ R.

Then, for every (s, �s) ∈ W<ω(Σ; υ) × Wω(Σ; υ) there exists �u ∈ [s, �s] such that
[s� t,�t \ t] ∈ R for every �t ≺ �u \ s and t ∝ �t.

Proof. Let s ∈ W<ω(Σ; υ) and �s ∈ Wω(Σ; υ). According to assumption (i), there
exists �s1 = (s1

n)n∈N ≺ �s such that [s, �s1] ∈ R. Set u1 = s1
1 ∈ V RW (�s). Then, there

exists �s2 = (s2
n)n∈N ≺ �s1 \ (u1) such that [s � (u1), �s2] ∈ R. Set u2 = s2

1. We have
(u1, u2) ∈ V RW<ω(�s) and �s2 ≺ �s \ u1.

Let n ∈ N, n > 1. We now assume that there have been constructed �s1, . . . , �sn ∈
Wω(Σ; υ) and u1, u2, . . . , un ∈ W (Σ; υ) such that (u1, u2, . . . , un) ∈ V RW<ω(�s),
�si+1 ≺ �s \ u1 ∗ . . . ∗ ui, �si+1 ≺ �si \ (ui) for every i = 1, . . . , n − 1, (ui) ∝ �si for
every i = 1, . . . , n, and [s � t, �si+1] ∈ R for every t ∈ V RW<ω((u1, . . . , ui)) and
i = 1, . . . , n − 1.

We will construct �sn+1 and un+1. Let {t1, . . . , tm} = V RW<ω((u1, . . . , un)) for
some m ∈ N. According to assumption (i), there exist �s1

n+1, . . . , �s
m
n+1 ∈ Wω(Σ; υ)

such that �sm
n+1 ≺ · · · ≺ �s1

n+1 ≺ �sn\(un) and [s�ti, �s
i
n+1] ∈ R for every i = 1, . . . , m.

Let �sn+1 = �sm
n+1 = (sn+1

i )i∈N and un+1 = sn+1
1 . Of course �sn+1 ≺ �sn \ (un),

(un+1) ∝ �sn+1, (u0, u1, . . . , un+1) ∈ V RW<ω(�w), �sn+1 ≺ �s \ u1 ∗ . . . ∗ un and,
according to condition (ii), [s� t, �sn+1] ∈ R for every t ∈ V RW<ω((u1, . . . , un)).

Set �u = (s1, . . . , sk, u1, u2, . . .) ∈ Wω(Σ; υ) in case s = (s1, . . . , sk) and �u =
(u1, u2, . . .) in case s = ∅. Then �u ∈ [s, �s], since (u1, u2, . . . , un) ∈ V RW<ω(�s) for
every n ∈ N. Let �t ≺ �u \ s and t = ∅ with t ∝ �t. Since t ∈ V RW<ω(�u \ s) we
can define n0 = min{n ∈ N : t ∈ V RW<ω((u1, . . . , un))}. Then [s � t, �sn0+1] ∈ R.
According to assumption (ii), we have that [s � t, �u \ (s1, . . . , sk, u1, . . . , un0)] ∈ R
and, since �t \ t ≺ �u \ s � (u1, . . . , un0) ≺ �sn0+1, we have that [s � t,�t \ t] ∈ R.
In case t = ∅, we have that [s, �u \ s] ∈ R, since [s, �s1] ∈ R. Hence, according to
assumption (ii), [s,�t] ∈ R. �
Proof of Theorem 6.2. Set

RU ={[t,�t] : (t,�t) ∈ W<ω(Σ; υ) × Wω(Σ; υ), and

either [t,�t] ∩ U = ∅, or [t,�t1] ∩ U = ∅ for every �t1 ≺ �t} .

It is easy to check that RU satisfies assumptions (i) and (ii) of Lemma 6.3, hence,
there exists �u = (un)n∈N ∈ [s, �s] such that [s� t,�t \ t] ∈ RU for every �t ≺ �u \ s and
t ∝ �t.

For t ∈ V RW<ω(�u \ s) there exists unique �ut ≺ �u \ s with t ∝ �ut and �ut \ t =
(un)n>n0 for some n0 ∈ N. Then [s� t, �ut \ t] ∈ RU . Set F = {t ∈ V RW<ω(�u\ s) :
[s� t, �u1] ∩ U = ∅ for every �u1 ≺ �ut \ t}.
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The family F is a tree. Indeed, let t ∈ F and t1 ∝ t. Since t1 ∈ V RW<ω(�u \ s),
we have that [s�t1, �ut1 \t1] ∈ RU . But it is impossible that [s�t1, �ut1 \t1]∩U = ∅,
since [s � t, �u1] ∩ U = ∅ for every �u1 ≺ �ut \ t. Hence, [s � t1, �u1] ∩ U = ∅ for every
�u1 ≺ �ut1 \ t1, and consequently t1 ∈ F .

We now apply Theorem 5.4 for F and �u \ s. We have the following cases:
[Case 1] There exists �u1 ≺ �u\s ≺ �s such that V RW<ω(�u1) ⊆ F . This gives that

[s � t, �u2] ∩ U = ∅ for every t ∈ V RW<ω(�u1) and �u2 ≺ �u1 \ t, which implies that
[s, �u1] ⊆ Û .

[Case 2] There exists a countable ordinal ξ0 = ζF�u\s = ζU(s,�s) such that for every ξ >

ξ0 there exists �u1 ≺ �u\s ≺ �s with W ξ(Σ; υ)∩V RW<ω(�u1) ⊆ W<ω(Σ; υ)\F . Using
the canonical representation of every infinite sequense of variable words with respect
to the family W ξ(Σ; υ) (Proposition 4.3), we have that [s � t, �u1] ⊆ Wω(Σ; υ) \ U
for every t ∈ W ξ(Σ; υ) ∩ V RW<ω(�u1),. Hence, [s � t,�t \ t] ⊆ Wω(Σ; υ) \ U for
every �t ≺ �u1 and t ∈ W ξ(Σ; υ) with t ∝ �t. �

Applying Theorem 6.2 to partitions U that are closed or meager in the topology
TE , we obtain the following consequences.

Corollary 6.4. Let U be a subset of Wω(Σ; υ) closed in the topology TE , s ∈
W<ω(Σ; υ) and �s ∈ Wω(Σ; υ). Then

either there exists �u ≺ �s such that [s, �u] ⊆ U ,
or there exists a countable ordinal ξ0 such that for every ξ > ξ0 there exists �u ≺ �s

with [s � t,�t \ t] ⊆ Wω(Σ; υ) \ U for every �t ≺ �u and t ∈ W ξ(Σ; υ) with t ∝ �t.

Corollary 6.5. Let U be a subset of Wω(Σ; υ) meager in the topology TE, s ∈
W<ω(Σ; υ) and �s ∈ Wω(Σ; υ). Then, there exists a countable ordinal ξ0 such that
for every ξ > ξ0 there exists �u ≺ �s with [s� t,�t \ t] ⊆ Wω(Σ; υ) \ U for every �t ≺ �u

and t ∈ W ξ(Σ; υ) with t ∝ �t.

Proof. We use Theorem 6.2 for U . We will prove that the first alternative is im-
possible. Indeed, let �u ≺ �s such that [s, �u] ⊆ Û . If U =

⋃
n∈N

Un with (Ûn)♦ = ∅
for every n ∈ N, then we set

R ={[t,�t] : t ∈ W<ω(Σ; υ), �t ∈ Wω(Σ; υ) and

[t,�t] ∩ Uk = ∅ for every k ∈ N with k ≤ |t|},

where |t| denotes the number of terms of the finite sequence t ∈ W<ω(Σ; υ). The
family R obviously satisfies assumption (ii) of Lemma 6.3 and also satisfies as-
sumption (i) of Lemma 6.3. Indeed, according to Theorem 6.2 and Proposition 4.3,
for every t ∈ W<ω(Σ; υ), �t ∈ Wω(Σ; υ) and k ∈ N there exists �t1 ≺ �t such that
[t,�t1]∩Uk = ∅, as it is impossible that [t,�t1] ⊆ Ûk for some k ∈ N. Hence, according
to Lemma 6.3, there exists �u1 ∈ [s, �u] such that [s � t, �u1 \ s � t] ∈ R for every
t ∈ V RW<ω(�u1 \ s).

We will prove that [s, �u1 \ s] ∩ U = ∅. Let �u2 ∈ [s, �u1 \ s] ∩ Uk for some k ∈ N.
Then there exists t ∈ V RW<ω(�u1 \ s) such that s � t ∝ �u2, k ≤ |s � t| and
[s � t, �u1 \ s � t] ∩ Uk = ∅. So, [s � t, �u1 \ s � t] /∈ R; a contradiction, since
t ∈ V RW<ω(�u1 \ s). Hence, [s, �u1 \ s] ∩ U = ∅, and consequently �u1 /∈ Û .

This is a contradiction, since �u1 ∈ [s, �u] ⊆ Û . Hence, the first alternative of
Theorem 6.2 for the partition U is impossible, so the second alternative holds for
U . �
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We recall the definition of the completely Ramsey families of infinite sequences
of variable words given by Carlson in [C].

Definition 6.6. A family U ⊆ Wω(Σ; υ) of infinite sequences of variable words on a
finite, non-empty alphabet Σ is called completely Ramsey if for every s ∈ W<ω(Σ; υ)
and every �s ∈ Wω(Σ; υ) there exists �u ≺ �s such that

either [s, �u] ⊆ U , or [s, �u] ⊆ Wω(Σ; υ) \ U .

The characterization of completely Ramsey families of infinite sequences of vari-
able words, proved with a different method by Carlson in [C], is a consequence of
Theorem 6.2.

Corollary 6.7 (Carlson, [C]). A family U ⊆ Wω(Σ; υ) is completely Ramsey if and
only if U has the Baire property in the topology TE .

Proof. Let U ⊆ Wω(Σ; υ) have the Baire property in the topology TE . Then
U = B�C = (B∪Cc)∪(C∩Bc), where B ⊆ Wω(Σ; υ) is TE-closed and C ⊆ Wω(Σ; υ)
is TE-meager (Cc = Wω(Σ; υ)\C). According to Corollary 6.5 and Proposition 4.3,
for every s ∈ W<ω(Σ; υ) and �s ∈ Wω(Σ; υ), there exists �u ≺ �s such that [s, �u] ⊆ Cc,
and according to Corollary 6.4, there exists �u1 ≺ �u such that

either [s, �u1] ⊆ B ∩ [s, �u] ⊆ B ∩ Cc ⊆ U ,
or [s, �u1] ⊆ Bc ∩ [s, �s] ⊆ Bc ∩ Cc ⊆ Uc.

Hence, U is completely Ramsey.
On the other hand, if U is completely Ramsey, then U = U♦ ∪ (U \ U♦) and

U \ U♦ is a meager set in TE . Hence U has the Baire property in the topology
TE . �

A similar characterization of the completely Ramsey families of Wω(Σ) can be
proved analogously, as a consequence of Theorem 5.2.

Remark 6.8. (i) The Ellentuck topology TE on Wω(Σ) has basic open sets of the
form [s, �s] for s ∈ W<ω(Σ) and �s ∈ Wω(Σ; υ), where

[s, �s] = {�w ∈ Wω(Σ) : s ∝ �w and �w \ s ∈ RWω(�s)}, and [∅, �s] = RWω(�s).

(ii) A family U ⊆ Wω(Σ) of infinite sequences of words on a finite, non-empty
alphabet Σ is called completely Ramsey if for every s ∈ W<ω(Σ) and every �s ∈
Wω(Σ; υ) there exists �u ≺ �s such that

either [s, �u] ⊆ U , or [s, �u] ⊆ Wω(Σ) \ U .

(iii) A family U ⊆ Wω(Σ) is completely Ramsey if and only if U has the Baire
property in the topology TE .

Acknowledgments

We wish to thank the anonymous referee for constructive suggestions. We also
wish to thank Cyprus University for the warm hospitality extended during our visit
in the fall semester of 2005. Both authors were partially supported by an Athens
University research grant.



SCHREIER SETS IN RAMSEY THEORY 879

References

[AA] D. Alspach and S. Argyros, Complexity of weakly null sequences, Dissertations Math. 321
(1992), 1–44. MR1191024 (93j:46014)

[AO] D. Alspach and E. Odell, Averaging weakly null sequences, Lecture Notes in Math. 1332,
Springer, Berlin, 1988, pp. 126–144. MR967092 (89j:46014)

[AGR] S. Argyros, G. Godefroy and H. Rosenthal, Descriptive set theory and Banach spaces,
Handbook of the geometry of Banach spaces 2, North-Holland, Amsterdam (2003), 1007–
1069. MR1999190 (2004g:46002)

[B] J. Baumgartner, A short proof of Hindman’s theorem, J. Combinatorial Theory, Ser. A,
17 (1974), 384–386. MR0354394 (50:6873)

[BBH] V. Bergelson, A. Blass, N. Hindman, Partition theorems for spaces of variable words, Proc.
London Math.Soc. 68(1994),449–476. MR1262304 (95i:05107)

[C] T. Carlson, Some unifying principles in Ramsey theory, Discrete Math. 68 (1988), 117–
169. MR926120 (89b:04006)

[E] E. Ellentuck, A new proof that analytic sets are Ramsey, J. Symb. Logic 39 (1974), 163–

164. MR0349393 (50:1887)
[F1] V. Farmaki, Classifications of Baire-1 functions and c0-spreading models, Trans. Amer.

Math. Soc. 345 (2), (1994), 819–831. MR1262339 (96c:46017)
[F2] V. Farmaki, Ramsey dichotomies with ordinal index, arXiv: math. LO/9804063 v1, (1998),

electronic prepublication.
[F3] V. Farmaki, Ramsey and Nash-Williams combinatorics via Schreier families, arXiv: math.

FA/0404014 v.1, (2004), electronic prepublication.
[F4] V. Farmaki, The uniform convergence ordinal index and the l1− behavior of a sequence

of functions, Positivity 8 (1), (2004), 49–74. MR2053575 (2005e:46029)
[FN] V. Farmaki, S. Negrepontis, Block Combinatorics, Trans. Amer. Math. Soc. 358 (2006),

2759–2779. MR2204055 (2006m:03073)
[FK] H. Furstenberg, Y. Katznelson Idempotents in compact semigroups and Ramsey theory,

Israel J. Math. 68 (1989), 257–270. MR1039473 (92d:05170)
[G] W. T. Gowers, An infinite Ramsey theorem and some Banach space dichotomies, Annals

of Mathematics 156 (2002), 797–833. MR1954235 (2005a:46032)
[GRS] R. Graham, B. Rothschild and J. Spencer, Ramsey Theory, Wiley, New York, 1990.

MR1044995 (90m:05003)
[HJ] A. W. Hales, R. I.Jewett, Regularity and Positional Games, Trans. Amer. Math. Soc. 106

(1963), 222-229. MR0143712 (26:1265)
[H] N. Hindman, Finite sums from sequences within cells of a partition of N, J. Combinatorial

Theory, Ser. A 17 (1974), 1–11. MR0349574 (50:2067)
[KS] J. Ketonen and R. Solovay, Rapidly growing Ramsey functions, Ann. of Math. 113 (1981),

267–314. MR607894 (84c:03100)

[K] K. Kuratowski, Topology, Volume I, Academic Press (1966). MR0217751 (36:840)
[KM] K. Kuratowski and A. Mostowski, Set Theory, North-Holland, Amsterdam, 1968.

MR0229526 (37:5100)
[L] A. Levy, Basic Set Theory, Springer-Verlag, 1979. MR533962 (80k:04001)
[McC] R. McCutcheon, Elemental Methods in Ergodic Ramsey Theory, Lecture Notes in Math.

1722 Springer (1999). MR1738544 (2001c:05141)
[M] K. Milliken, Ramsey’s theorem with sums or unions, J. Combinatorial Theory, Ser. A 18

(1975), 276–290. MR0373906 (51:10106)
[NW] C. St. J. A. Nash-Williams, On well quasiordering transfinite sequences, Proc. Camb. Phil.

Soc. 61 (1965), 33–39. MR0173640 (30:3850)
[O] E. Odell, On subspaces, asymptotic structure, and distortion of Banach spaces; connec-

tions with logic, Analysis and Logic, London Math. Soc. Lecture Note Ser. 262, Cambridge
Univ. Press, (2002), 189–267. MR1967836 (2004b:46016)

[PH] J. Paris and L. Harrington, A mathematical incompleteness in Peano arithmetic, Hand-
book of Mathematical Logic, North-Holland, Amsterdam (1977), 1133–1142. MR0457132
(56:15351)

[R] F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc. 30 (2), (1929),
264–286.



880 V. FARMAKI AND S. NEGREPONTIS

[S] J. Schreier, Ein Gegenbeispiel zur Theorie der schwachen Konvergenz, Studia Math. 2
(1930), 58–62.

[T1] A. Taylor, Some results in partition theory, Ph.D. dissertation, Dartmouth College, 1975.
[T2] A. Taylor, A canonical partition relation for finite subsets of ω, J. Combinatorial Theory,

Ser. A 21 (1976), 137–146. MR0424571 (54:12530)
[TJ] N. Tomczak-Jaegermann, Banach spaces of type p have arbitrarily distortable subspaces,

Geom. As. Funct. Anal. 6 (1996), 1074–1082. MR1421875 (98g:46020)

[vdW] B. L. van der Waerden, Beweis einer Baudetschen Vermutung, Nieuw Arch. Wisk. 15
(1927), 212–216.

Department of Mathematics, Athens University, Panepistemiopolis, Athens 157 84,

Greece

E-mail address: vfarmaki@math.uoa.gr

Department of Mathematics, Athens University, Panepistemiopolis, Athens 157 84,

Greece

E-mail address: snegrep@math.uoa.gr


