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THE KERNELS OF RADICAL HOMOMORPHISMS
AND INTERSECTIONS OF PRIME IDEALS

HUNG LE PHAM

Abstract. We establish a necessary condition for a commutative Banach al-
gebra A so that there exists a homomorphism θ from A into another Banach
algebra such that the prime radical of the continuity ideal of θ is not a finite
intersection of prime ideals in A. We prove that the prime radical of the con-
tinuity ideal of an epimorphism from A onto another Banach algebra (or of
a derivation from A into a Banach A-bimodule) is always a finite intersection
of prime ideals. Under an additional cardinality condition (and assuming the
Continuum Hypothesis), this necessary condition is proved to be sufficient.
En route, we give a general result on norming commutative semiprime alge-
bras; extending the class of algebras known to be normable. We characterize
those locally compact metrizable spaces Ω for which there exists a homomor-
phism from C0(Ω) into a radical Banach algebra whose kernel is not a finite
intersection of prime ideals.

1. Introduction

Let θ : A → B be a homomorphism from a commutative Banach algebra A into
a Banach algebra B. The continuity ideal of θ is defined to be the ideal

I(θ) = {a ∈ A : the map b �→ θ(ab), A → B, is continuous} .

We see that I(θ) contains every ideal I in A on which θ is continuous. Let Ω
be a locally compact space. In the case where A = C0(Ω), it is known that θ is
continuous on I(θ); however, this is not true in general.

In this paper, we shall give an answer to the following two equivalent questions:
A Is the kernel of a homomorphism from C0(Ω) into a radical Banach algebra

always a finite intersection of prime ideals, for each non-compact locally
compact space Ω?

B Is the continuity ideal I(θ) of a homomorphism θ from C0(Ω) into a Banach
algebra always a finite intersection of prime ideals, for each locally compact
space Ω?

Denoted by | · |Ω the uniform norm on Ω. It is a theorem of Kaplansky [19] that,
for each (not necessarily complete) algebra norm ‖ · ‖ on C0(Ω) and each f ∈ C0(Ω),
we have ‖f‖ ≥ |f |Ω. This suggested a conjecture that each algebra norm on C0(Ω)
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is equivalent to | · |Ω. The latter holds if and only if each homomorphism from C0(Ω)
into a Banach algebra is continuous; this is known as the problem of Kaplansky.

In the 1970s, this long-standing open problem was resolved in the negative in-
dependently by Dales [5] and Esterle [10], [11], [12]. Moreover, they showed that,
assuming the Continuum Hypothesis (CH), for each non-compact locally compact
space Ω and each non-modular prime ideal P in C0(Ω) with |C0(Ω)/P | = c, there
exists a homomorphism from C0(Ω) into some radical Banach algebra with kernel
precisely equal to P . For a full exposition of an improved and stronger form of this
theorem, see [6].

Before this problem was resolved, it was proved by Bade and Curtis in [1] that
each discontinuous homomorphism from C0(Ω) into a Banach algebra B can be
decomposed into a sum of a continuous homomorphism and a finite number of
discontinuous linear maps, each of which is a homomorphism into the radical of B
when restricted to a maximal ideal of C0(Ω) (this result was later improved in [10],
[18], and [23]). This important result sheds light on the structure of discontinuous
homomorphisms from C0(Ω). We summarize below part of the result that is more
relevant to our discussion; here Ω� denotes the one-point compactification of Ω, and
the ideals Jp and Mp, for p ∈ Ω�, are to be defined in the next section.

Theorem 1.1. Let Ω be a non-empty locally compact space, and let θ be a homo-
morphism from C0(Ω) into a Banach algebra B.

(i) The continuity ideal I(θ) is the largest ideal of C0(Ω) on which θ is con-
tinuous.

(ii) There exists a finite subset {p1, . . . , pn} of Ω� such that

n⋂
i=1

Jpi
⊂ I(θ) ⊂

n⋂
i=1

Mpi
.

(iii) There exists a homomorphism µ from
⋂n

i=1 Mpi
into rad B such that I(θ)

= kerµ.
(iv) The ideals ker θ and I(θ) are always intersections of prime ideals.
(v) In the case where B is radical, I(θ) = ker θ.

From the theorem of Dales and of Esterle, it follows easily that, assuming CH,
each ideal which is a finite intersection of non-modular prime ideals in C0(Ω) (with
a suitable cardinality condition) is the kernel of a homomorphism from C0(Ω) into
a radical Banach algebra. It was immediately questioned if the converse is true;
this is Question A. By Theorem 1.1, (iii) and (v), this is equivalent to Question B.
This same theorem, particularly parts (ii) and (iv), also suggests that the answer
to the questions should be “yes” for every space Ω. If the answers were “yes”, we
would have, in some sense, a complete picture of the structure of homomorphisms
from C0(Ω) (at least in the case where |C0(Ω)| = c).

These questions were first raised in [4], [10]. Question B was partially answered
(in the affirmative) in [10] in the cases where Ω is a compact F-space, and where Ω
is compact and β(Ω\{p}) is an F-space for each non-P-point p of Ω (thus implying
an affirmative answer for the spaces N, βN, and βN\N). There are further partial
answers in [7]: here the authors restrict to ideals of the form Jp. However, the
questions were left open for almost all spaces.
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To tackle Question A (and B) we first consider a more general version of Question
B. We shall reduce the general question of whether or not there exists a homomor-
phism θ from a given commutative Banach algebra A into another Banach algebra
such that the prime radical of I(θ) cannot be represented as a finite intersection of
prime ideals to an intrinsic question about the structure of the prime ideals of A.
We shall then use this reduction to prove that the prime radical of the continuity
ideal of an epimorphism from A onto another Banach algebra (or of a derivation
from A into a Banach A-bimodule) is always a finite intersection of prime ideals in
A (§4).

A little offtrack of our main discussion, and in order to show that it is necessary,
in the above reduction, to consider the prime radicals of the continuity ideals,
we shall construct homomorphisms of various types between commutative Banach
algebras whose continuity ideals are not intersections of prime ideals. In particular,
we shall construct a derivation D : A → A′, where A = A

(
D

2)
, such that the

continuity ideal of D is not an intersection of prime ideals in A (§5).
In another direction, Esterle [13] generalized the above-mentioned construction

to a construction of a homomorphism from an arbitrary commutative algebra A
into some radical Banach algebra, with the kernel to be any prescribed non-modular
prime ideal P in A such that |A/P | = c. (See [9, Chapter 5] for a different approach
to this result, which will be sketched very briefly at the beginning of §6.) Again,
this easily implies the same result for finite intersections of prime ideals. We shall
extend the result to intersections of various infinite families of prime ideals, thus
enlarging the class of commutative algebras which are known to be normable (§7).
The precise statement of this is as follows; we refer the reader to §3 for the definition
of ‘pseudo-finiteness’ and of ‘intersection non-redundancy’.

Theorem (CH). Let A be a commutative algebra, and let I be the intersection of
a pseudo-finite family of non-modular prime ideals. Suppose that |A/I| = c. Then
A/I can be embedded into a radical Banach algebra.

The above extension yields a partial converse of the previously mentioned reduc-
tion. In summary, we shall prove the following result (Theorems 4.5 and 7.4).

Theorem. Let A be a commutative Banach algebra.

(i) Suppose that there exists a homomorphism θ from A into another Banach
algebra such that the prime radical of I(θ) is not a finite intersection of
prime ideals. Then there exists an intersection non-redundant pseudo-
finite sequence of non-closed prime ideals in A.

(ii) (CH) Suppose that I is the intersection of an intersection non-redundant
pseudo-finite sequence of non-closed prime ideals in A. Suppose further
that |A/I| = c. Then there exists a homomorphism θ from A into another
Banach algebra with continuity ideal equal to I – a semiprime ideal, but
not a finite intersection of prime ideals in A.

We shall then apply the above results to Questions A and B. We give the following
characterizations (Theorems 8.8 and 9.5; cf. Theorem 8.1).

Theorem (A). Let Ω be a locally compact metrizable space, and let p denote the
point adjoined to Ω to obtain Ω�.
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(i) Suppose that p /∈ ∂(∞)(Ω�). Then the kernel of each homomorphism from
C0(Ω) into a radical Banach algebra is a finite intersection of non-modular
prime ideals.

(ii) (CH) Suppose that p ∈ ∂(∞)(Ω�). Then there exists a homomorphism θ
from C0(Ω) into a radical Banach algebra such that the kernel of θ is not
a finite intersection of prime ideals.

Theorem (B). Let Ω be a locally compact metrizable space.
(i) Suppose that Ω� has finite limit level. Then the continuity ideal I(θ) of

each homomorphism θ from C0(Ω) into another Banach algebra is a finite
intersection of prime ideals.

(ii) (CH) Suppose that Ω� has infinite limit level. Then there exists a homo-
morphism θ from C0(Ω) into a Banach algebra such that the continuity
ideal of θ is not a finite intersection of prime ideals.

Thus, for example, assuming CH, there exists a homomorphism θ from C0(R)
into a radical Banach algebra such that ker θ is not a finite intersection of prime
ideals. This answers Questions A and B in the negative.

Finally, we shall characterize those locally compact groups (not necessarily met-
rizable) G such that there exists a homomorphism θ from C0(G) into a radical
Banach algebra (respectively, a Banach algebra) such that the kernel (respectively,
the continuity ideal) of θ is not a finite intersection of prime ideals. We also give
an application to prime ideals in Abelian group algebras (§10).

Remark. We note here two other equivalent formulations of Questions A and B.
C Is the kernel of a homomorphism from C0(Ω) into a Banach algebra always

the intersection of a closed ideal and a finite number of prime ideals, for
each locally compact space Ω?

Next, let θ be a homomorphism from C0(Ω) into a Banach algebra. Then q(f) =
‖θ(f)‖ (f ∈ C0(Ω)) is an algebra seminorm on C0(Ω). It is proved in [10] that I(θ)
is the intersection of the q-closed prime ideals in C0(Ω), and that each chain of such
prime ideals are well-ordered (with respect to the inclusion). Questions A, B are
also equivalent to the following:

D Is the set of prime ideals which are closed with respect to a seminorm on
C0(Ω) always a finite union of well-ordered chains, for each locally compact
space Ω?

In this paper, we shall work explicitly with Questions A and B only; the corre-
sponding results for C and D can be derived easily.

Remark. In all the constructions mentioned above, the Continuum Hypothesis is
indispensable, for it has been proved by Solovay and Woodin that it is relatively
consistent with ZFC that all homomorphisms from each algebra C0(Ω) into a Banach
algebra are continuous (see [8] for the proof and references).

2. Preliminary definitions and notations

In this paper, all the results that require the Continuum Hypothesis will be
marked by the abbreviation CH. All our algebras, fields, and integral domains are
over the complex field C.

Let A be a commutative algebra. The (conditional) unitization A# of A is
defined as the algebra A itself if A is unital, and as A with identity adjoined
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otherwise. The identity of A# is denoted by either eA or simply 1. For a subset S
of A, the smallest subalgebra of A containing S is denoted by alg S.

A prime ideal or semiprime ideal in A must be a proper ideal. However, we
consider A itself as a finite intersection of prime ideals (the intersection of the
empty collection of prime ideals).

Define the prime radical
√

I of an ideal I in A to be the intersection of all prime
ideals in A containing I, so that

√
I = {a ∈ A : an ∈ I for some n ∈ N} .

For each ideal I in A and each element a ∈ A#, define the quotient of I by a to
be the ideal

I:a = {b ∈ A : ab ∈ I} .

Clearly we have I ⊂ I:a in each case. Note that, when A is a topological algebra
and I is a closed ideal, the ideal I:a is also closed for each a ∈ A#.

Let I be an ideal in A#. A subset S of A# is algebraically independent modulo
I if p(a1, . . . , an) /∈ I for each n ∈ N, each non-zero polynomial p ∈ C[X1, . . . , Xn],
and each n-tuple (a1, . . . , an) of distinct elements of S. A transcendence basis for
A# modulo I is a maximal set among all the subsets of A# which are algebraically
independent modulo I; such a basis always exists.

Next, we are going to present some standard automatic continuity theory; for
details, see [6] or [24].

Let T : E → F be a linear operator from a Banach space E into a Banach space
F . The separating space of T , denoted by S(T ), is defined as

{v ∈ F : there exists a sequence (un) ⊂ E with un → 0 and Tun → v} .

The space S(T ) is a closed subspace of F , and, by the closed graph theorem, T is
continuous if and only if S(T ) = {0}. In fact, let S : F → G be a bounded linear
operator from F into another Banach space G. Then S(ST ) = S(S(T )), and ST
is continuous if and only if S (S(T )) = {0}; see [6, 5.2.2] or [24, 1.3].

Now let θ : A → B be a homomorphism from a commutative Banach algebra
A into a Banach algebra B. Then S(θ) is a closed ideal in θ(A). By the previous
paragraph, we have

I(θ) = {a ∈ A : θ(a)S(θ) = {0}} .

We have the following famous stability lemma (homomorphism version); see [6,
5.2.7] or [24, 1.6] for the statement and proof of a more general version.

Proposition 2.1 (Stability lemma). Let θ be a homomorphism from a commutative
Banach algebra A into a Banach algebra B. Let (an : n ∈ N) be a sequence in A.
Then there is an integer N ∈ N such that

θ(a1 · · · an)S(θ) = θ(a1 · · · am)S(θ) (m, n ≥ N) . �

Let A be a Banach algebra, and let M be a Banach A-bimodule. We adopt the
convention that the norm on M satisfies

‖a · x‖ ≤ ‖a‖ ‖x‖ and ‖x · a‖ ≤ ‖a‖ ‖x‖ (a ∈ A, x ∈ M) ;

if this is not the case, we can always replace the given norm on M by another,
equivalent, norm such that these inequalities hold.
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The Banach dual module of M is the Banach dual space of M , denoted by M ′,
with the left and right A-module actions on M ′ being the dual actions of those on
M , that is,

(λ · a)(x) = λ(a · x) and (a · λ)(x) = λ(x · a) (a ∈ A, λ ∈ M ′, x ∈ M).

Then M ′ is indeed a Banach A-bimodule.
Let D be a derivation from a commutative Banach algebra A into a Banach

A-bimodule M . The continuity ideal of D is defined to be

I(D) = {a ∈ A : a · S(D) = {0}} .

Again, we have

I(D) = {a ∈ A : the map b �→ D(ab), A → M, is continuous} .

We see that I(D) is a closed ideal in A. The continuity ideals of derivations
are actually “special cases” of those of homomorphisms. Indeed, define a Banach
algebra B to be the direct sum A ⊕ M with �1-norm, so that

‖a ⊕ x‖ = ‖a‖ + ‖x‖ (a ∈ A, x ∈ M) .

The product on B is given by

(a ⊕ x)(b ⊕ y) = ab ⊕ (a · y + x · b) (a, b ∈ A, x, y ∈ M) .

Define a homomorphism θ : A → B by setting θ(a) = a ⊕ Da. Then I(θ) = I(D).
For a discussion of the theory of the algebras of continuous functions, see [6], [9]

or [15]. Here, we just give some facts which are needed in our discussion.
Let Ω be a locally compact space; the convention is that locally compact spaces

and compact spaces are Hausdorff. The Stone-Čech compactification of Ω is denoted
by βΩ. Denote by Cc(Ω) the algebra of compactly supported continuous functions
on Ω. For each p ∈ Ω, define

JΩ
p = {f ∈ C0(Ω) : f is zero on a neighbourhood of p} ,

MΩ
p = {f ∈ C0(Ω) : f(p) = 0} .

We shall omit the superscript Ω and write Jp and Mp when there is no ambiguity.
For p being the point (at infinity) adjoined to Ω to obtain Ω�, we also set

Jp = Cc(Ω) and Mp = C0(Ω).

For each prime ideal P in C0(Ω), there always exists a unique point p ∈ Ω� such
that Jp ⊂ P ⊂ Mp; we say that P is supported at the point p. It can be seen that
P is modular if and only if its support point belongs to Ω.

It is an important fact that, for each prime ideal P in C0(Ω), the set of prime
ideals in C0(Ω) which contain P is a chain with respect to the inclusion relation.
Thus, for each n ∈ N, a semiprime ideal in C0(Ω) that contains an intersection of n
prime ideals is itself an intersection of n prime ideals.

For each function f continuous on Ω, the zero set of f is denoted by ZΩ(f) or
Z(f). The set of zero sets of continuous functions on Ω is denoted by Z[Ω]. For
each closed subset Z ⊂ Ω, we have Z = Z(f) for some function f ∈ C0(Ω) if and
only if Ω \ Z is σ-compact.

A z-filter F on Ω is a non-empty proper subset of Z[Ω] satisfying:
(i) Z1 ∩ Z2 belongs to F whenever both Z1 and Z2 belong to F ,
(ii) if Z1 ∈ F , Z2 ∈ Z[Ω] and Z1 ⊂ Z2, then Z2 also belongs to F .
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Each z-filter F corresponds to an ideal

{f ∈ C(Ω) : Z(f) ∈ F} ,

denoted by Z−1
Ω [F ] or Z−1[F ]; each such ideal is called a z-ideal. A z-filter F is a

prime z-filter if Z1 ∪ Z2 /∈ F whenever Z1, Z2 ∈ Z[Ω] \ F . A maximal z-filter is
called a z-ultrafilter. A z-ultrafilter is always prime.

Finally, let Ω be a compact space. Define ∂Ω to be the set of all limit points of
Ω, i.e., Ω \ ∂Ω is the set of isolated points of Ω. Then ∂Ω is a compact subset of Ω,
called the derived set of Ω. Since Ω is compact, ∂Ω is non-empty unless Ω is finite.
We define a non-increasing sequence

(
∂(n)Ω : n ∈ Z+

)
of compact subsets of Ω as

follows:
(i) put ∂(0)Ω = Ω;
(ii) for each n ∈ Z+, define ∂(n+1)Ω = ∂

(
∂(n)Ω

)
.

Define ∂(∞)Ω =
⋂ {

∂(n)Ω : n ∈ Z+
}
. By the compactness, either ∂(∞)Ω is non-

empty or ∂(l)Ω is empty for some l ∈ Z+. In the former case, we say that Ω has
infinite limit level ; in the latter, we say that Ω has finite limit level.

3. Pseudo-finite families of prime ideals

Let (Eα : α ∈ S) be a family of subsets of a given set E indexed by another set
S. The following concepts play an important role in the sequel; we shall see (in §4)
how these concepts arise naturally in our problem.

Definition 3.1. The family (Eα : α ∈ S) is pseudo-finite if a ∈ Eα for all but
finitely many α ∈ S whenever a ∈

⋃
α∈S Eα.

Certainly, each finite family is pseudo-finite.

Definition 3.2. The family (Eα : α ∈ S) is intersection-redundant if there exists
a subset T of S such that T �= S and such that⋂

α∈T

Eα =
⋂

α∈S

Eα .

Otherwise, we say that the family is intersection non-redundant.

Now let A be a commutative algebra. Note that, for each infinite pseudo-finite
family of prime ideals (Pα : α ∈ S) in A, the union

⋃
α∈S Pα must be an ideal and

hence it is either prime in A or A itself.
First, we shall present some rather interesting properties which show, to an

extent, the similarity between pseudo-finite and finite families of prime ideals.

Lemma 3.3. Let A be a commutative algebra, and let P be a prime ideal in A. Sup-
pose that (Iα : α ∈ S) is a pseudo-finite family of ideals in A such that

⋂
α∈S Iα ⊂ P .

Then Iα0 ⊂ P for some α0 ∈ S.

Proof. Assume toward a contradiction that Iα �⊂ P (α ∈ S). Choose a0 ∈ Iα0 \ P
for some α0 ∈ S. Then, by the pseudo-finiteness, we have a0 ∈ Iα for all but
finitely many α ∈ S. Let α1, . . . , αn be the indices α ∈ S such that a0 /∈ Iα. For
each k ∈ N with 1 ≤ k ≤ n, choose ak ∈ Iαk

\ P , and set a = a0a1 · · · an. Then
a ∈ Iα (α ∈ S), but a /∈ P , by the primeness of P ; a contradiction to the fact that⋂

α∈S Iα ⊂ P . �
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Lemma 3.4. Let (Pα : α ∈ S) be a pseudo-finite family of prime ideals in a
commutative algebra A. Then the following are equivalent:

(a) (Pα) is intersection non-redundant;
(b) Pα �⊂ Pβ (α �= β ∈ S);
(c)

⋂
β �=α Pβ �⊂ Pα for each α ∈ S.

Proof. This follows from the previous lemma. �

Lemma 3.5. Let (Pα : α ∈ S) be a non-empty pseudo-finite family of prime ideals
in a commutative algebra A. Let (Pα : α ∈ T ) be the subfamily of distinct minimal
elements of (Pα : α ∈ S). Then:

(i) (Pα : α ∈ T ) is intersection non-redundant, and
⋂

α∈S Pα =
⋂

α∈T Pα;
(ii) the ideal

⋂
α∈S Pα cannot be represented as an intersection of strictly fewer

than |T | prime ideals.

In particular, T is non-empty.

Proof. (i) Obviously (Pα : α ∈ T ) satisfies Lemma 3.4(b), so this family is inter-
section non-redundant. Since (Pα : α ∈ S) is pseudo-finite, each Pα (α ∈ S) must
contain a minimal element Pβ for some β ∈ T . Thus

⋂
α∈S Pα =

⋂
α∈T Pα.

(ii) Set I =
⋂

α∈S Pα =
⋂

α∈T Pα. By Lemma 3.4, we can choose

aα ∈

⎛⎝ ⋂
β �=α, β∈T

Pβ

⎞⎠ \ Pα for each α ∈ T .

We see that aαaβ ∈ I for α �= β ∈ T . It follows easily that I cannot be represented
as an intersection of strictly fewer than |T | prime ideals. �

Lemma 3.6. Let A be a commutative Banach algebra. Let (Pα : α ∈ S) be an
intersection non-redundant pseudo-finite family of prime ideals in A. Then the
number of closed prime ideals in the family (Pα) is finite.

Proof. Assume towards a contradiction that there exist distinct closed prime ideals
Pαn

(n ∈ N) in the family (Pα : α ∈ S). By Lemma 3.4, for each n ∈ N, we
can choose an ∈ (

⋂
i �=n Pαi

) \ Pαn
; we can further suppose that ‖an‖ ≤ 1/2n. Set

a =
∑∞

n=2 an . Then a ∈ Pα1 . But then, by pseudo-finiteness, we have a ∈ Pαk

for some k ≥ 2. However, we have a − ak =
∑

{an : n /∈ {1, k}} ∈ Pαk
, so that

ak ∈ Pαk
, contradicting the choice of ak. �

Example 3.7. Let S be a non-empty index set, and let Xα be an indeterminate
for each α ∈ S. For n ∈ N, for α1, . . . , αn in S, and for k1, . . . , kn ∈ N, the formal
product Xk1

α1
· · ·Xkn

αn
is called a monomial. A formal power series of indeterminates

Xα (α ∈ S) is a formal series of the form f = λ0 +
∑∞

n=1 λnMn, where λn ∈ C and
Mn is a monomial (for each n). We identify, add, and multiply two formal power
series according to the “standard” rules (similar to those for polynomials). The
resulting algebra is called the formal power series algebra over S, and is denoted
by FS . It is easily seen that FS is an integral domain.

For each α ∈ S, let Qα be the ideal in FS generated by {Xβ : β ∈ S, β �= α}. We
can check that Qα is a prime ideal in FS . Thus (Qα : α ∈ S) is a pseudo-finite
family of prime ideals, and (Qα : α ∈ S) is intersection non-redundant.
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Example 3.8. Now let AS be the subalgebra of FS that consists of elements f
which can be represented as a series λ0 +

∑∞
n=1 λnMn with

‖f‖1 =
∞∑

n=0

|λn| < ∞ ,

where (λn) ⊂ C (n ∈ Z+) and where Mn (n ∈ N) are distinct monomials. Then
(AS , ‖ · ‖1) is a commutative Banach algebra. Set Pα = AS∩Qα. Then (Pα : α ∈ S)
is an intersection non-redundant pseudo-finite family of prime ideals in AS. �

We shall see further examples of commutative Banach algebras with or without
an intersection non-redundant pseudo-finite sequence of prime ideals in §§8, 9, 10.

Lemma 3.9. Let A and A be commutative algebras such that A contains A as an
ideal. Let (Pα : α ∈ S) be an intersection non-redundant pseudo-finite family of
prime ideals in A. Suppose that

⋃
α∈S Pα �= A. Then A also has an intersection

non-redundant pseudo-finite family (Qα : α ∈ S) of prime ideals.

Proof. For each α ∈ S, define

Qα = {a ∈ A : aA ⊂ Pα} .

It is standard that Qα is a prime ideal in A and Qα ∩ A = Pα (see [6, 1.3.53]).
Let u ∈ A be such that u /∈ Pα (α ∈ S). We see that Qα = {a ∈ A : au ∈ Pα}.

The pseudo-finiteness of (Qα : α ∈ S) then follows. It is easily seen that this family
is intersection non-redundant. �

For the converse of the above lemma, we have the following.

Lemma 3.10. Let A be a commutative algebra, and let I be an ideal in A. Suppose
that each intersection non-redundant pseudo-finite family of prime ideals in each of
the algebras A/I and I is finite. Then A itself does not contain an intersection
non-redundant pseudo-finite sequence of prime ideals.

Proof. Assume that there exists an intersection non-redundant pseudo-finite se-
quence (Pn) of prime ideals in A. Letting E be the subset of N consists of the
numbers n for which I �⊂ Pn. Then, for each n ∈ E, we have (again, by [6, 1.3.53])

Pn = {a ∈ A : aI ⊂ Pn ∩ I} .

So we see that {Pn ∩ I : n ∈ E} is an intersection non-redundant pseudo-finite
family of prime ideals in I. Thus E must be finite.

On the other hand, it is readily seen that {Pn/I : n ∈ N \ E} is an intersec-
tion non-redundant pseudo-finite family of prime ideals in A/I. So, again, by the
hypothesis, N \ E must be finite, a contradiction. Hence the result holds. �

Definition 3.11. Let A be a commutative algebra. Let I be an ideal in A, and
let (fn) be a sequence of elements in A. Then I is extendible with respect to (fn)
if both the following conditions hold:

(a) fk
n /∈ I (n, k ∈ N), and fmfn ∈ I (m �= n ∈ N);

(b) for each g ∈ A, if gfk0
n0

∈ I for some n0, k0 ∈ N, then gfn ∈ I for all except
finitely many n ∈ N.
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Note that, if A has an intersection non-redundant pseudo-finite sequence of prime
ideals (Pn), then, by setting I =

⋂∞
n=1 Pn and choosing, for each n ∈ N, an element

fn ∈
⋂

i �=n Pi \ Pn, the ideal I is extendible with respect to (fn). Conversely, we
have the following general construction; this construction is crucial in our proof of
the main result in §9.

Proposition 3.12. Let A be a commutative algebra. Suppose that there exist an
ideal I and a sequence (fn) in A such that I is extendible with respect to (fn). Then
there exists a pseudo-finite sequence of prime ideals (Pn) such that fn ∈

⋂
i �=n Pi\Pn

for each n ∈ N.

Proof. We see that the union of a chain of ideals, each of which contains I and is
extendible with respect to (fn), is also extendible with respect to (fn). By Zorn’s
lemma, we can choose a maximal one among those ideals, and call it J . It is easily
seen that the prime radical of J is again extendible with respect to (fn). Thus, by
the maximality of J , we must have

√
J = J , and so J is semiprime.

For each n, set Jn = J :fn, and set P =
⋃∞

n=1 Jn. By the extensibility of J , we
see that whenever f ∈ P then f ∈ Jn for all except finitely many n ∈ N. Thus, in
particular, the set P is actually an ideal.

Claim 1: for each f ∈ A \ P , we have J :f = J . Indeed, since f /∈ P and since
J is semiprime, we see that fk

n /∈ J :f (n, k ∈ N). It then follows easily that J :f is
extendible with respect to (fn). This and the maximality of J imply the claim.

Claim 2: P is either prime in A or is A itself. We have to prove that, whenever
f, g ∈ A are such that fg ∈ P , but f /∈ P , then g ∈ P . Indeed, let n0 ∈ N be such
that fn0fg ∈ J . Then fn0g ∈ J :f . The first claim then implies that fn0g ∈ J , and
so g ∈ Jn0 .

Now, for each n ∈ N, define

Sn =
{
fk

n : k ∈ N
}
∪

{
fk

nf : k ∈ N and f ∈ A \ P
}

.

Then, by Claim 2, the set Sn is closed under multiplication. We claim that Sn∩Jn =
∅. Indeed, fix k ∈ N and f ∈ A \ P . Then, since fk+1

n /∈ J , we see that fk
n /∈ Jn,

and by Claim 1, we see that fk+1
n f /∈ J , and so fk

nf /∈ Jn.
Since Sn is closed under multiplication and Sn ∩ Jn = ∅, there exists a prime

ideal Pn containing Jn such that Sn ∩ Pn = ∅ (n ∈ N). Then Jn ⊂ Pn ⊂ P and
fn /∈ Pn (n ∈ N). The result then follows. (Indeed, it follows from the maximality
of J that Pn = Jn for each n.) �

4. General necessary condition

In this section, we shall consider a homomorphism θ from a commutative Banach
algebra A into a Banach algebra B. To simplify the notations, set S = S(θ) and
I = I(θ).

Let P be the collection of all prime ideals in A of the form I:a for some a ∈ A.
Note that P ⊃ I for each P ∈ P. The following lemma is a modification of the
commutative prime kernel theorem due to Sinclair (see [6, Theorem 5.3.15] or [24,
Theorem 11.4]); the proof is similar to that of the theorem, and is included here
for the sake of completeness.

Lemma 4.1. Let a0 ∈ A \
√
I. Then there exists a prime ideal P ∈ P such that

a0 /∈ P . In particular,
√
I is the intersection of prime ideals belonging to P.
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Proof. By the stability lemma, there exists N ∈ N such that

(4.1) θ(an
0 )S = θ(aN

0 )S (n ≥ N) .

Note that aN
0 a0 /∈ I . We claim that there exists a1 ∈ A such that aN

0 a1 /∈ I and
such that, for each a ∈ A, either θ(aN

0 a1a)S = θ(aN
0 a1)S or aN

0 a1a ∈ I. Indeed,
assume the contrary. Then we can choose by induction a sequence (an) in A so
that, for n ∈ N, we have

θ(aN
0 a1)S � · · · � θ(aN

0 a1 · · · an−1)S � θ(aN
0 a1 · · · an)S ,

contradicting the stability lemma. Thus the claim holds.
Define

P = I:aN
0 a1 =

{
a ∈ A : θ(aN

0 a1a)S = {0}
}

.

We have a0 /∈ P , for otherwise we would have aN+1
0 a1 ∈ I, and this implies that

aN
0 a1 ∈ I by equation (4.1), a contradiction of the fact that aN

0 a1 /∈ I. We now
show that P is a prime ideal. Let a, b ∈ A with ab ∈ P , but b /∈ P . Then

0 = θ(aN
0 a1ab)S ⊃ θ(a) θ(aN

0 a1b)S = θ(a) θ(aN
0 a1)S ⊃ θ(aN

0 a1a)S ,

and so a ∈ P as required. �

Definition 4.2. A collection G of subsets of a given set is said to be FI if the set⋂
{E : E ∈ G} can be represented as an intersection of a finite sub-collection of G.

We say that a collection G is NFI if it has a sub-collection which is not FI.

So being not NFI means that all its sub-collections are FI.

Lemma 4.3. Suppose that P is NFI. Then there exists G ⊂ P satisfying the
following conditions:

(i) G is not FI;
(ii) for each a ∈ A, the set {P ∈ G : a /∈ P} is either G itself or is not NFI.

Proof. For each a ∈ A∪{eA}, let Pa be the set of prime ideals of the form I:ab for
some b ∈ A. We claim that there exists a0 ∈ A ∪ {eA} such that Pa0 is NFI and
such that, for each a ∈ A, either Pa0a is not NFI or I:a0a = I:a0.

Assume the contrary. Then, since PeA
is NFI, by induction, there exists a

sequence (an) ⊂ A such that Pa1···an
is NFI and such that

I:a1 · · · an � I:a1 · · · an+1 (n ∈ N).

For each n ∈ N, take bn ∈ I:a1 · · · an+1 \ I:a1 · · · an. By the stability lemma, there
exists N ∈ N such that

θ(a1 · · · an)S = θ(a1 · · · an+1)S (n ≥ N) .

But then

θ(bn)θ(a1 · · · an)S = θ(bn)θ(a1 · · · an+1)S = 0 (n ≥ N) ,

implying that bna1 · · · an ∈ I (n ≥ N). But this contradicts the choice of (bn).
Hence the claim holds.

Since Pa0 is NFI, there is a sub-collection G of Pa0 which is not FI. Suppose
that a ∈ A and that G′ = {P ∈ G : a /∈ P} is NFI. Then, for each P ∈ G′, because
a /∈ P we have P :a = P . Thus G′ ⊂ Pa0a , and hence Pa0a is NFI. Therefore, by
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the claim, we must have I:a0a = I:a0. We now show that G′ = G. Assume towards
a contradiction that G′ �= G, and let P ∈ G \ G′, say P = I:a0a1 for some a1 ∈ A.
Then, since a ∈ P we have a1 ∈ I:a0a = I:a0, so that a0a1 ∈ I. This implies that
P = A, a contradiction. This proves that (ii) holds. �

Lemma 4.4. Suppose that P is NFI. Then there exists a sequence (Pn) ⊂ P which
is pseudo-finite and intersection non-redundant.

Proof. Let G be the sub-collection of P as specified in Lemma 4.3. We claim
that, in the partially ordered set (G,⊂), every descending chain must be eventually
constant.

Assume the contrary. Then there exists a sequence (Qn) in G such that

Qn � Qn+1 (n ∈ N).

Choose an element a ∈ Q1 \ Q2. Then G′ := {P ∈ G : a /∈ P} is NFI (since G′

contains {Qn : n > 1}, which is not FI), but G′ �= G (because Q1 /∈ G′). But this
contradicts Lemma 4.3(ii). Thus, in (G,⊂), every element must contain a minimal
element, and, since G is not FI, it must have infinitely many minimal elements.

Let (Pn : n ∈ N) be a sequence of distinct minimal elements of (G,⊂). Then
obviously we have Pm �⊂ Pn for each m �= n in N.

Let a ∈
⋃∞

n=1 Pn. By Lemma 4.3(ii), the set {P ∈ G : a /∈ P} is not NFI, and so
the set {Pn : a /∈ Pn} is FI. Let n1, . . . , nk ∈ N be the indices such that

k⋂
i=1

Pni
=

⋂
{Pn : a /∈ Pn} .

For each n ∈ N with a /∈ Pn, we have
⋂k

i=1 Pni
⊂ Pn, and, since Pn is a prime ideal,

there exists i ∈ {1, . . . , k} such that Pni
⊂ Pn. Hence n = ni. Thus

{n ∈ N : a /∈ Pn} = {n1, . . . , nk} ,

and so (Pn) is pseudo-finite. The rest then follows from Lemma 3.4. �

Now we can state the main theorem of this section.

Theorem 4.5. Let θ be a homomorphism from a commutative Banach algebra
A into a Banach algebra B with continuity ideal I(θ) = I. Then

√
I(θ) is the

intersection of the prime ideals of the form I:a for some a ∈ A.
Suppose further that

√
I(θ) is not a finite intersection of prime ideals of the

above form. Then there exist non-closed prime ideals Pn = I:an, where an ∈ A for
each n ∈ N, such that the sequence (Pn : n ∈ N) is pseudo-finite and intersection
non-redundant, i.e., such that the following conditions hold:

(a) if a ∈
⋃∞

i=1 Pi, then a ∈ Pn for all but finitely many n ∈ N;
(b)

⋂
i �=n Pi �⊂ Pn (n ∈ N).

Proof. This follows in turn from Lemmas 4.1, 4.4, 3.6, and 3.4. �

Lemma 4.6. Let I be a closed ideal in a commutative Banach algebra A such that√
I is also closed. Then there exists k ∈ N such that

√
I =

{
a ∈ A : ak ∈ I

}
.

Proof. This is an application of Baire’s category theorem. �
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Corollary 4.7. Let θ be an epimorphism from a commutative Banach algebra A
onto a Banach algebra B. Then:

(i)
√
I(θ) is a finite intersection of prime ideals;

(ii) there is a number k ∈ N such that
√
I(θ) =

{
a ∈ A : ak ∈ I(θ)

}
.

Proof. (i) Assume towards a contradiction that (i) is false. Let Pn = I:an (n ∈ N)
be the prime ideals that were specified in Theorem 4.5. For n ∈ N, set

Qn = {b ∈ B : bθ(an)S = {0}} .

Then Qn is closed in B. We see that Pn = θ−1(Qn) and that Qn = θ(Pn), and so
Qn is a prime ideal in B. It is easily seen that (Qn : n ∈ N) is pseudo-finite and
intersection non-redundant, contradicting Lemma 3.6. Thus (i) holds.

(ii) Define J = {b ∈ B : bS = {0}}. Then J is a closed ideal in B. We see that
I = θ−1(J ) and J = θ(I). This and Lemma 4.1 imply that

√
J is the intersection

of the ideals of the form J :b for b ∈ B. So
√
J is closed in B, since each J :b is

closed. We can then apply Lemma 4.6. �
Remark. In the case where B is also a semiprime algebra, we see that I(θ) is either
A or a semiprime ideal, and so I(θ) =

√
I(θ). Hence I(θ) is a finite intersection

of prime ideals. Note, however, that this does not help in answering the (still
open) question of whether or not there exists a discontinuous epimorphism from
a Banach algebra onto a commutative semiprime Banach algebra; see [2] for some
partial results on this question.

We turn to another application. Let D : A → M be a derivation from a com-
mutative Banach algebra A into a Banach A-bimodule M . We know that the
continuity ideal I(D) of D is the continuity ideal of a homomorphism from A into
some Banach algebra and that I(D) is closed (see §2). So, for each a ∈ A, the ideal
I(D):a is closed. Thus, we have the following corollary.

Corollary 4.8. Let D be a derivation from a commutative Banach algebra A into
a Banach A-bimodule M . Then:

(i)
√
I(D) is a finite intersection of closed prime ideals;

(ii) there is a number k ∈ N such that
√
I(D) =

{
a ∈ A : ak ∈ I(D)

}
.

5. Continuity ideals which are not intersections of prime ideals

From the previous section, we may ask whether the continuity ideal of a homo-
morphism is necessarily either a semiprime ideal or the whole algebra itself (see
also Theorem 1.1(iv)). In this section, counter-examples to this possibility will be
presented. It will be shown that although the continuity ideal of an epimorphism or
a derivation is close to being an intersection of prime ideals, as shown by Corollaries
4.7(ii) and 4.8(ii), this is not always the case. The epimorphism we shall construct
is in fact an automorphism. By the remark after Corollary 4.7, the domain of this
automorphism cannot be a semiprime algebra. However, it is possible to construct
a desired derivation from a semisimple algebra. It can even be arranged so that the
derivation maps into the dual of the algebra.

Denote by D the open unit disk {z ∈ C : |z| < 1}. Define A
(
D

n)
to be the Ba-

nach algebra of complex functions of n complex variables continuous on D
n

and
holomorphic in Dn, with the uniform norm; we are interested in the cases where
n = 1, 2.
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Theorem 5.1. Let A = A
(
D

2)
. Then there exists a derivation D from A into its

dual A′ such that I(D) is not an intersection of prime ideals in A.

Proof. We proceed in two steps.
Step 1: Let A be the disk algebra A

(
D

)
. Denote by 1 the function 1(z) ≡ 1.

By [6, 5.6.81, 5.2.17], there exists a discontinuous derivation D : A → A′. Then we
must have 1 /∈ I(D).

Next, we consider A1 = A ⊕ A with �1-norm, with pointwise addition, and with
product defined by

(f1 ⊕ f2)(g1 ⊕ g2) = f1g1 ⊕ (f1g2 + f2g1) (f1, f2, g1, g2 ∈ A) .

Then A1 is a commutative Banach algebra. Then, we define left and right actions
of A1 on A′ ⊕ A′ as follows:

(λ1 ⊕ λ2) · (f1 ⊕ f2) = (f1 ⊕ f2) · (λ1 ⊕ λ2) = (f1 · λ1 + f2 · λ2) ⊕ (f1 · λ2) ,

for each f1 ⊕ f2 ∈ A1 and each λ1 ⊕ λ2 ∈ A′ ⊕ A′. We can check that A′ ⊕ A′

with pointwise addition, with the above A1 actions, and with maximum norm is
a Banach A1-bimodule. In fact, as Banach A1-bimodules, A′ ⊕ A′ is isometrically
isomorphic to (A ⊕ A)′ with the following pairing:

〈λ1 ⊕ λ2, f1 ⊕ f2〉 = λ1(f1) + λ2(f2) (λ1, λ2 ∈ A′, f1, f2 ∈ A).

Define a linear map D1 : A1 → A′ ⊕ A′ by

D1(f1 ⊕ f2) = Df2 ⊕ Df1 (f1, f2 ∈ A).

Then it is easy to verify that D1 is a derivation. We now compute I(D1). By
definition, f1 ⊕ f2 ∈ I(D1) if and only if the map

g1 ⊕ g2 �→ (f1 · Dg2 + f2 · Dg1) ⊕ (f1 · Dg1), A1 → A′ ⊕ A′,

is continuous; that is, if and only if f1 ⊕ f2 ∈ I(D) ⊕ I(D). In particular, we have
{0} ⊕ A �⊂ I(D1), since 1 /∈ I(D). But ({0} ⊕ A)2 = {0}, and so I(D1) is not a
semiprime ideal.

Step 2: We now consider D1 as a derivation from A1 into A′
1. For each function

f(Z1, Z2) ∈ A = A
(
D

2)
, denote by ∂2f the partial derivative of f with respect to

the second variable Z2. Define a map

Φ : f(Z1, Z2) �→ f(Z1, 0) ⊕ (∂2f)(Z1, 0), A → A1 .

Then Φ is an algebra epimorphism from A onto A1, and, by Cauchy’s estima-
tion theorem, Φ is bounded. Consider A1 as a Banach A-bimodule with module
multiplications defined, for each f ∈ A and each (g1, g2) ∈ A1, as

f · (g1 ⊕ g2) = (g1 ⊕ g2) · f = Φ(f) · (g1 ⊕ g2) = (g1 ⊕ g2) · Φ(f).

Then Φ is also an A-bimodule epimorphism, and so the adjoint map Φ′ : A′
1 → A′

is a Banach A-bimodule embedding (onto a closed submodule of A′).
Finally, define a map D : A → A′ by setting D = Φ′ ◦ D1 ◦ Φ. Then D is a

derivation from A into A′. We can check that I(D) = Φ−1[I(D1)], which is, by
Step 1, neither a semiprime ideal in A nor A itself.

This complete the proof. �

Thus, there is a homomorphism from the semisimple commutative Banach al-
gebra A(D

2
) into another Banach algebra whose continuity ideal I is not equal

to its prime radical
√
I. We can even find an automorphism with this property;
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however, the cost of this (using our construction) is that the underlying algebra is
“unnatural”.

Corollary 5.2. There exists an automorphism θ on a commutative Banach algebra
such that I(θ) is not an intersection of prime ideals.

Proof. Let D : A → M be any derivation from a commutative Banach algebra A
into a commutative Banach A-bimodule M such that I(D) is a proper ideal but
not a semiprime ideal in A. Consider A ⊕ M as a commutative Banach algebra as
before. Define a map θ : A ⊕ M → A ⊕ M by

θ(a ⊕ x) = a ⊕ (Da + x) (a ∈ A, x ∈ M) .

It is easily checked that θ is an automorphism of A ⊕ M . It follows routinely that
I(θ) = I(D)⊕M , which is neither a semiprime ideal in A⊕M nor A⊕M itself. �

6. Mappings into ultrapowers

First, we need some definitions. Let κ be an infinite cardinal. Then Cκ with
pointwise algebraic operations is an algebra. Let U be a free ultrafilter on κ. Define
MU to be the set of all elements f ∈ Cκ such that {σ ∈ κ : f(σ) = 0} ∈ U . Then
MU is a maximal ideal. The field Cκ/MU is called an ultrapower, and is denoted
by Cκ/U . An element f + MU ∈ Cκ/U is an infinitesimal if

{σ ∈ κ : |f(σ)| < ε} ∈ U
for each ε > 0. The subalgebra of infinitesimals of Cκ/U is denoted by (Cκ/U)◦.

Now let V be a free ultrafilter on N. Recall that c 0 is the algebra of the sequences
of complex numbers converging to 0 (with pointwise operations). Let PV be the
set of all sequences (xn) ∈ c 0 such that {n ∈ N : xn = 0} ∈ V . Then PV is a prime
ideal in c 0, and c 0/PV is an integral domain which can be naturally identified with
a subalgebra of

(
CN/V

)◦. We denote c 0/PV by c 0/V . Thus each c 0/V is indeed a
quotient of C0(N) by one of its minimal prime ideals.

In their approach to the construction in [13] of an embedding of an arbitrary non-
unital integral domain of cardinality c into a radical Banach algebra, the authors
of [9] used a special case that c 0/V can be embedded into some radical Banach
algebra for any ultrafilter V on N (this “classical” case had been constructed by
Dales and Esterle in their solution to the conjecture of Kaplansky) – this part
requires CH, together with the following theorem (which is [9, Theorem 5.25], and
does not require the Continuum Hypothesis).

Theorem 6.1. Let A be a non-unital integral domain of cardinality c. Then there
exists an embedding of A into c 0/V for some free ultrafilter V on N. �

Our aim in this section is to extend the above result; the construction of embed-
dings into radical Banach algebras will be extended in the next section. However, it
should be noted that much difficulty in both of these extensions is actually hidden
behind the results that they extend.

We shall need some basic complex algebraic-geometry results to prove the main
theorem of this section. Our references for algebraic geometry will be [20] and [25].
Some conventions: all our varieties will be algebraic and the only topology consid-
ered on complex spaces is the Euclidean topology. For a set S ⊂ C[Z1, Z2, . . . , Zn],
denote by V(S) the variety (i.e., common zero set) of S in Cn. For each prime ideal
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Q in C[Z1, . . . , Zn], the variety V(Q) is irreducible. We shall many times use the
following proposition.

Proposition 6.2. Let V be an irreducible variety of Cn, and let W be a proper
subvariety of V . Then V \ W is (relatively) open and dense in V .

Proof. Clearly, V \ W is relatively open in V . The density follows from Theorem
2.11 in [20, Chapter IV]. �

Notation. For clarity, we shall use Xi, Yj for variables, xi, yj for complex numbers,
and ai, bj for elements of an algebra. When there is no ambiguity, we shall use
boldface characters to denote tuples of elements of the same type; for example, we
set

X = (X1, X2, . . . , Xm) or y = (y1, . . . , yn) .

In the case where X = (X1, . . . , Xm), we also denote by CX the corresponding
space Cm.

Lemma 6.3. Let m ∈ N and n ∈ Z+, and let Q be a prime ideal in C[X, Y ],
where X = (X1, . . . , Xm) and Y = (Y1, . . . , Yn). Suppose that X1, . . . , Xm are
algebraically independent modulo Q. Let V be the variety of Q. Let π be the natural
projection CX,Y → CX . Then there exists a dense open subset U of V such that
π : U → CX is an open map.

Proof. Let {Yj1 , Yj2 , . . . , Yjk
} be a maximal subset of {Y1, . . . , Yn} such that

{X1, . . . , Xm, Yj1 , . . . , Yjk
}

is algebraically independent modulo Q. By renaming Yjt
as Xm+t (1 ≤ t ≤ k)

and the remaining variables Yj as Y1, . . . , Yn−k, we may suppose that the set
{X1, . . . , Xm} is indeed a transcendence basis for C[X, Y ] modulo Q. If n = 0,
then Q = {0}, and so U = V = CX is the desired set. From now on, we shall
suppose that n ≥ 1. For each 1 ≤ j ≤ n, we choose a polynomial

pj = qj,0Y
kj

j + qj,1Y
kj−1
j + · · · + qj,kj

∈ Q

with all qj,t ∈ C[X, Y1, . . . , Yj−1] and qj,0 /∈ Q, and such that pj is a minimal
polynomial of this kind (i.e., with smallest degree in Yj).

Now, for 1 ≤ j ≤ n, let p ∈ Q ∩ C[X, Y1, . . . , Yj ] be arbitrary. Using the
division algorithm in C[X, Y1, . . . , Yj−1][Yj ] and the minimality of pj , we see that,
for some l ∈ N, when dividing (qj,0)lp by pj the remainder is a polynomial in Yj

with coefficients in Q∩C[X, Y1, . . . , Yj−1]. Applying this inductively and using the
fact that Q ∩ C[X] = {0}, we obtain, for each p ∈ Q, after multiplying p by some
power of q1,0 · · · qn,0, a polynomial in the ideal generated by p1, . . . , pn. So, if (x, y)
is not in V(q1,0 · · · qn,0), then it is in V(p1, . . . , pn) if and only if it is in V .

Also, by the minimality of each pj , we have ∂pj/∂Yj is not in Q (1 ≤ j ≤ n). So

V
(

q1,0 · · · qn,0
∂p1

∂Y1
· · · ∂pn

∂Yn

)
is a variety which does not contain V . Thus, by setting

U = V \ V
(

q1,0 · · · qn,0
∂p1

∂Y1
· · · ∂pn

∂Yn

)
,
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we see, by Proposition 6.2, that U is a dense open subset of V . Fix a point
(x0, y0) ∈ U . Then the right n × n submatrix of the Jacobian⎛⎜⎝

∂p1
∂X1

. . . ∂p1
∂Xm

∂p1
∂Y1

. . . 0
...

. . .
...

...
. . .

...
∂pn

∂X1
. . . ∂pn

∂Xm
. . . . . . ∂pn

∂Yn

⎞⎟⎠
of the map (p1, . . . , pn) : CX,Y → Cn at (x0, y0) is lower triangular, with non-zero
diagonal entries. So this submatrix is invertible in an entire neighbourhood ∆ (in
CX,Y ) of (x0, y0). The result then follows from the implicit mapping theorem. �
Lemma 6.4. Let A be a non-unital commutative algebra. Let P and Pr be ideals
in A which are prime in A# and such that P ⊃ Pr (r ∈ N). Let m, n ∈ Z+ with
m + n ≥ 1, and let a = (a1, . . . , am) and b = (b1, . . . , bn) be finite sequences in
A such that {a1, . . . , am} is algebraically independent modulo P . Let δ > 0. Then
there exist finite sequences of complex numbers

(x, y(r)) = (x1, . . . , xm, y
(r)
1 , . . . , y(r)

n ) (r ∈ N)

satisfying all the following conditions:
(i) p(x, y(r)) = 0 for each r ∈ N and each p ∈ C[X, Y ] with p(a, b) ∈ Pr;
(ii) xi �= 0 (1 ≤ i ≤ m);
(iii) for each r ∈ N and each 1 ≤ j ≤ n, we have y

(r)
j �= 0 whenever bj /∈ Pr;

(iv) |xi| ≤ δ and |y(r)
j | ≤ δ (1 ≤ i ≤ m, 1 ≤ j ≤ n, r ∈ N).

Proof. Without loss of generality, we can assume that a1, . . . , am are distinct. De-
fine Q = {p ∈ C[X, Y ] : p(a, b) ∈ P}, and, for each r ∈ N, define

Qr = {p ∈ C[X, Y ] : p(a, b) ∈ Pr} .

Then Qr ⊂ Q are prime ideals in C[X, Y ]. We also see that {X1, . . . , Xm} is
algebraically independent modulo Q, and hence modulo Qr for each r. Let V and
Vr be the varieties corresponding to Q and Qr, respectively. Then V ⊂ Vr . If
m = 0, then we set U = V and Ur = Vr (r ∈ N); otherwise, let U (respectively, Ur)
be the dense open subset of V (respectively, Vr) specified in Lemma 6.3. For each
r ∈ N, set

Wr =
m⋃

i=1

{(x, y) : xi = 0} ∪
⋃

1≤j≤n, bj /∈Pr

{(x, y) : yj = 0} .

Then Wr is a variety which does not contain Vr, and so Vr \Wr is also a dense open
subset of Vr because Vr is irreducible. Therefore, Ur \ Wr is again a dense open
subset of Vr. Set

∆ = {(x, y) : |xi| < δ (1 ≤ i ≤ m) and |yj | < δ (1 ≤ j ≤ n)} .

Finally, set U ′
r = (Ur \Wr)∩∆ and U ′ = U ∩∆ . Note that the origin 0 is in V and

Vr (r ∈ N). So U ′ (respectively, U ′
r) is a non-empty open subset of V (respectively,

Vr).
Case 1: m = 0. We have x = ∅.
Case 2: m ≥ 1. We have π(U ′) and π(U ′

r) (r ∈ N) are open in CX by Lemma
6.3, where π : CX,Y → CX is the natural projection. Now, since Ur \ Wr is dense
in Vr and U ′ ⊂ V ⊂ Vr, we have π(U ′

r) ∩ π(U ′) is dense (and open) in π(U ′). By
the Baire category theorem, there exists x ∈

⋂∞
r=1 π(U ′

r).
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In both cases, for each r, choose (x, y(r)) ∈ U ′
r. These are the sequences we

need. �

We can now prove the following extension of [9, Theorem 24].

Theorem 6.5. Let A be a commutative algebra. Let (Pα : α ∈ S) be a pseudo-finite
family of non-modular prime ideals in A indexed by a non-empty set S. Then there
exist a cardinal κ, a free ultrafilter U on κ, and, for each α ∈ S, a homomorphism
θα : A → (Cκ/U)◦ such that:

(a) ker θα = Pα (α ∈ S), and
(b) the set {θα(a) : α ∈ S} is finite for each a ∈ A.

Proof. Note that A must be non-unital. Since each Pα is a non-modular prime
ideal in A, it is a prime ideal in A#. If S is finite, set P = A; otherwise, set
P =

⋃
α∈S Pα. In both cases, we have P is a prime ideal in A#.

Let Γ ⊂ A be a transcendence base for A# modulo P . (Note that Γ = ∅ if
P = A.) Then we have alg Γ ∩ P = {0}. Set A0 = alg Γ + P . Then A0 is
a subalgebra of A. We see that each a ∈ A satisfies a polynomial of the form
a0X

m + a1X
m−1 + · · · + am, with a0, . . . , am−1 ∈ alg Γ + C, a0 �= 0, and am ∈ A0.

Let κ be the set of all tuples of the form (δ; F ; a1, . . . , am), where δ > 0, F is a
finite subset of S, and (a1, . . . , am) is a non-empty finite sequence in A. Define a
partial order ≺ on κ by setting

(δ; F ; a1, a2, . . . , am) ≺ (δ′; F ′; a′
1, a

′
2, . . . , a

′
m′)

if δ > δ′, F ⊂ F ′, and (a1, . . . , am) is a subsequence of (a′
1, a

′
2, . . . , a

′
m′). Then

(κ,≺) is a net. Fix an ultrafilter U on κ majorizing this net.
By Lemma 6.4, for each w = (δ; F ; a1, a2, . . . , am) ∈ κ, we can find sequences

τα(w) = (x(α)
1 , x

(α)
2 , . . . , x

(α)
m ) ∈ Cm depending on w (for α ∈ F ) such that:

(i) for each α ∈ F and each p ∈ C[X1, . . . , Xm] with p(a1, . . . , am) ∈ Pα, we
have p(x(α)

1 , . . . , x
(α)
m ) = 0;

(ii) for each α ∈ F and each 1 ≤ k ≤ m with ak /∈ Pα, we have x
(α)
k �= 0;

(iii) |x(α)
k | ≤ δ (1 ≤ k ≤ m , α ∈ F );

(iv) for each 1 ≤ k ≤ m with ak ∈ Γ, we have x
(α)
k = x

(β)
k (α, β ∈ F ).

We then set τα(w) = 0 ∈ Cm for each α ∈ S \ F .
Define ψα : A → Cκ as follows: for each a ∈ A and each

w = (δ; F ; a1, . . . , am) ∈ κ

such that α ∈ F and such that a is in w, say a = ak, then ψα(a)(w) = τα(w)(k);
otherwise, ψα(a)(w) = 0. Note that ψα is well-defined, for, if aj = ak and α ∈ F ,
then aj − ak = 0 ∈ Pα, so that τα(w)(j) = τα(w)(k) by (i). Define θα(a) to be the
equivalence class in Cκ/U containing ψα(a).

Let α ∈ S. By (i), the map θα is an algebra homomorphism and Pα ⊂ ker θα; by
combining this with (ii), we see that ker θα is exactly Pα. By (iii), the image of θα is
contained in (Cκ/U)◦. The requirement (b) is trivially satisfied if S is finite. So, for
the rest of the proof, we shall assume that S is infinite. By (iv), for each a ∈ alg Γ,
the family (θα(a) : α ∈ S) is constant. Combining this with the pseudo-finiteness
of (Pα), we see that, for each a ∈ A0 = alg Γ +

⋃
Pα, the set {θα(a) : α ∈ S} is

finite. The next lemma will complete the proof. �
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Lemma 6.6. Let A, (Pα : α ∈ S), Γ, and A0 be as in the previous theorem. Let D
be a non-unital integral domain. Suppose that we have homomorphisms θα : A → D
such that ker θα ∩ alg Γ = {0} (α ∈ S), and such that, for each a ∈ A0, the set
{θα(a) : α ∈ S} is finite. Then, for each a ∈ A, the set {θα(a) : α ∈ S} is finite.

Proof. Obviously, D# is also an integral domain. Let a ∈ A. Choose elements
a0, . . . , am−1 ∈ alg Γ, x0, . . . , xm−1 ∈ C, and am ∈ A0 with x0 + a0 �= 0 such that

(x0 + a0)am + (x1 + a1)am−1 + · · · + (xm−1 + am−1)a + am = 0 .

Then θα(a) is a root of the following non-zero polynomial:

(x0 + θα(a0))Xm + (x1 + θα(a1))Xm−1 + · · · + (xm−1 + θα(am−1))X + θα(am) .

When we vary α ∈ S, by the assumption, we will only obtain a finite number of
such polynomials. Each such polynomial has at most m roots in D#. So the set
{θα(a) : α ∈ S} is finite. �

Remark. Let λ be any infinite cardinal. Theorem 6.5 can be generalized by replac-
ing pseudo-finiteness of (Pα) with the condition that “for each a ∈

⋃
α∈S Pα, the

cardinality of {α ∈ S : a /∈ Pα} is strictly less than λ”, and replacing (b) with the
requirement that “the cardinality of {θα(a) : α ∈ S} is strictly less than λ for each
a ∈ A”. The above proof carries over with obvious modifications.

Theorem 6.7. Let A be a commutative algebra, and let (Pα : α ∈ S) be a pseudo-
finite family of non-modular prime ideals in A indexed by a non-empty set S. Sup-
pose that ∣∣∣∣∣A

/ ⋂
α∈S

Pα

∣∣∣∣∣ = c .

Then there exist a free ultrafilter V on N and homomorphisms ϕα : A → c 0/V for
each α ∈ S such that:

(a) kerϕα = Pα (α ∈ S), and
(b) the set {ϕα(a) : α ∈ S} is finite for each a ∈ A.

Proof. First we find homomorphisms θα from A into (Cκ/U)◦ for some ultrapower
Cκ/U , as in Theorem 6.5. Let B be the subalgebra of (Cκ/U)◦ generated by all the
images of θα (α ∈ S). Then B is a non-unital integral domain. We also have

|B| =

∣∣∣∣∣ ⋃
α∈S

θα(A)

∣∣∣∣∣ =

∣∣∣∣∣ ⋃
a∈A

{θα(a) : α ∈ S}
∣∣∣∣∣ = c ;

since, for each b ∈ a +
⋂

α∈S Pα, we have

{θα(b) : α ∈ S} = {θα(a) : α ∈ S} .

Let ψ : B → c 0/V be the embedding guaranteed by Theorem 6.1. We can then set
ϕα = ψ ◦ θα for each α ∈ S. �

Remark. For the objective of proving Theorems 7.2 and 7.4 in the next section,
we only need the fact that the algebra B in the previous proof is a non-unital
integral domain of cardinality c, and so can be embedded into some radical Banach
algebra. However, by using Theorem 6.1, we can replace B by c 0/V , which is more
“concrete”, so that the result is (at least theoretically) “nicer”.
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7. Norming commutative semiprime algebras

and the converse of Theorem 4.5

We now aim to generalize the result in [13] mentioned earlier on embedding non-
unital integral domains of cardinality c into (radical) Banach algebras. Specifically,
we seek to construct an algebra norm on A

/ ⋂
Pα, given a commutative algebra A

and a family of non-modular prime ideals Pα indexed by a set S (we are mostly
interested in the case where the index set S is infinite). An “obvious” approach is
to choose, assuming the Continuum Hypothesis as well as some “minor” cardinality
condition, for each α ∈ S, an algebra seminorm pα on A such that ker pα = Pα

(by the mentioned result), and then attempt to define an algebra seminorm p on A
with kernel

⋂
Pα by setting

p(a) = sup
α∈S

pα(a) (a ∈ A).

Unfortunately, unless the index set S is a finite set, the above supremum can well
be infinite. (In fact, when S is infinite, for each a /∈

⋃
Pα, there exists a family

{pα : α ∈ S} such that p(a) = ∞.) However, the finiteness condition can be relaxed,
yet this approach is still applicable if we can find a “nice” family of seminorms.
Indeed, when the family {Pα : α ∈ S} is pseudo-finite, because of the results in
§6, a family of seminorms {pα : α ∈ S} can be chosen such that {pα(a) : α ∈ S} is
only a finite set for each a ∈ A. Before going into details, we need to recall some
definitions.

For the definition of universal algebras, see [6, Definition 5.7.8]. The important
fact that we need is the existence of universal radical Banach algebras. For example,
the integral domain L1(R+, ω) is universal for each radical weight ω bounded near
the origin [6, Theorem 5.7.25]. Indeed, the class of universal commutative radical
Banach algebras has been characterized in [14] (see also [6, Theorem 5.7.28]). We
also need the following theorem from [13] (see also [6, Theorem 5.7.11]); actually,
we only need the particular case of A = c 0/V .

Theorem 7.1 (CH). Let A be a non-unital integral domain of cardinality c, and
let L be a universal algebra. Then A can be embedded into L. �

Let B be a Banach algebra, and let S be an indexing set. Define �∞(S, B) to
be the Banach algebra of all bounded families (bα : α ∈ S) in B under pointwise
algebraic operations and the supremum norm.

Theorem 7.2 (CH). Let A be a commutative algebra, and let (Pα : α ∈ S) be a
pseudo-finite family of non-modular prime ideals in A such that∣∣∣∣∣A

/ ⋂
α∈S

Pα

∣∣∣∣∣ = c .

Then there exist a commutative radical Banach algebra R and a homomorphism
θ : A → R with ker θ =

⋂
α∈S Pα.

Proof. Let ϕα : A → c 0/V (α ∈ S) be the homomorphisms specified in Theorem
6.7 (see also the Remark after that theorem). Fix a universal commutative radical
Banach algebra R0. By Theorem 7.1, there is an embedding ψ : c 0/V → R0.
Consider the following map:

θ : A →
∏
α∈S

R0 , a �→
(
(ψ ◦ ϕα)(a) : α ∈ S

)
.



CONTINUITY IDEALS AND INTERSECTIONS OF PRIME IDEALS 1077

Then θ is a homomorphism with kernel
⋂

Pα. We see, by Theorem 6.7, that the
image of θ is in �∞(S, R0), and indeed is in its radical R. Thus θ : A → R is the
required homomorphism. �

Corollary 7.3 (CH). Let A be a commutative semiprime algebra with |A| = c.
Suppose that {0} is the intersection of a pseudo-finite family of non-modular prime
ideals. Then A is normable.

When the family of prime ideals contains modular ones, the problem cannot
be dealt with as smoothly. This is because a unital normed algebra must have
a character, but there are unital algebras without any character. The situation
becomes more complicated when we have infinitely many modular prime ideals.

The next result is the desired converse of Theorem 4.5.

Theorem 7.4 (CH). Let A be a commutative Banach algebra. Suppose that I =⋂
α∈S Pα, where (Pα : α ∈ S) is a pseudo-finite family of non-closed prime ideals

in A satisfying
|A/I| = c .

Then there exists a commutative Banach algebra B and a homomorphism θ : A → B
with I(θ) = ker θ = I. In the case where all the Pα are non-modular, we can choose
B to be radical.

In the case where the family (Pα : α ∈ S) is intersection non-redundant, the ideal
I cannot be represented as an intersection of strictly fewer than |S| prime ideals in
A.

Proof. Fix a universal commutative radical Banach algebra R0 such that R0 is
an integral domain. Note that, for each α ∈ S, either Pα is non-modular or Pα

is modular and contained in the kernel of a character of A. So, in both cases,
by Theorem 7.1, A/Pα can be embedded in R#

0 (and even in R0 if Pα is non-
modular). Therefore, for each finite number of prime ideals Pαk

(1 ≤ k ≤ n), there
is a homomorphism from A into

∏n
k=1 R#

0 with kernel
⋂n

k=1 Pαk
. We now consider

the case where S is infinite. In this case, we see that P =
⋃

α∈S Pα is either a prime
ideal in A, or A itself.

Case 1: P = A. For each Pα, there is a homomorphism θα from A into R#
0 (into

R0 if Pα is non-modular) with kernel Pα. Define

θ : A →
∏
α∈S

R#
0 , a �→ (θα(a)) .

It is easily seen that the image of θ is contained in �∞(S, R#
0 ), even in the radical

of �∞(S, R0) if all Pα are non-modular.
Case 2: P is a non-modular prime ideal in A. Then each Pα is non-modular.

So, by Theorem 7.2, there exists a homomorphism θ : A → R with ker θ = I, where
R is the radical of �∞(S, R0).

Case 3: P is a modular prime ideal in A. Let u ∈ A be a modular identity for
P . Choose a /∈ P . Then (1−u)a ∈ P , so (1−u)a ∈ Pα for all except finitely many
α ∈ S. For these exceptional indices α we can proceed as in the first paragraph of
the proof, so that we can suppose that (1 − u)a ∈ Pα (α ∈ S). Since each Pα is
a prime ideal, we see that u is a (common) modular identity for all the Pα. Thus
u is a modular identity for I. Let M be a maximal modular ideal in A containing
P . Then M has codimension 1, that is A = Cu ⊕ M . Since P and each Pα are
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non-modular in M , by either Cases 1 or 2 above, there is a homomorphism from M
into �∞(S, R0) with kernel I. We can then extend this to a homomorphism from A

into �∞(S, R#
0 ) by sending u to 1 = (1, 1, . . .).

Thus, in each case, we can find a homomorphism

θ : A → �∞(S, R#
0 ) , a �→ (θα(a) : α ∈ S) ,

where θα : A → R#
0 is a homomorphism with kernel Pα (n ∈ N). Fix a ∈ I(θ)

and α ∈ S. Then a is also in the continuity ideal of θα. The map θα has kernel
Pα, which is not closed, and so θα is discontinuous. Therefore S(θα) �= {0}. Since
θα(a)S(θα) = {0} and R#

0 is an integral domain, we must have θα(a) = 0. Thus,
I(θ) ⊂ Pα (α ∈ S), and hence I(θ) ⊂ I = ker θ ⊂ I(θ).

The last assertion follows from Lemma 3.5. �

Remark. Let A be a commutative algebra, and let (Pα : α ∈ S) be a family of
prime ideals in A which is pseudo-finite and intersection non-redundant. Suppose
that we have ∣∣∣∣∣A

/ ⋂
α∈S

Pα

∣∣∣∣∣ = c .

Then we must have |S| ≤ c, and with the Continuum Hypothesis there are three
possibilities left for the set S: either S is a finite set or |S| = ℵ0 or |S| = ℵ1.

Example 7.5 (Example 3.7 revisited, with CH). Let FS and Qα (α ∈ S) as in
Example 3.7. Suppose that |S| is either ℵ0 or ℵ1. Then |FS | = c. Thus, by
Corollary 7.3, the semiprime algebra FS

/⋂
α∈S Qα, which is a priori without any

obvious algebra norm, is normable.

Example 7.6 (Example 3.8 revisited, with CH). Let AS and Pα (α ∈ S) be as in
Example 3.8. Suppose that |S| ≤ c. Applying Theorem 7.4, we can find a homo-
morphism from the commutative Banach algebra AS into another Banach algebra
whose continuity ideal is

⋂
α∈S Pα, which is an intersection of |S| prime ideals but

not fewer. Thus, we have an example of a homomorphism whose continuity ideal
is a semiprime ideal but not a finite intersection of prime ideals, in the case where
|S| is either ℵ0 or ℵ1.

8. The case C0(Ω): Positive results

In this section, we shall consider two classes of spaces Ω for which Questions A
and B have a positive answer. First, applying the results of previous sections, we
have the following reduction.

Theorem 8.1. Let Ω be a non-compact locally compact space.
(i) Let θ be a homomorphism from C0(Ω) into a radical Banach algebra R.

Then either ker θ is a finite intersection of non-modular prime ideals in
C0(Ω), or C0(Ω) contains an intersection non-redundant pseudo-finite se-
quence of non-modular prime ideals.

(ii) (CH) Suppose that (Pn) is an intersection non-redundant pseudo-finite
sequence of non-modular prime ideals in C0(Ω). Suppose further that∣∣∣∣∣C0(Ω)

/ ∞⋂
n=1

Pn

∣∣∣∣∣ = c.
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Then there exists a homomorphism from C0(Ω) into a commutative radical
Banach algebra with kernel

⋂∞
n=1 Pn, which is not a finite intersection of

prime ideals.

Proof. (i) Since θ maps into a radical algebra, we see that ker θ:f is non-modular
for each f ∈ C0(Ω). The result then follows from Theorems 4.5 and 1.1.

(ii) This is a special case of Theorem 7.2. �

Remark.
1. A similar result for Question B follows from Theorems 4.5, 1.1(iv), and 7.4.
2. Let I be the kernel (respectively, the continuity ideal) of a homomorphism

from C0(Ω) into a radical Banach algebra (respectively, a Banach algebra). Denote
by P the set of prime ideals of the form I:f for some f ∈ C0(Ω). With a little more
effort, we can show, in this case, that each sequence of distinct prime ideals in P

contains an intersection non-redundant pseudo-finite subsequence. So, although P

is not always finite (as we shall see), it does have a “compactness type” property.

Lemma 8.2. Let Ω be a locally compact space. Let (Pα : α ∈ S) be a pseudo-finite
family of prime ideals in C0(Ω). Then

⋃
α∈S Pα �= C0(Ω). Furthermore, if S is

infinite, then
⋃

α∈S Pα is a prime ideal.

Proof. Suppose first that S is infinite. Choose distinct elements αn (n ∈ N) in S.
For each n ∈ N, choose fn /∈ Pαn

; we can further suppose that

0 ≤ fn(p) ≤ 1
2n

(p ∈ Ω).

Set f =
∑∞

n=1 fn. Then f ∈ C0(Ω), but f /∈ Pαn
because f ≥ fn (n ∈ N). By

pseudo-finiteness of (Pα), we must have f /∈
⋃

α∈S Pα. Hence
⋃

α∈S Pα �= C0(Ω).
The case where S is finite can be proved similarly. �

We have seen that our questions can be translated into an algebraic question of
the structure of the algebra in consideration (subject to the Continuum Hypothesis
in one of the directions). We now explain how Question A (and B) on C0(Ω) depends
purely on the topological property of the underlying space Ω.

Note that, for a pseudo-finite sequence of prime z-filters (Fn), the union
⋃∞

n=1 Fn

is again a prime z-filter, and also that (Z−1[Fn]) is a pseudo-finite sequence of prime
z-ideals in C(Ω).

Lemma 8.3. Let Ω be a locally compact space. Let (Fn) be a pseudo-finite sequence
of prime z-filters on Ω. Then the following are equivalent:

(a) (Fn) is intersection non-redundant;
(b) Fm �⊂ Fn (m �= n ∈ N);
(c)

⋂
n�=m Fn �⊂ Fm for each m ∈ N.

Proof. The proof is the same as that of Lemma 3.4. �

By Lemmas 3.9, 3.10, and 8.2, we see that the question of the existence of
an intersection non-redundant pseudo-finite sequence of prime ideals for C0(Ω) is
equivalent to the same question for C(Ω�). Thus, we can pass freely between Ω and
the compact space Ω�.

Let Ω be a locally compact space, and let E be a closed subset of Ω. We define

IE = {f ∈ C0(Ω) : E ⊂ Z(f)} .
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Lemma 8.4. Let Ω be a compact space. Then the following are equivalent:
(a) there exists an intersection non-redundant pseudo-finite sequence of prime

ideals (Pn) in C(Ω);
(b) there exists an intersection non-redundant pseudo-finite sequence of prime

z-filters (Fn) on Ω;
(c) there exists an intersection non-redundant pseudo-finite sequence of prime

z-ideals (Qn) in C(Ω).

Proof. Obviously (b)⇔(c)⇒(a).
Now, we shall prove that (a)⇒(b). For each n ∈ N, set

Fn = {Z ∈ Z[Ω] : IZ ⊂ Pn} .

Then Fn is a prime z-filter (by [9, Theorem 4.22]).
Let Z ∈ Z[Ω]. Suppose that Z /∈ Fni

, for some (increasing) sequence (ni). For
each i ∈ N, choose fi ∈ IZ \ Pni

; we can further suppose that 0 ≤ fi ≤ 1/2i.
Define f =

∑∞
i=1 fi. Then f ∈ IZ , but f /∈ Pni

, since f ≥ fi (i ∈ N). By the
pseudo-finiteness of (Pn), we must have f /∈ Pn (n ∈ N). So Z /∈ Fn (n ∈ N). This
proves the pseudo-finiteness of (Fn).

Now assume toward a contradiction that Fn0 ⊂ Fm0 for some n0 �= m0. Then

Q := Z−1[Fn0 ] ⊂ Z−1[Fm0 ] ⊂ Pm0 .

Also we have Q ⊂ Pn0 . Since Q is a prime ideal in C(Ω), it follows that either
Pm0 ⊂ Pn0 or Pn0 ⊂ Pm0 , contradicting the intersection non-redundancy of (Pn).
Hence Fn �⊂ Fm (n �= m ∈ N). By Lemma 8.3, we conclude that (Fn) is intersection
non-redundant. �

Let Ω be a locally compact space. Suppose that (Pn) is a pseudo-finite sequence
of prime ideals in C0(Ω). Then P =

⋃∞
n=1 Pn is again a prime ideal. Let p ∈ Ω� be

the unique support point for P . Then p is also the support point for each Pn, and
so we have

Jp ⊂ Pn ⊂ P ⊂ Mp (n ∈ N).

Proposition 8.5. Let Ω be a locally compact space satisfying one of the following
conditions:

(i) βΩ is an F-space, or
(ii) β(Ω \ {p}) is an F-space for each non-P-point p in Ω�.

Then C0(Ω) contains no intersection non-redundant pseudo-finite sequence of prime
ideals.

Proof. Assume toward a contradiction that C0(Ω) contains an intersection non-
redundant pseudo-finite sequence of prime ideals (Pn).

(i) Since C0(Ω) is an ideal in C(βΩ), by Lemmas 3.9 and 8.2, we can find an
intersection non-redundant pseudo-finite sequence (Qn) of prime ideals in C(βΩ).
As in the paragraph preceding this proposition, we see that Qn (n ∈ N) contains
JβΩ

p for some p ∈ βΩ. Since βΩ is an F-space, it follows that JβΩ
p is a prime ideal

(see, for example, [6, Proposition 4.2.18]), and so (Qn), ordered by inclusion, must
be a chain. This contradicts the intersection non-redundancy of (Qn).

(ii) Again, we have seen that, for some p ∈ Ω�,

JΩ
p ⊂ Pn ⊂ MΩ

p (n ∈ N).
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If p is a P-point in Ω�, then JΩ
p = MΩ

p . So Pn = JΩ
p (n ∈ N), contradicting the

intersection non-redundancy of (Pn). Hence p is a non-P-point in Ω�. The ideal
MΩ

p can be naturally identified with C0(Ω \ {p}). The desired contradiction then
follows from (i). �

Combining Theorems 1.1(iv), 4.5, and Proposition 8.5, we obtain the following
theorem of [10].

Theorem 8.6. Let Ω be a locally compact space satisfying the hypothesis of Proposi-
tion 8.5. Then the continuity ideal of each homomorphism from C0(Ω) into another
Banach algebra is always a finite intersection of prime ideals.

Next, we consider another class of locally compact spaces.

Proposition 8.7. Let Ω be a compact space. Suppose that p ∈ Ω \ ∂(∞)Ω. Then
C(Ω) does not contain an intersection non-redundant pseudo-finite sequence of prime
ideals such that each Pn is supported at the point p.

Proof. In the case where Ω has a finite limit level, let l ∈ N be such that ∂(l)Ω = ∅.
For each j ∈ Z with 0 ≤ j ≤ l, set Ij = I∂(j)Ω . Note that I0 = {0} and Il = C0(Ω).
We see that, for each j, Ij/Ij−1 is isomorphic to C0(Uj), where Uj = ∂(j−1)Ω\∂(j)Ω
is discrete and so satisfies condition (i) of Proposition 8.5. Thus each algebra
Ij/Ij−1 does not contain an intersection non-redundant pseudo-finite sequence of
prime ideals, and, applying Lemma 3.10 inductively, we deduce that neither does
Il = C0(Ω). The result holds in this case.

In general, assume toward a contradiction that C(Ω) contains an intersection
non-redundant pseudo-finite sequence (Pn) of prime ideals such that each ideal is
supported at p. Let K be a compact neighbourhood of p such that K ∩∂(∞)Ω = ∅.
Then, since IK ⊂ Jp ⊂ Pn (n ∈ N), we see that C(Ω)/IK , which is isomorphic
to C(K), contains an intersection non-redundant pseudo-finite sequence of prime
ideals. However, K has a finite limit level, thus contradicting the previously proved
case. �

Theorem 8.8. Let Ω be a locally compact space. Denote by p the point adjoined
to Ω to obtain Ω�.

(i) Suppose that p /∈ ∂(∞)(Ω�). Then the kernel of each homomorphism from
C0(Ω) into a radical Banach algebra is a finite intersection of non-modular
prime ideals.

(ii) Suppose that Ω� has finite limit level (i.e., ∂(∞)(Ω�) = ∅). Then each
homomorphism from C0(Ω) into a Banach algebra is continuous on a finite
intersection of prime ideals.

Proof. This follows from Theorem 8.1(i) and Proposition 8.7; see also the remark
after Theorem 8.1. �

9. The case C0(Ω): Negative results

In this section, we show that, in the class of locally compact metrizable spaces,
the only spaces for which the answer to Questions A and B is positive are those
which satisfy the hypothesis of Theorem 8.8.

First, we define two “prototype” spaces Ξ0 and Ξ1. Denote by ∞ the point
adjoined to N to obtain its one-point compactification N�. The product space (N�)N
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is a compact metrizable space. For abbreviation, we shall write (n1, n2, . . . , nk)
instead of (n1, n2, . . . , nk,∞,∞, . . .), where n1, . . . , nk ∈ N�. Define Ξ0 to be the
subset of (N�)N of all elements of the form (n1, n2, . . . , nk), where k ∈ Z+ and
n1, n2, . . . , nk ∈ N are such that k ≤ n1 < n2 < · · · < nk. Define Ξ1 to be the
subset of (N�)N of all elements that can be written in the (not necessarily unique)
abbreviated form as (n1, n2, . . . , nk), where k ∈ Z+ and n1, n2, . . . , nk ∈ N� are
such that ni ≥ k (1 ≤ i ≤ k).

Lemma 9.1. (i) The sets Ξ0 ⊂ Ξ1 are countable compact subspaces of (N�)N.
(ii) There exists a continuous embedding of Ξ1 into Ξ0; it follows automatically

that the point (∞,∞, . . .) is mapped to itself.

Proof. Part (i) is routine.
We now prove part (ii). First, we see that the space Ξ0 is homeomorphic to the

subspace

∆ := {0} ∪
{

k∑
i=1

2−ni : k, n1, n2, . . . , nk ∈ N and k ≤ n1 < · · · < nk

}
of [0, 1]. Next, for each i ∈ N, choose an increasing sequence (rij : j ∈ N) in N

such that these sequences are pairwise disjoint; furthermore, we can suppose that
rij ≥ j (i, j ∈ N). For convenience, for each i ∈ N, set ri∞ = ∞. Also, our
convention is that 2−∞ = 0. Define a map τ from Ξ1 into [0, 1] as follows: for each
(n1, n2, . . .) ∈ Ξ1, set

τ (n1, n2, . . .) =
∞∑

i=1

2−rini .

We see that τ is well-defined, injective and continuous. It can be checked that τ
actually maps Ξ1 into ∆. The result then follows. �

Lemma 9.2. Let Ω be a locally compact metrizable space. Suppose that there exists
a point p ∈ ∂(∞)(Ω�). Then there exists a continuous embedding ι : Ξ1 ↪→ Ω� such
that ι(∞,∞, . . .) = p.

Remark. It follows that Ξ1 is homeomorphic to the subspace ι(Ξ1) of Ω�.

Proof of Lemma 9.2. Fix a metric on Ω. In this proof, we shall denote by Bx an
open ball in Ω centered at a point x ∈ Ω with some positive radius, whose exact
value is not important for our purpose. We first aim to embed Ξ0 into Ω�.

We claim that there exists a sequence (ι1(n)) of distinct elements in Ω\{p} such
that limn→∞ ι1(n) = p and that ι1(n) ∈ ∂(n−1)(Ω�) (n ∈ N). The proof of this is
divided into the three following cases:

Case 1: p ∈ Ω. Since Ω is metrizable and p ∈ ∂(∞)(Ω�), this case is obvious.
Case 2: p is the point adjoined to Ω to obtain Ω�, and p is a limit point of

∂(∞)(Ω�). Then, since Ω ∩ ∂(∞)(Ω�) is non-compact and metrizable, it is not se-
quentially compact. Choose a sequence (ι1(n)) with no convergent subsequences in
Ω ∩ ∂(∞)(Ω�). Then limn→∞ ι1(n) = p in Ω�.

Case 3: p is the point adjoined to Ω to obtain Ω�, and p is an isolated point in
∂(∞)(Ω�). Choose a compact neighbourhood K of p such that K ∩∂(∞)(Ω�) = {p}.
We see that ∂(∞)K = {p}. For each n ∈ N, we choose an element

ι1(n) ∈ ∂(n−1)K \ {p} ⊂ Ω ∩ ∂(n−1)(Ω�).
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Then each limit point of {ι1(n) : n ∈ N} must be in
⋂

∂(n)K = ∂(∞)K. Therefore
we deduce that limn→∞ ι1(n) = p.

Thus the claim holds.
Now we choose a sequence of pairwise disjoint balls (Bι1(n)) such that each Bι1(n)

has radius at most 2−n and does not contain p. We observe that if, for each n ∈ N,
we choose xn ∈ Bι1(n), then we still have lim xn = p.

Let k ∈ N. Assuming that, for each n1, n2, . . . , nk ∈ N with n1 ≥ k, we already
have a ball

Bι1(n1,...,nk) with ι1(n1, . . . , nk) ∈ ∂(n1−k)Ω.

We continue the construction inductively as follows. If n1 > k, then, for each
n ∈ N, we can choose a ball Bι1(n1,...,nk,n) contained in Bι1(n1,...,nk), not contain-
ing ι1(n1, . . . , nk), and whose center is of distance less than 2−n from the point
ι1(n1, . . . , nk), such that all these new balls are disjoint; furthermore, we can as-
sume that all the new points

ι1(n1, . . . , nk, n) ∈ ∂(n1−k−1)Ω (n ∈ N).

Finally, set ι1(∞,∞, . . .) = p.
Obviously, Ξ0 is contained in the domain of definition of ι1. Consider the re-

striction ι2 : Ξ0 → Ω of ι1. We see that ι2 is injective and continuous. The result
then follows by applying Lemma 9.1. �

Let Ω be a compact space, and let F be a prime z-filter on Ω. Then we say that
F is supported at a point p if p ∈ Z for each Z ∈ F . There always exists a unique
support point for each prime z-filter (on a compact space).

Lemma 9.3. There exists an intersection non-redundant pseudo-finite sequence of
prime z-filters on Ξ1 such that each z-filter is supported at the point (∞,∞, . . .).

Proof. For each n ∈ N, define fn ∈ C(Ξ1) by setting fn(j1, j2, . . .) = 2−jn for each
(j1, j2, . . .) ∈ Ξ1. Thus

Z(fn) = {(j1, j2, . . .) ∈ Ξ1 : jn = ∞} .

Let F to be the z-filter generated by all Z(fmfn) (m, n ∈ N, m �= n). Then define
I = Z−1[F ]. We claim that I is extendible with respect to (fn) (see Definition
3.11).

Obviously, fmfn ∈ I (m �= n). We see that Z(fk
n) = Z(fn) /∈ F , and so fk

n /∈ I
(n, k ∈ N). Now suppose that g ∈ C(Ξ1) such that gfk0

n0
∈ I for some n0, k0 ∈ N.

Then Z(g)∪Z(fn0) ∈ F . Therefore, there exist n1, n2, . . . , nk ∈ N \ {n0} such that

Z(g) ∪ Z(fn0) ⊃
k⋂

i=1

Z(fni
).

This and the closedness of Z(g) imply that

Z(g) ⊃
k⋂

i=1

Z(fni
) \ Z(fn0) ⊃

N⋂
i=1

Z(fi) ,

where N = max {n0, n1, . . . , nk}. So, for each n ≥ N + 1, we have gfn ∈ I. Hence
the claim holds.

The proof is completed by applying Proposition 3.12 and Lemma 8.4. �
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Remark. We can prove a result on constructing pseudo-finite sequence of prime
z-filters similar to Proposition 3.12, and then use it directly in the previous proof,
so that we do not need to refer to Lemma 8.4.

Recall that when p is the point adjoined to Ω to obtain Ω�, a prime ideal P in
C0(Ω) is supported at p means that P is non-modular.

Proposition 9.4. Let Ω be a locally compact metrizable space. Suppose that p ∈
∂(∞)(Ω�). Then there exists an intersection non-redundant pseudo-finite sequence
(Fn) of prime z-filters on Ω�, where each z-filter is supported at p. Moreover, by
setting Pn = C0(Ω) ∩ Z−1

Ω� [Fn], we obtain an intersection non-redundant pseudo-
finite sequence of prime ideals in C0(Ω), each of which is supported at p, such that∣∣∣∣∣C0(Ω)

/ ∞⋂
n=1

Pn

∣∣∣∣∣ = c.

Proof. This follows from Lemmas 9.2, 9.3, 8.4 and the fact that |C(Ξ1)| = c. �

The next theorem and its corollaries provide the negative answer to Questions
A and B.

Theorem 9.5 (CH). Let Ω be a locally compact metrizable space. Denote by p the
point adjoined to Ω to obtain Ω�.

(i) Suppose that p ∈ ∂(∞)(Ω�). Then there exists a homomorphism θ from
C0(Ω) into a radical Banach algebra such that the kernel of θ is not a finite
intersection of prime ideals.

(ii) Suppose that Ω� has an infinite limit level (i.e., ∂(∞)(Ω�) �= ∅). Then there
exists a homomorphism θ from C0(Ω) into a Banach algebra such that the
continuity ideal of θ is not a finite intersection of prime ideals.

Proof. This follows from Proposition 9.4 and Theorem 7.4. �

Note that each uncountable compact metrizable space Ω has an infinite limit
level. For example, this is the case for the closed unit interval [0, 1].

Corollary 9.6 (CH). There exists a homomorphism θ from C0(R) into a radical
Banach algebra such that the kernel of θ is not a finite intersection of prime ideals.

There are many countable compact metrizable spaces with infinite limit level.
We note down the following specific example. Recall that in the proof of Lemma
9.1, we define the following countable compact subset of [0, 1]:

∆ = {0} ∪
{

k∑
i=1

2−ni : k, n1, n2, . . . , nk ∈ N and k ≤ n1 < · · · < nk

}
.

Corollary 9.7 (CH). There exists a homomorphism θ from C0(∆ \ {0}) into a
radical Banach algebra such that the kernel of θ is not a finite intersection of prime
ideals.

10. Locally compact groups

In this final section, we consider the algebra C0(G) for a locally compact group
G.
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Lemma 10.1. Let G be a non-discrete locally compact group satisfying either one
of the following conditions:

(i) G is Abelian, or
(ii) G is not totally disconnected.

Then G contains a non-discrete metrizable closed subgroup.

Proof. For the case where G is both compact and Abelian, see [22, Theorem 7].
In the case where G is totally disconnected and Abelian, by [16, Theorem 7.7],

G contains a compact open subgroup. The result then follows from the previous
case.

We now suppose that G is not totally disconnected. Let G1 be the connected
component of the identity e of G. Then G1 is a non-discrete closed normal subgroup
of G. By Iwasawa structure theorem ([21, p. 118]), G1 contains a closed subgroup
homeomorphic to Rn for some n ∈ Z+ and a compact subgroup K such that G1 is
homeomorphic to Rn × K. If n > 0, then we are done.

Now suppose that n = 0, i.e., G1 is compact. (In this case, for the purpose of
proving the next lemma, we note that G1 is contained in an open compact subgroup
of G.) Let G2 be a maximal connected Abelian subgroup of G1. Then G2 is closed,
and, by [17, Theorem 9.32], G2 is maximal among the Abelian subgroup of G1.
Therefore G2 �= {e}. The result, again, follows from the first case. �

Lemma 10.2. Let G be a non-discrete locally compact group. Then G contains a
metrizable closed subset Ω such that Ω has no isolated point. If, furthermore, G is
non-compact, then Ω can be further required to be non-compact either.

Proof. For the first assertion, by Lemma 10.1(ii), we only need to consider the case
where G is totally disconnected. In this case, by [16, Theorems 7.7 and 9.15], G
contains a compact open subgroup, where each such subgroup is homeomorphic to
a space {0, 1}κ for some infinite cardinal κ, and, in turn, each such space contains
a copy of the Cantor set.

For the second assertion, we see that, in each case where our previously con-
structed set Ω is compact, Ω is contained in a compact open subgroup, say H, of
G. In these cases, since G is non-compact, we can choose a sequence (xn) in G
such that xnH (n ∈ N) are distinct elements of G/H; we can then replace Ω by⋃∞

n=1 xnΩ. �

Proposition 10.3. Let G be a non-discrete locally compact group. Then there
exists an intersection non-redundant pseudo-finite sequence of prime z-filters (Fn)
on G�. Furthermore, if G is non-compact, we can require each Fn to be supported
at the adjoined point (the point at infinity).

Proof. This follows from Proposition 9.4 and Lemma 10.2. �

Theorem 10.4. Let G be a non-discrete locally compact group. Then:
(i) there exists an intersection non-redundant pseudo-finite sequence of prime

ideals (Pn) in C0(G) with |C0(G)/
⋂∞

n=1 Pn| = c;
(ii) (CH) there exists a homomorphism θ from C0(G) into another Banach

algebra such that the continuity ideal of θ is not a finite intersection of
prime ideals.

Proof. These follow from Proposition 10.3 and Theorem 7.4. �
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Theorem 10.5. Let G be a non-discrete non-compact locally compact group. Then:
(i) there exists an intersection non-redundant pseudo-finite sequence of non-

modular prime ideals (Pn) in C0(G) with |C0(G)/
⋂∞

n=1 Pn| = c;
(ii) (CH) there exists a homomorphism θ from C0(G) into a radical Banach

algebra such that the kernel of θ is not a finite intersection of prime ideals.

Proof. These follow from Proposition 10.3 and Theorem 8.1. �

For each locally compact Abelian group G, denote by Ĝ its dual group. For each
f ∈ L1(G), denote by f̂ the Fourier transform of f . Then

f �→ f̂ , L1(G) → C0(Ĝ),

is a continuous homomorphism.

Lemma 10.6. Let G be a locally compact Abelian group. Let E be a closed subset
of Ĝ and let K be a σ-compact subset of Ĝ such that E ∩K = ∅. Then there exists
f ∈ L1(G) such that f̂ = 0 on E but f̂ never vanishes on K.

Proof. Let K =
⋃∞

n=1 Kn, where each Kn is compact. By [6, Lemma 4.5.16],
for each n ∈ N, we can find fn ∈ L1(G) such that f̂n = 0 on E, such that f̂n

never vanishes on Kn, and such that f̂n ≥ 0 on Ĝ. We can further suppose that
‖fn‖1 ≤ 2−n. Set f =

∑∞
n=1 fn. Then f ∈ L1(G) is the desired function. �

Theorem 10.7. Let G be a non-compact locally compact Abelian group. Then:
(i) there exists an intersection non-redundant pseudo-finite sequence of prime

ideals (Pn) in L1(G) with
∣∣L1(G)/

⋂∞
n=1 Pn

∣∣ = c;
(ii) (CH) there exists a homomorphism θ from L1(G) into another Banach

algebra such that I(θ) = ker θ is a semiprime ideal but not a finite inter-
section of prime ideals.

Proof. Since G is non-compact, the dual Ĝ is non-discrete. Let (Fn) be an inter-
section non-redundant pseudo-finite sequence of prime z-filters on Ĝ� as specified
in Proposition 10.3. For each n ∈ N, set Qn = C0(Ĝ) ∩ Z−1

Ĝ�
[Fn]. Then (Qn) is an

intersection non-redundant pseudo-finite sequence of prime ideals in C0(Ĝ).
Denote by p the point adjoined to Ĝ to obtain Ĝ�. We see that, for each n ∈ N,

Qn =
{
h ∈ C0(Ĝ) : ZĜ(h) ∪ {p} ∈ Fn

}
.

Define, for each n ∈ N,

Pn =
{
f ∈ L1(G) : f̂ ∈ Qn

}
=

{
f ∈ L1(G) : ZĜ(f̂) ∪ {p} ∈ Fn

}
;

we obtain a pseudo-finite sequence (Pn) of prime ideals in L1(G).
For each n ∈ N, choose gn ∈

⋂
i �=n Qi \ Qn. By Lemma 10.6, there exists

fn ∈ L1(G) such that ZĜ(f̂n) = ZĜ(gn). Then we see that fn ∈
⋂

i �=n Pi \ Pn

(n ∈ N). Hence (Pn) is intersection non-redundant. The cardinality statement is
obvious from the construction.

Part (ii) then follows from Theorem 7.4. �
Remark. In the preceding proof, by Lemma 10.6, if the ideal Qn is non-modular,
then so is the ideal Pn. Therefore, if, furthermore, the topology on G is non-
discrete, then we can further require each Pn to be non-modular and the range of
the homomorphism θ to be radical.
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For each discrete space G, there exists no intersection non-redundant pseudo-
finite sequence of prime ideals in C0(G). However, this does not answer the follow-
ing.

Question 10.8. Does there exist an intersection non-redundant pseudo-finite se-
quence of prime ideals in L1(G), for each compact Abelian group G?
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