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LINEAR DIFFERENTIAL EQUATIONS WITH COEFFICIENTS
IN WEIGHTED BERGMAN AND HARDY SPACES

JANNE HEITTOKANGAS, RISTO KORHONEN, AND JOUNI RÄTTYÄ

Abstract. Complex linear differential equations of the form

(†) f (k) + ak−1(z)f (k−1) + · · · + a1(z)f ′ + a0(z)f = 0

with coefficients in weighted Bergman or Hardy spaces are studied. It is shown,
for example, that if the coefficient aj(z) of (†) belongs to the weighted Bergman

space A
1

k−j
α , where α ≥ 0, for all j = 0, . . . , k−1, then all solutions are of order

of growth at most α, measured according to the Nevanlinna characteristic. In
the case when α = 0 all solutions are shown to be not only of order of growth
zero, but of bounded characteristic. Conversely, if all solutions are of order of

growth at most α ≥ 0, then the coefficient aj(z) is shown to belong to A
pj
α for

all pj ∈ (0, 1
k−j

) and j = 0, . . . , k − 1.

Analogous results, when the coefficients belong to certain weighted Hardy
spaces, are obtained. The non-homogeneous equation associated to (†) is also
briefly discussed.

1. Introduction

One way of classifying the growth of the solutions of

(1.1) f (k) + ak−1(z)f (k−1) + · · · + a1(z)f ′ + a0(z)f = 0,

where the coefficients are analytic in a complex domain, is by means of Nevanlinna
theory [17]. H. Wittich considered the case where the coefficients, and hence the
solutions, are entire functions.

Theorem A ([22], Satz 1). The coefficients a0(z), . . . , ak−1(z) in (1.1) are poly-
nomials in the complex plane if and only if all solutions of (1.1) are entire and of
finite order of growth.

The order of growth of a meromorphic function f in the complex plane is defined
by

σ = σ(f) = lim sup
r→∞

log T (r, f)
log r

,

where T (r, f) denotes the Nevanlinna characteristic of f .
The growth relation between the coefficients and the solutions of linear differen-

tial equations in the complex plane has been studied in more detail, for instance,
in [6, 7, 8].
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The first author proved an analogous result to Theorem A in the unit disc D.

Theorem B ([10], Theorem 6.1). The coefficients a0(z), . . . , ak−1(z) in (1.1) are
H-functions if and only if all solutions of (1.1) are analytic in D and of finite order
of growth.

A function f , analytic in D, is an H-function if there exists a q ∈ [0,∞) such
that

sup
z∈D

|f(z)|(1 − |z|2)q < ∞.

The space A−∞, introduced by B. Korenblum [15], coincides with the space of all
H-functions. The order of growth of a meromorphic function f in D is defined by

ρ = ρ(f) = lim sup
r→1−

log+ T (r, f)
− log(1 − r)

.

The necessary part of Theorem B can also be found in [1] since the space U
defined in [1] coincides with the space of all H-functions; see Section 5. Further
studies on the growth of analytic solutions of (1.1) in D can be found in [3, 14, 16].

Chr. Pommerenke found a sufficient condition for the coefficient a(z) such that
all solutions of

(1.2) f ′′ + a(z)f = 0

belong to the Nevanlinna class N , the meromorphic functions of bounded charac-
teristic in D.

Theorem C ([18], Theorem 5). Let the coefficient a(z) of (1.2) be analytic in D
satisfying

(1.3)
∫

D

|a(z)|
1
2 dσz < ∞.

Then all solutions of (1.2) belong to N .

The element of the Lebesgue area measure on D is denoted by dσz.
A sufficient condition for the coefficient a(z) implying that all solutions of

(1.4) f (k) + a(z)f = 0

belong to the Nevanlinna class N was found by the first author.

Theorem D ([10], Theorem 4.5). Let the coefficient a(z) of (1.4) be analytic in
D satisfying

(1.5)
∫

D

|a(z)|(1 − |z|)k−1 dσz < ∞.

Then all solutions of (1.4) belong to N .

For 0 < p < ∞ and −1 < α < ∞, the weighted Bergman space Ap
α consists of

those functions f , analytic in D, for which

‖f‖Ap
α

=
(∫

D

|f(z)|p(1 − |z|2)α dσz

) 1
p

< ∞.

The classical Bergman space Ap is Ap
0. See [5] and [9] for the theory of Bergman

spaces.
Theorems C and D may be stated in terms of weighted Bergman spaces.
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Theorem C′. If a ∈ A
1
2 , then all solutions of (1.2) belong to N .

Theorem D′. If a ∈ A1
k−1, then all solutions of (1.4) belong to N .

The purpose of this paper is to study the growth relation between the coefficients
and the solutions of (1.1) in D. The following two problems are studied:

(1) Suppose that, for every j = 0, . . . , k−1, the coefficient aj(z) of (1.1) belongs
to a certain analytic function space depending on j. Find the function space
or spaces to which all solutions of (1.1) belong.

(2) Suppose that all solutions of (1.1) belong to a certain analytic function
space. Find the function space or spaces to which the coefficient aj(z),
j = 0, . . . , k − 1, of (1.1) belongs.

Problems (1) and (2) above are hereafter referred to as the direct problem and the
inverse problem, respectively.

The main strategy is to first find a suitable set of conditions for the coefficients
in (1.1) which force all solutions to belong to a targeted function space. These
targeted spaces include the classes N and F , and the ring of all analytic functions
of order of growth at most α ≥ 0. The class F of non-admissible meromorphic
functions in D consists of those functions f for which

lim sup
r→1−

T (r, f)
− log(1 − r)

< ∞.

The second step is to assume conversely that all solutions belong to one of these
targeted spaces, and to study what restrictions this induces on the coefficients.
Ideally one would return to the same set of conditions where one started from, as
is the case in Theorems A and B. The situation is, however, more complex as
examples in Section 5 show.

Table 1. Summary of some of the main results. Here f denotes
the generic solution of (1.1), α ≥ 0, and j = 0, . . . , k − 1.

Direct Problem Inverse Problem
Assumption Result Assumption Result

aj ∈ A
1

k−j f ∈ N f ∈ N aj ∈
⋂

0<p< 1
k−j

Ap

aj ∈ H
1

k−j

k−j f ∈ F f ∈ F aj ∈
⋂

0<p< 1
k−j

Hp
1
p

aj ∈ A
1

k−j
α ρ(f) ≤ α ρ(f) ≤ α aj ∈

⋂
0<p< 1

k−j

Ap
α

aj ∈ H
1

k−j

(α+1)(k−j) ρ(f) ≤ α ρ(f) ≤ α aj ∈
⋂

0<p< 1
k−j

Hp
α+1

p

For 0 < p ≤ ∞ and 0 ≤ q < ∞, the weighted Hardy space Hp
q consists of those

functions f , analytic in D, for which

‖f‖Hp
q

= sup
0<r<1

Mp(r, f)(1 − r2)q < ∞,
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where

Mp(r, f) =
(

1
2π

∫ 2π

0

|f(reiθ)|p dθ

) 1
p

, 0 < p < ∞,

denotes the standard Lp-mean of the restriction of f to the circle of radius r centered
at the origin, and

M∞(r, f) = max
0≤θ≤2π

|f(reiθ)|.

The classical Hardy space Hp is Hp
0 , where 0 < p ≤ ∞. See [4] for the theory of

Hardy spaces.
The remainder of the paper is organized as follows. In Section 2 the direct prob-

lem is studied by using two growth estimates [13] for the solutions of (1.1). For
instance, Theorems C and D are generalized for the equation (1.1); see Theorems
2.1 and 2.2 below. The inverse problem is considered in Section 3 by using the
standard order reduction procedure combined with integrated logarithmic deriva-
tive estimates [12]. In Section 4 the results from Sections 2 and 3 are compared,
and it is shown that neither of the generalized conditions (2.1) and (2.2) below
corresponding to (1.3) and (1.5) implies the other. In Section 5 a number of ex-
amples related to the results proved in Sections 2 and 3 are given. These examples
demonstrate, for instance, that the results listed in Table 1 on the direct prob-
lem involving weighted Bergman spaces cannot be improved to be “if and only if”.
Finally, in Section 6, the case of non-homogeneous linear differential equations is
briefly discussed.

2. Direct problem

Auxiliary results. For 0 < p < ∞, the p-characteristic of a meromorphic function
f in D is defined by

mp(r, f) =
(

1
2π

∫ 2π

0

(
log+ |f(reiθ)|

)p
dθ

) 1
p

;

see, for instance, [21]. The class Np, which can be considered as a generalized
Nevanlinna class, consists of those functions f for which

sup
0<r<1

mp(r, f) < ∞.

The following two growth estimates for the solutions of (1.1), recently obtained
in [13], play a fundamental role in this section. Note that the proof of [10, Lemma
4.6] has been used to write the double integrals in [13, Corollaries 4.2 and 5.3] in
terms of area integrals over the disc D(0, r) = {z : |z| < r}.

Lemma E ([13], Corollary 4.2). Let f be a solution of (1.1), where a0(z), . . . ,
ak−1(z) are analytic in D, and let 1 ≤ p < ∞. Then there exist a constant C > 0,
depending only on p, k and the initial values of f at the origin, such that

mp(r, f)p ≤ C

⎛
⎝k−1∑

j=0

j∑
n=0

∫
D(0,r)

|a(n)
j (z)|p(1 − |z|)p(k−j+n−1) dσz + 1

⎞
⎠

for all 0 ≤ r < 1.
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Lemma F ([13], Corollary 5.3). Let f be a solution of (1.1), where a0(z), . . . ,
ak−1(z) are analytic in D, and let 1 ≤ p < ∞. Then there exists a constant C > 0,
depending only on p, k and the initial values of f at zθ ∈ D, where aj(zθ) �= 0 for
some j = 0, . . . , k − 1, such that

mp(r, f)p ≤ C

⎛
⎝k−1∑

j=0

∫
D(0,r)

|aj(z)|
p

k−j dσz + 1

⎞
⎠

for all 0 ≤ r < 1.

It is well known that an analytic function f belongs to the weighted Bergman
space Ap

α if and only if f (n) belongs to Ap
np+α. This fact follows by Lemma G,

which can be found, for example, in [20, Lemma 3.1].

Lemma G. Let f be an analytic function in D, and let 0 < p < ∞, −1 < α < ∞
and n ∈ N. Then there exist two constants C1 > 0 and C2 > 0, depending only on
p, α and n, such that

C1‖f‖Ap
α
≤ ‖f (n)‖Ap

np+α
+

n−1∑
j=0

|f (j)(0)| ≤ C2‖f‖Ap
α
.

Coefficients in weighted Bergman spaces. In [3] the direct problem is ap-
proached by combining Picard’s method of successive approximations with non-
integrated logarithmic derivative estimates. Here Lemmas E and F are applied
instead.

The first result contains Theorems C and C′ as a special case.

Theorem 2.1. Let 1 ≤ p < ∞. If the analytic coefficient aj belongs to A
p

k−j , that
is, if

(2.1)
∫

D

|aj(z)|
p

k−j dσz < ∞,

for all j = 0, . . . , k − 1, then all solutions of (1.1) belong to Np.

Proof. The assertion follows by Lemma F and (2.1). �

Theorems D and D′ are generalized in the following result.

Theorem 2.2. Let 1 ≤ p < ∞. If the analytic coefficient aj belongs to Ap
p(k−j−1),

that is, if

(2.2)
∫

D

|aj(z)|p(1 − |z|2)p(k−j−1) dσz < ∞,

for all j = 0, . . . , k − 1, then all solutions of (1.1) belong to Np.

Proof. An application of Lemma E yields

mp(r, f)p ≤ C1 + C2

k−1∑
j=0

j∑
n=0

∫
D

|a(n)
j (z)|p(1 − |z|)p(k−j+n−1) dσz,

from which the assertion follows by Lemma G and (2.2). �

Remark. It is shown in Section 4 that conditions (2.1) and (2.2) are not equivalent.
Indeed, the spaces Ap

p(m−1) and A
p
m , m > 1, are not the same by Theorem 4.1.
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The following result should be compared with [10, Theorem 6.2] and Theorem
B above.

Theorem 2.3. Let 0 < α < ∞. If the analytic coefficient aj belongs to A
1

k−j
α , that

is, if

(2.3)
∫

D

|aj(z)| 1
k−j (1 − |z|2)α dσz < ∞,

for all j = 0, . . . , k−1, then all solutions of (1.1) are of order of growth at most α.

Proof. Lemma F with p = 1 yields

(1 − r)αm(r, f) ≤ C

⎛
⎝k−1∑

j=0

∫
D

|aj(z)|
1

k−j (1 − |z|)α dσz + 1

⎞
⎠ ,

from which the assertion follows by (2.3). �

Note that if (2.3) is satisfied and ρ(f) = α for a solution f of (1.1), then f is of
finite type as well.

It is now rather obvious that an analogous result to Theorem 2.3 can be obtained
by using Lemma E instead of Lemma F; see Proposition 2.4 below. However, this
result turns out to be a consequence of Theorem 2.3; see Section 4.

Proposition 2.4. Let 0 < α < ∞. If the analytic coefficient aj belongs to
A1

k−j−1+α, that is, if ∫
D

|aj(z)|(1 − |z|2)k−j−1+α dσz < ∞,

for all j = 0, . . . , k−1, then all solutions of (1.1) are of order of growth at most α.

Coefficients in weighted Hardy spaces. If the coefficients of (1.1) belong to
certain weighted Hardy spaces, then all solutions must belong to the Nevanlinna
class N , to the class of non-admissible functions F , or to be of finite order.

Proposition 2.5. Let aj ∈ H
1

k−j
qj , where qj ≥ 0, for all j = 0, . . . , k − 1, and

denote α = max0≤j≤k−1{ qj

k−j } − 1.

(1) If α < 0, then all solutions of (1.1) belong to N .
(2) If α = 0, then all solutions of (1.1) belong to F .
(3) If α > 0, then all solutions of (1.1) are of order of growth at most α.

Proposition 2.5 follows easily by Lemma F.
To make the comparison between results concerning direct and inverse problems

easier, the following immediate consequence of Proposition 2.5 is stated.

Corollary 2.6. Let α ≥ −1 and let aj ∈ H
1

k−j

(α+1)(k−j) for all j = 0, . . . , k − 1.

(1) If α < 0, then all solutions of (1.1) belong to N .
(2) If α = 0, then all solutions of (1.1) belong to F .
(3) If α > 0, then all solutions of (1.1) are of order of growth at most α.

Remarks. (1) Part (1) of Proposition 2.5 follows by Theorem 2.1. Indeed, if m > 1

and q ≥ 0 are such that q < m, it is easy to show that H
1
m
q ⊂ A

1
m . However, part

(2) is of special interest since the class F was not treated earlier.
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(2) A result analogous to Proposition 2.5 can be obtained by using Lemma E
instead of Lemma F. Namely, assuming aj ∈ H1

qj
and defining α as in Proposition

2.5, the assertions in Proposition 2.5 hold. However, the Hölder inequality shows

that H1
qj

⊂ H
1

k−j
qj .

(3) Proposition 2.5(3) should be compared with the following classical result for
entire solutions of (1.1); see, for instance, [17, Proposition 7.1]: If the coefficients
a0(z), . . . , ak−1(z) in (1.1) are polynomials, then all solutions f of (1.1) are entire
and of order of growth

σ(f) ≤ max
0≤j≤k−1

{
deg(aj)
k − j

}
+ 1.

See [13] for an alternative proof and for further discussion.

If one of the conditions

(2.4) aj ∈
⋃

0≤q< 1
p +k−j−1

Hp
q , j = 0, . . . , k − 1,

and

(2.5) aj ∈
⋃

0≤q< k−j
p

H
p

k−j
q , j = 0, . . . , k − 1,

where 1 ≤ p < ∞, is satisfied, then Lemmas E and F, and the inequality

Mp(r, g′)(1 − r) ≤ 4Mp(ρ, g), ρ = (1 + r)/2,

which holds for all analytic functions g in D (see [4, p. 80]), imply that all solutions
of (1.1) belong to Np. However, these two results follow by Theorems 2.2 and 2.1.
Indeed, it is easy to see that if aj ∈ Hp

qj
, 0 ≤ qj < 1

p + k − j − 1, then (2.2) holds,

and if aj ∈ H
p

k−j
qj , 0 ≤ qj < k−j

p , then (2.1) holds.

3. Inverse problem

Auxiliary results. One of the standard ways to deal with the inverse problem in
the complex plane is to combine the order reduction procedure with logarithmic
derivative estimates. Here the same line of reasoning is applied in D with integrated
logarithmic derivative estimates.

Lemma H ([12], Lemma 3.1(b)). Let k and j be integers satisfying k > j ≥ 0, and
let α be a constant satisfying 0 < α(k − j) < 1. Let f be a meromorphic function
in D such that f (j) does not vanish identically. Then there exist r0 ∈ ( 1

2 , 1), C > 0
and b ∈ (0, 1) such that if s(r) = 1 − b(1 − r), then∫ 2π

0

∣∣∣∣f (k)(reiθ)
f (j)(reiθ)

∣∣∣∣
α

dθ ≤ C

(
1

1 − r
max

{
log

1
1 − r

, T (s(r), f)
})α(k−j)

for all r0 < r < 1.

The first step of the order reduction procedure is briefly sketched here; see [10,
pp. 38–40] and [17, pp. 55–58] for more details. If {f1, . . . , fk} is a solution base of
(1.1), then the first order reduction of (1.1) results in

(3.1) ν
(k−1)
1 + a1,k−2(z)ν(k−2)

1 + · · · + a1,0(z)ν1 = 0,
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where

(3.2) a1,j(z) = aj+1(z) +
k−j−1∑
m=1

(
j + 1 + m

m

)
aj+1+m(z)

f
(m)
1 (z)
f1(z)

for j = 0, . . . , k − 2. Moreover, the meromorphic functions

(3.3) ν1,j(z) =
d

dz

(
fj+1(z)
f1(z)

)
, j = 1, . . . , k − 1,

are linearly independent solutions of (3.1) in D.
The notation above is used in the following two lemmas.

Lemma 3.1. Let α ≥ 0. Suppose that all solutions of (1.1) are of order of growth
at most α, and that a1,j(z), j = 0, . . . , k − 2, are the coefficients of (3.1). Denote
pj = k

k−j p0 with p0 ∈ (0, 1
k ), and assume that that there exist r1,0, . . . , r1,k−2 ∈ (0, 1)

such that

(3.4)
∫

D\D(0,r1,j)

|a1,j(z)|pj+1(1 − |z|2)α dσz < ∞

for all j = 0, . . . , k − 2. Then there exist r0,0, . . . , r0,k−1 ∈ (0, 1) such that

(3.5)
∫

D\D(0,r0,j)

|aj(z)|pj (1 − |z|2)α dσz < ∞

for all j = 0, . . . , k − 1.

Proof. Throughout the proof C > 0 denotes a constant, which is not necessarily
the same at each occurrence.

The identity a1,k−2(z) = ak−1(z) + k
f ′
1(z)

f1(z) (note that ak(z) ≡ 1) implies

(3.6) |ak−1(z)|pk−1 ≤ |a1,k−2(z)|pk−2+1 + k

∣∣∣∣f ′
1(z)

f1(z)

∣∣∣∣
pk−1

.

Let 0 < ε < 1
kp0

− 1, so that (1 + ε)kp0 < 1, and define

φα,ε(r) =
(

1
1 − r

)α+1+ε

.

Since ρ(f1) ≤ α and pk−1 = kp0, it follows by Lemma H that there exists an
r0,k−1 ∈ (r1,k−2, 1) such that∫ 2π

0

∣∣∣∣f ′
1(reiθ)

f1(reiθ)

∣∣∣∣
pk−1

dθ ≤ Cφα,ε(r)kp0

for all r0,k−1 < r < 1. Next, multiply both sides of (3.6) by (1 − |z|2)α, then
integrate over the annulus D \D(0, r0,k−1), and finally use the assumption (3.4) to
deduce (3.16) in the case j = k − 1.

Suppose that the assertion, with corresponding constants r0,k−1, . . . , r0,k−l ∈
(0, 1), is proved for j = k − 1, . . . , k − l, l ∈ {1, . . . , k − 2}. Since

a1,k−(l+2)(z) = ak−(l+1)(z) +
l+1∑
m=1

(
k − l − 1 + m

m

)
ak−(l+1)+m(z)

f
(m)
1 (z)
f1(z)

,
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it follows that

|ak−(l+1)(z)|pk−(l+1) ≤ |a1,k−(l+2)(z)|pk−(l+1) + C

∣∣∣∣∣f
(l+1)
1 (z)
f1(z)

∣∣∣∣∣
pk−(l+1)

+ C

l∑
m=1

|ak−(l+1)+m(z)|pk−(l+1)

∣∣∣∣∣f
(m)
1 (z)
f1(z)

∣∣∣∣∣
pk−(l+1)

.

(3.7)

Define sm = l+1
m and qm = l+1

l+1−m , where m = 1, . . . , l. Then

sm > 1, qm > 1,
1

sm
+

1
qm

= 1,

msmpk−(l+1) = kp0 < 1, qmpk−(l+1) = pk−(l+1)+m

for all m = 1, . . . , l, and the Hölder inequality yields∫ 2π

0

|ak−(l+1)(reiθ)|pk−(l+1) dθ

≤
∫ 2π

0

|a1,k−(l+2)(reiθ)|pk−(l+1) dθ + C

∫ 2π

0

∣∣∣∣∣f
(l+1)
1 (reiθ)
f1(reiθ)

∣∣∣∣∣
pk−(l+1)

dθ

+C

l∑
m=1

(∫ 2π

0

|ak−(l+1)+m(reiθ)|qmpk−(l+1) dθ

) 1
qm

·
(∫ 2π

0

∣∣∣∣∣f
(m)
1 (reiθ)
f1(reiθ)

∣∣∣∣∣
smpk−(l+1)

dθ

) 1
sm

.

By Lemma H there exists r0,k−(l+1) ∈ (R, 1), where

R = max{r0,k−l, . . . , r0,k−1, r1,k−(l+2)},

such that∫ 2π

0

|ak−(l+1)(reiθ)|pk−(l+1) dθ

≤
∫ 2π

0

|a1,k−(l+2)(reiθ)|pk−(l+2)+1 dθ + Cφα,ε(r)(l+1)pk−(l+1)

+ C
l∑

m=1

(∫ 2π

0

|ak−(l+1)+m(reiθ)|pk−(l+1)+m dθ

) 1
qm

φα,ε(r)mpk−(l+1)

(3.8)

for all r0,k−(l+1) < r < 1. Next, multiply both sides of (3.7) by

(1 − |z|2)α = (1 − |z|2)
α

sm (1 − |z|2)
α

qm ,

then integrate over the annulus D\D(0, r0,k−(l+1)) by using (3.8), and finally apply
the Hölder inequality again (with the indices sm and qm) and use the assumptions
to conclude (3.5) in the case j = k − (l + 1).

It has been proved that (3.5) holds for j = 1, . . . , k − 1. Since

a0(z) = −f (k)(z)
f(z)

− ak−1(z)
f (k−1)(z)

f(z)
− · · · − a1(z)

f ′(z)
f(z)

,
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it follows that

(3.9) |a0(z)|p0 ≤
∣∣∣∣f (k)(z)

f(z)

∣∣∣∣
p0

+
k−1∑
m=1

|am(z)|p0

∣∣∣∣f (m)(z)
f(z)

∣∣∣∣
p0

.

Define um = k
m and vm = k

k−m , where m = 1, . . . , k − 1. Then

um > 1, vm > 1,
1

um
+

1
vm

= 1,

mump0 = kp0 < 1, vmp0 = pm

for all m = 1, . . . , k − 1. The same procedure as above, with

(1 − |z|2)α = (1 − |z|2)
α

um (1 − |z|2)
α

vm ,

yields (3.5) in the case j = 0. �

Lemma 3.2. Let φ(r) be a continuous increasing function of r such that

(3.10)
T (r, f)
1 − r

= O(φ(r))

for all solutions f of (1.1). Suppose that a1,j(z), j = 0, . . . , k − 2, are the coeffi-
cients of (3.1). Denote pj = k

k−j p0 with p0 ∈ (0, 1
k ), and assume that there exist

r1,0, . . . , r1,k−2 ∈ (0, 1) such that

(3.11)
∫ 2π

0

|a1,j(reiθ)|pj+1 dθ = O
(
φ(r)pj+1(k−j−1)

)
, r1,j ≤ r < 1,

for all j = 0, . . . , k − 2. Then there exist r0,0, . . . , r0,k−1 ∈ (0, 1) such that

(3.12)
∫ 2π

0

|aj(reiθ)|pj dθ = O
(
φ(r)pj(k−j)

)
, r0,j ≤ r < 1,

for all j = 0, . . . , k − 1.

The proof of Lemma 3.2 is almost identical to the proof of Lemma 3.1, and hence
it is omitted.

Coefficients in weighted Bergman spaces. The first result in the inverse di-
rection illustrates the sharpness of Theorem 2.1 in the case p = 1.

Theorem 3.3. If all solutions of (1.1) are analytic in D and of order of growth
zero, then

(3.13)
∫

D

|aj(z)|pj dσz < ∞

for all j = 0, . . . , k − 1 and all pj ∈ (0, 1
k−j ). In particular, if all solutions of (1.1)

belong to N , then (3.13) holds.

Proof. Suppose first that k = 1, that is, (1.1) is of the form

(3.14) f ′ + a0(z)f = 0.

Let f be a non-constant solution of (3.14). Since ρ(f) = 0,

T (r, f) ≤
(

1
1 − r

)ε
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for all r close enough to 1. Let p0 ∈ (0, 1), fix 0 < ε < 1
p0

− 1, and define

(3.15) φ0,ε(r) =
(

1
1 − r

)1+ε

.

By Lemma H there exists an r0 ∈ ( 1
2 , 1) such that∫ 2π

0

∣∣∣∣f ′(reiθ)
f(reiθ)

∣∣∣∣
p0

dθ ≤ Cφ0,ε(r)p0

for all r0 < r < 1. Since (1 + ε)p0 < 1, it follows that∫
D

|a0(z)|p0 dσz =
∫

D(0,r0)

|a0(z)|p0 dσz +
∫

D\D(0,r0)

∣∣∣∣f ′(z)
f(z)

∣∣∣∣
p0

dσz < ∞,

and the assertion is proved in the case k = 1.
Suppose that k ≥ 2. Let p0 ∈ (0, 1

k ), and define pj = k
k−j p0 for all j = 1, . . . , k−1.

Then
0 < p0 < p1 < · · · < pk−1 = kp0 < 1.

Define the function φ0,ε as in (3.15), but this time for 0 < ε < 1
kp0

−1. Then clearly
(1 + ε)kp0 < 1.

Since the solutions and hence the coefficients are analytic in D, it suffices to
show that there exist r0,0, . . . , r0,k−1 ∈ (0, 1) such that

(3.16)
∫

D\D(0,r0,j)

|aj(z)|pj dσz < ∞

for all j = 0, . . . , k−1. The standard order reduction procedure is applied as in the
proof of Lemma 3.1 to prove (3.16). After k − 1 order reduction steps one obtains
the differential equation

(3.17) ν′
k−1 + ak−1,0(z)νk−1 = 0,

where ak−1,0(z) is meromorphic in D, with all solutions being of order of growth
zero. By Lemma H there exists an rk−1,0 ∈ (0, 1) such that∫

D\D(0,rk−1,0)

|ak−1,0(z)|pk−1 dσz =
∫

D\D(0,rk−1,0)

∣∣∣∣ν′
k−1(z)

νk−1(z)

∣∣∣∣
pk−1

dσz < ∞,

and so, by Lemma 3.1, with α = 0, and its counterparts in the subsequent order
reduction steps, it follows that there exist r0,0, . . . , r0,k−1 ∈ (0, 1) such that (3.16)
holds for all j = 0, . . . , k − 1. �

Next, Theorem 3.3 is expressed in terms of the Bergman spaces.

Corollary 3.4. If all solutions of (1.1) are analytic in D and of order of growth
zero, then

(3.18) aj ∈
⋂

0<p< 1
k−j

Ap

for all j = 0, . . . , k−1. In particular, if all solutions of (1.1) are analytic in D and
belong to N , then (3.18) holds.

The next result illustrates the sharpness of Theorem 2.3, and also provides a
natural extension to Theorem 3.3.
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Theorem 3.5. Let 0 < α < ∞. If all solutions of (1.1) are analytic in D and of
order of growth at most α, then∫

D

|aj(z)|pj (1 − |z|2)α dσz < ∞

for all j = 0, . . . , k − 1 and all pj ∈ (0, 1
k−j ).

Proof. Since each solution f is of order at most α by the assumption, it follows
that, for all r close enough to 1,

(3.19) T (r, f) ≤
(

1
1 − r

) α
kp0

,

where 0 < kp0 < 1. The proof of Theorem 3.3 is now followed using inequality
(3.19) each time Lemma H is applied. Note that meromorphic functions of order
of growth at most α in D form a differential field.

After k − 1 order reduction steps applied to the differential equation (1.1) one
obtains (3.17), where ak−1,0(z) is meromorphic in D, and all solutions of the equa-
tion are of order of growth at most α. The assertion follows similarly as in the
proof of Theorem 3.3 by applying Lemma 3.1 and its counterparts in subsequent
order reduction steps. �

Corollary 3.6. Let 0 < α < ∞. If all solutions of (1.1) are analytic in D and of
order of growth at most α, then

aj ∈
⋂

0<p< 1
k−j

Ap
α

for all j = 0, . . . , k − 1.

Coefficients in weighted Hardy spaces. The next two results illustrate the
sharpness of Corollary 2.6 (and Proposition 2.5).

Theorem 3.7. If all solutions of (1.1) are analytic in D and of order of growth
zero, then

(3.20) aj ∈
⋂

0<p< 1
k−j

Hp
1
p

for all j = 0, . . . , k−1. In particular, if all solutions of (1.1) are analytic in D and
belong to F , then (3.20) holds.

Proof. First note that Hp2
(k−j)(1−p2)+1 ⊂ Hp1

(k−j)(1−p1)+1 and Hp2
1

p2

⊂ Hp1
1

p1

for all

0 < p1 ≤ p2 < 1
k−j . Further, since (k − j)(1 − p) + 1 −→ k − j, as p −→ 1

k−j , it
follows that ⋂

0<p< 1
k−j

Hp
1
p

=
⋂

0<p< 1
k−j

Hp
(k−j)(1−p)+1.

Therefore it suffices to show that

(3.21) aj ∈
⋂

0<p< 1
k−j

Hp
(k−j)(1−p)+1, j = 0, . . . , k − 1.
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Define the constants pj = k
k−j p0, where p0 ∈ (0, 1

k ) and j = 0, . . . , k − 1, just as

in the proof of Theorem 3.3, and choose φ(r) = (1 − r)−1+p0− 1
k . Since kp0 ∈ (0, 1)

is arbitrary,

(3.22)
(

1
2π

∫ 2π

0

|aj(reiθ)|pj dθ

) 1
pj

= O

((
1

1 − r

)(k−j)(1−pj)+1
)

for all j = 0, . . . , k− 1, and (3.21) follows. Moreover, since (3.12) implies (3.22), to
complete the proof it is only needed to check that all assumptions of Lemma 3.2 are
satisfied. Relation (3.10) holds because ρ(f) = 0. To see that (3.11) also holds, the
order reduction can be used to reduce (1.1) into (3.17) by modifying the reasoning
at the end of the proof of Theorem 3.3, using Lemma 3.2 in place of Lemma 3.1. �

The case when all solutions of (1.1) are of order at most α, 0 < α < ∞, can be
similarly dealt with Lemma 3.2 by choosing φ(r) = (1 − r)−1− α

kp0 .

Theorem 3.8. Let 0 < α < ∞. If all solutions of (1.1) are analytic in D and of
order of growth at most α, then

aj ∈
⋂

0<p< 1
k−j

Hp
α+1

p

for all j = 0, . . . , k − 1.

Although the Hp
q -results concerning the direct problem are weaker than the

corresponding Ap
α-results, it is interesting to find that this is not the case with the

inverse problem. See Section 4 for more details.

4. Comparison

The results obtained in the previous two sections are now further analyzed. The
first result shows that the spaces A

p
m and Ap

p(m−1) for m ≥ 1 are not the same
unless m = 1, and therefore conditions (2.1) and (2.2) are not equivalent.

Theorem 4.1. Let m > 1.
(1) If 0 < p < 1, then Ap

p(m−1) � A
p
m .

(2) If 2 ≤ p < ∞, then A
p
m � Ap

p(m−1).
(3) If 1 ≤ p < 2, then Ap

p(m−1) �⊂ A
p
m �⊂ Ap

p(m−1).

The proof of Theorem 4.1 involves analytic functions with Hadamard gaps. The
function f(z) =

∑∞
k=0 ckznk , analytic in D, has Hadamard gaps, if nk+1

nk
≥ λ > 1

for all k ≥ 0. The class of analytic functions in D with Hadamard gaps is denoted
by HG . The following result characterizes Hadamard gap series in the weighted
Bergman spaces; see, for example, [2, Proposition 2.1].

Theorem I. Let 0 < p < ∞, −1 < α < ∞, and let f(z) =
∑∞

k=0 ckznk ∈ HG.
Then f ∈ Ap

α if and only if
∑∞

k=0 n
−(α+1)
k |ck|p < ∞.

Proof of Theorem 4.1. (1) If 0 < p < 1, then, by the Hölder inequality,∫
D

|f(z)|
p
m dσz ≤

(∫
D

|f(z)|p (1 − |z|2)p(m−1) dσz

) 1
m

·
(∫

D

(1 − |z|2)−p dσz

)m−1
m

,
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and it follows that Ap
p(m−1) ⊂ A

p
m . To see that the inclusion is strict, let c > 0,

and define

f1(z) =
∞∑

n=1

n
m
p (n−1−c)znn

, z ∈ D.

Then it is easy to see that f1 ∈ HG ; see, for example, [19, Lemma 2.1.1]. Moreover,
∞∑

n=1

n−n
(
n

m
p (n−1−c)

) p
m

=
∞∑

n=1

1
n1+c

< ∞,

and therefore f1 ∈ A
p
m by Theorem I. But

∞∑
n=1

n−n(p(m−1)+1)
(
n

m
p (n−1−c)

)p

=
∞∑

n=1

nn(m−1)(1−p)−m(1+c) = ∞

for 0 < p < 1 and 1 < m < ∞, and hence f1 �∈ Ap
p(m−1) by Theorem I.

(2) If 2 ≤ p < ∞, then A
p
m ⊂ Ap

2(m−1) ⊂ Ap
p(m−1) by [2, Theorem 1.3]. To see

that the inclusion A
p
m ⊂ Ap

p(m−1) is strict, define

f2(z) =
∞∑

n=1

n
m
p (n−1)znn

, z ∈ D.

Then
∞∑

n=1

n−n
(
n

m
p (n−1)

) p
m

=
∞∑

n=1

1
n

= ∞,

and therefore f2 �∈ A
p
m by Theorem I. But

∞∑
n=1

n−n(p(m−1)+1)
(
n

m
p (n−1)

)p

=
∞∑

n=1

1
nn(m−1)(p−1)+m

< ∞

for 1 ≤ p < ∞, and hence f2 ∈ Ap
p(m−1) by Theorem I.

(3) If 1 ≤ p < 2, then the function f2 defined above shows the first relation. To
see the second one, let ε > 0, and, for a fixed branch, define f3(z) = (1−z)1−m− 2

p−ε,
where 0 < ε < 1

p (2 − p)(m − 1). Then, by [4, p. 65],

∫
D

|f3(z)|
p
m dσz ≤

∫ 1

0

(∫ 2π

0

dθ

|1 − reiθ|
p
m (m+ 2

p +ε−1)

)
dr

≤ C

∫ 1

0

dr

(1 − r)p+ 2
m + pε

m − p
m−1

< ∞,

and thus f3 ∈ A
p
m . A similar reasoning shows that f3 �∈ Ap

p(m−1). �

Theorem 4.1 shows that Theorem 2.2 is better than Theorem 2.1 when 2 ≤
p < ∞ in the sense that it gives a weaker condition for the coefficients aj(z),
j = 0, . . . , k − 1, still implying that f ∈ Np. If, on the other hand, 1 ≤ p < 2,
neither of these theorems is essentially better than the other, and therefore the
following consequence of Theorems 2.1 and 2.2 is worth stating.
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Corollary 4.2. Let 1 ≤ p < 2. If

aj ∈ A
p

k−j

⋃
Ap

p(k−j−1)

for all j = 0, . . . , k − 1, then all solutions of (1.1) belong to Np.

The following proposition shows that Theorem 2.3 is better than Proposition 2.4
in the case k ≥ 2.

Proposition 4.3. Let 1 < m < ∞ and 0 < α < ∞. Then

A1
m+α−1 � A

1
m
α .

Proof. By the Hölder inequality,
∫

D

|f(z)| 1
m (1 − |z|2)α dσz ≤

(π

α

)m−1
m

(∫
D

|f(z)|(1 − |z|2)m+α−1 dσz

) 1
m

,

and therefore A1
m+α−1 ⊂ A

1
m
α . The function g(z) = (1−z)−

1
2 (m+1)(α+2) shows that

the inclusion is strict. �

Finally it is shown that Theorems 3.7 and 3.8 imply Corollaries 3.4 and 3.6,
respectively.

Proposition 4.4. Let 1 ≤ m < ∞ and 0 < α < ∞. Then

(4.1)
⋂

0<p< 1
m

Hp
1
p

=
⋂

0<p< 1
m

Hp
m(1−p)+1 ⊂

⋂
0<p< 1

m

Ap

and

(4.2)
⋂

0<p< 1
m

Hp
α+1

p

=
⋂

0<p< 1
m

Hp
m+ α

p
⊂

⋂
0<p< 1

m

Ap
α.

Proof. A similar reasoning as in the beginning of the proof of Theorem 3.7 shows
the equalities in (4.1) and (4.2). To see the inclusion in (4.1), let 0 < p < 1

m and
f ∈ Hp

m(1−p)+1. Then

∫ 2π

0

|f(reiθ)|p dθ ≤ C

(1 − r)(m(1−p)+1)p
, 0 ≤ r < 1,

for some constant C > 0. Since (m(1−p)+1)p < 1, it follows that f ∈ Ap, proving
the inclusion in (4.1). The inclusion in (4.2) can be proved in a similar manner. �

5. Examples

Solutions in the Nevanlinna class. The first example shows that the conditions
in Theorem C′ and Theorem 2.1 are not necessary.

Example 5.1. The functions

fj(z) = (1 − z) exp
(

(−1)j+1 1 + z

1 − z

)
, j = 1, 2,
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are linearly independent solutions of (1.2), where a(z) = −4(1−z)−4. Since f1 ∈ N
and f2 ∈ H∞, all solutions belong to the Nevanlinna class N , yet∫

D(0,r)

|a(z)| 12 dσz =
∫ r

0

2s

1 − s2

(∫ 2π

0

1 − s2

|1 − seiθ|2 dθ

)
ds

= 2π log
1

1 − r2
,

(5.1)

and therefore a �∈ A
1
2 . Further, the functions f1f2, f2

1 and f2
2 are linearly indepen-

dent solutions of the equation

f ′′′ + a1(z)f ′ + a0(z)f = 0,

where a1(z) = 4a(z) and a0(z) = 2a′(z). Therefore all solutions belong to N , but
a1 �∈ A

1
2 by (5.1), while a0 ∈ A

1
3 .

The second example is a modification of Example 2 in [18]. It shows that condi-
tion (1.3) is the best possible in the sense that the exponent 1

2 cannot be replaced
by a smaller number.

Example 5.2. Let g(z) = 1−z and h(z) = exp
(

i
1−z

)
. Then f1(z) = g(z)h(z) and

f2(z) = g(z)
h(z) are linearly independent solutions of (1.2), where a(z) = (1 − z)−4.

By [4, p. 65], for ε > 0, there is a constant C = C(ε) > 0 such that∫
D

|a(z)|
1
2−ε dσz ≤ C

∫ 1

0

dr

(1 − r)1−4ε
< ∞.

Since

Re
(

i

1 − z

)
= − r sin θ

1 − 2r cos θ + r2
, z = reiθ,

is non-negative for π ≤ θ ≤ 2π, it follows that

m(r, h) = − 1
2π

∫ 2π

π

r sin θ

1 − 2r cos θ + r2
dθ =

1
2π

log
1 + r

1 − r
,

and so h �∈ N . By the first fundamental theorem of Nevanlinna theory, it follows
that 1

h �∈ N . As g ∈ H∞, neither f1 nor f2 belongs to N .

The third example addresses the question of whether it is still possible to de-
termine when all solutions of (1.2) belong to the Nevanlinna class, even though
condition (1.3) fails to be satisfied.

Example 5.3. For a fixed C ∈ C, consider the equation

(5.2) f ′′ + a(z)f = 0, a(z) = − C

(1 − z)4
,

where C �= 0. (Otherwise the normalized fundamental solution base of (5.2) is just
{1, z}.) By a similar computation as in Example 5.1,∫

D(0,r)

|a(z)| 12 dσz = |C| 12 π log
1

1 − r2
,

and hence all solutions of (5.2) belong to F by Lemma F. However, Examples 5.1
and 5.2 show that the solutions of (5.2) can either be in N or in F \ N depending
on the choice of C. Therefore equations of the type (5.2) are extremal for the class
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N in the sense of Theorem C′. It is next shown that the values of C such that the
general solution of equation (5.2) belongs to N are precisely those in [0,∞).

For C �= 0, let h(z) = exp(
√

C
2

1+z
1−z ), where the branch of the square root is

fixed such that
√

C = |C| 12 exp(iarg(C)
2 ), and arg(C) ∈ [−π, π). Then f1(z) =

(1 − z)h(z) and f2(z) = 1−z
h(z) are linearly independent solutions of (5.2). If h ∈ N

(resp. h ∈ F \ N), then, by the first fundamental theorem of Nevanlinna theory,
1
h ∈ N (resp. 1

h ∈ F \ N).
If arg(C) = 0, then

Re

(√
C

2
1 + z

1 − z

)
=

√
C

2
· 1 − r2

1 − 2r cos θ + r2
, z = reiθ,

is non-negative for 0 ≤ θ ≤ 2π, and it follows that h ∈ N and 1
h ∈ H∞. Therefore

f1 ∈ N and f2 ∈ H∞, hence all solutions of (5.2) belong to N .
If arg(C) �= 0, denote d = arg(C)/2. Then

m(r, h) =
|C| 12
4π

∫
G(r,C)

(1 − r2) cos d − 2r sin d sin θ

1 − 2r cos θ + r2
dθ,

where G(r, C) = {θ ∈ [−π, π) : (1−r2) cos d−2r sin d sin θ ≥ 0}. Let χG(r,C) denote
the characteristic function of G(r, C). Then, by Fatou’s lemma,

lim
r→1−

m(r, h) ≥ lim inf
r→1−

|C| 12
4π

∫
G(r,C)

(1 − r2) cos d − 2r sin d sin θ

1 − 2r cos θ + r2
dθ

≥ |C| 12
4π

∫ π

−π

lim inf
r→1−

(1 − r2) cos d − 2r sin d sin θ

1 − 2r cos θ + r2
χG(r,C)(θ) dθ

=
|C| 12
4π

| sin d|
∫ π

0

sin θ

1 − cos θ
dθ = ∞,

and it follows that f1, f2 ∈ F \ N . Moreover, if C1C2 �= 0, then the zero sequence
{zn} of the linear combination f = C1f1 + C2f2 does not satisfy the Blaschke
condition

∑
n(1 − |zn|) < ∞, and hence f ∈ F \ N . See [11, Example 3.6] for a

similar discussion.

Solutions of finite order of growth. The next example shows that the space U
defined in [1] coincides with the space of all H-functions, and therefore [1, Theorem
1] follows by Theorem B.

Example 5.4. For p > 0, let Up denote the space of all analytic functions f in D
for which ∫ 2π

0

∫ r

0

|f(seiθ)| dsdθ = O

(
1

(1 − r)p

)
.

It is shown that

(5.3) U =
⋃
p>0

Up =
⋃
p>0

H∞
p ,

where U is the space defined in [1]. Assume first that f ∈ Up. By the mean value
property of analytic functions, the inequality

|f(z)| ≤ 1
2π

∫ 2π

0

|f(z + reiθ)| dθ
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holds for 0 < r < 1 − |z|. Multiplying both sides by r and integrating, it follows
that

1
2

(
1 − |z|

2

)2

|f(z)| ≤ 1
2π

∫ 1−|z|
2

0

∫ 2π

0

|f(z + reiθ)|rdrdθ

≤ 1
2π

∫ 1+|z|
2

0

∫ 2π

0

|f(reiθ)|drdθ,

thus

|f(z)|(1 − |z|)2 ≤ 4
π

∫ 1+|z|
2

0

∫ 2π

0

|f(reiθ)|drdθ = O

(
1

(1 − |z|)p

)
,

and therefore f ∈ H∞
p+2. Moreover, if f ∈ H∞

p+2, then∫ 2π

0

∫ r

0

|f(seiθ)|dsdθ = O

(∫ r

0

ds

(1 − s)p+2

)
= O

(
1

(1 − |z|)p+1

)
,

that is, f ∈ Up+1. Thus Up ⊂ H∞
p+2 ⊂ Up+1, and so (5.3) follows.

If the coefficient a(z) of (1.2) belongs to the weighted Bergman space A
1
2
α , α ≥ 0,

then all solutions are of order of growth at most α by Theorem 2.3. Conversely, if
all solutions of (1.2) are analytic and of order of growth at most α, then a(z) need

not belong to A
1
2
α , as is seen next.

Example 5.5. Let α ≥ 0. For a fixed branch, the functions

fj(z) = (1 − z)
α+2

2 exp

(
(−1)j

(
1

1 − z

)α+1
)

, j = 1, 2,

are linearly independent solutions of (1.2), where

a(z) = −1
4

α(α + 2)
(1 − z)2

− (α + 1)2

(1 − z)2α+4
.

Since ρ(f1) = ρ(f2) = α, all non-trivial solutions are of order of growth at most α.
However, there are constants C1, C2 > 0, depending only on α, such that∫

D(0,r)

|a(z)| 12 (1 − |z|2)α dσz ≥ (α + 1)
∫

D(0,r)

(1 − |z|2)α

|1 − z|α+2
dσz − C2

≥ C1

∫ r

0

ds

1 − s
− C2

= C1 log
1

1 − r
− C2, 0 < r < 1,

and it follows that a �∈ A
1
2
α .

6. Non-homogeneous equations

Consider the non-homogeneous differential equation

(6.1) f (k) + ak−1(z)f (k−1) + · · · + a1(z)f ′ + a0(z)f = H(z)

and the associated homogeneous differential equation

(6.2) f (k) + ak−1(z)f (k−1) + · · · + a1(z)f ′ + a0(z)f = 0,
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where a0(z), . . . , ak−1(z) and H(z) are analytic in D. If {f1, . . . , fk} is a funda-
mental system of solutions of (6.2), then all solutions of (6.1) are of the form

(6.3) f = C1f1 + · · · + Ckfk + fp,

where C1, . . . , Ck ∈ C are arbitrary and fp is the particular solution of (6.1). More-
over, by [17, p. 145],

(6.4) fp = B1f1 + · · · + Bkfk,

where B1, . . . , Bk are analytic functions in D such that

(6.5) B′
j = HGj(f1, . . . , fk)eΦ, j = 1, . . . , k,

where each Gj(f1, . . . , fk) is a differential polynomial in f1, . . . , fk with constant
coefficients, and Φ(z) is a primitive function of ak−1(z).

Direct problem. The first result is a generalization of Theorem 2.3 for non-
homogeneous equations.

Proposition 6.1. Let 0 ≤ α < ∞. Suppose that aj ∈ A
1

k−j
α for all j = 0, . . . , k−1,

and that H(z) is analytic in D and of order of growth at most α. Then all solutions
of (6.1) are of order of growth at most α.

Proof. Let {f1, . . . , fk} be a fundamental system of solutions of (6.2). By Theorem
2.3 (or by Theorem 2.1 with p = 1 if α = 0), the functions f1, . . . , fk are of order
of growth at most α. By (6.3) it is enough to show that fp in (6.4) is of order
of growth at most α. Moreover, since ρ(g) = ρ(g′) for any analytic function g in
D, it suffices to show that the functions B′

1, . . . , B
′
k in (6.5) are of order of growth

at most α. The only non-trivial step is to show that ρ(eΦ) ≤ α, where Φ(z) is a
primitive function of ak−1(z). Since

(6.6) T (r, eΦ) = m(r, eΦ) ≤ 1
2π

∫ 2π

0

|Φ(reiθ)| dθ,

it is enough to show that Φ ∈ H1
α. Now, for z = reiθ ∈ D,

(6.7) Φ(z) =
∫ z

0

ak−1(ζ) dζ + Φ(0),

where the integration is taken along the line segment [0, z]. Hence ζ = seiθ and
dζ = eiθds, where 0 ≤ s ≤ r. Further, by (6.7) and [10, Lemma 4.6], it follows that

(1 − r2)α

∫ 2π

0

|Φ(reiθ)| dθ ≤ (1 − r2)α

∫ 2π

0

∫ r

0

|ak−1(seiθ)| dsdθ + o(1)

≤ C

∫
D

|ak−1(z)|(1 − |z|2)α dσz + o(1)

for some constant C > 0. Since ak−1 ∈ A1
α by the assumption, Φ ∈ H1

α, and the
assertion follows. �

A simple modification of the proof of Proposition 6.1 shows that an analogous
generalization of Proposition 2.4 for non-homogeneous equations hold. While gen-
eralizing Corollary 2.6(3), the essential step is to show that the primitive function
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Φ(z) of ak−1 ∈ H1
α+1 satisfies ρ(eΦ) ≤ α, where α > 0. By (6.6) it is only needed

to show that Φ ∈ H1
α. But this follows by

(1 − r2)α

∫ 2π

0

|Φ(reiθ)| dθ ≤ (1 − r2)α

∫ 2π

0

∫ r

0

|ak−1(reiθ)| ds dθ + o(1)

≤ (1 − r2)α

∫ r

0

C

(1 − s2)α+1
ds + o(1) ≤ C,

where (6.7) has been used.
Next, the problem of when all solutions of (6.1) belong to a given function space,

denoted by FS , is discussed. The reasoning in the proof of Proposition 6.1 works,
provided that FS has the following properties:

(1) If f, g ∈ FS , then f + g ∈ FS .
(2) If f, g ∈ FS , then fg ∈ FS .
(3) If f ∈ FS , then f ′ ∈ FS .

All function spaces satisfy property (1). Moreover, note that:
• If FS = H∞, then (2) holds while (3) does not.
• If FS = Hp, 0 < p < ∞, then neither (2) nor (3) holds.
• If FS = N , then (2) holds while (3) does not; see [4, p. 106] for the require-

ment (3).
• If FS = F , then both (2) and (3) hold; see [3, Lemma 5.3] for the require-

ment (3).
To generalize Corollary 2.6(2) for the non-homogeneous equations, the essential

step is, as earlier, to prove that the primitive function Φ(z) of ak−1 ∈ H1
1 satisfies

eΦ ∈ F . This is, however, clearly true.

Inverse problem. This section is completed by considering the inverse problem
when all solutions either are of order of growth at most α or belong to F .

(i) Suppose that all solutions of (6.1) are analytic in D and of order at most
α. Using the notation introduced in the beginning of the present section,
the functions f1, . . . , fk, fp are analytic in D and of order at most α. It
remains to show that H(z) is of order at most α. Suppose on the contrary
that ρ(H) > α. Then, as the coefficients a0(z), . . . , ak−1(z) of (6.1) are
H-functions, and hence of order zero, elementary facts from Nevanlinna
theory applied to (6.1) show that ρ(fp) > α, which is a contradiction.

(ii) Suppose then that f1, . . . , fk, fp ∈ F . Noting that H-functions are non-
admissible and that F is a differential field, a reasoning similar to the one
in (i) above shows that H ∈ F .
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