
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 360, Number 3, March 2008, Pages 1341–1376
S 0002-9947(07)04156-6
Article electronically published on October 16, 2007

DECOMPOSITION NUMBERS FOR WEIGHT THREE BLOCKS
OF SYMMETRIC GROUPS AND IWAHORI–HECKE ALGEBRAS

MATTHEW FAYERS

Abstract. Let F be a field, q a non-zero element of F and Hn = HF,q(Sn)
the Iwahori–Hecke algebra of the symmetric group Sn. If B is a block of Hn

of e-weight 3 and the characteristic of F is at least 5, we prove that the de-
composition numbers for B are all at most 1. In particular, the decomposition
numbers for a p-block of Sn of defect 3 are all at most 1.

1. Introduction

Let F be a field of any characteristic; we adopt the convention that a field whose
prime subfield is infinite has infinite characteristic. Let q be a non-zero element of
F and let n be a non-negative integer. In this paper, we discuss the decomposition
numbers for the Iwahori–Hecke algebra Hn = HF,q(Sn) of the symmetric group
Sn. In the special case where q = 1, this algebra is simply the group algebra FSn.
We let e be the least positive integer such that 1 + q + · · · + qe−1 = 0 in F if such
an integer exists, and let e = ∞ otherwise. Each block of Hn has an e-weight, and
in this paper we examine the blocks whose e-weight is 3. The main result of the
paper is as follows.

Theorem 1.1. Suppose char(F) ≥ 5, and that B is a block of HF,q(Sn) of e-weight
3. Let λ and µ be partitions in B with µ e-regular. Then [Sλ

B : Dµ
B ] ≤ 1.

This result has been conjectured for some time and has proved elusive until
now. In the special case of symmetric group algebras, Martin and Russell [13] have
published a purported proof of this result; however, various errors have subsequently
been found in that paper. In particular, when e = p = 5, λ = (82, 4, 1) and
µ = (12, 9), the decomposition number [Sλ : Dµ] is hard to calculate; it was
eventually found to be 1 rather than 2 by a large computer calculation carried
out by Lübeck and Müller. The novelty in the present paper is to prove Theorem
1.1 first in the case where F has infinite characteristic, using a reverse induction
with the class of ‘Rouquier blocks’ as a base case. We then complete the proof
by showing that the ‘adjustment matrices’ for weight 3 blocks are trivial, verifying
James’s Conjecture for weight 3 blocks.

Note that if all the decomposition numbers for a block are known to be at most 1,
then these decomposition numbers can all be calculated using the Jantzen–Schaper
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formula (Theorem 1.6 below). Thus in principle we now know the decomposition
numbers for weight 3 blocks of Iwahori–Hecke algebras. However, we do not have
anything like a combinatorial description of these, as we do for blocks of weight 2.

We now indicate the layout of the paper. After summarising all the background
theory and notation that we shall need in the remainder of this introduction, we list
some essential properties of weight 3 blocks in Section 2, mostly following Martin
and Russell. We then proceed with the proof of Theorem 1.1. In Section 3, we
prove Theorem 1.1 in the case where F has infinite characteristic; in this case, the
Iwahori–Hecke algebra is better understood, and we have at our disposal a key
theorem due to James and Mathas, which says that the decomposition matrices
in infinite characteristic are ‘independent of e’, in a sense which we make precise
below. In Section 4, we use the result of Section 3 to complete the proof of Theorem
1.1, by finding the ‘adjustment matrices’ for weight 3 blocks.

1.1. Background and notation. Excellent references for the representation the-
ory of the symmetric groups and the Iwahori–Hecke algebras are the books of James
[6] and Mathas [14], respectively. We take most of our notation from these books,
but the Specht modules we use are those defined by Dipper and James in [3] rather
than those in [14]. From now on we denote by Hn the Iwahori–Hecke algebra
HF,q(Sn), and we assume that e = inf{d ∈ N | 1 + q + · · ·+ qd−1 = 0} is finite. For
each partition λ of n, one defines a Specht module Sλ

F,q for Hn. If λ is e-regular (i.e.
if it does not have e equal positive parts), then Sλ

F,q has an irreducible cosocle Dλ
F,q;

the modules Dλ
F,q give a complete set of irreducible modules for Hn as λ ranges

over the set of e-regular partitions of n. We may write Sλ
F,q and Dλ

F,q as Sλ
B and

Dλ
B to indicate that they lie in a block B of Hn, or simply as Sλ and Dλ if F and

q are understood.
Given partitions λ and µ of n with µ e-regular, we define the decomposition

number dλµ to be the composition multiplicity [Sλ : Dµ]; the decomposition matrix
for Hn is a matrix with rows indexed by partitions of n and columns by e-regular
partitions of n, in which the (λ, µ) entry is dλµ. In the case q = 1, this is the
decomposition matrix in the usual representation-theoretic sense.

We use some notational conventions for modules. We write

M ∼ Ma
1 + · · · + Ma

r

to indicate that M has a filtration in which the factors are M1, . . . , Mr, each ap-
pearing a times. We also write M⊕r to indicate the direct sum of r isomorphic
copies of M .

We assume throughout the paper that the reader is familiar with the combina-
torics of Young diagrams, particularly removable nodes and rim hooks.

1.1.1. Blocks and the abacus. If e is finite, then partitions of n are conveniently
represented on an abacus. If λ is a partition, choose an integer r greater than the
number of parts of λ, and define

βi = λi + r − i

for i = 1, . . . , r. The set {β1, . . . , βr} is then said to be a set of beta-numbers for λ.
Now take an abacus with e vertical runners 1, . . . , e from left to right, and number
the positions on runner i as i−1, i−1+ e, i−1+2e, . . . from the top downwards
(so each non-negative integer occurs on exactly one runner). Then place a bead on
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the abacus at position βi for each i. The resulting configuration is said to be an
abacus display for λ. The partition whose abacus display is obtained from this by
moving all the beads as far up their runners as they will go is called the e-core of
λ; it is a partition of n − we for some w, which is called the e-weight (or simply
the weight) of λ. Moving a bead up s spaces on its runner corresponds to removing
a rim hook of length es from the Young diagram. ‘Nakayama’s Conjecture’ [14,
Corollary 5.38] says that two Specht modules Sλ and Sµ lie in the same block of
Hn (we shall abuse notation by saying that λ and µ lie in this block) if and only
if they have the same e-core; this means that they also have the same weight, and
this is called the (e-)weight of the block. If there is a bead in an abacus display for
λ with exactly w empty spaces above it on the same runner, we say that the bead
has weight w.

We shall often be comparing the numbers of beads on runners i − 1 and i, and
moving beads ‘one space to the right’ or ‘one space to the left’. We wish to include
the possibility i = 1 here, with the convention that the position ‘one space to the
left’ of position ex on runner 1 is position ex−1 on runner e. To say that ‘there are
κ more beads on runner i than on runner i−1’ in the case i = 1 will actually mean
that there are κ+1 more beads on runner 1 than runner e. ‘Swapping runners i−1
and i’ in the case i = 1 will actually mean moving each bead at a position ex > 0
on runner 1 to position ex − 1 on runner e, and vice versa.

1.1.2. Branching rules. There is a natural embedding Hn−1 ≤ Hn. If M is a
module for Hn, we write M ↓Hn−r

to indicate the restriction of M to Hn−r, and
M ↑Hn+r to indicate the module obtained by inducing M to Hn+r. If B is a block
of Hn−r or Hn+r, we write M↓B (respectively, M ↑B) to indicate the projection of
M↓Hn−r

(respectively, M ↑Hn+r ) onto B. In this section we describe the induction
and restriction of Specht modules and simple modules.

Suppose A, B and C are blocks of Hn−κ, Hn and Hn+κ, respectively, and that
there is an abacus display for B and an integer i such that an abacus display for
A is obtained by moving κ beads from runner i to runner i − 1, while an abacus
display for C is obtained by moving κ beads from runner i − 1 to runner i.

Suppose λ is a partition in B, and let λ−1, . . . , λ−r be the partitions in A which
may be obtained from λ by moving exactly κ beads on runner i one place to the
left. Similarly, let λ+1, . . . , λ+s be the partitions in C which may be obtained from
λ by moving exactly κ beads from runner i − 1 one place to the right. Then we
have the following.

Theorem 1.2 (The Branching Rule [14, Corollary 6.2]). Suppose A, B, C and λ
are as above. Then

Sλ↓B
A∼ (Sλ−1

)κ! + · · · + (Sλ−r

)κ!

and
Sλ ↑C

B∼ (Sλ+1
)κ! + · · · + (Sλ+s

)κ!.

The induction and restriction of simple modules is rather more subtle. Suppose
A, B, C and λ are as above, and that λ is e-regular. The i-signature of λ is a
sequence of signs defined as follows. Starting from the top row of the abacus and
working down, write a − if there is a bead on runner i but no bead on runner i− 1
in the same row; write a + if there is a bead on runner i− 1 but no bead on runner
i in the same row; otherwise, write nothing for that row.
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Given the i-signature of λ, successively delete all neighbouring pairs of the form
−+; the resulting sequence is called the reduced i-signature of λ. If there are any
− signs in the reduced i-signature, then we say that the corresponding beads on
runner i are normal ; if there are at least κ normal beads, then we define λ− to
be the partition obtained by moving the κ highest normal beads one place to the
left. If there are any + signs in the reduced i-signature, then we say that the
corresponding beads on runner i − 1 of the abacus display are conormal. If there
are at least κ conormal beads, then we define λ+ to be the partition obtained by
moving the κ lowest conormal beads one place to the right.

Theorem 1.3 ([1, §2.5]). Suppose A, B, C and λ are as above.
• If there are fewer than κ normal beads on runner i of the abacus for λ, then

Dλ↓B
A = 0.

• If there are exactly κ normal beads on runner i of the abacus for λ, then
Dλ↓B

A
∼= (Dλ−

)⊕κ!.
• If there are fewer than κ conormal beads on runner i − 1 of the abacus for

λ, then Dλ ↑C
B = 0.

• If there are exactly κ conormal beads on runner i − 1 of the abacus for λ,
then Dλ ↑C

B
∼= (Dλ−

)⊕κ!.

Example. Take e = 3, i = 2 and κ = 1 and suppose that

λ = (3, 22, 1) =
� � �

� �
� �

�

, µ = (23, 12) =
� � �

� �
� �

�

.

Then
Dλ ↑C

B = Dλ+
, Dµ↓B

A
∼= Dµ−

, Dµ ↑C
B = 0,

where

λ+ =
� � �

� �

� �
�

, µ− =
� � �
� �

� �
�

.

1.1.3. The Mullineux map. Let T1, . . . , Tn−1 be the standard generators of Hn. Let
� : Hn → Hn be the involutory automorphism sending Ti to q − 1 − Ti, and let
∗ : Hn → Hn be the anti-automorphism sending Ti to Ti. Given a module M for
Hn, define M � to be the module with the same underlying vector space and with
the action

h · m = h�m,

and define M∗ to be the module with underlying vector space dual to M and with
Hn-action

h · f(m) = f(h∗m).
If M lies in a block B, then M � lies in a block B�, which we call the conjugate block
to B.

(Note that in the symmetric group case q = 1, M � is simply M ⊗ sgn, where sgn
is the 1-dimensional signature representation, while M∗ is the usual dual module
to M .)

The effect of these functors on Specht modules is easily described; let λ′ denote
the partition conjugate to λ.

Lemma 1.4 ([14, Exercise 3.14(iii)]). For any partition λ,

Sλ′ ∼= (Sλ)�∗.
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Now we turn to the simple modules Dλ, for λ e-regular. It follows from the
cellularity of Hn that (Dλ)∗ ∼= Dλ. If we let λ� denote the e-regular partition
such that (Dλ)� ∼= Dλ�

, then � is an involutory bijection from the set of e-regular
partitions of n to itself. This bijection is given combinatorially by Mullineux’s
algorithm [15]; we shall not describe this here, but we note that given an e-regular
partition λ, the partition λ� depends only on λ and e, not on the underlying field.

Of course, the functor M �→ M � is a self-equivalence of the category of Hn-
modules, and we have the following consequence for decomposition numbers.

Corollary 1.5. For any partitions λ and µ with µ e-regular,

[Sλ : Dµ] = [Sλ′
: Dµ�

].

1.1.4. The Jantzen–Schaper formula. One of the most important tools in finding
the decomposition numbers for Hn is the (q-analogue of the) Jantzen–Schaper for-
mula. We describe this very briefly.

Given partitions λ and µ of n and given e and p, let H(λ, µ) be the set of ordered
pairs (g, h), where

• g is a rim hook of the Young diagram [λ] of λ;
• h is a rim hook of the Young diagram [µ] of µ;
• [λ] \ g = [µ] \ h.

Now define
cλ,µ =

∑
(g,h)∈H(λ,µ)

(−1)l(g)+l(h)+1νe,p(|g|);

here |g| is the number of nodes of g and l(g) its leg length, and

νe,p(x) =

⎧⎪⎨⎪⎩
0 (e � x),
1 (e | x and p = ∞),
1 + νp(x/e) (e | x and p < ∞)

for a positive integer x.
A weak form of the Jantzen–Schaper formula may now be stated as follows,

where ≥ indicates the lexicographic order of partitions.

Theorem 1.6 ([9, Theorem 4.7]). Let F be a field of characteristic p. For partitions
λ = µ of n with µ e-regular, define

nλ,µ =
∑
ν>λ

cλ,ν [Sν
F : Dµ

F
].

Then
[Sλ

F : Dµ
F
] ≤ nλ,µ,

and [Sλ
F

: Dµ
F
] = 0 if and only if nλ,µ = 0.

In view of Theorem 1.6, we define a ‘dominance’ order on the set of partitions
of n. We define λ � µ if λ > µ and cλ,µ = 0, and we extend transitively. Note
that this does not coincide with the usual dominance order (which is a refinement),
and that it depends on e and p. In practice, though, we shall only be considering
partitions of e-weight less than p, for which the order � depends only on e.

It is clear that � is reversed by conjugation of partitions, and in view of the
results of Section 1.1.3, we have the following.
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Proposition 1.7. If F is a field of characteristic p, and λ and µ are partitions of
n with µ e-regular and with λ = µ�′, define

n′
λ,µ =

∑
ν�λ

cλ,ν [Sν
F : Dµ

F
].

Then
n′

λ,µ ≥ [Sλ
F : Dµ

F
],

and n′
λ,µ = 0 if and only if [Sλ

F
: Dµ

F
] = 0.

Hence [Sλ : Dµ] = 0 unless µ � λ � µ�′.

Proof. Replace λ and µ with λ′ and µ�, and apply Theorem 1.6 (replacing ν > λ′

with ν � λ′) and Corollary 1.5. �
1.1.5. The Scopes equivalence. Various Morita equivalences for blocks of the same
weight were found by Scopes [17]; although her paper was concerned only with
blocks of the symmetric group, her results are known to be valid for the Iwahori–
Hecke algebras.

Suppose that A is a block of Hn−κ of weight w, and B a block of Hn of weight
w. Suppose that there is an abacus display for B and an integer i such that:

• there are exactly κ more beads on runner i than on runner i − 1;
• by interchanging runners i and i − 1, we obtain an abacus display for A.

Then we say that A and B form a [w : κ]-pair.
Suppose that A and B form a [w : κ]-pair with w ≤ κ, and let λ be a partition

in B. Then there are exactly κ beads on runner i in the abacus display for λ which
do not have beads immediately to their left. If we move each of these beads one
place to the left, we obtain a partition in A, which we denote by Φ(λ). Then we
have the following.

Theorem 1.8 ([14, p. 127]). Let A, B and Φ be as above. Then:
• Φ is a bijection between the set of partitions in B and the set of partitions

in A;
• Φ(λ) is e-regular if and only if λ is e-regular;
• for any partition λ in B,

Sλ↓B
A ∼ (SΦ(λ))κ!, SΦ(λ) ↑B

A ∼ (Sλ)κ!;

• for any e-regular partition λ in B,

Dλ↓B
A

∼= (DΦ(λ))⊕κ!, DΦ(λ) ↑B
A

∼= (Dλ)⊕κ!;

• the correspondence Dλ ↔ DΦ(λ) is induced by a Morita equivalence between
B and A.

In view of Theorem 1.8, we define blocks to be Scopes equivalent if they form a
[w : κ]-pair for some κ ≥ w. We extend this transitively to define an equivalence
relation on the set of blocks of weight w, and we refer to an equivalence class as a
Scopes class.

It will be useful later to use the notion of [w : κ]-pairs to define a partial order on
the set of blocks of a given weight. If A and B form a [w : κ]-pair (not necessarily
with w ≤ κ), we write A ≺ B, and extend � transitively to form a partial order on
the set of weight w blocks.

We also define a partial order on the set of Scopes classes by setting C � D if
A � B for some A ∈ C and B ∈ D, and extending transitively. It is not immediately
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obvious that this relation is anti-symmetric, but this will follow from the section
on pyramids below.

1.1.6. Pyramids. In order to understand the combinatorics of Scopes classes,
Richards [16] defined the notion of a pyramid. Let γ be an e-core, and choose
an abacus display for γ. Let p1 < · · · < pe be those integers such that there is a
bead at position pi but no bead at position pi + e, for each i. Then exactly one
pi lies in each congruence class modulo e. We renumber the runners of the abacus
so that the bead at position pi lies on runner i for each i. Note that we use this
new numbering for the remainder of this paper. For i < j the integer pj − pi is a
positive integer not divisible by e, and it does not depend on the choice of abacus
display for γ. Given w ≥ 0, we define

iaj =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

w − 1 (e > pj − pi > 0)
w − 2 (2e > pj − pi > e)

...
1 ((w − 1)e > pj − pi > (w − 2)e)
0 (pj − pi > (w − 1)e)

for 1 ≤ i < j ≤ e. For ease of notation, we also define 0aj = jae+1 = 0 for all j.
If B is the block of Hn with core γ and weight w, then the set of integers iaj is
called the pyramid for B; we shall write iaj(B) when it is not clear to which block
we are referring. We shall also use shorthand such as i0j to indicate that iaj = 0.

A critical property of pyramids is the following.

Proposition 1.9 ([16, Lemma 3.1 and Proposition 3.3]). Two blocks of weight w
are Scopes equivalent if and only if they have the same pyramid.

By examining the difference between the pyramids of two blocks forming a [w : κ]-
pair, we can easily see the following.

Lemma 1.10. Let A and B be blocks of weight w. If A � B, then iaj(A) ≥ iaj(B)
for all i, j. In particular, the relation � on Scopes classes is anti-symmetric.

1.1.7. The row and column removal theorems. Here we state two useful results
concerning decomposition numbers for Hecke algebras.

Theorem 1.11 ([14, p. 125, Rule 8]).

(1) Suppose λ and µ are partitions of n with µ e-regular, and that λ1 = µ1.
Define

λ = (λ2, λ3, . . . ), µ = (µ2, µ3, . . . ).

Then µ is e-regular, and

[Sλ
F : Dµ

F
] = [Sλ

F : Dµ
F
]

for any field F.
(2) Suppose λ and µ are partitions of n with µ e-regular, and that λ′

1 = µ′
1.

Define

λ = (max(λ1−1, 0), max(λ2−1, 0), . . . ), µ = (max(µ1−1, 0), max(µ2−1, 0), . . . ).
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Then µ is e-regular, and

[Sλ
F : Dµ

F
] = [Sλ

F : Dµ
F
]

for any field F.

1.1.8. The runner removal theorem. Here we state a result which will be very useful
in Section 3; it describes a relationship between the decomposition matrices of
Iwahori–Hecke algebras defined over fields of infinite characteristic with different
values of e.

Suppose F has infinite characteristic, that e ≥ 3, that q is a primitive eth root of
unity in F and that q′ is a primitive (e − 1)th root of unity in F. Suppose λ and µ
are partitions of n and suppose r ≥ λ′

1, µ
′
1. Consider the abacus displays for λ and

µ on an abacus with r beads and e runners, and suppose that there are no beads
on runner i in either of these abacus displays. Delete runner i from both displays,
and let λ− and µ− be the partitions given by the resulting abacus displays.

Theorem 1.12 ([10, Corollary 2.3]). Let λ and µ be as above. If µ− is (e − 1)-
regular and if |λ−| = |µ−|, then

[Sλ
F,q : Dµ

F,q] = [Sλ−

F,q′ : Dµ−

F,q′ ].

Remark. In practice, if we are trying to calculate the decomposition number [Sλ :
Dµ], then we may assume that λ and µ lie in the same block. This automatically
implies that |λ−| = |µ−|.

1.1.9. Adjustment matrices. Finally we come to a result which relates the decom-
position matrices of Iwahori–Hecke algebras with the same value of e but defined
over different fields. It is a consequence of a type of modular reduction.

Theorem 1.13 ([14, Theorem 6.35]). Suppose B is a block of HF,q(Sn), with e-
core γ. Let q′ be a primitive eth root of unity in C, and let B0 be the block of
HC,q′(Sn) with e-core γ.

Let D and D0 be the decomposition matrices of B and B0, respectively, with rows
indexed by partitions of n with e-core γ, and columns indexed by e-regular partitions
of n with e-core γ. Then there exists a square matrix A with non-negative integer
entries and with rows and columns both indexed by e-regular partitions of n with
e-core γ, such that D = D0A.

The matrix A in Theorem 1.13 is known as the adjustment matrix for B. Ad-
justment matrices were introduced by James in [7]; James’s Conjecture asserts that
if char(F) > w, then the adjustment matrix for a block of Hn of weight w is the
identity matrix.

2. Blocks of small weight

In this section, we give some basic results on blocks of weight at most 3. These
are largely concerned with comparing the decomposition numbers for blocks forming
a [3 : κ]-pair. The results are largely the same as those in [13], but we are able to
give quicker proofs using the modular branching rules.

To begin with, we review the theory of blocks of weight less than 3.
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2.1. Blocks of weight at most 2. Blocks of weight 0 are simple; thus each
contains a unique partition ν, with Sν = Dν . Blocks of weight 1 are very well
understood; each contains e partitions, which may be labelled λ1, . . . , λe so that
λ1 � · · · � λe and that λ1, . . . , λe−1 are e-regular. The decomposition number
[Sλi

: Dλj

] equals 1 if i = j or j + 1, and 0 otherwise.
Blocks of weight 2 were studied by Richards [16], whose main result we state

below; although this was stated only for symmetric group blocks, the proof of the
q-analogue of the Jantzen–Schaper formula means that it is true in general.

Given a partition λ of weight 2, we reach the core of λ by twice moving a bead
up one space on the abacus. This corresponds to removing two rim hooks of length
e from the Young diagram [λ]. We denote by ∂λ the absolute difference between
the leg lengths of these rim hooks. We then have the following.

Theorem 2.1 ([16, Theorem 4.4]). Suppose that char(F) = 2, and that B is a block
of Hn of weight 2. If λ and µ are partitions in B with µ e-regular, then

[Sλ : Dµ] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 (λ = µ),
1 (λ = µ�′),
1 (µ � λ � µ�′ and |∂λ − ∂µ| = 1),
0 (otherwise).

Corollary 2.2. Suppose B is a block of Hn of weight 2, and that λ, µ and ν are
partitions in B with ν e-regular. Suppose λ > µ in the lexicographic order, and that
|∂λ − ∂µ| = 1. If [Sλ : Dν ] = [Sµ : Dν ] = 1, then either ν = λ or ν�′ = µ.

Remark. Theorem 2.1 is not true in characteristic 2; the decomposition numbers
in this case have been found by the present author [4], but we shall not need these
results in this paper.

2.2. Notation for blocks of weight 3. In this section we define some notation
for partitions in blocks of weight 3; this is similar to the notation used by Martin
and Russell [13], but we use the numbering of runners described in §1.1.6.

Suppose B is a block of Hn of weight 3, and fix an abacus for B. Suppose there
are b1 beads on the leftmost runner, b2 beads on the next runner, and so on, with
be beads on the rightmost runner. Then the 〈b1, . . . , be〉 notation for the partition
λ in B is defined as follows. If the display for λ is obtained from the display for the
core of B by moving the lowest bead on runner i down three spaces, we denote λ as
[i]. If the display for λ is obtained by moving the lowest bead down two spaces on
runner i and moving a bead down one space on runner j (where i may equal j), we
denote λ as [i, j]. If the display for λ is obtained by moving three beads down one
space each on runners i, j and k (where i, j and k may coincide), then we denote
λ as [i, j, k]. In order to emphasise the block in which our partition lies and the
abacus used for that block, we may write [i, j, k] as

[i, j, k | b1, . . . , be],

and similarly for [i] and [i, j]. We may group together equal bis; so the partition
(42, 1) with abacus display

� � �
� �

�
� �

may be written as [1, 3 | 32, 2].
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An advantage of using our numbering of the runners of the abacus is that if A
and B are blocks forming a [3 : κ]-pair with κ ≥ 3, then the map Φ described in
§1.1.5 becomes

[i, j, k] �−→ [i, j, k],

[i, j] �−→ [i, j],

[i] �−→ [i],

for all i, j, k.
We make similar definitions for blocks of weight 2. We write [i] for the partition

obtained by moving the lowest bead down two spaces on runner i, and [i, j] for the
partition obtained by moving two beads down one space each on runners i and j.
We shall always make the weight of the partition explicit, so no confusion should
arise.

2.3. [3 : κ]-pairs. In studying weight 3 blocks, [3 : κ]-pairs are a vital tool. Since
blocks forming a [3 : κ]-pair with κ ≥ 3 are Morita equivalent, the study of blocks
of weight 3 centres around [3 : 1]- and [3 : 2]-pairs. Here we set up some notation
and prove some basic results for [3 : κ]-pairs, following Martin and Russell.

Suppose A ≺ B form a [3 : κ]-pair, and that the abacus for B is obtained from
that for A by swapping the adjacent runners i and j, where i < j. We say that a
partition λ in B is exceptional for this [3 : κ]-pair if there are more than κ beads
on runner j of the abacus display for B with no bead immediately to the left, and
non-exceptional otherwise. If λ is e-regular, then we say that the simple module
Dλ is exceptional if there are more than κ normal beads on runner j of the abacus
display for λ. We make similar definitions for A: we say that a partition λ in A
is exceptional if there are more than κ beads on runner i of the abacus display for
λ with no bead immediately to the right, and if λ is e-regular we say that Dλ is
exceptional if there are more than κ conormal beads on runner i.

2.4. [3 : 1]-pairs. Suppose that A ≺ B form a [3 : 1]-pair, and that the abacus for
B is obtained from that for A by swapping runners i and j. Then the following are
the exceptional partitions in A and B:

A B

αk =

{
[i, k] (k = j)
[i] (k = j)

αk =

⎧⎪⎨⎪⎩
[j, j, k] (k = i, j)
[j, j, j] (k = i)
[j, j] (k = j)

βk =

{
[i, j, k] (k = j)
[j, i] (k = j)

βk =

{
[i, j, k] (k = j)
[j, i] (k = j)

γk =

⎧⎪⎨⎪⎩
[j, j, k] (k = i, j)
[j, j, j] (k = i)
[j, j] (k = j)

γk =

{
[i, k] (k = j)
[i] (k = j).

The exceptional simple modules in A and B are the modules Dαk and Dαk for
those k such that αk is e-regular.

Now we define a bijection between the set of partitions in B and the set of
partitions in A. If λ is a partition in B which is not exceptional, then define the
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partition Φ(λ) in A by swapping runners j and i of the abacus display for λ. We
define Φ on the exceptional partitions as follows:

Φ : αk �−→ αk,

βk �−→ γk,

γk �−→ βk.

The following result is then easily checked.

Lemma 2.3. Φ is a bijection between the set of partitions in B and the set of
partitions in A. If λ is a partition in B, then Φ(λ) is e-regular if and only if λ is
e-regular.

We get the following results on induction and restriction from Theorems 1.2 and
1.3.

Proposition 2.4. Suppose that A and B form a [3 : 1]-pair as above, and that λ
is a partition in B.

• If λ is a non-exceptional partition, then

Sλ↓B
A

∼= SΦ(λ), SΦ(λ) ↑B
A

∼= Sλ.

• If 1 ≤ j ≤ e, then

Sαk↓B
A ∼ Sαk + Sβk , Sαk ↑B

A ∼ Sαk + Sβk ,

Sβk↓B
A ∼ Sαk + Sγk , Sβk ↑B

A ∼ Sαk + Sγk ,

Sγk↓B
A ∼ Sβk + Sγk , Sγk ↑B

A ∼ Sβk + Sγk .

• If λ is e-regular and Dλ is a non-exceptional simple module, then

Dλ↓B
A

∼= DΦ(λ), DΦ(λ) ↑B
A

∼= Dλ.

We now derive some results on the decomposition numbers for blocks forming a
[3 : 1]-pair. Let A and B be as above, and let C be the block of weight 1 whose
abacus is obtained from that for B by moving a bead from runner i to runner j. We
let λ1 � . . . � λe be the partitions in C. We get the following result on induction
and restriction between B and C from Theorems 1.2 and 1.3.

Proposition 2.5. Let B and C be as above. Then there is a permutation π ∈ Se

such that:
(1) if λ is a partition in B, then

Sλ ↑C
B

∼=
{

Sλk

(if λ is of the form απ(k), βπ(k) or γπ(k)),
0 (otherwise);

(2) if λ is an e-regular partition in B, then

Dλ ↑C
B

∼=
{

Dλk

(if λ is of the form απ(k)),
0 (otherwise).

Corollary 2.6. Suppose 1 ≤ k ≤ e − 1. Then Dαπ(k) appears exactly once as a
composition factor of each of

Sαπ(k) , Sβπ(k) , Sγπ(k) , Sαπ(k+1) , Sβπ(k+1) , Sγπ(k+1) ,

and does not appear as a composition factor of any other Specht module.
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Proof. This follows at once from Proposition 2.5, the decomposition matrix of C
described in Section 2.1, and the fact that induction is an exact functor. �

As a consequence of this corollary (or by examining the dominance order di-
rectly), we see that the partitions αk are totally ordered by dominance, with

απ(1) � . . . � απ(e).

Using the weight 1 block obtained from A by moving a bead from runner j to
runner i, we obtain the following.

Proposition 2.7. Suppose 1 ≤ k ≤ e − 1. Then Dαπ(k) appears exactly once as a
composition factor of each of

Sαπ(k) , Sβπ(k) , Sγπ(k) , Sαπ(k+1) , Sβπ(k+1) , Sγπ(k+1) ,

and does not appear as a composition factor of any other Specht module.

Finally, we seek to compare the decomposition numbers for A and B.

Proposition 2.8.

(1) Suppose λ is a non-exceptional partition in B and Dµ is a non-exceptional
simple module in B. Then

[SΦ(λ) : DΦ(µ)] = [Sλ : Dµ].

(2) Suppose Dµ is a non-exceptional simple module in B, and that 1 ≤ k ≤ e.
Then

[Sαk : Dµ]+[Sγk : DΦ(µ)] = [Sβk : Dµ]+[Sβk : DΦ(µ)] = [Sγk : Dµ]+[Sαk : DΦ(µ)].

Proof.

(1) This follows from Proposition 2.4, Corollary 2.6 and the fact that restriction
is an exact functor.

(2) By Proposition 2.4, Corollary 2.6 and the exactness of restriction, we have

[Sαk : DΦ(µ)] + [Sβk : DΦ(µ)] = [Sαk : Dµ] + [Dαk↓B
A : DΦ(µ)] + [Dαk′↓B

A : DΦ(µ)],

[Sαk : DΦ(µ)] + [Sγk : DΦ(µ)] = [Sβk : Dµ] + [Dαk↓B
A : DΦ(µ)] + [Dαk′↓B

A : DΦ(µ)],

[Sβk : DΦ(µ)] + [Sγk : DΦ(µ)] = [Sγk : Dµ] + [Dαk↓B
A : DΦ(µ)] + [Dαk′↓B

A : DΦ(µ)],

where k′ = π(π−1(k) − 1); the factor involving Dαk should be ignored if
k = π(e), and the factor involving Dαk′ should be ignored if k = π(1). The
equalities and the left-hand inequalities follow. The right-hand inequalities
are derived from a very similar argument using induction.

�

2.5. [3 : 2]-pairs. In this section we review some background on [3 : 2]-pairs; the
notation here is less complex than for [3 : 1]-pairs.

Suppose A ≺ B form a [3 : 2]-pair, and that an abacus for B is obtained by
swapping runners i and j of an abacus for A. We use the following notation for the
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exceptional partitions in A and B:

A B

α = [i] α = [j, j, j]

β = [i, j] β = [i, j, j]

γ = [i, j, j] γ = [i, j]

δ = [j, j, j] δ = [i].

The exceptional simple modules for this [3 : 2]-pair are Dα and Dα.
We define a bijection Φ between the set of partitions in B and the set of parti-

tions in A, as follows. If λ is a non-exceptional partition in B, we define Φ(λ) by
interchanging runners i− 1 and i of the abacus display for λ, while for exceptional
partitions we define

Φ : α �−→ α

β �−→ δ

γ �−→ γ

δ �−→ β.

Lemma 2.3 then applies in the present context. The following result follows at
once from Theorems 1.2 and 1.3.

Proposition 2.9. Suppose A and B are as above, and λ is a partition in B.
• If λ is non-exceptional, then

Sλ↓B
A ∼ (SΦ(λ))2, SΦ(λ) ↑B

A ∼ (Sλ)2.

• For the exceptional partitions, we have

Sα↓B
A ∼ (Sα)2 + (Sβ)2 + (Sγ)2, Sα ↑B

A ∼ (Sα)2 + (Sβ)2 + (Sγ)2,

Sβ↓B
A ∼ (Sα)2 + (Sβ)2 + (Sδ)2, Sβ ↑B

A ∼ (Sα)2 + (Sβ)2 + (Sδ)2,

Sγ↓B
A ∼ (Sα)2 + (Sγ)2 + (Sδ)2, Sγ ↑B

A ∼ (Sα)2 + (Sγ)2 + (Sδ)2,

Sδ↓B
A ∼ (Sβ)2 + (Sγ)2 + (Sδ)2, Sδ ↑B

A ∼ (Sβ)2 + (Sγ)2 + (Sδ)2.

• If λ is e-regular and Dλ is a non-exceptional simple module, then

Dλ↓B
A

∼= DΦ(λ) ⊕ DΦ(λ), DΦ(λ) ↑B
A

∼= Dλ ⊕ Dλ.

Now let C be the block of weight 0 whose abacus is obtained from the abacus for
B by moving a bead from runner i to runner j. Let ν denote the unique partition
in C.

Proposition 2.10.
(1) If λ is a partition in B, then

Sλ ↑C
B
∼=

{
Sν (if λ = α, β, γ or δ),
0 (otherwise);

if in addition λ is e-regular, then

Dλ ↑C
B
∼=

{
Dν (λ = α),
0 (λ = α).
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(2) Dα appears once as a composition factor of each of Sα, Sβ, Sγ , Sδ, and does
not appear as a composition factor of any other Specht module. Dα appears
once as a composition factor of each of Sα, Sβ, Sγ , Sδ, and does not appear
as a composition factor of any other Specht module.

(3) For any λ, µ in B with λ non-exceptional and µ e-regular, we have

[Sλ : Dµ] = [SΦ(λ) : DΦ(µ)].

(4) For any non-exceptional simple module Dµ in B, we have

[Sα : Dµ] + [Sδ : DΦ(µ)] = [Sβ : Dµ] + [Sγ : DΦ(µ)]

= [Sγ : Dµ] + [Sβ : DΦ(µ)] = [Sδ : Dµ] + [Sα : DΦ(µ)].

Proof. (1) follows from Theorems 1.2 and 1.3. (2) and (3) then follow from the
exactness of induction and restriction (and the fact that Sν = Dν), while (4) is
proved similarly to Proposition 2.8(2). �

2.6. Rouquier blocks. A special class of blocks of Hecke algebras is particularly
well understood. These are defined for all weights, but we shall restrict attention
to blocks of weight 3.

Let B be a block of weight 3, and let { iaj} be the pyramid for B. We say that B
is Rouquier if i0j for all i, j. Thus the Rouquier blocks form a single Scopes class;
we shall see later that this class is the greatest class with respect to the order �.

The decomposition numbers for Rouquier blocks (of any weight) are known over
a field of infinite characteristic [2, 12]. In addition, a recent paper of James, Lyle
and Mathas [8] shows that James’s Conjecture holds for Rouquier blocks. As a
consequence, we have the following.

Theorem 2.11. Suppose char(F) ≥ 5, that B is a weight 3 Rouquier block of Hn,
and that λ and µ are partitions in B with µ e-regular. Then [Sλ : Dµ] ≤ 1.

Proof. If char(F) = ∞, then it easy to read from the explicit combinatorial descrip-
tion of the decomposition numbers ([12, Corollary 10] or [2, Theorem 1.1]) that the
decomposition numbers are at most 1. The general case follows from [8, Corollary
4]. �

2.7. Lowerable partitions. Here we prove a simple lemma which will be in useful
in this section and in the next. Suppose B is a weight 3 block of Hn, and that in
an abacus display for B, runner j lies immediately to the right of runner i, and the
number of beads on runner i exceeds the number of beads on runner j by b, for
b = 0, 1 or 2. Let C be the block of Hn−1 of weight 2− b whose abacus is obtained
by moving a bead from runner j to runner i. We say that an e-regular partition µ
in B is lowerable if Dµ↓B

C = 0 for some such C.

Lemma 2.12. Suppose char(F) ≥ 3, that B is a weight 3 block of Hn, and that µ
is a lowerable e-regular partition in B. Then [Sλ : Dµ] ≤ 1 for all partitions λ in
B.

Proof. Let C be such that Dµ↓B
C = 0. By Theorem 1.2, we find that Sλ↓B

C is either
zero or isomorphic to a Specht module. So, since restriction is an exact functor, we
find that [Sλ : Dµ] is either zero or equal to a decomposition number for C. But
the decomposition numbers for C are known to be at most 1. �
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In Appendix A, we give a classification of partitions which are not lowerable in
certain blocks; this will be useful in Sections 3 and 4. Suppose e ≥ 5 and that B is
the weight 3 block of Hn with core (xz), where x and z are positive integers with
x+z ≤ e. We let y = e−x−z, and use the 〈3x, 4z, 3y〉 abacus notation for partitions
in B. Table 1 lists all those e-regular partitions µ in B which are not lowerable.
For each of these the partition µ�′ is calculated. There are fifty cases, each labelled
with a pair of letters. The labelling is chosen to reflect the Mullineux map: the
conjugate block B� to B has core (zx), and the non-lowerable partitions in B� may
be read off from Table 1 by interchanging x and z throughout. For a partition µ
appearing in Table 1, the partition µ� in B� may be found by interchanging the
two letters labelling µ and interchanging x and z. For example, we have

[x + y + 1 | 3x, 42]� = [1, z + y + 1 | 32, 4x],

so that case AE corresponds to case EA under the Mullineux map.

3. The case char(F) = ∞

In this section, we prove Theorem 1.1 in the case where F has infinite character-
istic. Using Theorem 1.12, we proceed by induction on e, and for given e, we use
a reverse induction using the partial order � on the set of Scopes classes of weight
3 blocks, with the Rouquier blocks as a base case. This requires some understand-
ing of how Scopes classes are related, and we define what it means for two Scopes
classes to form a [3 : 1]- or [3 : 2]-pair.

Suppose that C,D are Scopes classes, that C ≺ D and that A and B are blocks
forming a [3 : 2]-pair, with A ∈ C and B ∈ D. Suppose moreover that the abacus
for B is obtained from that for A by moving two beads from runner j to runner i (so
i < j). The exceptional partitions in A for this [3 : 2]-pair are then [i], [i, j], [i, j, j]
and [j, j, j], and so, by Proposition 2.8, every decomposition number [Sλ : Dµ] for A
can be equated with a decomposition number for B as long as λ is not one of these
four partitions. Hence for any block A′ in C, the decomposition number [Sλ : Dµ]
can be equated with a decomposition number for B, as long as λ does not equal [i],
[i, j], [i, j, j] or [j, j, j]. We say that C and D form a [3 : 2]-pair on runners i and j.
Analogously, we define what it means for C and D to form a [3 : 1]-pair on runners
i and j; here there are more exceptional partitions, but they are easily listed, as in
Section 2.4.

Our technique in proving Theorem 1.1 for fields of infinite characteristic is to
suppose that B lies in a Scopes class C, and that Theorem 1.1 holds for all blocks in
Scopes classes D � C. We then examine with which classes C can form a [3 : 1]- or
[3 : 2]-pair; in most cases, we find that we can equate each decomposition number
for a block in C with a decomposition number for a block in some such D. We must
then deal with the remaining cases.

To find [3 : 2]- and [3 : 1]-pairs between Scopes classes, we examine their pyra-
mids; recall the definition of iaj from Section 1.1.6.

Lemma 3.1. Suppose C is a Scopes class, and that 1 ≤ i < j ≤ e.
(1) There is a Scopes class D � C such that C and D form a [3 : 1]-pair on

runners i and j if and only if
(a) i2j,
(b) there is no k < i such that kai = kaj > 0, and
(c) there is no k > j such that iak = jak > 0.
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(2) There is a Scopes class D � C such that C and D form a [3 : 2]-pair on
runners i and j if and only if
(a) i1j,
(b) there is no k < i with k1j,
(c) there is no i < k < j with i2k2j, and
(d) there is no k > j with i1k.

Proof. We prove (1); the proof of (2) is very similar.
Suppose A and B form a [3 : 1]-pair for A ∈ C, B ∈ D on runners i and j. Choose

an abacus display for A so that runners i and j are adjacent (with runner i to the
right of runner j). Then there must be one more bead on runner j than on runner
i, so we have i2j . If k is as in (1b) or (1c), then runner k must lie between runners
j and i, which it cannot.

Conversely, suppose that the pyramid for C satisfies the conditions given, and
take an abacus display for some block in C in which runner i is to the right of
runner j. Suppose there are a beads on runner i; then, since i2j , there must be
a+1 beads on runner j; furthermore, if runner k lies between runners j and i, then
the number of beads on runner k is either at most a−2 or at least a+3. If there is
a runner between i and j with at least a + 3 beads, let runner k be the rightmost
such. Then runner k has at least three more beads than runner i or any runner
between k and i. So we may successively swap runner k with these runners, and we
reach, via a sequence of [3 : κ]-pairs with κ ≥ 3, a block A′ in C with fewer runners
between j and i. Similarly, we move any runner with at most a − 2 beads to the
left. In this way, we can reach a block in C with no runners between j and i, which
therefore forms a [3 : 1]-pair on these runners. �
Corollary 3.2. Suppose C,D1,D2 are distinct Scopes classes such that, for l = 1, 2:

• C ≺ Dl;
• C and Dl form a [3 : κl]-pair on runners il and jl, where κl = 1 or 2.

Then i1 = i2 and j1 = j2.

Proof. The pyramid for Dl is obtained from that for C by increasing il
ajl

by 1. In
particular, C, il and jl determine Dl, and so we cannot have i1 = i2 and j1 = j2.
So suppose that i1 = i2 and j1 < j2. Since κl = 3 − il

ajl
, this implies that

κ1 ≤ κ2. Furthermore, the conditions of Lemma 3.1 imply that jl is maximal such
that κl = 3 − il

ajl
; so we cannot have κ1 = κ2.

So κl = l for l = 1, 2. The conditions for the [3 : 2]-pair imply that i1aj2 =
j1aj2 = 1, but the conditions for the [3 : 1]-pair say that there is no such j2.

A similar argument applies when i1 < i2 and j1 = j2. �
In view of this, we can find several circumstances where each decomposition

number for a block in C can be equated with a decomposition number for a block
in a higher class.

Lemma 3.3. Suppose that C,D1,D2 are distinct Scopes classes such that, for l =
1, 2:

• C ≺ Dl;
• C and Dl form a [3 : κl]-pair on runners il and jl, where κl = 1 or 2.

Suppose also that if κ1 = κ2 = 1, then i1 = j2 and i2 = j1.
Then every decomposition number for a block in C can be equated with a decom-

position number for a block in either D1 or D2.
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Proof. By the above discussion, we know that each decomposition number [Sλ : Dµ]
for a block in C can be equated to a decomposition number for a block in Dl unless
λ ∈ Λ1 ∩ Λ2, where Λl equals{
{[il], [jl, il], [jl, jl]} ∪ {[il, m], [il, jl, m] | m = jl} ∪ {[jl, jl, m] | m = il} (κl = 1),
{[il], [il, jl], [il, jl, jl], [jl, jl, jl]} (κl = 2).

The conditions given for il, jl imply that Λ1 and Λ2 are disjoint. �

So the only cases where there are some decomposition numbers for blocks in
C which cannot be equated with decomposition numbers for higher classes are as
follows.

(C1) There is no Scopes class D � C with which C forms a [3 : 1]- or [3 : 2]-pair.
(C2) There is exactly one Scopes class D � C with which C forms a [3 : 1]-pair,

and no D with which C forms a [3 : 2]-pair.
(C3) There are two Scopes classes D1,D2 � C and 1 ≤ i < j < k ≤ e such that

C and D1 form a [3 : 1]-pair on runners i and j, while C and D2 form a
[3 : 1]-pair on runners j and k. There are no other classes D with which C
forms a [3 : 1]- or [3 : 2]-pair.

(C4) There is exactly one Scopes class D � C with which C forms a [3 : 2]-pair,
and no D with which C forms a [3 : 1]-pair.

To prove Theorem 1.1, we must study these four cases. First, we describe all the
corresponding Scopes classes in terms of pyramids.

Lemma 3.4. Suppose C is a Scopes class of weight 3 blocks, with pyramid { iaj |
1 ≤ i < j ≤ e}.

(1) C satisfies condition C1 above if and only if i0j for all i, j.
(2) C satisfies condition C2 above if and only if there exist i < j such that

• i2j, and
• k0l whenever k < i or l > j.

(3) C satisfies condition C3 above if and only if
• i2j2k,
• l1m whenever i ≤ l < j < m ≤ k, and
• l0m whenever l < i or m > k.

(4) C satisfies condition C4 above if and only if there exist i < k < k + 1 < j
such that

• i1j,
• k1k+1, and
• l0m whenever l < i or m > j.

Proof. In each case the ‘if’ condition is easily verified; in cases C2 and C4 the
[3 : κ]-pair in question is on runners i and j.

For the ‘only if’ parts, we suppose that the pyramid for C does not satisfy the
conditions given in any of (1)–(4). Define a pair (i, j) with 1 ≤ i < j ≤ e to be a
peak if

0 = i−1aj = iaj+1 < iaj .
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Note that if (i, j) and (i′, j′) are peaks with i ≤ i′, then i < i′ and j < j′. We say
in this case that (i, j) is smaller than (i′, j′).

Suppose that there is at least one peak, and that (i, j) is the smallest peak. We
claim that there is some k ≤ j such that C forms either a [3 : 1]- or a [3 : 2]-pair on
runners i and k. If i2j , then C forms a [3 : 1]-pair on i and j, so suppose i1j . If
there is no i < l < j such that i2l2j , then C forms a [3 : 2]-pair on runners i and
j. If there is such an l, let k be the maximal such; k is then maximal such that
i2k. Since (i, j) is the smallest peak, we have i−10k, and so we find that C forms a
[3 : 1]-pair on runners i and k.

Similarly, if (i′, j′) is the largest peak, then C forms a [3 : 1]- or [3 : 2]-pair on
runners k′ and j′ for some k′ ≥ i′.

If there are at least two peaks, let (i, j) and (i′, j′) be the smallest and largest.
Then C forms [3 : 1]- or [3 : 2]-pairs on (i, k) and (k′, j′) for some k, k′; the only way
we could then be in any of the cases (C1)–(C4) is if both the pairs are [3 : 1]-pairs
and k = k′. But then we would have i2k2j′ and (since (i, j) and (i′, j′) are distinct
peaks) i0j′ ; this is not possible.

So we may assume that there is exactly one peak, at (i, j). (If there are no
peaks, then i0j for all i, j, so the pyramid is as described in (1).) By assumption
we cannot have i2j (since then the pyramid would be as in (2)), and we cannot
have k1k+1 for any k (or the pyramid would be as in (4)). Let l be minimal such
that i1l, let i′ be minimal such that i′2l, and let j′ be maximal such that i′2j′ .
Then C forms a [3 : 1]-pair on (i′, j′), so we cannot be in case C4; so C does not
form a [3 : 2]-pair on (i, j), and hence there is some k such that i2k2j . This means
that C forms a [3 : 1]-pair on (m, n) for every pair (m, n) such that

2 = man > m−1an, man+1.

There are at least two such pairs, so if we are in one of the cases (C1)–(C4), then
there must be exactly two such pairs, and they must be (i, k) and (k, j) for some
k. But then the pyramid is as described in (3). �

In order to prove Theorem 1.1, we assume that C is in one of the cases (C1)–(C4)
and that the decomposition numbers for any class D � C are at most 1. We must
then prove that the decomposition numbers in C are at most 1.

Case C1 is dealt with by Theorem 2.11, so we turn our attention to the other
cases.

3.1. Case C2. The main result of this subsection is the following.

Proposition 3.5. Suppose that F has infinite characteristic, and that e ≥ 5. Sup-
pose also that B is a weight 3 block in a Scopes class C which forms exactly one
[3 : 1]-pair with a Scopes class D, and no [3 : 2]-pairs. If the decomposition numbers
for blocks in D are all at most 1 and Theorem 1.1 holds over F with e replaced by
e − 1, then the decomposition numbers for B are all at most 1.

First we need a lemma describing the map µ �→ µ�′ for certain partitions in
certain blocks. We assume throughout this subsection that e ≥ 5.

Lemma 3.6. Suppose that 1 ≤ c ≤ e − 1, and that Bc is the weight 3 block of Hn

with the 〈3c, 5, 7, . . . , 2(e − c) + 3〉 notation.
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Then in Bc we have

[e]�′ =

{
[e − 1, e − 1, e − 1] (c ≤ e − 2),
[e − 1, e − 2, e − 3] (c = e − 1),

[e, e]�′ =

{
[e − 1, e − 1] (c ≤ e − 2),
[e − 1, e − 2] (c = e − 1),

[e, i]�′ =

{
[e − 1, e − 1, i − 1] (2 ≤ i ≤ e − 1, c ≤ e − 2),
[i − 1, e − 1] (2 ≤ i ≤ e − 1, c = e − 1).

Proof. The case c = e−1 may be dealt with directly by using Mullineux’s algorithm.
When c ≤ e − 2, the result may be read off from [2, Theorem 1.1]; the partitions
in the lemma lie in the set Pκ described in that paper, where the decomposition
numbers [Sλ : Dµ] are described for µ ∈ Pκ. For any e-regular µ, the partition
µ�′ is the least dominant partition λ for which [Sλ : Dµ] > 0, and so is easily
obtained. �

Proof of Proposition 3.5. By Lemma 3.4 we may deduce the form of the pyramid
for C, and hence the abacus for some block in C. So without loss of generality we
may assume that there exist a, b ≥ 0 and c ≥ 2 with a + b + c = e and that B is
the block with the

〈3, 5, 7, . . . , 1 + 2a, (3 + 2a)c, 5 + 2a, 7 + 2a, . . . , 3 + 2a + 2b〉

notation. This abacus may be pictured as follows:
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Since by assumption all the decomposition numbers for blocks in D are at most
1, the same is true for the decomposition numbers [Sλ : Dµ] in B, except possibly
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when λ is one of the following partitions (which we label analogously with Section
2.4):

αk =

{
[a + 1, k] (k = a + c),
[a + 1] (k = a + c);

βk =

{
[a + 1, a + c, k] (k = a + c),
[a + c, a + 1] (k = a + c);

γk =

⎧⎪⎨⎪⎩
[a + c, a + c, k] (k = a + 1, a + c),
[a + c, a + c, a + c] (k = a + 1),
[a + c, a + c] (k = a + c).

So for the remainder of the proof we assume that λ is one of these partitions and
that µ is an e-regular partition with µ � λ � µ�′. Furthermore, if λ = αk, βk or
γk, then we may assume that µ � αk and γk � µ�′, since by Proposition 2.8(2) we
find that if [Sλ : Dµ] ≥ 2, then [Sαk : Dµ], [Sγk : Dµ] ≥ 1. By Corollary 2.6, we
may also assume that µ does not equal αi for any i.

If a ≥ 1 and k ≥ 2, then the assumption µ � αk means that λ and µ can be
displayed on an abacus with an empty runner, namely the same abacus as above
but with three beads removed from each runner. If we define λ− and µ− to be the
partitions obtained by removing this runner (as in Section 1.1.8) and if µ− is (e−1)-
regular, then by Theorem 1.12 we may equate the decomposition number [Sλ : Dµ]
with a decomposition number for a weight 3 block of an Iwahori–Hecke algebra at
an (e− 1)th root of unity; by our inductive assumption this decomposition number
will be either 0 or 1. So we assume for the rest of the proof that either a = 0 or
k = 1 or µ− is (e − 1)-singular. We consider several cases.

[a = b = 0]: In this case, it is easy to check that µ is always lowerable. So the
proposition holds here by Lemma 2.12.

[a ≥ 2, k ≥ 2]: In this case, the conditions that µ � α2 and µ− is (e − 1)-
singular imply that a = k = 2 and that the first two runners of the abacus
display for µ have the form

1 2

� �
� �

� �

�

�

.

Then we find that for i = 1, 2, 3 we have µ′
i = λ′

i. So we may apply Theorem
1.11; we define

λ = (max(λ1−3, 0), max(λ2−3, 0), . . . ), µ = (max(µ1−3, 0), max(µ2−3, 0), . . . ).

Then we have
[Sλ : Dµ] = [Sλ : Dµ],

and this is at most 1, since λ and µ are partitions of weight 2.
[a = 1, b = 0, k ≥ 2]: The conditions that µ � αk and that µ− is (e − 1)-

singular imply that µ = [i, i] for some i ≥ 2. Furthermore, we cannot have
µ = [2, 2] = αe. But if i ≥ 3, then µ is lowerable, and so [Sλ : Dµ] ≤ 1 by
Lemma 2.12.
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[a = 1, b = 1, k ≥ 2]: We assume that µ is not lowerable. Together with our
other assumptions on µ, this implies that µ is one of the four partitions

[e, 2], [e, 3, 2], [e, e, 2], [e, 2, 2].

We may analyse these using the Jantzen–Schaper formula. First we apply
Mullineux’s algorithm to find that

[e, 2]� = [e, 3, 2], [e, e, 2]� = [e, 2, 2].

Now we examine the cases µ = [e, 2] and µ = [e, e, 2] explicitly; see Appen-
dix B. The other two cases follow using Corollary 1.5.

[a = 0, b ≥ 1, k = e]: Since µ � λ, µ must have a bead of weight at least 1
on runner e. If the lowest bead on runner e has weight exactly 1, then λ
and µ have the same first part, and so we may apply Theorem 1.11: we
have [Sλ : Dµ] = [Sλ̂ : Dµ̂], where

λ̂ = (λ2, λ3, . . . ), µ̂ = (µ2, µ3, . . . )

are partitions of weight 2. Hence by Theorem 1.11(1) we have [Sλ : Dµ] ≤ 1.
So we may assume that there is a bead of weight at least 2 on runner

e in the abacus display for µ, i.e. µ is one of the partitions [e] or [e, i] for
1 ≤ i ≤ e. But then by Lemma 3.6, µ�′ has at most one bead of positive
weight on any of the runners 1, . . . , c, and so γe � µ�′, a contradiction.

[a = 1, b ≥ 2, k = e]: Since µ � λ, there must be a bead of weight at least
1 on runner e in the abacus display for µ. As above, if the lowest bead
on this runner has weight exactly 1, then we have λ1 = µ1 and we may
appeal to Theorem 1.11(1). So we assume that there is a bead of weight at
least 2 on runner e in the abacus display for µ. The condition that µ− is
(e − 1)-singular then implies that µ = [e, 2]. By appealing to [2, Theorem
1.1] as in the proof of Lemma 3.6, we find that

µ�′ = [e − 1, e − 1, 1].

But then γe � µ�′, a contradiction.
[(a ≥ 1 ≥ b, k = 1) or (b ≥ 1 ≥ a, k ≤ e − 1)]: We replace B, λ, µ with B�,

λ′, µ�, and appeal to the previous cases (and Corollary 1.5).
�

3.2. Case C3. Cases C3 and C4 are rather easier to deal with than Case C2. We
prove the following statement for Case C3.

Proposition 3.7. Suppose that F has infinite characteristic, that e ≥ 5, and that
B is a weight 3 block lying in a Scopes class C. Suppose that there are two Scopes
classes D1, D2 and 1 ≤ i < j < k ≤ e such that C and D1 form a [3 : 1]-pair on
runners i and j, while C and D2 form a [3 : 1]-pair on runners j and k. Suppose
also that there are no other classes D with which C forms a [3 : 1]- or [3 : 2]-pair. If
the decomposition numbers for blocks in D1 and D2 are all at most 1 and Theorem
1.1 holds over F with e replaced by e−1, then the decomposition numbers for B are
all at most 1.

Proof. By Lemma 3.4, we may assume that B is the block with the

〈3, 5, 7, . . . , 1 + 2a, (3 + 2a)c, (4 + 2a)d, 6 + 2a, 8 + 2a, . . . , 4 + 2a + 2b, 3 + 2a〉
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notation, where a+b+c+d = e−1. (In fact, we have a = i−1, c = j− i, d = k−j,
b = e − k.) The abacus for this block may be pictured as follows:
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By replacing B with its conjugate block if necessary, we may assume a ≥ b.
Since we assume that the decomposition numbers for D1 and D2 are at most 1,

the same is true for the decomposition numbers [Sλ : Dµ] for B, except for those λ
which are exceptional for both of the [3 : 1]-pairs. There are four such partitions,
which we label as follows:

βγ = [a + c + 1, a + c + 1, a + c + d + 1], ββ = [a + c + 1, a + c + d + 1, a + 1],

αγ = [a + c + 1, a + c + 1], αβ = [a + c + 1, a + 1].

We also define the following partitions:

γγ = [a + c + d + 1, a + c + d + 1, a + c + d + 1],

γβ = [a + c + d + 1, a + c + d + 1, a + 1],

βα = [a + 1, a + c + d + 1],

αα = [a + 1].

Now suppose µ is an e-regular partition in B with [Sλ : Dµ] > 1 for some λ. Then
we claim that we must have µ � βα. For if λ = βγ or ββ, then by Proposition
2.8(2) and by our assumption on the decomposition numbers for blocks in D1 we
have [Sβα : Dµ] ≥ 1, so that µ � βα; if λ = αγ or αβ, then in the same way we
find that µ � αα � βα. Furthermore, we cannot have µ = βα, by Proposition 2.7.
By similar arguments, we find that µ � αγ, and also that αγ � µ�′ and γβ � µ�′.

If a ≥ 1, then λ and µ can both be displayed on an abacus with an empty runner,
namely the same abacus as above but with 3e fewer beads. We define λ− and µ−

to be the partitions obtained by removing this runner, as in Section 1.1.8. If µ− is
(e − 1)-regular, then we may equate [Sλ : Dµ] with a decomposition number for a
weight 3 block of a Hecke algebra at an (e − 1)th root of unity; by our inductive
assumption, such a decomposition number is at most 1. So we are left to consider
only those cases where a = 0 or µ− is (e − 1)-singular. If a ≥ 2, then µ− is always
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(e− 1)-regular, and so we are left with the cases where a ≤ 1. By Lemma 2.12, we
may also assume that µ is not lowerable. We examine the possibilities for a and b.

[a = b = 1]: The conditions that µ � βα, µ � αγ, µ− is (e − 1)-singular and
µ is not lowerable imply that µ is one of the four partitions [c + 3, 2], [e, 2],
[e, e, 2], [e, c + 3, 2]. For each of these possibilities we calculate µ�′:

µ µ�′

[c + 3, 2] [e − 1, c + 2, 1] (d > 1)
[c + 2, c + 1, 1] (d = 1)

[e, 2] [e − 1, e − 2, 1] (d > 1)
[e − 1, c + 2, 1] (d = 1)

[e, e, 2] [e − 1, 1]
[e, c + 3, 2] [c + 2, 1] .

We find that in none of these cases do we have γβ � µ�′, except the case
µ = [c + 3, 2] and d = 1. In this case we look at µ�, which lies in the block
conjugate to B, and we find that

µ� = [e, 4, 3 | 3, 5, 6c, 8, 5],

so (µ�)− is (e − 1)-regular.
[a = 1, b = 0]: This case is dealt with in the same way as the last one, but

here it is much easier. The only partition µ such that µ � βα, µ � αγ, µ−

is (e− 1)-singular and µ is not lowerable is µ = [c+3, 2], for which we have

µ�′ =

{
[e, c + 2, 1] (d > 1),
[c + 2, c + 1, 1] (d = 1),

and so we do not have γβ � µ�′.
[a = b = 0]: Here we examine Table 1 (putting x = c, y = 1, z = d) to find

those partitions µ which are not lowerable and which satisfy µ � βα and
µ � αγ. We find that these correspond to cases AH, AK, AN, BG, CH, CN

and DF. But in none of these cases do we have αγ � µ�′.

�

3.3. Case C4.

Proposition 3.8. Suppose F has infinite characteristic, that e ≥ 5, and that B
is a weight 3 block in a Scopes class C which forms exactly one [3 : 2]-pair with a
Scopes class D, and no [3 : 1]-pairs. If the decomposition numbers for blocks in D
are all at most 1 and Theorem 1.1 holds over F with e replaced by e − 1, then the
decomposition numbers for B are all at most 1.

Proof. By Lemma 3.4, we may assume that B is the block with the

〈3, 5, 7, . . . , 1 + 2a, (3 + 2a)c, (4 + 2a)d, 6 + 2a, 8 + 2a, . . . , 4 + 2a + 2b〉
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notation. This abacus may be pictured as follows:
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By replacing B with its conjugate if necessary, we assume that a ≥ b.
As in the proof of Proposition 3.7, we know that the decomposition number

[Sλ : Dµ] for B is at most 1 except possibly when λ is one of the four exceptional
partitions

α = [a + 1], β = [a + 1, a + c + d],

γ = [a + 1, a + c + d, a + c + d], δ = [a + c + d, a + c + d, a + c + d].

So we assume that λ is one of these four partitions. Assuming [Sλ : Dµ] > 1, we
have [Sα : Dµ], [Sβ : Dµ], [Sγ : Dµ], [Sδ : Dµ] ≥ 1 by Proposition 2.10(4), so that

µ � α, β, γ, δ � µ�′.

If a ≥ 1, then λ and µ may both be displayed on an abacus with an empty
runner, namely the same abacus as above with three fewer beads on each runner.
We define λ− and µ− to be the partitions obtained by removing this runner, as
in Section 1.1.8. Then if µ− is (e − 1)-regular, we may equate [Sλ : Dµ] with a
decomposition number for a Hecke algebra at an (e − 1)th root of unity; by our
inductive assumption, this decomposition number is at most 1.

So we assume from now on that either a = 0 or µ− is (e − 1)-singular. If a ≥ 2,
then (assuming µ � α) µ− is always (e − 1)-regular, so we are left with only the
cases where a ≤ 1.

[a = 1 ≥ b]: If we assume that µ � α, µ− is (e − 1)-singular and µ is not
lowerable, then we find that µ is one of the following partitions:

[c + 2, 2] (b = 0 or 1),

[e, 2], [e, e, 2], [e, c + 2, 2] (b = 1),

[2, e] (b = c = 1).
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Each of these partitions satisfies

µ′
1 = 2e − 2 + d + 3b,

µ′
2 = µ′

3 = e − 1 + d + 3b.

But we also have

α′
1 = 2e − 2 + d + 3b, α′

2 = α′
3 = e − 1 + d + 3b

and similarly for β and γ, and so we may apply Theorem 1.11: we define

µ = (µ1 − 3, µ2 − 3, . . . , µe−1+d+3b − 3),

and α, β, γ similarly. Then by Theorem 1.11(2) we have

[Sα : Dµ] = [Sα : Dµ],

[Sβ : Dµ] = [Sβ : Dµ],

[Sγ : Dµ] = [Sγ : Dµ].

By assumption, the decomposition numbers on the left are all positive. On
the other hand, the decomposition numbers on the right are decomposition
numbers for a block of weight 2, and so are at most 1. So all of these
decomposition numbers equal 1.

Examining the weight 2 block in which µ lies, we have

α = [c + 1],

β = [c + 1, c + d + 1],

γ = [c + d + 1, c + d + 1]

in the 〈5, 6, 5c−1, 6d, 8b〉 notation for partitions of weight 2. So we may
calculate

∂α = d, ∂β = d − 1, ∂γ = d.

Hence by Corollary 2.2 we must have µ = α, whence µ = α. But then
[Sλ : Dµ] ≤ 1 by Proposition 2.10(2).

[a = 0]: We examine Table 1 (putting x = c, y = 0, z = d) to find those
partitions µ such that µ � α and µ is not lowerable. These correspond
to the cases AE, AG, AJ, CE, CG, and in none of these cases do we have
δ � µ�′.

�

3.4. Theorem 1.1 holds when char(F) = ∞. We can now prove Theorem 1.1
for fields of infinite characteristic by induction on e. The cases e = 2, 3, 4 can be
dealt with using the LLT algorithm [11], so we suppose that e ≥ 5. Let C denote
the Scopes class in which B lies, and assume that the result is true for blocks in all
classes D with D � C.

If there are Scopes classes D1,D2 satisfying the conditions of Lemma 3.3, then by
the conclusion of that result and by our assumption on the decomposition numbers
for D1,D2 we find that the result holds. So we assume that the hypotheses of
Lemma 3.3 do not hold, so that we are in one of cases (C1)–(C4). Case C1 is dealt
with by Theorem 2.11, case C2 by Proposition 3.5, case C3 by Proposition 3.7 and
case C4 by Proposition 3.8.



1366 MATTHEW FAYERS

4. Adjustment matrices in finite characteristic

In this section, we use the result of the previous section to prove Theorem 1.1 in
general, by finding the adjustment matrices (as defined in Section 1.1.9) for weight
3 blocks. Given a weight 3 block B of Hn over a field of finite characteristic and
e-regular partitions λ, µ in B, let Bλµ be the (λ, µ) entry of the adjustment matrix
for B. Then we must prove the following theorem; throughout this section we
employ the Kronecker delta.

Theorem 4.1 (James’s Conjecture for weight 3 blocks). Suppose char(F) ≥ 5, and
that B is a block of Hn of weight 3. Suppose that λ and µ are e-regular partitions
in B. Then Bλµ = δλµ.

In this section, we assume that e ≥ 5. Theorem 4.1 is true for e = 2, 3, 4 and
may be proved using exactly the same techniques, but there are various extra cases
which are peculiar to these small values of e, and in the interests of brevity we do
not consider these. In any case, to prove Theorem 1.1 in the symmetric group case,
we need only consider e ≥ 5.

First we note a trivial lemma which applies to adjustment matrices for blocks of
any weight.

Lemma 4.2. Suppose B is a block of Hn containing e-regular partitions λ and µ,
and let B� be the block conjugate to B. Then:

(1) Bλµ = B�
λ�µ� ;

(2) Bλµ = 0 unless µ � λ and λ�′ � µ�′.

Proof.
(1) This follows easily from Corollary 1.5.
(2) If Bλµ > 0, then [Sν : Dµ] ≥ [Sν : Dλ] for all partitions ν in B. In

particular, [Sλ : Dµ] ≥ 1, so that µ � λ. Replacing λ and µ with λ� and
µ� and applying part (1), we get λ�′ � µ�′.

�

In order to prove Theorem 4.1, we examine how the adjustment matrices of two
blocks forming a [3 : κ]-pair are related. Suppose A and B form a [3 : κ]-pair with
A ≺ B; if κ ≤ 2, recall from Sections 2.4 and 2.5 the exceptional simple modules in
A and B for this pair. Recall also the map Φ defined in those sections or in §1.1.5.

Lemma 4.3. Suppose that A and B are as above. Suppose λ, µ are e-regular
partitions in B.

(1) If Dµ is exceptional, then

Bλµ = AΦ(λ)Φ(µ) = δλµ.

(2) If Dλ is non-exceptional, then

Bλµ = AΦ(λ)Φ(µ).

Proof.
(1) Since Dµ is exceptional, we must have κ ≤ 2. But then we know all

decomposition numbers [Sν : Dµ] by Corollary 2.6 and Proposition 2.10(2),
and the result follows.
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(2) Let ν and ξ be the e-cores of A and B respectively, and let A0 and B0

be the blocks of the algebras Hn−κ and Hn defined over C with e-cores
ν and ξ. Suppose that A0 and B0 have decomposition matrices C and D
respectively. Let A and B be the adjustment matrices for A and B, so that
CA and DB are the decomposition matrices for A and B.

Let S be the ‘Specht branching matrix’, i.e. the matrix with rows indexed
by partitions in B and columns by partitions in A, in which the (λ, ν) entry
is 1 if the abacus display for ν can be obtained from that for λ by moving κ
beads one place to the left, and 0 otherwise. In other words, S has entries
Sλν such that Sλ↓B

A ∼
∑

ν Sλν(Sν)κ! and Sλ↓B0

A0 ∼
∑

ν Sλν(Sν)κ!. Let T0

be the ‘simple branching matrix’ for B0 and A0, i.e. the matrix with rows
indexed by e-regular partitions in B0 and columns indexed by e-regular
partitions in A0 in which the (λ, ξ) entry is the composition multiplicity of
Dξ in Dλ↓B0

A0 . Let T be the simple branching matrix for B and A, defined
similarly.

Since restriction is an exact functor, we have

DT0 = SC, DBT = SCA.

Hence DBT = DT0A; since D has full column rank, we get

BT = T0A.

(This is simply saying that restriction commutes with modular reduction.)
Now if Dµ is a non-exceptional simple module in B, then we have

TµΦ(ν) = κ!δµν

by Theorem 1.3; on the other hand, if Dµ is an exceptional simple module
in B, then we have Bλµ = δλµ from (1). Hence we have

(BT)λΦ(ν) = κ!BλΦ(ν)

if Dλ is non-exceptional. If Dλ is a non-exceptional simple module in B0,
then we have

T0
λΦ(µ) = κ!δλµ

by Theorem 1.3, and so

(T0A)λΦ(ν) = κ!AλΦ(ν)

when Dλ is non-exceptional. The result follows.
�

The following lemma will also be very useful; this is taken from the author’s
forthcoming paper [5] with Kai Meng Tan.

Lemma 4.4. Suppose B is a weight 3 block of Hn, and that char(F) ≥ 3. If λ and
µ are e-regular partitions in B with µ lowerable, then Bλµ = δλµ.

Proof. Let C be a block of Hn−1 of weight 0, 1 or 2 such that Dµ↓B
C = 0. Let B0

and C0 be the blocks of the algebras Hn and Hn−1 defined over C corresponding
to B and C. Let D and D0 be the decomposition matrices for B and B0; our goal
is to show that the columns of D and D0 corresponding to µ are equal. If we let E
be the decomposition matrix for C, then by Theorem 2.1 (if C has weight 2) or the
discussion preceding it (if C has weight 0 or 1) E is also the decomposition matrix
of C0.
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Let S be the ‘Specht branching matrix’ for restriction from B to C, defined in the
same way as in the proof of Lemma 4.3. Since the Branching Rule is independent
of the characteristic, S is also the Specht branching matrix for restriction from B0

to C0. Let T be the ‘simple branching matrix’ for restriction from B to C. By
Theorem 1.3 the restriction of a simple module from B to C (or from B0 to C0)
is either simple or zero, and if it is non-zero, it is described in a characteristic-free
way, so T is also the simple branching matrix for restriction from B0 to C0.

By exactness of restriction from B to C, we get

DT = SE,

and by exactness of restriction from B0 to C0, we get

D0T = SE,

so that
DT = D0T.

Let ν be the partition in B such that Dµ↓B
C

∼= Dν . Then it is easy to see from
Theorem 1.3 that Dµ is the only simple module in B which restricts to give Dν .
So the column of T corresponding to ν has a 1 in the µ position, and 0s elsewhere.
So the column of DT corresponding to ν equals the column of D corresponding to µ,
and the column of D0T corresponding to ν equals the column of D0 corresponding
to µ. The result follows. �

We shall use these results to prove that the adjustment matrices for all weight
3 blocks are trivial; for each e-regular partition, we induce or restrict the cor-
responding simple module until it becomes lowerable or it lies in a block whose
decomposition matrix we know. To aid us, we introduce some notation for induc-
tion. Suppose µ is an e-regular partition lying in a block B, and take an abacus
display for B. Suppose the number of beads on runner i of the abacus exceeds the
number of beads on the runner to the immediate right by κ ≥ 1, and let Bi be the
block whose abacus is obtained by interchanging runner i with the runner to its
right. Then B and Bi form a [3 : κ]-pair. If Dµ is a simple module in B which is
non-exceptional for this [3 : κ]-pair, then define fi(µ) to be the e-regular partition
such that Dµ ↑Bi

B
∼= (Dfi(µ))⊕κ!, and leave fi(µ) undefined otherwise (so if fi(µ) is

defined, then Φ(fi(µ)) = µ, where Φ is the map defined in 1.1.5, 2.4 or 2.5). We
shall make use of the following two ideas.

(1) Suppose λ is an e-regular partition lying in a block B, and that we can find
i1, . . . , ir such that fir

. . . fi1(λ) is defined and lies in a block with trivial
adjustment matrix. Then we have Bλµ = δλµ for all e-regular partitions µ
in B, by Lemma 4.3(2).

(2) Suppose λ and µ are e-regular partitions lying in a block B, and that we
can find i1, . . . , ir such that fir

. . . fi1(λ) and fir
. . . fi1(µ) are defined, with

the latter partition being lowerable. Then Bλµ = δλµ, by Lemma 4.3(2)
and Lemma 4.4.

Our strategy will be to use induction on n (in the usual direction), but we shall
also make use of the fact [8, Corollary 4] that the adjustment matrix for a Rouquier
block is trivial.

To begin with, we examine the block of H3e with core (0). As noted in the
proof of Proposition 3.5, every e-regular partition in this block is lowerable. So the
adjustment matrix of this block is trivial, by Lemma 4.4. So we may assume that
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B has a non-empty core, and so there is at least one block A such that A and B
form a [3 : κ]-pair. Suppose λ and µ are e-regular partitions in B. If either Dµ is
exceptional or Dλ is non-exceptional for this [3 : κ]-pair, then by Lemma 4.3 and
by induction we have Bλµ = δλµ. So we may assume that Dλ is exceptional and
Dµ is non-exceptional for every such [3 : κ]-pair. If there are two blocks A and A′

forming [3 : κ]-pairs with B, then there is no λ such that Dλ is exceptional for both
[3 : κ]-pairs. So it suffices to consider only those cases where there is exactly one
block forming a [3 : κ]-pair with B, and where κ ≤ 2.

4.1. Blocks with rectangular cores. The aim of this subsection is to prove the
following.

Proposition 4.5. Suppose char(F) ≥ 5 and B is a weight 3 block of Hn, and
that there is exactly one block A forming a [3 : κ]-pair with B, and κ = 1. If the
adjustment matrix for A is trivial, then the adjustment matrix for B is trivial.

If B satisfies the hypotheses of Proposition 4.5, then the core of B has the form
xz for some x and z with x+ z ≤ e. By Lemma 4.3(2), we may assume that λ = αi

for some i (that is, λ = [x + y + 1, x + y + 1] or [x + y + 1, x + y + 1, k] for some
k = x), and by Lemma 4.4, we may assume that µ is not lowerable, so that µ is
one of the partitions listed in Table 1. If we let π be the permutation described in
Section 2.4 and λ = απ(j), then by Lemma 4.2(2) we may assume that µ � απ(j)

and γπ(j+1) � µ�′. Looking at Table 1, we find that in the cases AJ, AK, AL, AM,
AN, CL, CM, CN, GM, JA, KA, LA, LC, MA, MC, MG, NA, NC there is no such j.
So we may assume that µ is not one of these partitions.

4.1.1. Inducing Dλ and Dµ. Consider the (partial) function f = fx+y+1fx+y+2 . . . fe.
The effect of this is to move each of the runners e, e− 1, . . . , x + y + 1 in succession
past runner x + 1 (if y > 0) or runner 1 (if y = 0). It is easy to see that f(λ) is
defined and that if µ is one of

[x + 1, x + y + 1] (with y ≥ 1, z = 1), [1, x + y + 1, x + 1] (with y ≥ 1),

[x + y + 1, x + y + 2, x + 1] (with y ≥ 1),

[x + y + 1, x + 1, x + 2] (with y ≥ 1), [1, x + y + 1] (with y = 0),

then f(µ) is defined and lowerable. For example, f([1, x+1, x+y+1]) is the partition
[x+1, 1 | 3x+1, 4z, 3y−1]; we easily see that this is lowerable from its abacus display:

1 2 �� � x x
+

1
x

+
y

+
1

�� � e x
+

2

�� � x
+

y

� � �� � � � � �� � � � �� � �

� � �� � � � � �� � � � �� � �
� �� � � � �� � � � �� � �

� �� � � �� � � �� �
�� � � �� � �� �

�� � �� � �� � .

So we find that in the cases BG, BH, BI, EA, EC, FD, HA, HB, HC, HG, HH, HI, IA,
IB, IC, IG, IH we have Bλµ = δλµ. Applying the Mullineux map and using Lemma
4.2(1), we may also deal with the cases AE, AH, AI, CE, CH, CI, DF, GB, GH, GI.
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4.1.2. The case µ = [x + 1, x + 2, x + 3]. Now assume that y = 0 and z ≥ 3 and
suppose µ = [x + 1, x + 2, x + 3]. By Lemma 4.2(2), we may assume that λ is one
of the exceptional partitions

[x + 1, x + 1, x + 3], [x + 1, x + 1, x + 2], [x − 1, x + 1, x + 1] (if x ≥ 2).

First we look at λ = [x + 1, x + 1, x + 3]. We apply the partial function f =
(fx+3fx+4 . . . fe)x+2 to both λ and µ. To make it easier to see what is happening,
we apply this in stages: for µ, it is easy to see that

(fx+3 . . . fe)x(µ) = [x + 1, x + 2, x + 3 | 3x, 5z−2, 42],

with abacus display
1 �� � x x

+
3

x
+

4
�� � e x

+
1

x
+

2

� �� � � � � �� � � � �

� �� � � � � �� � � � �

� �� � � � � �� � � � �
�� � � � �� � �

�� � � �� � � � �
�� � � �� �

�� � �� � .

Applying (fx+3 . . . fe) again, we reach [x + 1, x + 2 | 3x, 4, 5z−2, 4]:

1 �� � x x
+

1
x

+
3

�� � e x
+

2

� �� � � � � �� � � �
� �� � � � � �� � � �

� �� � � � � �� � � �
�� � � �� � �

�� � � �� � � �
�� � � �� �

�� � �� � .

Applying (fx+3 . . . fe) once more, we find f(µ) = [x + 1, x + 2 | 3x, 42, 5z−2]. For λ,
applying (fx+3 . . . fe)x yields [x + 1, x + 1, x + 3 | 3x, 5z−2, 42]:

1 �� � x x
+

3
x

+
4

�� � e x
+

1
x

+
2

� �� � � � � �� � � � �

� �� � � � � �� � � � �
� �� � � � � �� � � �

�� � � � �� � � � �
�� � � �� � � �

�� � � �� �

�� � �� � .

Applying (fx+3 . . . fe) again yields [x + 1, x + 1 | 3x, 4, 5z−2, 4]:

1 �� � x x
+

1
x

+
3

�� � e x
+

2

� �� � � � � �� � � �
� �� � � � � �� � � �

� �� � � � �� � � �
�� � � � �� � � �

�� � � �� � �
�� � � �� �

�� � �� � .
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We apply (fx+3 . . . fe) once more to find f(λ) = [x+1, x+1 | 3x, 42, 5z−2]. Let B̂ be
the block in which f(λ) and f(µ) lie.

A very simple application of the Jantzen–Schaper formula yields [Sf(λ) : Df(µ)] =
1, irrespective of the underlying characteristic, which means that B̂f(λ)f(µ) = 0, and
so Bλµ = 0 by Lemma 4.3.

Next we look at λ = [x + 1, x + 1, x + 2]. Here we find a sequence i1, . . . , ir such
that fi1 . . . fir

(λ) is defined and lies in a Rouquier block; by Lemma 4.3(2) and [8,
Corollary 4] we shall have Bλµ = 0. Again, we apply the functions fi in stages.

We have λ = [x + 1, x + 1, x + 2 | 3x, 4z]; we apply f2e−2
e followed by (fe−1fe)2e−4

and then (fe−2fe−1fe)2e−6 and so on in succession up to (fx+3 . . . fe)2x+4, and we
reach the partition [x + 1, x + 1, x + 2 | 3x, 42, 6, 8, . . . , 2z]:

1 �� � x x
+

1
x

+
2

x
+

3
x

+
4

�� � e
−

1
e

� �� � � � � � � �� � � �

� �� � � � � � � �� � � �

� �� � � � � � �� � � �
�� � � � � �� � � �

�� � � � � � �� � � �
�� � � � �� � � �

�� � � �� � � �
�� � � �� � � �

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�� � �� � � �
�� � �� � � �

�� � �� � �
�� � �� � �

�� � �� � .

We apply (fx+2 . . . fe)x+1 to reach [x + 1, x + 1 | 3x, 4, 5, 7, 9, . . . , 2z + 1]:

1 �� � x x
+

1
x

+
2

x
+

3
x

+
4

�� � e
−

1
e

� �� � � � � � � �� � � �
� �� � � � � � � �� � � �

� �� � � � � � �� � � �
�� � � � � � �� � � �

�� � � � � �� � � �
�� � � � � �� � � �

�� � � � �� � � �
�� � � �� � � �

�� � � �� � � �

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

�� � �� � � �

�� � �� � � �
�� � �� � �

�� � �� � �
�� � �� � .

Now we apply (fx+2 . . . fe)x+1 again followed by (fx+1 . . . fe)x to reach [x+1, x+1 |
3x, 5, 7, . . . , 2z + 3], and then we apply (fx . . . fe)2x−2 and then (fx−1 . . . fe)2x−4 and
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so on up to (f2 . . . fe)2 to reach [x + 1, x + 1 | 3, 5, 7, . . . , 2e + 1], which lies in a
Rouquier block.

Finally, we suppose that x ≥ 2 and consider λ = [x − 1, x + 1, x + 1]. We apply
the Mullineux map to λ and µ to get

µ� =

{
[z + 1, z + 2, z + 3 | 3z, 4x] (x ≥ 3),
[z + 1, z + 2 | 3z, 4x] (x = 2),

λ� =

{
[z + 1, z + 1, z + 3 | 3z, 4x] (x ≥ 3),
[z + 1, z + 1 | 3z, 4x] (x = 2).

The case x ≥ 3 corresponds to a case we have already considered. In the case
x = 2, a simple application of the Jantzen–Schaper formula yields [Sλ�

: Dµ�
] = 1

regardless of the underlying characteristic. So we have B�
λ�µ� = 0, and so Bλµ = 0.

Hence we have Bλµ = δλµ in the cases GA, GC and GG. By looking at conjugate
cases we also deal with the cases AG and CG, and so Proposition 4.5 is proved.

4.2. Blocks with birectangular cores.

Proposition 4.6. Suppose that char(F) ≥ 5, that B is a weight 3 block of Hn, and
that there is exactly one block A forming a [3 : κ]-pair with B, with κ = 2. If the
adjustment matrix for A is trivial, then the adjustment matrix for B is trivial.

If B is a weight 3 block as in Proposition 4.6, then B has a core of the form
((w + x)z, wy+z) for some w, x, y, z ≥ 0 with w + x + y + z = e and w, z > 0. This
may be represented on an abacus with the 〈3w, 5z, 4y, 3x〉 notation. By Lemma
4.3(2) we have Bλµ = δλµ for e-regular partitions λ, µ in B, except possibly when
Dλ is the unique exceptional simple module, i.e. when λ = [w + x + y + 1, w + x +
y + 1, w + x + y + 1 | 3w, 5z, 4y, 3x]. As with the partition [x + 1, x + 1, x + 2] in
the last section, we shall induce this simple module up to a Rouquier block. The
behaviour varies depending on whether x and y are positive, so we must consider
four cases. First suppose x, y > 0. We first apply (fw+x+y+2 . . . fe)x+y to reach
[w + x + y + 1, w + x + y + 1, w + x + y + 1 | 3w, 5, 4y, 3x, 5z−1]:

1 �� � w w
+

x
+

y
+

1
w

+
x

+
1

�� � w
+

x
+

y
w

+
1

�� � w
+

x
w

+
x

+
y

+
2

�� � e

� �� � � � � �� � � � �� � � � �� � �
� �� � � � � �� � � � �� � � � �� � �

� �� � � � �� � � � �� � � � �� � �
�� � � � �� � � �� � � �� � �

�� � � �� � �� � � �� � �
�� � � �� � �� � �� �

�� � �� � �� � �� � .
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Next we apply fw+x+y+1
x+y and reach [w+x+1, w+x+1, w+x+y+1 | 3w, 4y, 3x, 5z]:

1 �� � w w
+

x
+

1
w

+
x

+
2

�� � w
+

x
+

y
w

+
1

�� � w
+

x
w

+
x

+
y

+
1

w
+

x
+

y
+

2

�� � e

� �� � � � � �� � � � �� � � � � �� � �

� �� � � � � �� � � � �� � � � � �� � �
� �� � � � �� � � � �� � � � � �� � �

�� � � � �� � � �� � � � �� � �

�� � � �� � �� � � �� � �
�� � �� � �� � � �� �

�� � �� � �� � �� � .

Applying (fw+x+2 . . . fw+x+y)x we reach [w + x + 1, w + x + 1, w + x + y + 1 |
3w, 4, 3x, 4y−1, 5z]. Next we apply fxw+x+1 and reach [w+1, w+x+1, w+x+y+1 |
3w+x, 4y, 5z]. Now we apply the following functions in turn:

f
2e−2
e , (fe−1fe)2e−4, . . . , (fw+x+y+2 . . . fe)2w+2x+2y+2,

(fw+x+y+1 . . . fe)w+x+y,

(fw+x+y . . . fe)2w+2x+2y−2, . . . , (fw+x+2 . . . fe)2w+2x+2,

(fw+x+1 . . . fe)w+x,

(fw+x . . . fe)2w+2x−2, . . . , (f2 . . . fe)2.

We reach [w+1, w+x+1, w+x+y+1 | 3, 5, 7, . . . , 2e+1], which lies in a Rouquier
block.

The other three cases are similar but simpler, and we give much less detail. If
x > y = 0, then we can find a sequence i1, . . . , ir such that fi1 , . . . , fir

(λ) is defined
and equals [w + 1, w + x + y + 1, w + x + y + 1 | 3, 5, 7, . . . , 2e + 1]. If y > x = 0,
then we can reach [w + 1, w + 1, w + x + y + 1 | 3, 5, 7, . . . , 2e + 1], and if x = y = 0,
then we can reach [w + x + y + 1, w + x + y + 1, w + x + y + 1 | 3, 5, 7, . . . , 2e + 1].

By Lemma 4.3(2) and since the adjustment matrix of a weight 3 Rouquier block
is trivial, we have Bλµ = δλµ for all µ. So Proposition 4.6 is proved, and this
completes the proof of Theorem 1.1 by induction.

Appendix A. Non-lowerable partitions in blocks

with rectangular cores

Table 1 is a list of all e-regular partitions which are not lowerable in blocks with
rectangular cores. See Section 2.7 for more details.

Appendix B. Application of the Jantzen–Schaper formula

In this section, we illustrate the explicit calculations carried out using the
Jantzen–Schaper formula in the proof of Proposition 3.5. For the partitions µ =
[e, 2] and [e, e, 2], we give a table of the coefficients cλν for all µ � λ � ν � µ�′.
At the right we list the possible decomposition numbers [Sλ : Dµ] satisfying Theo-
rem 1.6 and Proposition 1.7; the reader is invited to check that these are the only
possibilities.
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Table 1

µ conditions on x, y, z µ�′

AE [x + y + 1] y = 0, z = 2 [e, e, x]
AG [x + y + 1] y = 0, z = 1 [x, x − 1, x − 2]
AH [x + y + 1] y = 1, z = 1 [x + y, x, x − 1]
AI [x + y + 1] y = 2, z = 1 [x + y, x + y − 1, x]
AJ [x + y + 1] y = 0, z ≥ 3 [e, e, e − 1]
AK [x + y + 1] y ≥ 1, z ≥ 3 [e, e − 1, x + y]
AL [x + y + 1] y ≥ 2, z = 2 [e, x + y, x + y − 1]

AM [x + y + 1] y ≥ 3, z = 1 [x + y, x + y − 1, x + y − 2]
AN [x + y + 1] y = 1, z = 2 [e, e, x + y]

BG [x + 1, x + y + 1] y = 1, z = 1 [x, x − 1, x − 2]
BH [x + 1, x + y + 1] y = 2, z = 1 [x + y, x, x − 1]
BI [x + 1, x + y + 1] y ≥ 3, z = 1 [x + y, x + y − 1, x]

CE [x + y + 1, x + y + 2] y = 0, z ≥ 3 [e, e, x]
CG [x + y + 1, x + y + 2] y = 0, z = 2 [x, x − 1, x − 2]
CH [x + y + 1, x + y + 2] y = 1, z = 2 [x + y, x, x − 1]
CI [x + y + 1, x + y + 2] y = 2, z = 2 [x + y, x + y − 1, x]
CL [x + y + 1, x + y + 2] y ≥ 2, z ≥ 3 [e, x + y, x + y − 1]
CM [x + y + 1, x + y + 2] y ≥ 3, z = 2 [x + y, x + y − 1, x + y − 2]
CN [x + y + 1, x + y + 2] y = 1, z ≥ 3 [e, e, x + y]

DF [x + y + 1, x + 1] y ≥ 1 [e, x + y, x]

EA [1, x + y + 1] x = 2, y = 0 [x, x, x]
EC [1, x + y + 1] x ≥ 3, y = 0 [x, x, x − 1]

FD [1, x + y + 1, x + 1] y ≥ 1 [x + y, x, x]

GA [x + y + 1, x + y + 2, x + y + 3] x = 1, y = 0 [x, x, x]
GB [x + y + 1, x + y + 2, x + y + 3] x = 1, y = 1 [x + y, x + y, x]
GC [x + y + 1, x + y + 2, x + y + 3] x = 2, y = 0 [x, x, x − 1]
GG [x + y + 1, x + y + 2, x + y + 3] x ≥ 3, y = 0, z ≥ 3 [x, x − 1, x − 2]
GH [x + y + 1, x + y + 2, x + y + 3] x ≥ 2, y = 1, z ≥ 3 [x + y, x, x − 1]
GI [x + y + 1, x + y + 2, x + y + 3] y = 2, z ≥ 3 [x + y, x + y − 1, x]
GM [x + y + 1, x + y + 2, x + y + 3] y ≥ 3, z ≥ 3 [x + y, x + y − 1, x + y − 2]

HA [x + y + 1, x + y + 2, x + 1] x = 1, y = 1 [x, x, x]
HB [x + y + 1, x + y + 2, x + 1] x = 1, y = 2 [x + y, x + y, x]
HC [x + y + 1, x + y + 2, x + 1] x = 2, y = 1 [x, x, x − 1]
HG [x + y + 1, x + y + 2, x + 1] x ≥ 3, y = 1, z ≥ 2 [x, x − 1, x − 2]
HH [x + y + 1, x + y + 2, x + 1] x ≥ 2, y = 2, z ≥ 2 [x + y, x, x − 1]
HI [x + y + 1, x + y + 2, x + 1] y ≥ 3, z ≥ 2 [x + y, x + y − 1, x]

IA [x + y + 1, x + 1, x + 2] x = 1, y = 2 [x, x, x]
IB [x + y + 1, x + 1, x + 2] x = 1, y ≥ 3 [x + y, x + y, x]
IC [x + y + 1, x + 1, x + 2] x = 2, y = 2 [x, x, x − 1]
IG [x + y + 1, x + 1, x + 2] x ≥ 3, y = 2 [x, x − 1, x − 2]
IH [x + y + 1, x + 1, x + 2] x ≥ 2, y ≥ 3 [x + y, x, x − 1]

JA [1, 2] x ≥ 3, y = 0 [x, x, x]

KA [1, 2, x + 1] x ≥ 3, y ≥ 1 [x, x, x]

LA [1, x + 1, x + 2] x = 2, y ≥ 2 [x, x, x]
LC [1, x + 1, x + 2] x ≥ 3, y ≥ 2 [x, x, x − 1]

MA [x + 1, x + 2, x + 3] x = 1, y ≥ 3 [x, x, x]
MC [x + 1, x + 2, x + 3] x = 2, y ≥ 3 [x, x, x − 1]
MG [x + 1, x + 2, x + 3] x ≥ 3, y ≥ 3 [x, x − 1, x − 2]

NA [1, x + 1] x = 2, y = 1 [x, x, x]
NC [1, x + 1] x ≥ 3, y = 1 [x, x, x − 1]
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B.1. µ = [e, 2], µ�′
= [e − 1, e − 2, 1].
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[S
λ

:
D

µ
]

[e, 2] . . . . . . . . . . . . . . . . . . . . . . 1
[e, 1] 1 . . . . . . . . . . . . . . . . . . . . . 1
[2, e] 1 0 . . . . . . . . . . . . . . . . . . . . 1
[e, e − 1, 2] −1 0 1 . . . . . . . . . . . . . . . . . . . 0
[e, e − 1, e − 1] 0 0 1 1 . . . . . . . . . . . . . . . . . . 1
[e, e − 1, 1] 0 1 0 −1 1 . . . . . . . . . . . . . . . . . 1
[e, e − 2, 2] 1 0 −1 1 0 0 . . . . . . . . . . . . . . . . 0
[e, e − 2, e − 2] 0 0 −1 0 1 0 1 . . . . . . . . . . . . . . . 0
[e, e − 2, 1] 0 −1 0 0 0 1 −1 1 . . . . . . . . . . . . . . 0
[2] −1 0 1 0 0 0 0 0 0 . . . . . . . . . . . . . 0
[e − 1, 2] 1 0 0 1 0 0 0 0 0 1 . . . . . . . . . . . . 1
[e − 1, e − 1] 0 0 0 0 1 0 0 0 0 1 1 . . . . . . . . . . . 1
[e − 1, 1] 0 −1 0 0 0 1 0 0 0 0 −1 1 . . . . . . . . . . 0
[e − 2, 2] −1 0 0 0 0 0 1 0 0 −1 1 0 0 . . . . . . . . . 0
[e − 2, e − 2] 0 0 0 0 0 0 0 1 0 −1 0 1 0 1 . . . . . . . . 1
[e − 2, 1] 0 1 0 0 0 0 0 0 1 0 0 0 1 −1 1 . . . . . . . 1
[2, e − 1] 0 0 1 −1 0 0 0 0 0 −1 1 0 0 0 0 0 . . . . . . 1
[2, e − 2] 0 0 −1 0 0 0 −1 0 0 1 0 0 0 1 0 0 1 . . . . . 0
[e − 1, e − 2, 2] 0 0 0 −1 0 0 1 0 0 0 1 0 0 −1 0 0 −1 1 . . . . 0
[e − 1, e − 1, e − 2] 0 0 0 0 −1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 . . . 0
[e − 1, e − 2, e − 2] 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 1 0 1 0 −1 1 . . 1
[e − 1, e − 2, 1] 0 0 0 0 0 1 0 0 −1 0 0 0 −1 0 0 1 0 0 1 −1 1 . 1

B.2. µ = [e, e, 2], µ�′
= [e − 1, 1].
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[S
λ

:
D

µ
]

[e, e, 2] . . . . . . . . . . 1
[e, e, 1] 1 . . . . . . . . . 1
[2, e] 1 0 . . . . . . . . 1
[e, e − 1, 2] −1 0 1 . . . . . . . 0
[e, e − 1, e − 1] 0 0 1 1 . . . . . . 1
[e, e − 1, 1] 0 1 0 −1 1 . . . . . 1
[2] 1 0 1 0 0 0 . . . . 1
[e − 1, 2] −1 0 0 1 0 0 1 . . . 0
[e − 1, e − 1] 0 0 0 0 1 0 1 1 . . 1
[e − 1, 1] 0 1 0 0 0 1 0 −1 1 . 1
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