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SOME NEW RESULTS
IN MULTIPLICATIVE AND ADDITIVE RAMSEY THEORY

MATHIAS BEIGLBÖCK, VITALY BERGELSON, NEIL HINDMAN, AND DONA STRAUSS

Abstract. There are several notions of largeness that make sense in any semi-
group, and others such as the various kinds of density that make sense in suf-
ficiently well-behaved semigroups including (N, +) and (N, ·). It was recently
shown that sets in N which are multiplicatively large must contain arbitrarily
large geoarithmetic progressions, that is, sets of the form

{
rj(a+ id) : i, j ∈

{0, 1, . . . , k}
}
, as well as sets of the form

{
b(a + id)j : i, j ∈ {0, 1, . . . , k}

}
.

Consequently, given a finite partition of N, one cell must contain such con-
figurations. In the partition case we show that we can get substantially
stronger conclusions. We establish some combined additive and multiplica-
tive Ramsey theoretic consequences of known algebraic results in the semi-
groups (βN,+) and (βN, ·), derive some new algebraic results, and derive
consequences of them involving geoarithmetic progressions. For example, we
show that given any finite partition of N there must be, for each k, sets
of the form

{
b(a + id)j : i, j ∈ {0, 1, . . . , k}

}
together with d, the arith-

metic progression
{
a + id : i ∈ {0, 1, . . . , k}

}
, and the geometric progression{

bdj : j ∈ {0, 1, . . . , k}
}

in one cell of the partition. More generally, we show
that, if S is a commutative semigroup and F a partition regular family of
finite subsets of S, then for any finite partition of S and any k ∈ N, there exist
b, r ∈ S and F ∈ F such that rF ∪ {b(rx)j : x ∈ F, j ∈ {0, 1, 2, . . . , k}} is
contained in a cell of the partition. Also, we show that for certain partition
regular families F and G of subsets of N, given any finite partition of N some
cell contains structures of the form B ∪ C ∪ B · C for some B ∈ F , C ∈ G.

1. Introduction

Our starting point is the famous theorem of van der Waerden [22] which says
that whenever the set N of positive integers is divided into finitely many classes,
one of these classes contains arbitrarily long arithmetic progressions. The analo-
gous statement for geometric progressions is easily seen to be equivalent via the
homomorphisms b : (N, +) → (N, ·) and � : (N \ {1}, ·) → (N, +) where b(n) = 2n

and �(n) is the length of the prime factorization of n.

Received by the editors October 21, 2005.
2000 Mathematics Subject Classification. Primary 05D10; Secondary 22A15.
Key words and phrases. Ramsey theory, central sets, piecewise syndetic.
The first author thanks the Austrian Science Foundation FWF for its support through Projects

nos. S8312 and P17627-N12. He also thanks Ohio State University for its hospitality in the spring
of 2004 while much of this research was being conducted.

The second author acknowledges support received from the National Science Foundation via
grant DMS-0345350.

The third author acknowledges support received from the National Science Foundation via
grants DMS-0243586 and DMS-0554803.

c©2007 American Mathematical Society

819
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In 1975 Szemerédi [21] showed that any set with positive upper asymptotic den-
sity contains arbitrarily long arithmetic progressions. (Ergodic theoretic proofs of
Szemerédi’s Theorem can be found in [6], [7] or [9]. Also Gowers [10] has a proof
which provides very good bounds.) It has recently been shown [1, Theorem 1.3]
that any set which is multiplicatively large (see Definition 2.1 below) must con-
tain substantial combined additive and multiplicative structure; in particular it
must contain arbitrarily large geoarithmetic progressions , that is, sets of the form{
rj(a + id) : i, j ∈ {0, 1, . . . , k}

}
.

As we shall see below, the corresponding partition theorem (i.e., for any finite
partition of the positive integers, some cell contains arbitrarily large geoarithmetic
progressions) can be derived fairly simply from well-known Ramsey theoretic re-
sults.

We thank Imre Leader for providing us with an elementary proof of the follow-
ing theorem, and we thank the referee for suggesting the more general version in
statement (a). A family A of subsets of a set X is partition regular provided that
whenever X is partitioned into finitely many classes, one of these classes contains
a member of A.

Theorem 1.1. (a) Let S and T be sets, let F be a partition regular family of finite
subsets of S, and let G be a partition regular family of subsets of T . Let m ∈ N and
let S × T =

⋃m
k=1 Ak. Then there exist k ∈ {1, 2, . . . , m}, B ∈ F , and C ∈ G such

that B × C ⊆ Ak.
(b) Let (S, ·) be a set with some binary operation and let F and G be partition

regular families of subsets of S with all members of F finite. Let m ∈ N and let
S =

⋃m
k=1 Ak. Then there exist k ∈ {1, 2, . . . , m}, B ∈ F , and C ∈ G such that

B · C ⊆ Ak.

Proof. (a) By a standard compactness argument (see, for example, [16, Section 5.5],
or [11, Section 1.5]) pick a finite subfamily H of F such that whenever S =

⋃m
k=1 Dk,

there exist k ∈ {1, 2, . . . , m} and B ∈ H such that B ⊆ Dk. For each x ∈ T , S =⋃m
k=1{t : (t, x) ∈ Ak}; thus we may pick B(x) ∈ H and k(x) ∈ {1, 2, . . . , m} such

that B(x)×{x} ⊆ Ak(x). Define τ : S → H×{1, 2, . . . , m} by τ (x) =
(
B(x), k(x)

)
.

Pick B ∈ H, C ∈ G, and k ∈ {1, 2, . . . , m} such that for all x ∈ C, τ (x) = (B, k).
(b) For k ∈ {1, 2, . . . , m} let Ek = {(x, y) ∈ S × S : x · y ∈ Ak} and apply

conclusion (a). �

Note that one cannot drop the assumption that all members of F are finite:
Consider S = T = N and let F = G = {B ⊆ N : B is infinite}. Let A1 = {(x, y) ∈
N × N : x ≥ y} and let A2 = {(x, y) ∈ N × N : x < y}. Then the conclusion of
Theorem 1.1(a) fails in this situation. For conclusion (b), consider the group (Z, +)
and let F = {B ⊆ N : B is infinite} and G = {C ⊆ Z \ N : C is infinite}. Given
B ∈ F and C ∈ G the set B + C contains positive and negative integers. Thus the
partition Z = N ∪ (Z \ N) shows that the conclusion of Theorem 1.1(b) also fails.

Theorem 1.1 applied to the semigroup (N, ·), the family of all (k +1)-term arith-
metic progressions and the family of all (k + 1)-term geometric progressions yields
that for any finite partition of N there exist a, b, d, r ∈ N with r �= 1 and some cell
A such that{

(ba + ibd)rj : i, j ∈ {0, 1, . . . , k}
}

= {a, a + d, . . . , a + kd} · {b, br, . . . , brk} ⊆ A .
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In particular we see that some cell contains arbitrarily large geoarithmetic progres-
sions.

Of course Theorem 1.1 can be applied iteratively to different kinds of partition
regular families and binary operations. For example, for each finite partition of
N and each k ∈ N there exist k-term geometric progressions G1, G2 and a k-term
arithmetic progression A such that {g1 + ag2 : g1 ∈ G1 , g2 ∈ G2, and a ∈ A} is
entirely contained in one cell.

In Section 3 we present some combined additive and multiplicative results that
can be obtained from known algebraic results or easy extensions thereof and are
stronger than Theorem 1.1. These results appear to be unlikely to be easily ob-
tainable by elementary methods.

For example we show in Theorem 3.7 that for certain partition regular families
F and G one can strengthen the conclusion of Theorem 1.1 and prove that for any
finite partition of N some cell contains structures of the form B∪C∪B ·C for some
B ∈ F , C ∈ G.

As a special case of Corollary 3.10 we obtain, for example, the following easy
extension of the geoarithmetic result about partitions stated above:

Corollary 1.2. Let k, m ∈ N and let N =
⋃m

s=1 As. Then there exist s ∈ {1, 2, . . . ,
m}, a, d ∈ As and r ∈ As \ {1} such that{

rj(a + id) : i, j ∈ {0, 1, . . . , k}
}
∪

{
drj : j ∈ {0, 1, . . . , k}

}
⊆ As .

In Section 4 we derive several new algebraic results and new combinatorial con-
sequences thereof.

Consider the following result, which is [1, Theorem 3.13]. Given a set X, Pf (X)
is the set of finite nonempty subsets of X. (We shall give a precise definition of
“multiplicatively large” in Definition 2.1.)

Theorem 1.3. Let k ∈ N. For each i ∈ {0, 1, . . . , k} let 〈xi,t〉∞t=1 and 〈yi,t〉∞t=1 be
sequences in N, and let A be a multiplicatively large subset of N. Then there exist
F, G ∈ Pf (N) and a, b ∈ N such that

{
b(a +

∑
t∈F xi,t) · (

∏
t∈G yj,t) : i, j ∈ {0, 1,

. . . , k}
}
⊆ A.

Corollary 1.4. Let m, k ∈ N. For each i ∈ {0, 1, . . . , k} let 〈xi,t〉∞t=1 and 〈yi,t〉∞t=1

be sequences in N. Let N =
⋃m

s=1 As. Then there exist s ∈ {1, 2, . . . , m}, F, G ∈
Pf (N), and a, b ∈ N such that

{
b(a +

∑
t∈F xi,t) · (

∏
t∈G yj,t) : i, j ∈ {0, 1, . . . ,

k}
}
⊆ As.

Notice that a particular consequence of Corollary 1.4 is that one cell of each
finite partition of N must contain arbitrarily long geoarithmetic progressions. Fur-
thermore, the common ratio r can be taken from FP (〈yn〉∞n=1) for any prescribed
〈yn〉∞n=1 and the additive increment d can be guaranteed to be a multiple of some
member of FS(〈xn〉∞n=1) for any prescribed 〈xn〉∞n=1. (In a semigroup (S, ·),
FP (〈yn〉∞n=1) = {

∏
n∈F yn : F ∈ Pf (N)} where the products are taken in in-

creasing order of indices. If the operation is denoted by +, the corresponding
notion is denoted FS(〈yn〉∞n=1). The notations stand for finite products and finite
sums respectively.) To see this, for i ∈ {1, 2, . . . , k} and t ∈ N, let xi,t = ixt and
yi,t = (yt)i. Given F and G as guaranteed by Corollary 1.4, let d = b ·

∑
t∈F xt

and r =
∏

t∈G yt.
We show in Theorem 4.12 that one may take F = G in Theorem 1.3 and in

Corollary 4.15 that one may eliminate b from Corollary 1.4 (and in particular, that
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the additive increment for the geoarithmetic progressions described above can be
taken from FS(〈xn〉∞n=1) for any 〈xn〉∞n=1). We show also that one may not in
general simultaneously take F = G and eliminate b. The example of Theorem 4.20
shows also that one cannot eliminate the multiplier b in Theorem 1.3.

Another simply stated result from [1] is that any multiplicatively large set con-
tains geometric progressions in which the common ratios form an arithmetic pro-
gression, that is, a set of the form

{
b(a + id)j : i, j ∈ {0, 1, . . . , k}

}
[1, Theorem

3.15]. From this one concludes that one cell of any finite partition of N must satisfy
this property. Of course one might hope for a theorem with stronger conclusions in
the partition case.

A well-known extension of van der Waerden’s Theorem allows one to get the
additive increment of the arithmetic progression in the same cell as the arithmetic
progression. Similarly for any finite partition of N there exist some cell A and
b, r ∈ N such that {b, br2, . . . , brk, r} ⊆ A. One naturally wonders whether one
can intertwine these two facts. Indeed, this is achieved in the following theorem,
which is a consequence of Corollary 4.7. (See Definition 4.6 for the definition of an
(m, p, c)-set. These sets were introduced by Deuber [5] and are known to have rich
combinatorial structure.)

Theorem 1.5. Let r, k ∈ N and let N =
⋃r

s=1 As. Then there exist s ∈ {1, 2, . . . , r}
and a, d, b ∈ Ai such that{

b(a + id)j : i, j ∈ {0, 1, . . . , k}
}
∪

{
bdj : j ∈ {0, 1, . . . , k}

}
∪

{
a + id : i ∈ {0, 1, . . . , k}

}
⊆ As .

More generally for all m, p, c ∈ N there exist b ∈ N, some (m, p, c)-set F and
s ∈ {1, 2, . . . , r} such that

F ∪
{
bxj : x ∈ F, j ∈ {0, 1, . . . , k}

}
⊆ As.

In Section 5 we establish some limitations on the algebraic approach. We also
prove a theorem which, for countable commutative semigroups, is even stronger
than the powerful Central Sets Theorem. (The Central Sets Theorem for the semi-
group (N, +) is [7, Proposition 8.21]. Central subsets of any semigroup are guaran-
teed substantial combinatorial structure; see [16, Part III] for numerous examples.)
Several earlier results in the paper follow immediately from this theorem. However,
we prove these earlier results directly instead of stating them as corollaries, be-
cause the direct proofs are reasonably simple, while the theorem proved in Section
5 might be considered a little daunting.

2. Preliminaries

We shall be concerned with several notions of largeness, both additive and mul-
tiplicative. Among these are various notions of density. The notion d defined below
is referred to as upper asymptotic density .

Definition 2.1. Let A ⊆ N.

(a) d(A) = lim sup
n→∞

|A ∩ {1, 2, . . . , n}|
n

.

(b) A Følner sequence in (N, ·) is a sequence 〈Fn〉∞n=1 of finite nonempty subsets

of N such that for each x ∈ N, lim
n→∞

|xFn 
 Fn|
|Fn|

= 0.
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(c) If F = 〈Fn〉∞n=1 is a Følner sequence in (N, ·), then

dF (A) = lim sup
n→∞

|A ∩ Fn|
|Fn|

.

(d) If F = 〈Fn〉∞n=1 is a Følner sequence in (N, ·), then

d∗F (A) = lim sup
k→∞

{
|A ∩ (m · Fn)|

|Fn|
: m ∈ N and n ≥ k

}
.

(e) The set A is multiplicatively large if and only if there is some Følner se-
quence 〈Fn〉∞n=1 in (N, ·) such that dF (A) > 0.

An example of a Følner sequence in (N, ·) is given by Fn =
{ ∏n

i=1 pi
αi : for each

i ∈ {1, 2, . . . , n}, αi ∈ {0, 1, . . . , n}
}
, where 〈pi〉∞i=1 is the sequence of primes in any

fixed order. It is an easy exercise to show that a subset A of N is multiplicatively
large if and only if there is some Følner sequence 〈Fn〉∞n=1 in (N, ·) such that d∗F (A) >
0.

Other notions of largeness with which we shall be concerned originated in topo-
logical dynamics and make sense in any semigroup. Four of these, namely thick ,
syndetic, piecewise syndetic and IP-set, have simple elementary descriptions and
we introduce them now. The fifth, central , while originally defined by Furstenberg
in dynamical terms [7], is most simply described in terms of the algebraic structure
of βS, which we shall describe shortly. Given a semigroup (S, ·), a subset A of S,
and x ∈ S, we let x−1A = {y ∈ S : xy ∈ A}.

Definition 2.2. Let (S, ·) be a semigroup and let A ⊆ S.
(a) A is thick if and only if whenever F ∈ Pf (S) there exists x ∈ S such that

Fx ⊆ A.
(b) A is syndetic if and only if there exists G ∈ Pf (S) such that S =

⋃
t∈G t−1A.

(c) A is piecewise syndetic if and only if there exists G ∈ Pf (S) such that for
every F ∈ Pf (S) there exists x ∈ S such that Fx ⊆

⋃
t∈G t−1A.

(d) A is an IP-set if and only if there exists a sequence 〈xn〉∞n=1 in S such that
FP (〈xn〉∞n=1) ⊆ A.

Each of the above notions is one-sided. So, for example, A could be said to be
“right thick” if it satisfies the definition above and “left thick” if for each F ∈ Pf (S)
there exists x ∈ S such that xF ⊆ A. (On the other hand, “right” and “left” can
be, and have been, interchanged.)

Notice that a set A ⊆ S is thick if for each finite subset F of S, A contains
some (multiplicative) right translate of F . If S = Z, and our operation is addition,
then A ⊆ S is called syndetic if a finite number of translates of A cover S. If we
generalize this to an arbitrary semigroup S with some operation ·, then a good
definition, rich enough for most purposes, is that A is syndetic if S is covered by a
finite number of sets of the form t−1A. If S were a group, then note that t−1A is a
(multiplicative) translate of A. A set A ⊆ S is piecewise syndetic if there is a finite
union of translates of A which is thick.

Notice that each of thick and syndetic imply piecewise syndetic and that thick
sets are IP-sets. It is easy to construct examples in (N, +) showing that no other
implications among these notions is valid in general.

The following lemma gives a hint why piecewise syndetic sets will be interesting
for our purposes.
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Lemma 2.3. Let (S, ·) be a semigroup, let F be a partition regular family of finite
subsets of S, and let A be a piecewise syndetic subset of S. Then there exist t, x ∈ S
and F ∈ F such that tFx ⊆ A. If (S, ·) is commutative, then there exist t ∈ S and
F ∈ F such that tF ⊆ A.

Proof. Pick G ∈ Pf (S) such that
⋃

t∈G t−1A is thick. By a standard compactness
argument pick a finite subfamily H ⊆ F such that for each partition of S into |G|
sets some cell contains a member of H. Since all elements of H are finite,

⋃
H

is finite as well. Thus there exists some x ∈ S such that (
⋃
H)x ⊆

⋃
t∈G t−1A.

Equivalently, all members of H are subsets of
⋃

t∈G t−1Ax−1. We conclude that
for some t ∈ G and F ∈ H, F ⊆ t−1Ax−1. �

Notice that if (S, ·) is not commutative, then both multipliers in Lemma 2.3 may
be required. For example, let S be the free semigroup on the letters a and b. Then
F = {bF : F ∈ Pf (S)} and G = {Fb : F ∈ Pf (S)} are partition regular, aS and
Sa are piecewise syndetic, but there do not exist F ∈ F and x ∈ S with Fx ⊆ aS,
and there do not exist F ∈ G and t ∈ S with tF ⊆ Sa. (In fact, aS is syndetic in
S.)

We now present a very brief review of basic facts about (βS, ·). For additional
information, including historical notes about the discovery of these facts, see [16].

Given a discrete semigroup (S, ·) we take the points of the Stone-Čech compacti-
fication βS of S to be the ultrafilters on S, the principal ultrafilters being identified
with the points of S. Given A ⊆ S, A = {p ∈ βS : A ∈ p} and the set {A : A ⊆ S}
is a basis for the open sets (and a basis for the closed sets) of βS. Given p, q ∈ βS
and A ⊆ S, A ∈ p · q if and only if {x ∈ S : x−1A ∈ q} ∈ p. In particular, the
operation · on βS extends the operation · on S.

With this operation, (βS, ·) is a compact Hausdorff right topological semigroup
with S contained in its topological center. That is, for each p ∈ βS, the function
ρp : βS → βS defined by ρp(q) = q ·p is continuous and for each x ∈ S, the function
λx : βS → βS defined by λx(q) = x · q is continuous. A subset I of a semigroup T
is a left ideal provided T · I ⊆ I, a right ideal provided I · T ⊆ I, and a two sided
ideal (or simply an ideal) provided it is both a left ideal and a right ideal.

Any compact Hausdorff right topological semigroup T has a smallest two sided
ideal K(T ) =

⋃
{L : L is a minimal left ideal of T} =

⋃
{R : R is a minimal right

ideal of T}. Given a minimal left ideal L and a minimal right ideal R, L ∩ R is
a group, and in particular contains an idempotent. An idempotent in K(T ) is a
minimal idempotent. If p and q are idempotents in T we write p ≤ q if and only if
pq = qp = p. An idempotent is minimal with respect to this relation if and only if
it is a member of the smallest ideal.

A subset of S is an IP-set (Definition 2.2(d)) if and only if it is a member of
some idempotent in βS. It is piecewise syndetic (Definition 2.2(c)) if and only if it
is a member of an element of K(βS).

Definition 2.4. Let S be a semigroup and let A ⊆ S. Then A is central if and
only if there is a minimal idempotent p in βS such that A ∈ p.

A central set is in particular a piecewise syndetic IP-set. Given a minimal idem-
potent p and a finite partition of S, one cell must be a member of p; hence at least
one cell of any finite partition of S must be central. Central sets are fundamental
to the Ramsey theoretic applications of the algebra of βS.
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We shall need the Hales-Jewett Theorem. Given the free semigroup S over an
alphabet L, a variable word w is a word over L∪ {v} in which v occurs, where v is
a “variable” not in L. Given a variable word w and a ∈ L, θa(w) is the word in S
obtained by replacing each occurrence of v by a.

Theorem 2.5 (Hales-Jewett). Let L be a finite alphabet, let S be the free semigroup
over L, let m ∈ N, and let S =

⋃m
i=1 Ai. Then there exist i ∈ {1, 2, . . . , m} and a

variable word w such that {θa(w) : a ∈ L} ⊆ Ai.

Proof. See [12, Theorem 1], or see [11, Theorem 2.3] or [16, Theorem 14.7]. �

The following application of the Hales-Jewett Theorem will be used later. This
result is well known among afficionados.

Theorem 2.6. Let (S, ·) be a commutative semigroup, let A be a piecewise syndetic
subset of S, let k ∈ N, and for i ∈ {1, 2, . . . , k} let 〈yi,n〉∞n=1 be a sequence in S.
There exist F ∈ Pf (N) and b ∈ S such that {b}∪

{
b
∏

t∈F yi,t : i ∈ {1, . . . , k}
}
⊆ A.

Proof. By virtue of Lemma 2.3 it is sufficient to show that the family{
{b} ∪

{
b ·

∏
t∈F yi,t : i ∈ {1, . . . , k}

}
: b ∈ S, F ∈ Pf (N)

}
is partition regular.

Let L = {0, 1, . . . , k} and let T be the free semigroup on the alphabet L. Let
b0 ∈ S be an arbitrary, fixed element. Given a word w = l1l2 · · · ln of length n in
S, define f(w) = b0

∏
t∈{1,2,...,n},lt �=0 ylt,t if there exists some t ∈ {1, 2, . . . , n} such

that lt �= 0 and f(w) = b0 otherwise.
Consider a partition {A1, A2, . . . , Am} of S. Then T =

⋃m
s=1 f−1[As], so pick

by Theorem 2.5, s ∈ {1, 2, . . . , m} and a variable word w = l1l2 · · · ln (with each
lt ∈ L ∪ {v}) such that {θi(w) : i ∈ L} ⊆ f−1[As].

Let F = {t ∈ {1, 2, . . . , n} : lt = v}, let G = {1, 2, . . . , n} \ F and let b =
f
(
θ0(w)

)
. Then b

∏
t∈F yi,t = f

(
θi(w)

)
for i ∈ {1, 2, . . . , k}, and thus {b} ∪{

b
∏

t∈F yi,t : i ∈ {1, . . . , k}
}
⊆ As. �

Corollary 2.7. Let (S, ·) be a commutative semigroup, let A be a piecewise syndetic
subset of S, let B be an IP-set in S, and let k ∈ N. There exist b ∈ S and r ∈ B
such that {b, br, br2, . . . , brk} ⊆ A. If A is central we may in particular take A = B
so that {r, b, br, br2, . . . , brk} ⊆ A.

Proof. Let 〈xn〉∞n=1 be a sequence in S such that FP (〈xn〉∞n=1) ⊆ B. For i ∈ {1, 2,
. . . , k} and n ∈ N, let yi,n = (xn)i. Pick b and F as guaranteed by Theorem 2.6
and let r =

∏
t∈F xt.

Any central set is a piecewise syndetic IP-set and thus the “in particular” state-
ment follows. �

In fact a stronger version of Theorem 2.6, presented below as Theorem 2.9, is a
simple consequence of the following version of the Central Sets Theorem.

Theorem 2.8. Let (S, ·) be a commutative semigroup, let A be a central subset of S,
and for each i ∈ N, let 〈yi,n〉∞n=1 be a sequence in S. There exist a sequence 〈an〉∞n=1

with FP (〈an〉∞n=1) ⊆ A and a sequence 〈Hn〉∞n=1 in Pf (N) such that max Hn <
min Hn+1 for each n ∈ N and such that for each f : N → N with f(n) ≤ n for each
n ∈ N, FP (〈an ·

∏
t∈Hn

yf(n),t〉∞n=1) ⊆ A.
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Proof. The case (S, ·) = (Z, +) is [7, Proposition 8.21]. For the general case, let
S′ = S∪{1} where 1 is a two sided identity and let y0,n = 1 for every n ∈ N. By [16,
Exercise 15.1.1] A is central in S′, so apply [16, Theorem 14.11] to the sequences
〈yi,n〉∞n=1 for i ∈ N ∪ {0}. Since for each n ∈ N, an = an ·

∏
t∈Hn

y0,t, we have that
each an ∈ A. �

Theorem 2.9. Let (S, ·) be a commutative semigroup, let A be a piecewise syndetic
subset of S, and for each i ∈ {1, 2, . . . , k} let 〈yi,n〉∞n=1 be a sequence in S. There
exist b ∈ A, a sequence 〈an〉∞n=1 in S, and a sequence 〈Hn〉∞n=1 in Pf (N) such that
max Hn < min Hn+1 for each n ∈ N and such that for each f : N → N with f(n) ≤ n
for each n ∈ N, b · FP (〈an〉∞n=1) ⊆ A and b · FP (〈an ·

∏
t∈Hn

yf(n),t〉∞n=1) ⊆ A. In
particular there exist F ∈ Pf (N) and b ∈ S such that {b} ∪

{
b
∏

t∈F yi,t : i ∈
{1, . . . , k}

}
⊆ A.

Proof. Pick p ∈ K(βS) such that A ∈ p. Pick a minimal left ideal L of βS such that
p ∈ L and let e be an idempotent in L. Then p = pe, so {x ∈ S : x−1A ∈ e} ∈ p.
Pick b ∈ A such that b−1A ∈ e. Then b−1A is central, so apply Theorem 2.8. �

3. New wine from old wineskins

All of the results about the algebraic structure of βN that are used in this section
have been known for several years.

There is a long list of configurations which are known to be present in any central
subset of (N, +) and a somewhat shorter, but still lengthy, list of structures which
can be found in any central subset of (N, ·). Some of these involve special subsets
of βN defined by various notions of density.

Definition 3.1. (a) ∆ = {q ∈ βN : (∀A ∈ q)(d(A) > 0)}.
(b) If F = 〈Fn〉∞n=1 is a Følner sequence in (N, ·), then

∆F = {q ∈ βN : (∀A ∈ q)(dF (A) > 0)} .

(c) If F = 〈Fn〉∞n=1 is a Følner sequence in (N, ·), then

∆∗
F = {q ∈ βN : (∀A ∈ q)(d∗F (A) > 0)} .

Lemma 3.2. Let F = 〈Fn〉∞n=1 be a Følner sequence in (N, ·). Then ∆∗
F is a two

sided ideal of (βN, ·).

Proof. Let q ∈ ∆∗
F and let p ∈ βN. To see that p · q ∈ ∆∗

F let A ∈ p · q and pick
x ∈ N such that x−1A ∈ q. Let α = d∗F (x−1A), let k ∈ N, and let ε > 0. Pick m ∈ N

and n ≥ k such that |x−1A∩mFn| ≥ (α−ε) · |Fn|. Then |A∩xmFn| ≥ (α−ε) · |Fn|.
To see that q · p ∈ ∆∗

F let A ∈ q · p and let B = {x ∈ N : x−1A ∈ p}.
Let α = d∗F (B), let k ∈ N, and let ε > 0. Pick m ∈ N and n ≥ k such that
|B ∩ mFn| ≥ (α − ε) · |Fn|. Pick t ∈

⋂
{x−1A : x ∈ B ∩ mFn}. Then |A ∩ tmFn| ≥

|B ∩ mFn| ≥ (α − ε) · |Fn|. �

In [20], Rado proved that a u×v matrix C is kernel partition regular over (N, +)
(meaning that whenever r ∈ N and N =

⋃r
i=1 Ai, there exist i ∈ {1, 2, . . . , r} and

	x ∈ Ai
v such that C	x = 	0) if and only if C satisfies a computable requirement

called the columns condition.
A u×v matrix C with entries from Q is image partition regular over (N, +) if and

only if whenever r ∈ N and N =
⋃r

i=1 Ai, there exist i ∈ {1, 2, . . . , r} and 	x ∈ Nv



MULTIPLICATIVE AND ADDITIVE RAMSEY THEORY 827

such that all entries of C	x are in Ai. We shall use the custom of denoting the
entries of a matrix by the lower case of the same letter whose upper case denotes
the matrix, so that the entry in row i and column j of C is denoted by ci,j .

Definition 3.3. Let u, v ∈ N and let C be a u × v matrix with entries from Q.

(a) C is a first entries matrix if and only if no row of C is	0 and for all i, j ∈ {1, 2,
. . . , u} and all k ∈ {1, 2, . . . , v}, if k = min{t : ci,t �= 0} = min{t : cj,t �= 0},
then ci,k = cj,k > 0.

(b) The number b is a first entry of C if and only if b is the first nonzero entry
in some row of C.

Each first entries matrix is image partition regular over (N, +), and image par-
tition regular matrices can be characterized in terms of first entries matrices. (See
[16, Theorem 15.24].)

We first summarize some of the structures guaranteed to be present in any mul-
tiplicatively central set. See [16, Chapter 14] for a formal definition of the notion
of tree in a set as well as the set of successors to a node. (Informally, there is a
good chance it means what you think it means.)

Theorem 3.4. Let A be a central subset of (N, ·).
(a) For any sequence 〈xn〉∞n=1 in N and any k ∈ N, there exist b ∈ N and

r ∈ FP (〈xn〉∞n=1) such that {b, br, br2, . . . , brk} ⊆ A.
(b) There is a tree T in A such that for any path g through T and any Følner

sequence F = 〈Fn〉∞n=1, FP (〈g(n)〉∞n=1) ⊆ A and for every node f ∈ T , the set Bf

of successors to f satisfies d∗F (Bf ) > 0.
(c) If u, v ∈ N and C is a u × v matrix with entries from Z which satisfies the

columns condition over Z, then there exists 	x ∈ Av such that for all i ∈ {1, 2, . . . , u},∏v
j=1 xj

ci,j = 1.
(d) If u, v ∈ N and C is a u × v first entries matrix with entries from Z and all

first entries equal to 1, then there exists 	x in Nv such that for all i ∈ {1, 2, . . . , u},∏v
j=1 xj

ci,j ∈ A.

Proof. (a) This follows from Corollary 2.7.
(b) Pick a minimal idempotent q of (βN, ·) such that A ∈ q. By Lemma 3.2, ∆∗

F
is an ideal of (βN, ·), so q ∈ ∆∗

F and [16, Lemma 14.24] applies.
(c) See [16, Theorem 15.16(a)].
(d) See [16, Lemma 15.14 and Theorem 15.5]. �

The conditions of Theorem 3.4(c) and (d) are stronger than those required for
kernel and image partition regularity over (N, ·). (And necessarily so. The set A =
N \ {x2 : x ∈ N} is central in (N, ·) [16, Exercise 15.1.2], the matrix

(
2 −2 1

)
is kernel partition regular over (N, ·), and the matrix (2) is image partition regular
over (N, ·). But one cannot get x, y, z ∈ A with x2y−2z = 1 and one cannot
get x ∈ N with x2 ∈ A.) By contrast, in (N, +), kernel partition regularity of C

corresponds to solutions to C	x = 	0 in any central set and image partition regularity
of C corresponds to obtaining all entries of C	x in any central set.

We shall be interested in a property stronger than central for our additive results.
By [16, Theorem 6.79], ∆ is a compact left ideal of (βN, +), so it contains a minimal
idempotent of (βN, +). Consequently, any finite partition of N will have one cell
satisfying the hypothesis of the following theorem.
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Theorem 3.5. Let A ⊆ N and assume that there is a minimal idempotent q of
(βN, +) in A ∩ ∆.

(a) For any sequence 〈xn〉∞n=1 in N and any k ∈ N, there exist a ∈ N and
d ∈ FS(〈xn〉∞n=1) such that {a, a + d, . . . , a + kd} ⊆ A.

(b) There is a tree T in A such that for any path g through T , FS(〈g(n)〉∞n=1) ⊆ A
and for every node f ∈ T , the set Bf of successors to f satisfies d(Bf ) > 0.

(c) If u, v ∈ N and C is a u × v matrix with entries from Q which is kernel
partition regular over (N, +) (that is, C satisfies the columns condition over Q),
then there exists 	x ∈ Av such that C	x = 	0.

(d) If u, v ∈ N and C is a u × v matrix with entries from Q which is image
partition regular over (N, +), (in particular, if C is a first entries matrix), then
there exists 	x in Nv with all entries of C	x in A.

(e) Let R be a finite set of polynomials which take integer values at integers and
have zero constant term, and let 〈zi〉∞i=1 be a sequence in Z. Then there exists
F ∈ Pf (N) such that {a ∈ A : {a + p(Σi∈F zi) : p ∈ R} ⊆ A} is piecewise syndetic.

Proof. (a) This follows from Corollary 2.7.
(b) See [16, Lemma 14.24].
(c) See [16, Theorem 15.16(b)].
(d) See [15, Theorem 2.10].
(e) In [3, Theorem C], it was shown that the conclusion follows from the as-

sumption that A is piecewise syndetic. For an algebraic proof, see [14, Corollary
3.7]. �
Lemma 3.6. Let D = {q ∈ ∆ : q is a minimal idempotent of (βN, +)}. Then
c�D is a left ideal of (βN, ·).
Proof. We have already observed that D �= ∅. Let r ∈ c�D. To see that βN·r ⊆ c�R
it suffices by the continuity of ρr in (βN, ·) to show that N · r ⊆ c�D. So let x ∈ N

and let A ∈ x · r. Then x−1A ∈ r, so pick q ∈ D ∩ x−1A. Then A ∈ x · q. By [16,
Theorem 6.79], x · q ∈ ∆. By [15, Lemma 2.1], x · q is a minimal idempotent of
(βN, +). �

Plentiful examples of candidates for the sets F and G of Theorem 3.7 are provided
by Theorems 3.4 and 3.5. Notice in particular that G could be any family of subsets
of N such that any additively central set must contain a member of G.

Theorem 3.7. Let D = {q ∈ ∆ : q is a minimal idempotent of (βN, +)}. Let
F be a set of subsets of N with the property that any multiplicatively central subset
of N contains a member of F and let G be a set of subsets of N with the property
that, whenever A ⊆ N and A ∩ D �= ∅, some member of G is contained in A.
Assume further that F or G consists of finite sets. Let H = 〈Hn〉∞n=1 be a Følner
sequence in (N, ·). Whenever r ∈ N and N =

⋃r
i=1 Ai, there exists i ∈ {1, 2, . . . , r}

such that d(Ai) > 0, d∗H(Ai) > 0, and there exist B ∈ F and C ∈ G such that
B ∪ C ∪ B · C ⊆ Ai.

Proof. By Lemma 3.6, c�D is a left ideal of (βN, ·), so pick a minimal idempotent
q of (βN, ·) in c�D. Pick i ∈ {1, 2, . . . , r} such that Ai ∈ q. Since q ∈ c�D ⊆ ∆,
d(Ai) > 0. By Theorem 3.4(b), d∗H(Ai) > 0. Since q = q · q, {x ∈ Ai : x−1Ai ∈
q} ∈ q. Assume first that F consists of finite sets. Since {x ∈ Ai : x−1Ai ∈
q} ∈ q, {x ∈ Ai : x−1Ai ∈ q} is multiplicatively central, so pick B ∈ F such that
B ⊆ {x ∈ Ai : x−1Ai ∈ q}. Since B is finite, Ai ∩

⋂
x∈B x−1Ai ∈ q and thus

(Ai ∩
⋂

x∈B x−1Ai) ∩ D �= ∅. Pick C ∈ G such that C ⊆ Ai ∩
⋂

x∈B x−1Ai.



MULTIPLICATIVE AND ADDITIVE RAMSEY THEORY 829

Now assume that G consists of finite sets. Since {x ∈ Ai : x−1Ai ∈ q} ∈ q,
{x ∈ Ai : x−1Ai ∈ q} ∩ D �= ∅, so pick C ∈ G such that C ⊆ {x ∈ Ai : x−1Ai ∈ q}.
Since C is finite, Ai ∩

⋂
x∈C x−1Ai ∈ q, so there exists some B ∈ F such that

B ⊆ Ai ∩
⋂

x∈C x−1Ai. �

By adding the requirement that the members of both F and G are finite, we
obtain an infinitary extension of Theorem 3.7 along the lines of the Central Sets
Theorem.

Theorem 3.8. Let D = {q ∈ ∆ : q is a minimal idempotent of (βN, +)}.
For each n ∈ N, let Fn be a set of finite subsets of N with the property that any
multiplicatively central subset of N contains a member of Fn, and let Gn be a set of
finite subsets of N with the property that, whenever A ⊆ N and A ∩ D �= ∅, some
member of Gn is contained in A. Let H = 〈Hn〉∞n=1 be a Følner sequence in (N, ·).
Whenever r ∈ N and N =

⋃r
i=1 Ai, there exists i ∈ {1, 2, . . . , r} such that d(Ai) > 0,

d∗H(A) > 0, and there exist sequences 〈Bn〉∞n=1 and 〈Cn〉∞n=1 such that Bn ∈ Fn and
Cn ∈ Gn for each n and for any F ∈ Pf (N) and any f ∈ �n∈F (Bn∪Cn∪Bn ·Cn),∏

n∈F f(n) ∈ Ai.

Proof. Pick a minimal idempotent q of (βN, ·) in c�D, and pick i ∈ {1, 2, . . . ,
r} such that Ai ∈ q. Then d(Ai) > 0 and d∗H(A) > 0. For any X ∈ q, let
X� = {x ∈ X : x−1X ∈ q}. Then by [16, Lemma 4.14], X� ∈ q and for any
x ∈ X�, x−1X� ∈ q.

Choose B1 ∈ F1 such that B1 ⊆ A1
� and choose C1 ∈ G1 such that C1 ⊆

A1
� ∩

⋂
x∈B1

x−1A1
�.

Inductively, let n ∈ N and assume we have chosen Bt ∈ Ft and Ct ∈ Gt for each
t ∈ {1, 2, . . . , n} with the property that for all nonempty F ⊆ {1, 2, . . . , n} and all
f ∈ �t∈F (Bt ∪ Ct ∪ Bt · Ct),

∏
t∈F f(t) ∈ Ai

�. Let

X = Ai
� ∩

⋂ {( ∏
t∈F f(t)

)−1
Ai

� : ∅ �= F ⊆ {1, 2, . . . , n} and
f ∈ �t∈F (Bt ∪ Ct ∪ Bt · Ct)

}
.

Then X is a finite intersection of members of q, so X ∈ q. Pick Bn+1 ∈ Fn+1 such
that Bn+1 ⊆ X�. Then X ∩

⋂
x∈Bn+1

x−1X ∈ q, so pick Cn+1 ∈ Gn+1 such that
Cn+1 ⊆ X ∩

⋂
x∈Bn+1

x−1X. �

Corollary 3.9. Let m, k ∈ N and let N =
⋃m

i=1 Ai. Let H = 〈Hn〉∞n=1 be a Følner
sequence in (N, ·). Then there exist i ∈ {1, 2, . . . , m}, a, d, b ∈ Ai, and r ∈ Ai \ {1}
such that d(Ai) > 0, d∗H(Ai) > 0, and{

brs : s ∈ {0, 1, . . . , k}
}
∪

{
a + td : t ∈ {0, 1, . . . , k}

}
∪ {rd} ∪{

r(a + td) : t ∈ {0, 1, . . . , k}
}
∪

{
bdrs : s ∈ {0, 1, . . . , k}

}
∪{

brs(a + td) : s, t ∈ {0, 1, . . . , k}
}
⊆ Ai .

Proof. Let F =
{{

brs : s ∈ {0, 1, . . . , k}
}
∪ {r} : b, r ∈ N

}
and let

G =
{{

a + td : t ∈ {0, 1, . . . , k}
}
∪ {d} : a, d ∈ N

}
.

By applying Theorem 2.6 to (N, ·) and to (N, +) one concludes that every multi-
plicatively central set contains a member of F and that every additively central set
contains a member of G. Thus we may apply Theorem 3.8. By assigning 1 to its
own cell one may ensure that r �= 1. �
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Corollary 3.10. Let m, k ∈ N and let N =
⋃m

i=1 Ai. Let H = 〈Hn〉∞n=1 be a Følner
sequence in (N, ·). Then there exist i ∈ {1, 2, . . . , m}, a, d ∈ Ai, and r ∈ Ai \ {1}
such that d(Ai) > 0, d∗H(Ai) > 0, and{

rs(a + td) : s, t ∈ {0, 1, . . . , k}
}
∪ {drs : s ∈ {0, 1, . . . , k}} ⊆ Ai .

Proof. Let i, a, b, d, and r be as in Corollary 3.9. Put a1 = ab and d1 = db. Then{
rs(a1 + td1) : s, t ∈ {0, 1, . . . , k}

}
∪

{
d1r

s : s ∈ {0, 1, . . . , k}
}
⊆ Ai. �

The following proposition states that the geoarithmetic structure in the conclu-
sion of Corollary 3.10 can be found in any multiplicatively piecewise syndetic IP
set.

Theorem 3.11. Let A be a piecewise syndetic IP-set in (N, ·) with 1 /∈ A and let
k ∈ N. Then there exist a, d ∈ A and r ∈ A \ {1} such that{

rs(a + td) : s, t ∈ {0, 1, . . . , k}
}
∪ {drs : s ∈ {0, 1, . . . , k}} ⊆ Ai .

Proof. Let F =
{{

brs : s ∈ {0, 1, . . . , k}
}

: b ∈ N and r ∈ A \ {1}
}

and let

G =
{
{d} ∪

{
a + td : t ∈ {0, 1, . . . , k}

}
: a, d ∈ N

}
.

By Corollary 2.7, F and G are partition regular. By Theorem 1.1 this holds for
H = {B · C : B ∈ F and C ∈ G} as well. Since for any t ∈ N and H ∈ H, tH ∈ H
we may apply Lemma 2.3 and pick some B ∈ F and C ∈ G such that B · C ⊆ A.
Pick b ∈ N and r ∈ A such that B =

{
brs : s ∈ {0, 1, . . . , k}

}
and pick a1, d1 ∈ N

such that C = {d1} ∪
{
a1 + td1 : t ∈ {0, 1, . . . , k}

}
. Let a = a1b and d = d1b. �

4. Extensions of geoarithmetic progressions

A geoarithmetic progression is a set of the form
{
rj(a + id) : i, j ∈ {0, 1, . . . , k}

}
where a, d, k ∈ N and r ∈ N\{1}. We shall be concerned in this section with finding
certain generalizations of geoarithmetic progressions in one cell of a finite partition
of N.

Our first result in this direction (Corollary 4.3) replaces r in a geometric pro-
gression by multiples of members of any partition regular family of finite sets. For
that result, one needs to add a multiplier b because, for example, one can certainly
not expect to find a set of the form {r, r2} for r > 1 in one cell of an arbitrary finite
partition of N. Indeed one may assign the members of N \

{
x2 : x ∈ N \ {1}

}
to A1

or A2 at will, and then assign x2 to the cell that x is not in, x4 to the cell x2 is not
in, and so on.

To establish Theorem 4.2 we need the following algebraic result which is of
interest in its own right. We let ω = N∪{0}. The case (S, +) = (ω, +) of Theorem
4.1 follows from [15, Theorem 2.10]. Given a semigroup S, a set C ⊆ S is said to
be central* if and only if for every central subset B of S, C ∩B �= ∅. (Equivalently,
S \C is not central.) Notice in particular that S is always central* so that if all first
entries of a first entries matrix A are equal to 1, the requirement in the following
theorem that 1S be central* is automatically satisfied.

Theorem 4.1. Let u, v ∈ N and let A be a u × v first entries matrix with entries
from ω. Let (S, +) be a commutative semigroup with identity 0 and let C be a central
subset of S. If for every first entry c of A, cS is central*, then {	x ∈ Sv : A	x ∈ Cu}
is central in Sv.
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Proof. Pick a minimal idempotent e of βS such that C ∈ e. Define ϕ : Sv → Su

by ϕ(	x ) = A	x and let ϕ̃ : β(Sv) → (βS)u be its continuous extension. Let M =
{p ∈ β(Sv) : ϕ̃(p) = (e, e, . . . , e)T }. By [16, Corollary 4.22], ϕ̃ is a homomorphism,
so to see that M is a subsemigroup, it suffices to show that M �= ∅.

For each B ∈ e, pick by [16, Theorem 15.5], 	xB ∈ Sv such that ϕ(	xB) ∈ Bu.
Direct e by reverse inclusion and let q be a limit point in β(Sv) of the net 〈	xB〉B∈e.
Then q ∈ M .

Since M is a compact right topological semigroup, pick a minimal idempotent r
of M . We claim that r is minimal in β(Sv). To see this, let p be an idempotent
of β(Sv) such that p ≤ r. Then ϕ̃(p) ≤ ϕ̃(r) = (e, e, . . . , e)T and (e, e, . . . , e)T is
minimal in (βS)u by [16, Theorem 2.23], so ϕ̃(p) = (e, e, . . . , e)T . Thus p ∈ M and
so p = r.

Pick X ∈ r such that ϕ̃[ X ] ⊆ ( B )u. Then X ⊆ {	x ∈ Sv : A	x ∈ Bu}. �
Notice that all we need in the proof of the following theorem is that {(b, r) ∈ S2 :

{r, b, br, . . . , brk} ⊆ C} is piecewise syndetic, which we establish by (algebraically)
showing that it is central. We do not have, nor do we think it is likely to be easy
to find, an elementary proof of this fact.

Theorem 4.2. Let (S, ·) be a commutative semigroup with identity and let C be
a central subset of S. If F is a partition regular family of finite subsets of S and
k ∈ N, then there exist b, r ∈ S and F ∈ F such that rF ∪

{
b(rx)j : x ∈ F and

j ∈ {0, 1, . . . , k}
}
⊆ C.

Proof. Let k ∈ N and let

A =

⎛
⎜⎜⎜⎜⎜⎝

0 1
1 0
1 1
...

...
1 k

⎞
⎟⎟⎟⎟⎟⎠ .

Then A is a first entries matrix with all first entries equal to 1, so by Theorem 4.1,
{(b, r) ∈ S2 : {b, r, br, . . . , brk} ⊆ C} is central in S2 and is in particular piecewise
syndetic. Let G =

{
{b} × F : b ∈ S and F ∈ F

}
. Then G is a partition regular

family of finite subsets of S2, so pick by Lemma 2.3, F ∈ F , c ∈ S, and (s, r) ∈ S2

such that (s, r) · ({c} × F ) ⊆ {(b, r) ∈ S2 : {b, r, br, . . . , brk} ⊆ C}. Let b = sc. �
Notice that, if in the above proof, the matrix A is replaced by a matrix whose set

of rows is {(0, 0, 1)} ∪
{
(0, 1, j) : j ∈ {0, 1, . . . , k}

}
∪

{
(1, i, j) : i, j ∈ {0, 1, . . . , k}

}
,

then the conclusion of Theorem 4.2 becomes “there exist b, c, r ∈ S and F ∈ F
such that rF ∪

{
b(rx)j : x ∈ F and j ∈ {0, 1, . . . , k}

}
∪

{
cbi(rx)j : x ∈ F and

i, j ∈ {0, 1, . . . , k}
}

⊆ C.” Of course additional strengthenings can be obtained
using first entries matrices with all first entries equal to 1 and additional columns.

We see now that, given any central subset C of (N, ·) we can get sets of the form{
b(a + id)j : i, j ∈ {0, 1, . . . , k}

}
together with the multiplier, the increment, and

the arithmetic progression in C.

Corollary 4.3. Let C be a central subset of (N, ·) and let k ∈ N. There exist
a, b, d ∈ N such that{

b(a + id)j : i, j ∈ {0, 1, . . . , k}
}
∪

{
bdj : j ∈ {0, 1, . . . , k}

}
∪

{
a + id : i ∈ {0, 1, . . . , k}

}
∪ {d} ⊆ C .
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Proof. Let F =
{
{d, a, a+ d, . . . , a+ kd} : a, d ∈ N}. Pick by Theorem 4.2, b, r ∈ S

and F ∈ F such that rF ∪
{
b(rx)j : x ∈ F and j ∈ {0, 1, . . . , k}

}
⊆ C. Pick c, s ∈ N

such that F = {c, s, s + c, . . . , s + kc}. Let d = rc and a = rs. �
Again note that if the stronger version of Theorem 4.2 that we mentioned after

its proof is used, the conclusion of Corollary 4.3 becomes “There exist a, b, c, d ∈ N

such that{
cbi(a + td)j : t, i, j ∈ {0, 1, . . . , k}

}
∪

{
cbidj : i, j ∈ {0, 1, . . . , k}

}
∪

{
b(a + td)j : t, j ∈ {0, 1, . . . , k}

}
∪

{
bdj : j ∈ {0, 1, . . . , k}

}
∪

{
a + td : t ∈ {0, 1, . . . , k}

}
∪ {d} ⊆ C .”

We remark also that Corollary 4.3 could also be stated in terms of an arbitrary
commutative ring with no change in the proof.

The following result is stronger than Corollary 4.3. We state it separately because
its formulation is more involved and the proof requires more theoretical background.

Corollary 4.4. Let S be an infinite set with operations + and · such that (S, +) is
a commutative semigroup with identity 0, (S \ {0}, ·) is a commutative semigroup
with identity 1, and · distributes over +. Let C be a central subset of (S \ {0}, ·),
let k ∈ N, and let G be a finite subset of S \ {0}. Then there exist a, b, d ∈ C such
that {

b(a + di)j : i ∈ G and j ∈ {0, 1, . . . , k}
}
∪

{
bdj : j ∈ {0, 1, . . . , k}

}
∪ {a + di : i ∈ G} ⊆ C .

Proof. We observe first that S \ {0} is central in (S, +). To see this, suppose
instead that 0 is a minimal idempotent of (βS, +). Then by [16, Theorem 2.9],
βS = 0 + βS = βS + 0 is a group and in particular (S, +) is cancellative. But
then by [16, Theorem 4.36], βS \ S is an ideal of (βS, +) and so 0 ∈ βS \ S, a
contradiction.

Let F =
{
{a, d} ∪ {a + dj : j ∈ G} : a, d ∈ S

}
. We claim that F ∩ P(S \ {0})

is partition regular in S \ {0}. So let r ∈ N and let S \ {0} =
⋃r

i=1 Di. Pick
i ∈ {1, 2, . . . , r} such that Di is central in (S, +). Let 〈dn〉∞n=1 be a sequence such
that FS(〈dn〉∞n=1) ⊆ Di. Theorem 2.6 applied to the sequences 〈jdn〉∞n=1 for j ∈ G
yields that there exist a ∈ Di and F ∈ Pf (N) such that a +

∑
t∈F jdt ∈ Di for all

j ∈ G. If we let d =
∑

t∈F dt we see that {a, d} ∪ {a + dj : j ∈ G} ⊆ Di.

Pick by Theorem 4.2 b, r ∈ S\{0} and F ∈ F∩P(S\{0}) such that rF∪
{
b(rx)j :

x ∈ F and j ∈ {0, 1, . . . , k}
}
⊆ C. Pick c, s ∈ S such that F = {c, s} ∪ {s + ic : i ∈

G}. Let d = rc and a = rs. Since a, d ∈ rF , we have a, d ∈ C. Also b = ba0, so
b ∈ C. �

Suppose that the semigroup S satisfies the hypotheses of Corollary 4.4 and that
0 · x = 0 for every x ∈ S. Then, by [4, Theorem 4.4] first entry matrices over S
whose first entries are all 1 can be used to prove Corollary 4.4 as well as a sequence
of successively stronger theorems. For example, the theorem stated in the remark
following Theorem 4.2 is valid in S if C is any central subset of (S \ {0}, ·), G is
any given finite subset of S and F = {f}∪{d+ tf : t ∈ G}∪{a+ sd+ tf : s, t ∈ G}
for some a, d, and f in S \ {0}.

The following corollary is also a consequence of [1, Theorem 3.15].

Corollary 4.5. Let k ∈ N, and let A be piecewise syndetic in (N, ·). Then there
exist a, b, d ∈ N such that

{
b(a + id)j : i, j ∈ {0, 1, . . . , k}

}
⊆ A.
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Proof. Pick t ∈ N such that t−1A is central and apply Corollary 4.3. �
Corollary 4.3 extends the conclusion of [1, Theorem 3.15] (i.e., the one given in

Corollary 4.5) in the sense that the arithmetic progression of the ratios is contained
in the same cell as the geoarithmetic structure. Moreover it replaces arithmetic
progressions by arithmetic progressions together with the common difference. The
strongest natural generalization of this kind of structure is perhaps given by Deu-
ber’s (m, p, c)-sets.

Definition 4.6. Let m, p, c ∈ N. A set F ⊆ N is an (m, p, c)-set if and only if there
exists 	x ∈ Nm such that

F = {cxm} ∪
⋃m−1

k=1

{
cxk +

∑m
i=k+1 λixi : {λk+1, λk+2, . . . , λm} ⊆ {0, 1, . . . , p}

}
.

Thus a set of the form {a, a+d, . . . , a+pd, d}, a, d ∈ N, is precisely a (2, p, 1)-set.
Note that (m, p, c)-sets are very closely related to first entries matrices: Let A be a
matrix whose set of rows is {(λ1, λ2, . . . , λm) : there is some j < m such that λj = c,
λi = 0 for i < j, and λi ∈ {0, 1, . . . , p} for i > j}. Then A is a first entries matrix
and a set F ⊆ N is an (m, p, c)-set if and only if there exist 	x ∈ Nm such that F
is the set of entries of A	x. By the results on first entries matrices cited above, the
family of all (m, p, c)-sets is partition regular for all m, p, c ∈ N. In fact, Deuber’s
Theorem [5, Satz 3.1] states that for all m, p, c, r ∈ N there exist n, q, d ∈ N such
that whenever A is an (n, q, d)-set and A =

⋃r
i=1 Bi, there exist i ∈ {1, 2, . . . , r}

and an (m, p, c)-set F such that F ⊆ Bi.
Since for each (m, p, c)-set F and each r ∈ N the set rF is again an (m, p, c)-set

we have the following immediate corollary of Theorem 4.2 which extends Corollary
4.3.

Corollary 4.7. Let C be a central subset of (N, ·) and let k, m, p, c ∈ N. There
exist b ∈ N and an (m, p, c)-set F such that

F ∪
{
bxj : x ∈ F, j ∈ {1, 2, . . . , k}

}
⊆ C.

One might hope that, in analogy with Deuber’s Theorem, configurations of the
form {baj : j ∈ {0, 1, . . . , N}, a ∈ A} where A is an (m, p, c)-set and m, p, c, N, b ∈ N

are strongly partition regular as well. We shall see in Theorem 4.9 that this is not
the case.

Lemma 4.8. Let N ∈ N and let γ, ρ ∈ R with 0 < γ and 1 < ρN < 2. Let
α > max{2γ, 2ρN , ρN−1

2−ρN , γ
2−ρ}. If a, d ∈ R, a > 0, d > 0, and {a, a + d, a + 2d} ⊆

[0, γ] ∪
⋃N

j=1[α
j , (αρ)j], then either {a, a + d, a + 2d} ⊆ [0, γ] or there is some

j ∈ {1, 2, . . . , N} such that {a, a + d, a + 2d} ⊆ [αj , (αρ)j ].

Proof. If a + d ≤ γ, then since α > 2γ, we have that {a, a + d, a + 2d} ⊆ [0, γ].
So assume that a + d > γ. Pick j ∈ {1, 2, . . . , N} such that a + d ∈ [αj , (αρ)j ].
Since α > 2ρN , we have that a + 2d ≤ 2(αρ)j ≤ 2αjρN < αj+1. We conclude that
{a + d, a + 2d} ⊆ [αj , (αρ)j]; hence a > 2αj − αjρj = αj(2 − ρj). If j > 1, then
since α > ρN−1

2−ρN ≥ ρj−1

2−ρj , we have that αj(2 − ρj) > (αρ)j−1. If j = 1, then since
α > γ

2−ρ we have that α(2 − ρ) > γ. �

Theorem 4.9. Let m, p, c, N ∈ N. There exist an (m, p, c)-set A and B1, B2 ⊆ N

such that B1 ∪ B2 =
{
aj : a ∈ A and j ∈ {0, 1, . . . , N}

}
and there do not exist

a, b, d ∈ N and t ∈ {1, 2} such that
{
b(a + id)j : i ∈ {0, 1, 2} and j ∈ {1, 2}

}
⊆ Bt.
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Proof. Fix ρ ∈ R with 1 < ρN < 2. Let xm = 1. We define xm−1, xm−2, . . . , x1 by
downward induction. So let k ∈ {1, 2, . . . , m − 1} and assume xi has been chosen
for i ∈ {k +1, k +2, . . . , m}. For i ∈ {k +1, k +2, . . . , m} and j ∈ {1, 2, . . . , N}, let
Ai,j =

{
(xic+

∑m
k=i+1 xkλk)j : {λi+1, λi+2, . . . , λm} ⊆ {0, 1, . . . , p}

}
. Assume that

for each r ∈ {k + 1, k + 2, . . . , m} the following induction hypotheses are satisfied.
(1) If r < m, then max

⋃m
i=r+1

⋃N
j=1 Ai,j < min

⋃N
j=1 Ar,j .

(2) If a, b, d ∈ N and
{
b(a + sd)t : s ∈ {0, 1, 2} and t ∈ {1, 2}

}
⊆

⋃m
i=r

⋃N
j=1 Ai,j ,

then either
{
b(a + sd)t : s ∈ {0, 1, 2} and t ∈ {1, 2}

}
⊆

⋃m
i=r+1

⋃N
j=1 Ai,j or

{ba, b(a + d), b(a + 2d)} ⊆ Ar,j for some j ∈ {1, 2, . . . , N}.
(3) If a, b, d ∈ N and

{
b(a + sd)t : s ∈ {0, 1, 2} and t ∈ {1, 2}

}
⊆

⋃N
j=1 Ar,j , then

there exists some j ∈ {1, 2, . . . , �N
2 �} such that {ba, b(a + d), b(a + 2d)} ⊆ Ar,j and

{ba2, b(a + d)2, b(a + 2d)2} ⊆ Ar,2j .
Now Am,1 = {c}, so all hypotheses hold vacuously for r = m.
Let γ = max

⋃m
i=k+1

⋃N
j=1 Ai,j , let D = p

∑m
i=k+1 xi, and choose xk ∈ N such

that cxk > max{2γ, 2ρN , ρN−1

2−ρN , γ
2−ρ , γ2, DNρ2N , D

ρ−1}. Put α = cxk. Observe that
Ak,1 ⊆ cxk + {0, 1, . . . , D} ⊆ [α, αρ] because α = cxk ≥ D

ρ−1 . Consequently, for
each j ∈ {1, 2, . . . , N}, Ak,j ⊆ [αj , (αρ)j ].

To verify (2), let a, b, d ∈ N such that
{
b(a+sd)t : s ∈ {0, 1, 2} and t ∈ {1, 2}

}
⊆⋃m

i=k

⋃N
j=1 Ai,j . Now

⋃m
i=k

⋃N
j=1 Ai,j =

⋃m
i=k+1

⋃N
j=1 Ai,j ∪

⋃N
j=1 Ak,j ⊆ [0, γ] ∪

⋃N
j=1[α

j , (αρ)j ],

so Lemma 4.8 applied to {ba, ba + bd, ba + 2bd} yields that either {ba, ba + bd, ba +
2bd} ⊆ [0, γ] or {ba, ba+bd, ba+2bd} ⊆ [αj , (αρ)j ] for some j ∈ {1, 2, . . . , N}. In the
second case (2) holds directly, so assume that ba+2bd ≤ γ. Then b(a+2d)2 ≤ γ2 <

cxk = α and thus
{
b(a + sd)t : s ∈ {0, 1, 2} and t ∈ {1, 2}

}
⊆

⋃m
i=k+1

⋃N
j=1 Ai,j .

To verify (3), let a, b, d ∈ N and assume that
{
b(a + sd)t : s ∈ {0, 1, 2} and

t ∈ {1, 2}
}
⊆

⋃N
j=1 Ak,j . Again applying Lemma 4.8, pick j ∈ {1, 2, . . . , N} such

that {ba, ba + bd, ba + 2bd} ⊆ Ak,j . Pick w, z ∈ Ak,1 such that ba = wj and
ba+ bd = zj and let b1 = gcd(w, z). Then b1

j = gcd(ba, ba+ bd) so b|b1
j so b ≤ b1

j .
Choose a1, a2 such that w = b1a1 and z = b1a2. Since w, z ∈ cxk + {0, 1, . . . , D}
and a2 ≥ a1 + 1, we have b1 ≤ D, so b ≤ Dj . From cxk > DNρ2N we deduce that
(cxk)2j

Dj > (cxk)2j−1ρ2j−1. Thus

ba2 ≥ (ba)2

Dj
≥ (cxk)2j

Dj
> (cxkρ)2j−1.

All elements of Ak,1 are smaller than cxkρ = αρ. Thus for l ∈ {1, 2, . . . , N} the set
Ak,l is bounded by (cxkρ)l. Hence ba2 cannot be an element of Ak,l if l ≤ 2j − 1.
Pick l, r ∈ {1, 2, . . . , N} such that ba2 ∈ Ak,l and b(a + 2d)2 ∈ Ak,r. We have seen
that l ≥ 2j. Also αr ≤ b(a + 2d)2 ≤ b2(a + 2d)2 ≤ (αρ)2j < α2j+1, so r ≤ 2j and
thus l = r = 2j and (3) is established.

We take A =
⋃m

k=1 Ak,1. To define the sets B1 and B2, choose a partition {I1, I2}
of N such that for d ∈ N, d ∈ I1 if and only if 2d ∈ I2. Let

B1 = {1} ∪
⋃m

i=1

⋃
{Ai,j : j ∈ {1, 2, . . . , N} ∩ I1} and

B2 =
⋃m

i=1

⋃
{Ai,j : j ∈ {1, 2, . . . , N} ∩ I1} .
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Suppose we have r ∈ {1, 2} and a, b, d ∈ N such that
{
b(a + sd)t : s ∈ {0, 1, 2}

and t ∈ {1, 2}
}
⊆ Br. Consider first the possibility that b = a = 1, in which case

r = 1. Then b(a + d) = 1 + d ∈ Ai,j for some i ∈ {1, 2, . . . , m} and j ∈ I1 and
b(a + d)2 = (1 + d)2 ∈ Ai,2j , while 2j ∈ I2. Now assume that ba > 1. Pick the
largest k such that

{
b(a + sd)t : s ∈ {0, 1, 2} and t ∈ {1, 2}

}
⊆

⋃m
i=k

⋃N
j=1 Ai,j .

Then by (2), {ba, b(a + d), b(a + 2d)} ⊆ Ak,j for some j ∈ {1, 2, . . . , N}. Since
max

⋃m
i=k+1

⋃N
j=1 Ai,j < min

⋃N
j=1 Ak,j , one has in fact that

{
b(a + sd)t : s ∈

{0, 1, 2} and t ∈ {1, 2}
}
⊆

⋃N
j=1 Ak,j , so (3) applies and we are done. �

Now, as we promised in the introduction, we turn our attention to extensions of
the following result from [1].

Theorem 4.10. Let k ∈ N. For each i ∈ {0, 1, . . . , k} let 〈xi,t〉∞t=1 and 〈yi,t〉∞t=1 be
sequences in N, and let A be a multiplicatively large subset of N. Then there exist
F, G ∈ Pf (N) and a, b ∈ N such that

{
b(a +

∑
t∈F xi,t) · (

∏
t∈G yj,t) : i, j ∈ {0, 1,

. . . , k}
}
⊆ A.

Proof. See [1, Theorem 3.13] �

We now show that this result can be strengthened to guarantee F = G. The
proof uses the very deep and powerful Density Hales-Jewett Theorem which we now
state.

Theorem 4.11 (Furstenberg and Katznelson). Let L be a finite alphabet and let
ε > 0. There exists n ∈ N such that, if Sn is the set of length n words over L and
B ⊆ Sn such that |B| ≥ ε · |Sn|, then there is a variable word w of length n over L
such that {θa(w) : a ∈ L} ⊆ B.

Proof. See [8, Theorem E]. �

Theorem 4.12. Let k ∈ N and for each i ∈ {0, 1, . . . , k} let 〈xi,t〉∞t=1 and 〈yi,t〉∞t=1

be sequences in N. Let A be a multiplicatively large subset of N. Then there exist
F ∈ Pf (N) and a, b ∈ N such that

{ba} ∪
{
b(a +

∑
t∈F xi,t) : i ∈ {0, 1, . . . , k}

}
∪{

ba ·
∏

t∈F yj,t : j ∈ {0, 1, . . . , k}
}
∪{

b(a +
∑

t∈F xi,t) · (
∏

t∈F yj,t) : i, j ∈ {0, 1, . . . , k}
}
⊆ A .

Proof. Pick a Følner sequence 〈Hn〉∞n=1 in (N, ·) such that lim sup
n→∞

|A ∩ Hn|
|Hn|

> 0. By

thinning the sequence we may presume that we have ε > 0 such that for each n ∈ N,
|A∩Hn| > ε·|Hn|. Let xk+1,t = 0 and yk+1,t = 1 for all t. Let L = {0, 1, . . . , k+1}2.
By Theorem 4.11, choose n ∈ N such that whenever B ⊆ Sn and |B| ≥ ε

2 · |Sn|
there must exist some variable word w such that {θ(i,j)(w) : (i, j) ∈ L} ⊆ B.

Define f : Sn → N as follows. For w ∈ Sn and t ∈ {1, 2, . . . , n}, let w1(t) =
π1

(
w(t)

)
and w2(t) = π2

(
w(t)

)
, so that w(t) =

(
w1(t), w2(t)

)
. (We are treating the

members of Sn as functions from {1, 2, . . . , n} to L.) Let

f(w) = (1 +
∑n

t=1 xw1(t),t) ·
∏n

t=1 yw2(t),t .

We claim that there is some b ∈ N such that |{w ∈ Sn : b ·f(w) ∈ A}| ≥ ε
2 · |Sn|. To

this end, since 〈Hm〉∞m=1 is a Følner sequence, pick m ∈ N such that for all w ∈ Sn,
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|Hm \ f(w) ·Hm| < ε
2 · |Hm|. Then |A∩Hm| ⊆ (A∩ f(w) ·Hm)∪ (Hm \ f(w) ·Hm),

so |A ∩ f(w) · Hm| ≥ |A ∩ Hm| − |Hm \ f(w) · Hm| > ε · |Hm| − ε
2 · |Hm|; thus

|Sm| · ε
2 · |Hm| ≤

∑
w∈Sn

|A ∩ f(w) · Hm|
=

∑
w∈Sn

∑
b∈Hm

χA(f(w) · b)
=

∑
b∈Hm

∑
w∈Sn

χA(f(w) · b).

Therefore, for some b ∈ Hm,
∑

w∈Sn
χA(f(w) ·b) ≥ ε

2 and thus we may pick b ∈ Hm

such that |{w ∈ Sn : b · f(w) ∈ A}| ≥ ε
2 · |Sn| as required. Let B = {w ∈ Sn :

b ·f(w) ∈ A}. Pick a variable word w such that {θ(i,j)(w) : (i, j) ∈ L} ⊆ B. Letting
v be the variable, let F = {t ∈ {1, 2, . . . , n} : w(t) = v} and let G = {1, 2, . . . ,
n} \ F . For t ∈ G and (i, j) ∈ L, π1

(
θ(i,j)(w)(t)

)
= w1(t) and π2

(
θ(i,j)(w)(t)

)
=

w2(t). For t ∈ F and (i, j) ∈ L, π1

(
θ(i,j)(w)(t)

)
= i and π2

(
θ(i,j)(w)(t)

)
= j. Let

b′ = b ·
∏

t∈G yw2(t),t and let a = 1+
∑

t∈G xw1(t),t. Then for any i, j ∈ {0, 1, . . . , k},
b′ · (a +

∑
t∈F xi,t) · (

∏
t∈G xj,t) ∈ A. �

Let F = 〈Fn〉∞n=1 be a Følner sequence in (N, ·). By Lemma 3.2, ∆∗
F is a two

sided ideal of (βN, ·) and consequently, any piecewise syndetic set A has d∗F (A) > 0,
and is in particular multiplicatively large. Notice that, if one wants the conclusion
of Theorem 4.12 only for piecewise syndetic sets, one can get by with an appeal to
the (standard) Hales-Jewett Theorem (Theorem 2.5), using Lemma 2.3.

We have just seen that we can take F = G in the partition theoretic version
of Theorem 4.10 (Corollary 1.4), and we will show in Corollary 4.15(a) that the
multiplier b may be eliminated. We show in Corollary 4.19, however, that one
cannot simultaneously take F = G and eliminate b.

Lemma 4.13. Let (S, ·) be a commutative semigroup, let L be a minimal left ideal
of (βS, ·), and let k ∈ N. Let F be a family of finite subsets of S such that the
family {bF : F ∈ F and b ∈ S} is partition regular. Let A ⊆ S such that A∩L �= ∅.
Then there exists F ∈ F such that L ∩

⋂
y∈F y−1A �= ∅.

Proof. Pick v ∈ A∩L. Pick a minimal right ideal R of (βS, ·) such that v ∈ R and
pick an idempotent u ∈ R. Then v = uv, so B = {x ∈ S : x−1A ∈ v} ∈ u. In
particular B is central, so pick by Lemma 2.3, some b ∈ S and F ∈ F such that
bF ⊆ B. So for each y ∈ F , (by)−1A ∈ v. Equivalently for each y ∈ F , y−1A ∈ bv.
Since bv ∈ L, we are done. �

We have by Lemma 3.6 that if D = {q ∈ ∆ : q is a minimal idempotent of
(βN, +)}, then c�D is a left ideal of (βN, ·) and consequently c�D ∩ K(βN, ·) �= ∅.
Given any p ∈ βS and any finite partition {A1, . . . , Am} there is at least one cell
Ai such that Ai ∈ p. Consequently, the partition versions of Theorem 4.14 and
Corollary 4.15 are also valid.

Theorem 4.14. Let D = {q ∈ ∆ : q is a minimal idempotent of (βN, +)} and
let A be a subset of N such that A ∩ c�D ∩ K(βN, ·) �= ∅. Let F be a family of
finite subsets of N such that the family {bF : F ∈ F and b ∈ N} is partition regular
and let G be a family of subsets of N such that any set which is central in (N, +)
contains a member of G. Let H = 〈Hn〉∞n=1 be a Følner sequence in (N, ·). Then
there exist F ∈ F and G ∈ G such that d(

⋂
y∈F y−1A) > 0, d∗H(

⋂
y∈F y−1A) > 0

and FG ⊆ A.
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Proof. Pick a minimal left ideal L of (βN, ·) such that A ∩ c�D ∩ L �= ∅. Since
c�D is a left ideal of (βN, ·), L ⊆ c�D. Pick, by Lemma 4.13, F ∈ F such that
L∩

⋂
y∈F y−1A �= ∅. Since L ⊆ K(βN, ·) ⊆ ∆∗

H by Lemma 3.2, d∗H(
⋂

y∈F y−1A) > 0.
Since L ⊆ c�D, pick q ∈ ∆ such that q is a minimal idempotent of (βN, +) and⋂

y∈F y−1A ∈ q. Then this set is central in (N, +), so pick G ∈ G such that
G ⊆

⋂
y∈F y−1A. Since q ∈ ∆, d(

⋂
y∈F y−1A) > 0. �

Corollary 4.15. Let D = {q ∈ ∆ : q is a minimal idempotent of (βN, +)}, let A
be a subset of N such that there is a multiplicative idempotent p ∈ A∩c�D∩K(βN, ·),
and let k ∈ N. Let H = 〈Hn〉∞n=1 be a Følner sequence in (N, ·).
(a) For each i ∈ {1, 2, . . . , k} let 〈xi,t〉∞t=1 and 〈yi,t〉∞t=1 be sequences in N. Then
there exist H, K ∈ Pf (N) and a ∈ A such that d(A ∩

⋂k
j=1(

∏
t∈H yj,t)−1A) > 0,

d∗H(A ∩
⋂k

j=1(
∏

t∈H yj,t)−1A) > 0, and{
a +

∑
t∈K

xi,t : i ∈ {1, 2, . . . , k}
}
∪

{
a ·

∏
t∈H

yj,t : j ∈ {1, 2, . . . , k}
}

∪
{
(a +

∑
t∈K

xi,t) ·
∏
t∈H

yj,t : i, j ∈ {1, 2, . . . , k}
}
⊆ A .

(b) There exist a, r, d ∈ A such that r > 1, d(
⋂k

j=0(r
j)−1A) > 0, d∗H(

⋂k
j=0(r

j)−1A)
> 0, and

{
(a + id)rj : i, j ∈ {0, 1, . . . , k}

}
∪

{
drj : j ∈ {0, 1, . . . , k}

}
⊆ A.

(c) There exist a, r, d ∈ A such that r > 1, d(
⋂k

j=1(j
r)−1A) > 0, d∗H(

⋂k
j=0(j

r)−1A)
> 0, and

{
djr : j ∈ {1, 2, . . . , k}

}
∪

{
(a + id)jr : i ∈ {0, 1, . . . , k} and j ∈ {1, 2, . . . ,

k}
}
∪

{
a + id : i ∈ {0, 1, . . . , k}

}
⊆ A.

Proof. Since 1 is not an element of any minimal left ideal of (βN, ·), by considering
A \ {1} instead of A we may assume that 1 /∈ A. Let

F1 =
{
{1} ∪

{∏
t∈H yi,t : i ∈ {1, 2, . . . , k}

}
: H ∈ Pf (N)

}
,

G1 =
{
{a} ∪ {a +

∑
t∈K xi,t : i ∈ {1, 2, . . . , k} : K ∈ Pf (N) and a ∈ N

}
,

F2 =
{{

ri : i ∈ {0, 1, . . . , k}
}

: r ∈ A
}

,
G2 =

{
{d} ∪ {a + id : i ∈ {0, 1, . . . , k}} : a, d ∈ N

}
,

and put F ′
i = {bF : b ∈ N and F ∈ Fi} for i ∈ {1, 2}. By applying Theorem

2.6 and Corollary 2.7 to the semigroup (N, ·) we see that the families F ′
1 and F ′

2

are partition regular. Similarly by Theorem 2.6 and Corollary 2.7 applied to the
semigroup (N, +), every subset of N that is central in (N, +) contains a member of
G1 and a member of G2. Thus we get (a) by applying Theorem 4.14 to F1 and G1

and (b) by applying Theorem 4.14 to F2 and G2.
We will prove (c) by using Theorem 4.14 with F1 and G2, where we define the

sequences 〈yi,n〉∞n=1, i ∈ {1, 2, . . . , k} appropriately. Since A is central in (N, +),
choose a sequence 〈rn〉∞n=1 such that FS(〈rn〉∞n=1) ⊆ A. Using this put yi,n = irn

for i ∈ {1, 2, . . . , k} and n ∈ N. By Theorem 4.14 we find a, d ∈ A and H ∈ Pf (N)
such that G = {d}∪{a+id : i ∈ {0, 1, . . . , k}} and F = {1}∪

{∏
t∈H yj,t : j ∈ {1, 2,

. . . , k}
}

satisfy the conclusion of Theorem 4.14. Let r =
∑

t∈H rt ∈ A. Then for
j ∈ {1, 2, . . . , k},

∏
t∈H yj,t =

∏
t∈H jrt = jr. Thus we see that (c) is valid. �

We now turn our attention to showing that one cannot simultaneously let F = G
and eliminate the multiplier b in Theorem 4.10.
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The following theorem is of interest in its own right. Recall from Corollary
2.7 that when N is finitely colored, one can find arbitrarily long monochromatic
arithmetic progressions with increments chosen from any IP-set. This theorem tells
us that at least relatively thin sequences cannot replace IP-sets.

Theorem 4.16. Let 〈dn〉∞n=1 be a sequence in N such that for all n ∈ N, 3dn ≤
dn+1. There exists a partition {A0, A1, A2, A3} of N such that there do not exist
s ∈ {0, 1, 2, 3} and a, k ∈ N with {a, a + dk} ⊆ As.

Proof. For α ∈ T = R/Z we denote by ‖α‖ the distance to the nearest integer. We
will not distinguish strictly between equivalance classes and their representatives
in [0, 1). To complete the proof we need the following lemma.

Lemma 4.17. There exists α ∈ T such that ‖αdn‖ ≥ 1/4 for each n ∈ N.

Proof. For each n ∈ N put Rn = {α ∈ T : ‖αdn‖ ≥ 1/4}. Each Rn consists of

intervals of length
1

2dn
which are separated by gaps of the same length. Since

dn+1 ≥ 3dn, every interval of Rn is 3 times longer than an interval or a gap of
Rn+1. Thus any interval of Rn contains an interval of Rn+1. This shows that for
each N ∈ N,

⋂N
n=1 Rn �= ∅. By compactness of T there exists α ∈

⋂∞
n=1 Rn. �

Let α ∈ T such that dnα ∈ [1/4, 3/4] for each n ∈ N. For i ∈ {0, 1, 2, 3} put
Ai = {m ∈ N : mα ∈ [i/4, (i + 1)/4)}. Then for any a, k ∈ N, α(a + dk) = αa + β
for some β ∈ [1/4, 3/4] and thus αa and α(a + dk) must not lie in the same quarter
of [0, 1). Equivalently there exists no s ∈ {0, 1, 2, 3} such that {a, a+dk} ⊆ As. �

We remark that Lemma 4.17 is well known. Under the much weaker assumption
that the growth rate of the sequence 〈dn〉∞n=1 is bounded from below by some q > 1,
B. de Mathan [17] and A. Pollington [18] independently proved that there exists
some α ∈ T such that {αdn : n ∈ N} is not dense in T. In order to give a self
contained proof we have chosen to go with the weaker statement. The loss is that
we have to make an additional step to show that any growth rate q > 1 is sufficient
to avoid monochromatic arithmetic progressions with some dk as increment.

Corollary 4.18. Let q ∈ R with q > 1 and assume that 〈dn〉∞n=1 is a sequence in N

such that for all n ∈ N, qdn ≤ dn+1. There exists a finite partition {A1, A2, . . . , Ar}
of N such that there do not exist s ∈ {1, 2, . . . , r} and a, k ∈ N with {a, a+dk} ⊆ As.

Proof. Pick m ∈ N such that qm ≥ 3. For t ∈ {0, 1, . . . , m − 1} and n ∈ N, let
ct,n = dnm−t. Given t ∈ {0, 1, . . . , m} one has that 3ct,n ≤ ct,n+1 for each n, so
pick by Theorem 4.16 some {Bt,0, Bt,1, Bt,2, Bt,3} of N such that there do not exist
s ∈ {0, 1, 2, 3} and a, k ∈ N with {a, a + ct,k} ⊆ Bt,i. Let r = 4m and define a
partition {A1, A2, . . . , Ar} of N with the property that x and y lie in the same cell
of the partition if and only if x ∈ Bt,i ⇔ y ∈ Bt,i for each t ∈ {0, 1, . . . , m− 1} and
each i ∈ {0, 1, 2, 3}. �
Corollary 4.19. There exist sequences 〈x0,n〉∞n=1, 〈x1,n〉∞n=1, and 〈yn〉∞n=1 in N

and a partition {A0, A1, A2, A3} of N such that there do not exist s ∈ {0, 1, 2, 3},
F ∈ Pf (N), and a ∈ N with

{
(a +

∑
n∈F xi,n) ·

∏
n∈F yn : i ∈ {0, 1}

}
⊆ As.

Proof. For each t ∈ N, let x0,t = 1, x1,t = 2 and yi,t = 3. For each n ∈ N, let
dn = n3n. Pick A0, A1, A2, A3 as guaranteed by Theorem 4.16. Suppose one has
F ∈ Pf (N) and a ∈ N with

{
(a +

∑
t∈F xi,t) ·

∏
t∈F yt : i ∈ {0, 1}

}
⊆ As. Let
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n = |F |. Then (a +
∑

t∈F x1,t) ·
∏

t∈F yt = dn + (a +
∑

t∈F x0,t) ·
∏

t∈F yt, a
contradiction. �

We have just shown that one cannot simultaneously take F = G and eliminate
the multiplier b from Corollary 1.4. We show now that this multiplier cannot
be eliminated from Theorem 4.10 (and consequently cannot be eliminated from
Theorem 4.12), even if different F and G are allowed. Recall that thick sets in any
semigroup are also piecewise syndetic, in fact central. Consequently, they are also
multiplicatively large.

Theorem 4.20. There exists a set A which is thick in (N, ·) and a sequence 〈xn〉∞n=1

in N with the property that there do not exist a ∈ N and d ∈ FS(〈xn〉∞n=1) with
{a, a + d} ⊆ A.

Proof. Let A =
⋃∞

n=1{(3n)!, 2(3n)!, . . . , n(3n)!} and for each n, let xn = (3n + 1)! .
Observe that A is thick in (N, ·). Let a ∈ A and let d ∈ FS(〈xn〉∞n=1). We shall
show that a + d /∈ A. Pick n ∈ N and k ∈ {1, 2, . . . , n} such that a = k(3n)! . Pick
F ∈ Pf (N) such that d =

∑
t∈F xt and let m = max F . Then (3m + 1)! ≤ d <

(3m + 2)!.
If m < n we have k(3n)! < a + d < (k + 1)(3n)!, so a + d /∈ A. If m ≥ n, then

a < (3m + 1)!, so (3m + 1)! < a + d < (3m + 3)! and thus a + d /∈ A. �
It was shown in [1, Theorem 1.3] that the fact that a subset A of N is multiplica-

tively large is enough to guarantee that A contains arbitrarily large geoarithmetic
progressions. However, consider the set A = {x ∈ N : the number of terms in the
prime factorization of x is odd}. It is not hard to show that dF (A) = 1

2 for any
Følner sequence F in (N, ·). Consequently, the fact that A is multiplicatively large
is not enough to guarantee geoarithmetic progressions together with the common
ratio r, nor together with both b and a.

As is well known among afficionados, geoarithmetic progressions are strongly
partition regular . That is, for each m, k ∈ N there exists K ∈ N such that whenever
A, B, D ∈ N, R ∈ N\{1}, and

{
BRs(A+tD) : s, t ∈ {0, 1, . . . , K}

}
=

⋃m
i=1 Ci, there

exist i ∈ {1, 2, . . . , m}, a, b, d ∈ N, and r ∈ N\{1} such that
{
brs(a+td) : s, t ∈ {0, 1,

. . . , k}
}
⊆ Ai. (The easiest way to see this is to use the Grünwald/Gallai Theorem1

[11, Theorem 2.8]. Color the pair (s, t) ∈ {0, 1, . . . , K}×{0, 1, . . . , K} according to
the color of BRs(A + tD).)

We now present an easy proof that even very limited configurations of the sort
produced by Corollary 3.9 are not strongly partition regular.

Theorem 4.21. There is a set C ⊆ N such that for each k ∈ N there exist b, a, d ∈
N and r ∈ N \ {1} such that

{
brn(a + td) : n, t ∈ {0, 1, . . . , k}

}
∪

{
brn : n ∈ {0, 1,

. . . , k}
}
∪

{
a + td : t ∈ {0, 1, . . . , k}

}
⊆ C and there exist sets A1 and A2 such that

C = A1 ∪ A2 and there do not exist i ∈ {1, 2}, c, a, d ∈ N, and s ∈ N \ {1} such
that {cs, cs2, cs(a + d), cs2(a + d), cs(a + 2d)} ⊆ Ai.

Proof. Let r1 = 5. Inductively choose a prime rk+1 >
(
rk+1
k (2k + 1)

)2. For each
k ∈ N, let Bk =

{
rk

nx : n ∈ {1, 2, . . . , k + 1} and x ∈ {k + 1, k + 2, . . . , 2k + 1}
}

and let B =
⋃∞

k=1 Bk.

1This theorem was never published by its author. Its first publication was in [19] where it was
referred to as Grünwald’s Theorem, Grünwald being the original name of the author. During the
period surrounding World War II Grünwald changed his name to Gallai.
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Lemma 4.22. If a, d ∈ N and {a + d, a + 2d} ⊆ B, then there exist k ∈ N and
n ∈ {1, 2, . . . , k+1} such that {a+d, a+2d} ⊆

{
rk

nx : x ∈ {k+1, k+2, . . . , 2k+1}
}
.

Proof. Pick k ∈ N, n ∈ {1, 2, . . . , k+1}, and x ∈ {k+1, k+2, . . . , 2k+1} such that
a + d = rk

nx. Then a + 2d < 2(a + d) = 2rk
nx. Also 2rk

nx < rk
n+1(k + 1) and

2rk
nx < rk+1(k+2). The first member of B larger than rk

n(2k+1) is rk
n+1(k+1)

(if n ≤ k) or rk+1(k+2) (if n = k+1). Thus there is some y ∈ {x+1, x+2, . . . , k+1}
such that a + 2d = rk

ny. �

Lemma 4.23. If c ∈ N, s ∈ N \ {1}, and {cs, cs2} ⊆ B, then there exist k ∈ N,
n ∈ {0, 1, . . . , k}, t ∈ {1, 2, . . . , k + 1 − n}, and y ∈ {k + 1, k + 2, . . . , 2k + 1} such
that c = rk

ny and s = rk
t.

Proof. Pick k ≤ m, δ ∈ {1, 2, . . . , k + 1}, ν ∈ {1, 2, . . . , m + 1}, y ∈ {k + 1, k +
2, . . . , 2k + 1}, and z ∈ {m + 1, m + 2, . . . , 2m + 1} such that cs = rk

δy and
cs2 = rm

νz.

Now s ≤ rk
δy ≤ rk

k+1(2k + 1) and s =
rm

νz

rk
δy

>
rm

rk
k+1(2k + 1)

, so

rm <
(
rk

k+1(2k + 1)
)2

< rk+1

and so m ≤ k and thus m = k. Therefore s = rk
ν−δ z

y
. Since rk is a prime which

does not divide y, we must have that y divides z and therefore that y = z. Let
t = ν − δ. Since crk

ν−δ = cs = rk
δy we have c = rk

2δ−νy. Let n = 2δ − ν. Since
c = rk

ny and s = rk
t we have that n ≥ 0 and t ≥ 1. Since n + t = δ we have that

n + t ≤ k + 1. �

To complete the proof of the theorem, let A1 = B, let A2 =
{
rk

n : k ∈ N and n ∈
{1, 2, . . . , k + 1}

}
, and let C = A1 ∪ A2. Given k ∈ N, let a = rk(k + 1) and let

d = b = r = rk. Then for t, n ∈ {0, 1, . . . , k − 1} one has brn = rk
n+1 ∈ A2,

a + td = rk(k + t + 1) ∈ A1, and brn(a + td) = rk
n+2(k + t + 1) ∈ A1.

It is trivial that A2 does not contain {cs(a+d), cs(a+2d)} as the latter element
is less than twice the former. Suppose we have some c, a, d ∈ N and some s ∈ N\{1}
such that

{cs, cs2, cs(a + d), cs2(a + d), cs(a + 2d)} ⊆ A1 .

Pick by Lemma 4.23 some k ∈ N, n ∈ {0, 1, . . . , k}, t ∈ {1, 2, . . . , k + 1 − n},
and y ∈ {k + 1, k + 2, . . . , 2k + 1} such that c = rk

ny and s = rk
t. Again invoking

Lemma 4.23, pick some k′ ∈ N, m ∈ {0, 1, . . . , k′}, t′ ∈ {1, 2, . . . , k′ + 1 − m}, and
z ∈ {k′ + 1, k′ + 2, . . . , 2k′ + 1} such that c(a + d) = rk′mz and s = rk′ t

′
.

Since rk′ t
′
= s = rk

t we have k = k′ and t = t′. Pick by Lemma 4.22, k′′ ∈ N

and ν ∈ {1, 2, . . . , k′′ + 1} such that

{cs(a + d), cs(a + 2d)} ⊆
{
rk′′

νw : w ∈ {k′′ + 1, k′′ + 2, . . . , 2k′′ + 1}
}

.

Since cs(a + d) = rk
t+mz we have k′′ = k and ν = t + m. Since cs = rk

t+ny we
have a + d = rk

m−n z

y
. Since rk is a prime which does not divide y, we have that y

divides z, so y = z and thus a + d = rk
m−n.

Pick w ∈ {k + 1, k + 2, . . . , 2k + 1} such that cs(a + 2d) = rk
t+mw. Then

a + 2d = rk
m−n w

y
, so w divides y and thus a + 2d = rk

m−n. Therefore d = 0, a

contradiction. �
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5. Algebra in (βN, +) and (βN, ·): Extending the central sets theorem

In attempting to derive results about geoarithmetic progressions, the approach
that one might try first after a little experience in deriving Ramsey theoretic con-
sequences of the algebra of βN would be to choose an appropriate idempotent q in
(βN, ·) and show that if A ∈ q, then there is some r, preferably in A, such that⋂k

s=0(r
s)−1A ∈ q. We show first that such an approach is doomed to failure.

Theorem 5.1.
(a) For all q ∈ βN, there exists a partition {A0, A1} of N such that for all i ∈ {0, 1}
and all x ∈ N, (−x + Ai) ∩ (−2x + Ai) /∈ q. In particular there exists A ∈ q such
that for all x ∈ N, either −x + A /∈ q or −2x + A /∈ q.
(b) There does not exist q ∈ βN such that for each A ∈ q there is some r ∈ N \ {1}
with r−1A ∈ q and (r2)−1A ∈ q.

Proof. (a) Let q ∈ βN. Then q + βN is a right ideal of (βN, +), so there is an
additive idempotent in q + βN. Pick r ∈ βN such that q + r is an idempotent in
(βN, +). Then q + r ∈

⋂∞
n=1 c�(N2n) by [16, Lemma 6.6].

Define f : N → ω by f(n) = min F where F ∈ Pf (ω) and n =
∑

t∈F 2t. Then f

has a continuous extension f̃ : βN → βω. For i ∈ {0, 1} let Ai = {x ∈ N : (2N−i) ∈
f̃(x + r)}.

Let i ∈ {0, 1} and let x ∈ N and suppose that (−x + Ai)∩ (−2x + Ai) ∈ q. Pick
j, k ∈ ω such that x = 2j(2k + 1). Denote addition of z on the left in βN by λz

and addition of z on the right by ρz. Then f̃ ◦ λx is constantly equal to f(x) and
f̃ ◦ λ2x is constantly equal to f(x) + 1 on N2j+2, which is a member of q + r. So
f̃(x + q + r) = f(x) and f̃(2x + q + r) = f(x) + 1. Therefore f̃ ◦ λx ◦ ρr(q) = f(x)
and f̃ ◦ λ2x ◦ ρr(q) = f(x) + 1, so

{y ∈ N : f̃(x + y + r) = f(x) and f̃(2x + y + r) = f(x) + 1} ∈ q.

Therefore, pick y ∈ (−x + Ai) ∩ (−2x + Ai) such that f̃(x + y + r) = f(x) and
f̃(2x + y + r) = f(x) + 1.

Since x + y ∈ Ai, we have that 2N − i ∈ f̃(x + y + r) = f(x), so f(x) + i ∈
2N. (Recall that we are identifying points of N with the principle ultrafilters they
generate.) Since 2x + y ∈ Ai, we have that 2N − i ∈ f̃(2x + y + r) = f(x) + 1, so
f(x) + i + 1 ∈ 2N, a contradiction.

(b) For x ∈ N \ {1}, let �(x) be the number of terms in the prime factorization
of x. Then � is a homomorphism from (N \ {1}, ·) onto (N, +) and so its continuous
extension �̃ : (βN \ {1}, ·) → (βN, +) is also a homomorphism by [16, Corollary
4.22]. �

We know that there exist multiplicative idempotents in the closure of the set of
additive idempotents in βN. In fact, there exist minimal multiplicative idempotents
in the closure of the set of minimal additive idempotents in βN, and we used
one such in the proof of Theorem 3.8. In particular we know that c�K(βN, +) ∩
K(βN, ·) �= ∅. In the following we shall assume that geometric progressions have
integer common ratios, though the lemma would remain valid with the more liberal
definition.
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Lemma 5.2. Let D = {q ∈ βN : for all A ∈ q, A contains arbitrarily long geo-
metric progressions}. Then D is a closed two sided ideal of (βN, ·). In particular
c�K(βN, ·) ⊆ D.

Proof. Trivially D is closed. Let q ∈ D, let s ∈ βN, let A ∈ qs, and let B ∈
sq. Let n ∈ N. We need to show that A and B contain length n geometric
progressions. Now {x ∈ N : x−1A ∈ s} ∈ q, so pick a ∈ N and r ∈ N \ {1} such that
{a, ar, ar2, . . . , arn−1} ⊆ {x ∈ N : x−1A ∈ s}. Then

⋂n−1
t=0 (art)−1A ∈ s, so pick

b ∈
⋂n−1

t=0 (art)−1A. Then {ba, bar, bar2, . . . , barn−1} ⊆ A. Also {x ∈ N : x−1B ∈
q} ∈ s, so pick x ∈ N such that x−1B ∈ q. Pick c ∈ N and d ∈ N \ {1} such that
{c, cd, cd2, . . . , cdn−1} ⊆ x−1B. Then {xc, xcd, xcd2, . . . , xcdn−1} ⊆ B. �

We will see now that there would be interesting Ramsey theoretic consequences
of the existence of an additive idempotent in the set D defined above. (Compare
the conclusion with those of Theorem 3.8.)

Theorem 5.3. Let D = {q ∈ βN : for all A ∈ q, A contains arbitrarily long
geometric progressions} and assume that there exists q ∈ D such that q + q = q.
Then whenever r ∈ N and N =

⋃r
i=1 Ai, there exist i ∈ {1, 2, . . . , r} and a sequence

〈Hn〉∞n=1 such that for each n ∈ N, Hn is a length n geometric progression and for
every F ∈ Pf (N), one has

∑
n∈F Hn ⊆ Ai.

Proof. Pick q ∈ D such that q+q = q. Given B ∈ q, let B� = {x ∈ B : −x+B ∈ q}.
Then by [16, Lemma 4.14], whenever x ∈ B� one has −x + B� ∈ q.

Pick i ∈ {1, 2, . . . , r} such that Ai ∈ q. Pick x ∈ Ai
� and let H1 = {x}.

Let n ∈ N and assume that 〈Ht〉nt=1 have been chosen so that for any F with
∅ �= F ⊆ {1, 2, . . . , n} and any f ∈ �t∈F Ht,

∑
t∈F f(t) ∈ Ai

�. Let

B = Ai
� ∩

⋂
{−

∑
t∈F f(t) + Ai

� : F ∈ Pf ({1, 2, . . . , n}) and f ∈ �t∈F Ht} .

Then B ∈ q, so pick a length n + 1 geometric progression Hn+1 ⊆ B. �

We now turn our attention to deriving an extension, Theorem 5.8, of the Central
Sets Theorem for countable commutative semigroups [16, Theorem 14.11]. The
Central Sets Theorem for (N, +) is due to Furstenberg [7, Proposition 8.21]. See
[16, Part III] for numerous combinatorial applications of the Central Sets Theorem.
Theorem 5.8 has several earlier theorems as immediate corollaries. To establish this
theorem we shall use the notion of partial semigroup introduced in [2].

Definition 5.4. (a) A partial semigroup is a set S together with an operation
· that maps a subset of S × S into S and satisfies the associative law
(x · y) · z = x · (y · z) in the sense that if either side is defined, then so is the
other and they are equal.

(b) Given a partial semigroup (S, ·) and x ∈ S, ϕ(x) = {y ∈ S : x ·y is defined}.
(c) Given a partial semigroup (S, ·), x ∈ S, and A ⊆ S, x−1A = {y ∈ ϕ(x) :

x · y ∈ A}.
(d) A partial semigroup (S, ·) is adequate if and only if for each F ∈ Pf (S),⋂

x∈F
ϕ(x) �= ∅.

(e) Given an adequate partial semigroup (S, ·), δS =
⋂

x∈S c�βSϕ(x).

Lemma 5.5. Let (S, ·) be an adequate partial semigroup and for p, q ∈ δS define
p ·q =

{
A ⊆ S : {x ∈ S : x−1A ∈ q} ∈ p

}
. Then, with the relative topology inherited

from βS, (δS, ·) is a compact right topological semigroup.
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Proof. See [2, Proposition 2.6]. �

Lemma 5.6. Let (S, ·) and (T, ∗) be adequate partial semigroups and let f : S
onto−→ T

have the property that for all x ∈ S and all y ∈ ϕS(x), f(y) ∈ ϕT

(
f(x)

)
and

f(x · y) = f(x) ∗ f(y). Let f̃ : βS → βT be the continuous extension of f . Then
the restriction of f̃ to δS is a homomorphism from (δS, ·) to (δT, ∗).

Proof. See [2, Proposition 2.8]. �

Definition 5.7. Φ = {f : N → N : f(n) ≤ n for all n ∈ N}.

Theorem 5.8. Let k ∈ N. For each i ∈ {1, 2, . . . , k}, let Ei be a countable commu-
tative semigroup with identity ei. For each i ∈ {1, 2, . . . , k} and j ∈ N, let 〈zi,j,t〉∞t=1

be a sequence in Ei. We assume that, for every i ∈ {1, 2, . . . , k}, zi,1,t = ei for ev-
ery t ∈ N, and that 〈zi,2,t〉∞t=1 is a sequence which contains every element of Ei

infinitely often. Let ψ be an arbitrary function mapping E1 × E2 × · · · × Ek to a
set X and let Ci be a central set in Ei for each i ∈ {1, 2, . . . , k}. Then, for any
finite coloring of X, there exist a sequence 〈Hn〉∞n=1 in Pf (N), a sequence 〈ci,n〉∞n=1

in Ei for each i ∈ {1, 2, . . . , k} and a monochromatic subset A of X such that
the following statements hold for every G ∈ Pf (N), every i ∈ {1, 2, . . . , k} and all
f1, f2, . . . , fk ∈ Φ:
(i) ψ

( ∏
n∈G c1,n ·

∏
t∈Hn

z1,f1(n),t, . . . ,
∏

n∈G ck,n ·
∏

t∈Hn
zk,fk(n),t

)
∈ A and

(ii)
∏

n∈G ci,n ·
∏

t∈Hn
zi,fi(n),t ∈ Ci.

Proof. Let L = Nk and let v be a “variable” not in L. A located word over L is
a function w from a nonempty finite subset Dw of N to L. Let S0 be the set of
located words over L and let S1 be the set of located variable words over L, that is,
the set of words over L ∪ {v} in which v occurs. Let S = S0 ∪ S1. Given u, w ∈ S,
if max Du < min Dw, then define u · w by Du·w = Du ∪ Dw and for t ∈ Du·w,

(u · w)(t) =
{

θt(u) if t ∈ Du,
θt(w) if t ∈ Dw .

With this operation S, S0, and S1 are adequate partial semigroups, so by Lemma
5.5, δS, δS0, and δS1 are compact right topological semigroups. Also δS1 is an
ideal of δS. (The verification of this latter statement is an easy exercise and a
good chance for the reader to see whether she has grasped the definition of the
operation.) Notice that for j ∈ {1, 2} and p ∈ βSj , one has that p ∈ δSj if and
only if for each n ∈ N, {w ∈ Sj : min Dw > n} ∈ p.

We take for each w ∈ S, Dθa(w) = Dw. We have that for each a ∈ L, θa : S → S0

(where θa is the identity on S0). Denote also by θa its continuous extension taking
βS to βS0 and notice that θa is the identity on βS0.

For each i ∈ {1, 2, . . . , k}, define gi : S0 → Ei by gi(w) =
∏

t∈Dw
zi,πi(w(t)),t for

each w ∈ S0. We shall also use gi to denote the continuous function from βS0 to
βEi which extends gi.

We claim that, if bi ∈ Ei for each i ∈ {1, 2, . . . , k} and if n ∈ N, there exists
w ∈ S0 such that gi(w) = bi for every i ∈ {1, 2, . . . , k} and min(Dw) > n. To see
this, observe that we can choose n1, n2, . . . , nk in N such that n < n1 < n2 < . . . <
nk and zi,2,ni

= bi for every i ∈ {1, 2, . . . , k}. We can then define w by putting
Dw = {n1, n2, . . . , nk} and w(ni) = (1, 1, . . . , 1, 2, 1, . . . , 1), with 2 occurring as the
ith term in this k-tuple, for each i ∈ {1, 2, . . . , k}.
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In particular each gi : S0 → Ei is surjective and so, by Lemma 5.6, the restriction
of gi to δS0 is a homomorphism to δEi = βEi.

For each i ∈ {1, 2, . . . , k}, let pi be a minimal idempotent in βEi for which
Ci ∈ pi. We shall first show that we can choose a minimal idempotent q ∈ δS0 and
an idempotent r ∈ δS1 such that q ≤ r, gi(q) = pi for every i ∈ {1, 2, . . . , k}, and
θa(r) = q for every a ∈ L.

Given (X1, X2, . . . , Xk, n) ∈ p1×p2×· · ·×pk×N we choose w(X1, X2, . . . , Xk, n)
∈ S0 such that min(Dw(X1,X2,...,Xk,n)) > n and gi

(
w(X1, X2, . . . , Xk, n)

)
∈ Xi for

each i ∈ {1, 2, . . . , k}. We give p1×p2×· · ·×pk×N a directed set ordering by stating
that (X1, X2, . . . , Xk, n) ≺ (X ′

1, X
′
2, . . . , X

′
k, n′) if and only if X ′

i ⊆ Xi for each
i ∈ {1, 2, . . . , k} and n < n′. If x is any limit point of the net 〈w(X1, X2, . . . , Xk, n)〉
in βS0, we have x ∈ δS0 and gi(x) = pi for every i ∈ {1, 2, . . . , k}. (That x ∈ δS0

follows from the fact that min(Dw(X1,X2,...,Xk,n)) > n. To see that gi(x) = pi, let
A ∈ pi and suppose gi(x) /∈ A. Pick B ∈ x such that gi[ B ] ∩ A = ∅. Let Xi = A
and for j �= i let Xj = Ej . Pick (X ′

1, X
′
2, . . . , X

′
k, n′) � (X1, X2, . . . , Xk, 1) such

that w(X ′
1, X

′
2, . . . , X

′
k, n′) ∈ B. But gi

(
w(X ′

1, X
′
2, . . . , X

′
k, n′)

)
∈ X ′

i ⊆ Xi = A, a
contradiction.)

Let C =
{
x ∈ δS0 : gi(x) = pi for all i ∈ {1, 2, . . . , k}

}
. We have just seen that

C is nonempty, and so it is a compact subsemigroup of δS0. Let q be a minimal
idempotent in C. Then q is minimal in δS0, because if q′ is any idempotent of
δS0 satisfying q′ ≤ q, we have gi(q′) ≤ gi(q) = pi for every i ∈ {1, 2, . . . , k}. This
implies that gi(q′) = pi for every i ∈ {1, 2, . . . , k}. So q′ ∈ C and thus q′ = q.

Let r be any idempotent in the intersection of the right ideal qδS1 and the left
ideal δS1q of δS1. Then r ≤ q. For any a ∈ L, we have θa(r) ≤ θa(q) = q and hence
θa(r) = q.

We define γ : S0 → X by γ(w) = ψ
(
g1(w), g2(w), . . . , gk(w)

)
. We can choose

a monochromatic subset A of X such that γ−1[A] ∈ q. Let Q = γ−1[A] ∩⋂k
i=1 gi

−1[Ci]. Then Q ∈ q. Let Q� = {w ∈ Q : w−1Q ∈ q}. Then Q� ∈ q
and w−1Q� ∈ q for every w ∈ Q� by [16, Lemma 4.14].

We shall inductively choose a sequence 〈wn〉∞n=1 in S1 such that for each n ∈ N,
(a) if n > 1, then minDwn

> maxDwn−1 and
(b) for every nonempty F ⊆ {1, 2, . . . , n} and every choice of at ∈ {1, 2, . . . , t}k for
t ∈ F ,

∏
t∈F θat

(wt) ∈ Q�.
We first choose w1 ∈ S1 such that θa(w1) ∈ Q�, where a denotes the k-tuple

(1, 1, . . . , 1). This is possible because θa
−1[Q�] ∈ r and so θa

−1[Q�] �= ∅. Now let
n ∈ N and assume that w1, w2, . . . , wn have been chosen. Let

U =
{ ∏

t∈F θat
(wt) : ∅ �= F ⊆ {1, 2, . . . , n} and for all t ∈ F , at ∈ {1, 2, . . . , t}k

}
.

By our assumption (b), U ⊆ Q�, so
⋂

u∈U u−1Q� ∈ q. We observe that, for any
V ∈ q and any a ∈ L, θa

−1[V ] ∈ r and that {w ∈ S1 : min(Dw) > max(Dwn
)} ∈ r.

Thus we can choose wn+1 such that min(Dwn+1) > max(Dwn
), and

wn+1 ∈
⋂ {

θa
−1

[
Q� ∩

⋂
u∈U u−1Q�

]
: a ∈ {1, 2, . . . , n + 1}k

}
.

We can now conclude the proof. For each n ∈ N and i ∈ {1, 2, . . . , k}, let
Hn = {t ∈ Dwn

: wn(t) = v} and let ci,n =
∏

t∈Dwn\Hn
zi,πi(wn(t)),t. Then, if

a ∈ L, we have gi

(
θa(wn)

)
= ci,n ·

∏
t∈Hn

zi,πi(a),t .

Suppose now that f1, f2, . . . , fk ∈ Φ and G ∈ Pf (N). For each n ∈ N, define
an ∈ {1, 2, . . . , n}k by πi(an) = fi(n) for each i ∈ {1, 2, . . . , k}. Then for each
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i ∈ {1, 2, . . . , k}, we have∏
n∈G ci,n ·

∏
t∈Hn

zi,fi(n),t =
∏

n∈G ci,n ·
∏

t∈Hn
zi,fi(n),t

=
∏

n∈G gi

(
θan

(wn)
)

= gi

( ∏
n∈G θan

(wn)
)
.

Since
∏

n∈G θan
(wn) ∈ Q, γ[Q] ⊆ A, and gi[Q] ⊆ Ci for each i ∈ {1, 2, . . . , k} the

conclusions of the theorem hold. �

Corollary 5.9. Let m, k ∈ N. Let C1 be central in (N, +) and let C2 be central in
(N, ·). For each i ∈ {0, 1, . . . , k} let 〈xi,t〉∞t=1 and 〈yi,t〉∞t=1 be sequences in N. Let
N =

⋃m
s=1 As. Then there exist s ∈ {1, 2, . . . , m}, F ∈ Pf (N), and a, b ∈ N such

that
{ba} ∪

{
b(a +

∑
t∈F xi,t) : i ∈ {0, 1, . . . , k}

}
∪{

ba ·
∏

t∈F yj,t : j ∈ {0, 1, . . . , k}
}
∪{

b(a +
∑

t∈F xi,t) · (
∏

t∈F yj,t) : i, j ∈ {0, 1, . . . , k}
}
⊆ As ,

{a} ∪
{
a +

∑
t∈F xi,t : i ∈ {0, 1, . . . , k}

}
⊆ C1 , and

{b} ∪
{
b ·

∏
t∈F yj,t : j ∈ {0, 1, . . . , k}

}
⊆ C2 .

Proof. Let E1 = (ω, +) and let E2 = (N, ·). Define ψ : E1×E2 → ω by ψ(a, b) = ab.
For t ∈ N let z1,1,t = 0 and z2,1,t = 1. For i ∈ {1, 2} let 〈zi,2,t〉∞t=1 be a sequence
which contains every element of Ei infinitely often. For j ∈ {0, 1, . . . , k} and t ∈ N

let z1,j+3,t = xj,t and z2,j+3,t = yj,t. (For j > k + 3 we do not care what z1,j,t and
z2,j,t are.)

Since N is an ideal of (ω, +), C1 is central in E1. Pick 〈Hn〉∞n=1, 〈c1,n〉∞n=1,
〈c2,n〉∞n=1, and A as guaranteed by Theorem 5.8. Pick s ∈ {1, 2, . . . , m} such that
A ⊆ As. Let n = k+3. (We choose n = k+3 rather than n = 1 so that there will be
functions f1 and f2 in Φ with the properties required of them below.) Let a = c1,n,
let b = c2,n, and let F = Hn. If f1(n) = 1, then c1,n +

∑
t∈Hn

z1,f1(n),t = a. If
f1(n) = j+3 for some j ∈ {0, 1, . . . , k}, then c1,n+

∑
t∈Hn

z1,f1(n),t = a+
∑

t∈F xj,t.
If f2(n) = 1, then c2,n ·

∏
t∈Hn

z2,f2(n),t = b. If f2(n) = j + 3 for some j ∈ {0, 1,
. . . , k}, then c2,n ·

∏
t∈Hn

z2,f2(n),t = b ·
∏

t∈F yj,t. �

We conclude with a simple variation on the proof of Theorem 5.8, which applies
in case the semigroups are all the same.

Theorem 5.10. Let k ∈ N, let E be a countable commutative semigroup with
identity e, let R1, R2, . . . , Rk be IP-sets in E, and let C be a central subset of E.
There exist ri ∈ Ri and bi ∈ E for each i ∈ {1, 2, . . . , k} such that whenever f : {1, 2,
. . . , k} → {1, 2, . . . , k}, h : {1, 2, . . . , k} → {0, 1, . . . , k}, and ∅ �= F ⊆ {1, 2, . . . , k},
one has

∏
i∈F bi · (rf(i))h(i) ∈ C.

Proof. Let L = {1, 2, . . . , k2 + k + 2}k and let v, S0, S1, S, 〈Dw〉w∈S , and 〈θa〉a∈L

be as in the proof of Theorem 5.8. For j ∈ {1, 2, . . . , k} pick a sequence 〈xj,t〉∞t=1

such that FP (〈xj,t〉∞t=1) ⊆ Rj . For m ∈ {0, 1, . . . , k}, j ∈ {1, 2, . . . , k}, and t ∈ N,
let z2+mk+j,t = (xj,t)m. Let z1,t = e for each t and let 〈z2,t〉∞t=1 be a sequence in E
which takes on each member of E infinitely often.

For i ∈ {1, 2, . . . , k}, define gi : S0 → E by gi(w) =
∏

t∈Dw
zπi(w(t)),t. For

F ∈ Pf ({1, 2, . . . , k}), define γF : S0 → E by γF (w) =
∏

i∈F gi(w) (so γ{i} = gi).
Denote also by γ

F the continuous extension taking βS0 to βE.
As in the proof of Theorem 5.8 we see that given any b1, b2, . . . , bk ∈ E there is

some w ∈ S0 such that gi(w) = bi for each i ∈ {1, 2, . . . , k}. In particular each γF
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is a surjective homomorphism, so by Lemma 5.6 the restriction of γF to δS0 is a
homomorphism to βE.

Pick a minimal idempotent p ∈ βE such that C ∈ p. We claim that for any
B ∈ p and any n ∈ N there exists wB,n ∈ S0 such that for all F ∈ Pf ({1, 2, . . . , k}),
γF (wB,n) ∈ B. To see this pick b1, b2, . . . , bk such that FP (〈bt〉kt=1) ⊆ B, which
one may do because p is an idempotent. Pick wB,n such that gi(wB,n) = bi for each
i ∈ {1, 2, . . . , k}.

Direct D = {(B, n) : B ∈ p and n ∈ N} by (B, n) ≺ (B′, n′) if and only if B′ ⊆ B
and n < n′. Let u be a limit point of the net 〈wB,n〉(B,n)∈D in βS0. We see as in
the proof of Theorem 5.8 that u ∈ δS0 and γF (u) = p for all F ∈ Pf ({1, 2, . . . , k}).
Let J = {w ∈ δS0 : γF (w) = p for all F ∈ Pf ({1, 2, . . . , k})}. Then J is a compact
subsemigroup of δS0 since each γF is a continuous homomorphism. Pick a minimal
idempotent q of J . Given any idempotent q′ ∈ δS0 such that q′ ≤ q, for each
F ∈ Pf ({1, 2, . . . , k}), γF (q′) ≤ γF (q) = p, so γF (q′) = p. Thus q′ ∈ J and so
q′ = q. That is, q is minimal in δS0.

Now we claim that we may choose w ∈ S1 such that γF

(
θa(w)

)
∈ C for every

a ∈ L and every F ∈ Pf ({1, 2, . . . , k}). To see this, pick an idempotent r in
qδS1 ∩ δS1q. Then r ≤ q, so for each a ∈ L, θa(r) ≤ θa(q) = q and so θa(r) = q
and thus for each F ∈ Pf ({1, 2, . . . , k}), γ

F

(
θa(r)

)
= γ

F (q) = p. Pick w ∈ S1 ∩⋂
{(γF ◦ θa)−1[C] : a ∈ L and F ∈ Pf ({1, 2, . . . , k})}.
Let H = {t ∈ Dw : w(t) = v}. For i ∈ {1, 2, . . . , k}, let bi =

∏
t∈Dw\H zπi(w(t)),t

and let ri =
∏

t∈H xi,t. Now let f : {1, 2, . . . , k} → {1, 2, . . . , k}, h : {1, 2, . . . ,
k} → {0, 1, . . . , k}, and ∅ �= F ⊆ {1, 2, . . . , k}. Let

a =
(
2 + h(1)k + f(1), 2 + h(2)k + f(2), . . . , 2 + h(k)k + f(k)

)
.

Then for i ∈ F ,
bi(rf(i))h(i) = bi · (

∏
t∈H (xf(i),t)h(i)

)
= bi ·

∏
t∈H zπi(a),t

= gi

(
θa(w)

)
,

so
∏

i∈F bi(rf(i))h(i) = γF

(
θa(w)

)
∈ C. �
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