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GENERALIZED SEIFERT SURFACES
AND SIGNATURES OF COLORED LINKS

DAVID CIMASONI AND VINCENT FLORENS

ABSTRACT. In this paper, we use ‘generalized Seifert surfaces’ to extend the
Levine-Tristram signature to colored links in S3. This yields an integral valued
function on the pu-dimensional torus, where p is the number of colors of the link.
The case p = 1 corresponds to the Levine-Tristram signature. We show that
many remarkable properties of the latter invariant extend to this p-variable
generalization: it vanishes for achiral colored links, it is ‘piecewise continuous’,
and the places of the jumps are determined by the Alexander invariants of the
colored link. Using a 4-dimensional interpretation and the Atiyah-Singer G-
signature theorem, we also prove that this signature is invariant by colored
concordance, and that it provides a lower bound for the ‘slice genus’ of the
colored link.

1. INTRODUCTION

Several notions related to knots do not extend naturally and uniquely to links.
For example, the fact that two oriented links are isotopic can be understood in dif-
ferent ways: one might require the isotopy to satisfy some condition, e.g. to respect
an order on the components of the links. Here is another interesting example. A
knot in S? is said to be slice if it bounds a smooth disc in the 4-ball, or equivalently,
if it is the cross-section of a smooth 2-sphere in S%. This notion of sliceness for
knots admits different generalizations to links. According to Fox [I1], a link is slice
in the ordinary sense if it is the cross-section of a single smooth 2-sphere in S%.
It is slice in the strong sense if each of its components is such a cross-section for
disjoint 2-spheres in S%.

One way to simultaneously take into account this variety of possible generaliza-
tions is to consider so-called colored links. Roughly speaking, a u-colored link is an
oriented link in $® whose components are endowed with some integer in {1,..., u}
called the color of the component. Two colored links are isotopic if there is an
isotopy between them which respects the color and orientation of each component.
We shall say that a p-colored link is slice if there exists u disjoint smooth spheres
S1,...,8, in S4 such that the sublink of color i is a cross-section of S;. Of course,
a 1-colored link is nothing but an oriented link, and it is slice as a 1-colored link if
it is slice in the ordinary sense. At the other end of the spectrum, a v-component
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v-colored link is an ordered link. It is slice as a v-colored link if it is slice in the
strong sense.

Many classical invariants of oriented links, such as the Alexander polynomial
and the Levine-Tristram signature, can be constructed using Seifert surfaces. In
this paper, we introduce generalized Seifert surfaces for colored links. We use them,
inter alia, to extend the Levine-Tristram signature from oriented links to p-colored
links. This yields an integral valued function on the p-dimensional torus. Among
other results (see the paragraph below), we show that this function vanishes almost
everywhere if the p-colored link is slice.

Throughout the paper, all the links are assumed to be smooth and oriented.

The Levine-Tristram signature. Let V be a Seifert matrix for a link L in S3.
Then, A(t) = V —tV7 is a presentation matrix of the Alexander Z[t*']-module of
L. In particular, the Alexander polynomial Ay, of L is given by the determinant of
A(t). If w # 1 is a unit modulus complex number, then H(w) = (1 — wW)A(w) is a
Hermitian matrix whose signature o, (w) and nullity 1y, (w) do not depend on the
choice of V. This yields integral valued functions oy, and 7y, defined on S\ {1}.
In the case of w = —1, this signature was first defined by Trotter [33] and studied
by Murasugi [24]. The more general formulation is due to Levine [I9] and Tristram
[32], and referred to as the Levine-Tristram signature.

The functions oy, and 7y, are easily seen to be locally constant on the complement
in ST\ {1} of the roots of Az. Also, ny, is related to the first Betti number of the
finite cyclic coverings of the exterior of L. Moreover, when restricted to roots of
unity of prime order, the signature and nullity are concordance invariants. (The
case of w = —1 is due to Murasugi, and Tristram extended it to any w of prime
order.) Finally, the so-called Murasugi- Tristram inequality imposes a condition,
expressed in terms of the values of o7 and 7y, on the Betti numbers of a smooth
oriented surface in B* spanning L. This inequality implies in particular that if L
is slice in the strong sense [I1], then o, vanishes at roots of unity of prime order.

At that point, all the methods of demonstration were purely 3-dimensional. A
new light was shed on this theory in the early seventies. Building on ideas of
Rokhlin [28], Viro [34] was able to interpret the Levine-Tristram signature as a
4-dimensional object. Indeed, he showed that for all rational values of w, o (w)
coincides with the signature of an intersection form related to a cyclic cover of
B* branched along a Seifert surface for L pushed in the interior of B*. This 4-
dimensional approach was used by Kauffman and Taylor [I§] to obtain a short
proof of the Murasugi-Tristram inequality, in the case w = —1. They were also able
to show the following inequality: if P is a closed oriented smooth surface in S* that
intersects the standardly embedded 3-sphere in L, then

(%) loL(=1)] < genus(P) + min(0, 7L (=1) = Go(P) + 1),

where Gy(P) denotes the number of connected components of P. In particular, if
there exists such a surface of genus 0 (that is, according to [I1], if L is slice in the
ordinary sense), then o7, (—1) = 0. This 4-dimensional interpretation was used with
great success by several authors [12] [16] 20, 211, B1]. See also [2] 10} T3], [14].

Paper outline and statement of the results. The aim of this paper is to
generalize the Levine-Tristram signature to colored links. A pu-colored link L =
Ly U---UL, is an oriented link in S® together with a surjective map assigning to
each component of L a color in {1,...,u}. The sublink L; is constituted by the
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components of L with color ¢ for i« = 1,..., u. By isotopy of colored links, we mean
orientation and color-preserving isotopy. Note that a 1-colored link is an ordinary
link, and setting 4 = 1 in this article gives back the known results.

In Section 2l we consider generalized Seifert surfaces called C-complezes. Rough-
ly speaking, a C-complex for a p-colored link L consists of a collection of Seifert
surfaces S1,...,S5, for the sublinks Lq,...,L, that intersect only along clasps.
Associated to a C-complex are so-called generalized Seifert matrices. We use them
to define a matrix A(ty, .. .,t,) with coefficients in A,, = Z[t{!,... ,tffl]. Of course,
this matrix depends on the choice of the C-complex for L. However, if (w,...,w,)
is an element of the u-dimensional torus S x --- x §1 C C* with w; # 1, then the

matrix
o

H(wi, ... w,) = [[(1—@1) - A(wr, ... wp)
i=1
is Hermitian and its signature and nullity are independant of the choice of the
C-complex for L. (We use some ‘generalized S-equivalence’; see Lemma and
Theorem [211) This allows one to define the signature and the nullity of the u-
colored link L as functions

or,Nr: (Sl \ {1})” — 7.

Note that this was done by Cooper [0} [7] in the case of a 2-colored link with 2
components. The restriction of these functions to the diagonal specializes to the
Tristram-Levine invariants as follows (see Proposition 2.5]).

Proposition. Let L = L1U---UL, be a pu-colored link, and let L' be the underlying
link. For all w in S*\ {1},

UL(w,...,w):aL/(w)—i—Zlk(Li,Lj) and np(w,...,w) = (w),

i<j
where Ik denotes the linking number in S°.

This result can be quite useful. Indeed, it is often easier to compute a multivari-
able signature (corresponding to a well-chosen coloring) and to evaluate it on the
diagonal, than to directly compute the Levine-Tristram invariant.

Several interesting properties of the Levine-Tristram invariants extend to our
functions oy, and np. For example, they are additive with respect to disjoint and
connected sum. Moreover, oy, vanishes if the colored link L is isotopic to its mirror
image (see Corollary [ZTT]).

Section [3] is devoted to the study of the natural Z*-covering X — X of the
exterior of L induced by the coloring of L. We show that C-complexes provide
a nice geometrical description of this covering, and deduce a presentation of the
Alexander A,-module H; ()? ) in terms of the generalized Seifert forms (see Theorem
B2). In particular, if AL denotes the localization of the ring A, with respect to the
multiplicative system generated by ¢; — 1 for ¢ = 1,..., u, we establish the following
result (Corollary [3.6]):

Theorem. Let L be a p-colored link. Consider a C-complex S for L such that S;
is connected for all i and S;NS; is non-empty for alli # j. Then the corresponding

matriz A(ty,...,t,) is a presentation matriz of the A} -module Hy(X) ®x, A},



1226 DAVID CIMASONI AND VINCENT FLORENS

In particular, the Alexander polynomial of L is equal to the determinant of the
matrix A(t1,...,t,) up to multiplication by ¢; — 1. (This latter result was obtained
by the first author in [4] using local relations on a diagram.) This theorem implies
the following characterization of the discontinuities of o7, and 7y (Theorem [T]).

Theorem. Let E,.(L) C A, be the r'" Alexander ideal of L, and set
Y, ={weS'x--- xSt cC" | p(w)=0 forallp € E,_1(L)}.

This yields o finite sequence of algebraic subvarieties of the torus S' x --- x St.
Setting ¥ = 3, N (ST\ {1})*, we obtain a finite sequence (S*\{1})* =X D BF D
-+ D X;_q D X; =0 such that, for all v, ng, is equal to v on L\ X%, ,, and op, is
locally constant on X%\ X7, ;.

This ‘piecewise continuity’ behavior was first observed by Levine [21] for closely
related invariants. The most interesting point of our result is the relation to the
Alexander invariants. Note that even if the Alexander polynomial is zero, the
signature is locally constant.

In Section [l we build on an idea of Conway [B] to show that the signature
satisfies several ‘local relations.” (We refer to Theorem [5.1] for a precise statement.)
In many cases, this leads to a purely combinatorial computation of the signature
from a diagram of the corresponding colored link.

The following section deals with a 4-dimensional interpretation of o (w) and
nr(w) for all w = (w1, . .., w,) with rational coordinates in (S*\ {1})*. We consider
a union F' of connected surfaces Fi, ..., F), smoothly embedded in B* such that
OF; c OB* = 83 is the sublink L;, and the pairwise intersections of the F;’s are
transverse (along a finite number of points). The first homology of the exterior
Wpg in B* of such a ‘spanning surface’ is free of rank p. Therefore, any rational
point w € (S'\ {1})* determines a character of Hy(Wpg) of finite order. This
character induces twisted homology C-vector spaces, denoted by HY (Wg;C), and
a Hermitian twisted intersection form ¢%: HY(Wp;C) x HyY (Wg;C) — C. We
obtain the following result (see Lemma [6.3] Lemma and Proposition [6.5]).

Proposition. Consider a connected C-complex S C S® for a p-colored link L. Let
F C B* be the spanning surface for L obtained by pushing S in B*. For any rational
point w € (SY\ {1})*, H(w) is a matriz for p%.

The proof follows from an explicit geometrical description of the finite abelian
coverings of Wp. We also make use of the work of Sakuma [29] for the study
of cyclic quotients of these coverings. The Atiyah-Singer G-signature theorem [I]
implies that the signature of ¢% does not depend on the choice of the spanning
surface F' for L. Moreover, the nullity of % is closely related to the twisted
homology of the exterior X of L in S%. This leads to the following result (Theorem

[6.1)).
Theorem. Let L be a p-colored link with exterior X, and F be a spanning surface
for L in B*. For all rational points w in (S*\ {1})#,
or(w) = sign(er),
np(w) = dim HY(X;C) = null(¢%) + dim HY (Wg; C) — dim HY (WF; C).
As a consequence, if the colored link L = Ly U --- U L, satisfies lk(L;, L;) =0
for all ¢ # j, then oy (w) and 7y (w) coincide with the invariants considered by the
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second author in [9]. It also relates our signature function to various invariants
introduced by Gilmer [12], Smolinsky [31] and Levine [2I]. Note that the first
equality concerning the nullity is closely related to Libgober’s [22].

Combining our construction with [12], we obtain the following formula for the
Casson-Gordon invariant of a 3-manifold (Theorem [6.7]).

Theorem. Let M be the 3-manifold obtained by surgery on a framed link L with v
components and linking matriz A. Let x: Hi(M) — C* be the character mapping
the meridian of the it" component of L to o™, where o = e*'™/ and n; is an integer
coprime to q. Consider L as a v-colored link and set w = (a™,...,a™). Then,
the Casson-Gordon invariant of the pair (M, x) is given by

o(M,x) = (UL(w) — ZA”) — sign(A) + q% Z(q —ng)n; A
i<j 4,J
The 4-dimensional point of view developed in Section [Bmakes it possible to prove
several results that would have been horrendous to check using only 3-dimensional
techniques. Let us denote by T the dense subset of S* x --- x S! given by the
elements of the form w = (w1, ...,w,) which satisfy the following condition: there
exists a prime p such that for all 7, the order of w; is a power of p.

Theorem. For allw € Th, or(w) and n(w) are invariant by colored concordance.

We also extend the Murasugi-Tristram inequality to the case of surfaces that
intersect transversally (Theorem [T2). This can be viewed as a specialization of [12]
Theorem 4.1]. Finally, we show the following generalization of the Kauffman-Taylor
inequality (x).

Theorem. Consider a colored link L = Ly U---UL,. Let us assume that there
exists a smooth oriented closed surface P = PiU---LUP, in S* such that P,NS3 = L;
for all i, where S denotes the standard embedding of the 3-sphere in S*. Then, for
all w in Th,

lor(w)| < genus(P) + min(0, ng, (w) — p + 1).

If there exists such a surface P of genus zero, we say that L is a slice colored link.
As an immediate corollary, we get: if L is a slice p-colored link, then oy (w) = 0
and np(w) > p — 1 for all w in Th. This notion of ‘sliceness’ is in fact a natural
generalization of the definitions of Fox [I1] stated above. Indeed, a 1-colored link
is slice if and only if it is slice in the ordinary sense. On the other hand, a v-
component link is slice as a v-colored link if and only if it is slice in the strong
sense. What we get is a spectrum of sliceness notions ranging from the ordinary
sense to the strong sense. To each coloring of a given link, there corresponds one
notion of sliceness, and one signature function. This function vanishes if the link is
slice in the corresponding sense.

It should be pointed out that all the results of Sections [2] to @ hold for colored
links in an arbitrary Z-homology 3-sphere. Sections [6] and [1 also extend to this
setting, provided the homology sphere bounds a contractible 4-manifold.

Finally, let us mention that the results of the present paper have been success-
fully applied to the study of the topology of real algebraic plane curves. Indeed,
S. Yu. Orevkov implemented an algorithm computing the generalized Seifert ma-
trices (and therefore, the signature and nullity functions) of a colored link given
as the closure of a colored braid. Using this computer program, the generalized
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Murasugi-Tristram inequality (Theorem below), and his method developed in
[25], he was able to complete the classification up to isotopy of M-curves of degree
9 with 4 nests. We refer to the upcoming paper [27] for details.

2. DEFINITION AND BASIC PROPERTIES OF ¢ AND nrL

The aim of this section is to define the signature and nullity of a colored link as
a natural generalization of the Levine-Tristram signature of an oriented link.

2.1. C-complexes. Recall that a Seifert surface for a link in S® is a connected
compact oriented surface smoothly embedded in S that has the link as its oriented
boundary. The notion of C-complex, as introduced in [7] and [], is a generalization
of Seifert surfaces to colored links.

Definition. A C-complex for a p-colored link L = Ly U---U L, is a union S =
S1U---US, of surfaces in S3 such that:

(i) for all 7, S; is a Seifert surface for L; (possibly disconnected, but with no
closed components);
(7) for all i # j, S; NS} is either empty or a union of clasps (see Figure [II);
(#3) for all 4, j, k pairwise distinct, S; N.S; NSy is empty.

The existence of a C-complex for a colored link is fairly easy to establish; see
[, Lemma 1]. In the case u = 1, a C-complex for L is nothing but a (possibly
disconnected) Seifert surface for the link L. Let us now define the corresponding
generalization of the Seifert form. Let N; = S; x [—1, 1] be a bicollar neighborhood
of S;. Given a sign ¢; = £1, let S;’ be the translated surface S; x {&;} C N;. Also,
let X be the complement of an open tubular neighborhood of L, and let Y be the

complement of [ Ji_, int N; in X. Given a sequence ¢ = (e, ...,¢,) of £1’s, set
m
se=Jsiny.
i=1

Since all the intersections are clasps, there is an obvious homotopy equivalence
between S and S¢ inducing an isomorphism H;(S) — H;(S¢). Let i¢: H1(S) —
H1(S83\ S) be the composition of this isomorphism with the inclusion homomor-
phism H;(S¢) — H;(S?\ 9). Finally, let

at: Hl(S) X H](S) — 7
be the bilinear form given by of(z,y) = lk(i°(z), y), where Ik denotes the linking
number. Fix a basis of H;(S) and denote by A% (or simply by A®) the matrix of

a®. Of course, if u = 1, then o~ is the usual Seifert form and A~ the usual Seifert
matrix. Note that for all €, A=¢ is equal to (A%)7, the transpose of the matrix A°.

S.

l

5

FIGURE 1. A clasp intersection.
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FIGURE 2. A loop crossing a clasp.

For computational purposes, the following alternative definition of i is more
convenient. A 1l-cycle in a C-complex is called a loop if it is an oriented simple
closed curve which behaves as illustrated in Figure 2l whenever it crosses a clasp.
Clearly, there exists a collection of loops whose homology classes form a basis of
Hy(S). Therefore, it is possible to define i as follows: for any loop z, i¢([z]) is
the class of the 1-cycle obtained by pushing x in the ¢;-normal direction off S; for
i =1,...,u. The fact that = is a loop ensures that this can be done continuously
along the clasp intersections. We easily check that this definition of i¢ coincides
with the intrinsic definition given above.

2.2. The signature and nullity of a colored link. Let L be a p-colored link.
Consider a C-complex S for L and the associated Seifert matrices A° with respect
to some fixed basis of H;(S). Let A(t1,...,t,) be the matrix with coefficients in
Zlt1,...,t,] defined by

1 1—e

Aty ...ty Zal 6Ht1 '-'tlﬁ“AE,
where the sum is on the 2# possible sequences € = (e1,...,¢,) of £1’s. For w =
(Wiy..ywy) in TH=8"x .. x St C CH, set
p b
Hw) = [J0-w) Alws, ... w) =Y [0 -
i=1 e i=1

Using the fact that A=¢ = (A®)T, one easily checks that H(w) is a Hermitian
matrix. Recall that the eigenvalues of such a matrix H are real. Its signature
sign (H) is defined as the number of positive eigenvalues minus the number of
negative eigenvalues. The nullity null (H) is the number of zero eigenvalues of H.

Definition. Let T be the open subset (S \ {1})* of the p-dimensional torus
TH C CHF. The signature and nullity of the p-colored link L are the functions

orL,NL: Tf — 7

given by o (w) = sign (H(w)) and 1, (w) = null (H(w)) + Bo(S) — 1, where (y(S)
denotes the number of connected components of S.

By Sylvester’s theorem, o, (w) and 7z (w) do not depend on the choice of a basis
of H1 (S) .

Theorem 2.1. The signature o, and nullity n;, do not depend on the choice of the
C-complex for the colored link L. Hence, they are well-defined as isotopy invariants
of the colored link L.
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12 13

FIGURE 3. The transformations (72) and (7'3) in Lemma 22

This theorem relies on the following lemma (see [4] for the proof).

Lemma 2.2. Let S and S’ be C-complexes for isotopic colored links. Then, S and
S’ can be transformed into each other by a finite number of the following operations
and their inverses:

(T0) ambient isotopy;

(T1) handle attachment on one surface;

(T2) addition of a ribbon intersection, followed by a ‘push along an arc
through this intersection (see Figure Bl);

(T3) the transformation described in Figure Bl

7

Proof of Theorem 21l Let H and H' be two Hermitian matrices. We shall call H’
an elementary enlargement of H if

H
H =&

0
| >
0 0

Q > o

where £ is any complex vector, A\ any real number and a € C*. H is called an
elementary reduction of H’. One easily checks that the signature and nullity of a
Hermitian matrix are unchanged by elementary enlargements and reductions. By
Lemma [22] it remains to prove that the transformations (7'1) to (7'3) of a C-
complex induce finite sequences of elementary reductions and enlargements on the
corresponding Hermitian matrices (or other elementary transformations leaving the
signature and nullity unchanged).

(T'1) Let S’ be a C-complex obtained from a C-complex S by a handle attach-
ment on Sk. If this handle connects two distinct connected components of .S, then
H,(S") = H1(S) ® Zy, where y is a 1-cycle such that lk(i®(y),z) = 0 for all z in
H,(S’). Hence, the Hermitian matrices H and H' corresponding to S and S’ are
related by H = H & (0), so sign (H') = sign(H) and null (H') = null (H) + 1.
Since Bo(S’) = Bo(S) — 1, the signature and nullity of L are unchanged. Let us now
assume that this handle attachment is performed on one connected component of
S. In this case, H1(S") = H1(S) ® Zx ® Zy. Moreover, the cycles x and y can be
chosen so that the corresponding Seifert matrices satisfy

A% * 0 .
1 ifep =+1;
o= * *  w(—e)|, with w(e)= { hew =
0 (e 0 0 else.

Such a choice of x and y is illustrated in Figure[dl The Hermitian matrices H and
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H' are related by

Hw) * 0
H' (w) = * * o«
0 a 0

with @ = (1 — @) [[;4, 11 — w;]?. Since H'(w
H'(w) is an elementary enlargement of H(w).

(T2) Let S’ be a C-complex obtained from S by the transformation (72). If this
transformation connects two distinct connected components of S, then Hy(S") =
Hy(S)®Zz. As above, we get H' = H®(0) and 5y(S’) = Bo(S)—1, so the signature
and nullity are unchanged. On the other hand, if this transformation takes place
on one connected component of S, then Hy(S") = H{(S) ® Zw ® Zz with w and 2
as illustrated in Figure Bl

> A
+ T2 Z
S, RS W

~

is Hermitian and w; # 1 for all 4,

FIGURE 5.
Therefore,
A * 0 .
1 ife; =g = +1;
A =« « d(—e) |, with 5(s)={ te=en =tk
0 () 0 0 else.

It follows that the corresponding Hermitian matrix H'(w) is an elementary enlarge-
ment of H(w) with a = (1 —w;)(1 — @) [[;; 4 11 — w;|?.

(T'3) Finally, let S and S’ be C-complexes related by the move (7'3). A similar
computation shows that the corresponding Hermitian matrices H(w) and H'(w)
are both elementary enlargements of some Hermitian matrix. This concludes the
proof. O

Example 2.3. If u = 1, then the colored link L is just a link. Furthermore, a
C-complex S for L is nothing but a (possibly disconnected) Seifert surface for L.
Finally, A~ is a usual Seifert matrix A, and AT = AT. Hence, the corresponding
Hermitian matrix is given by

Hw)=(1-2)(AT —wA) = (1 - w)A+ (1 -m)AT.
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So if 4 =1, the signature of L is the Levine-Tristram signature of the link L.

Ly L, S 5

FIGURE 6.

Example 2.4. Consider the 2-colored link L illustrated in Figure[ll A C-complex
S for L is also given. We compute A% = (—1) if e; = &9, and A® = (0) else. Hence,

H(wl,u)Q) = (1 —wl)(l —wg)(—l - w1w2) = —2§R((1 - wl)(l - LL)Q)).

So o1, (w1, ws) is given by the sign of —R((1—w1)(1—ws)). Furthermore, 0y, (w1, ws) =
1if wywy = —1, and 5 (w1,w2) = 0 else. Let us draw the domain Tf as a square.
The value of the function o can be represented as illustrated in Figure [l Note
that o7 and 7 are constant on the connected components of the complement of
the zeroes of Ay (t1,t2) = t1ta+1, the Alexander polynomial of L. We shall explain
this fact in Section @

Proposition 2.5. Let L = L1 U---UL, 41 be a (u+ 1)-colored link. Consider the
p-colored link L' = L} U---U L), given by Lj = L; fori < p and L, = L, U L, 11.
Then, for all (w1, ...,w,) in T,

O-L/(wla"'ku) = O'L(wlv"'ku7wu)_lk(LM7LM+1)7
(Wi, owu) = np(wi, .., We,wy).

Before giving the proof of this proposition, let us point out an interesting con-
sequence: it is possible to compute the signature and nullity of a p-colored link by
considering any finer coloring of the same underlying link. In particular, all the
signatures (corresponding to all the possible colorings) can be computed from the
signature corresponding to a coloring with the maximal number of colors. This
greatly simplifies the computations in many cases, as illustrated by the following
(didactic) example.

Example 2.6. Let us try to compute the Levine-Tristram signature of the link L
illustrated in Figure Bl One possibility is to choose a Seifert surface for L and to
compute the corresponding Seifert matrix.

On the other hand, consider a 3-colored link L’ obtained by coloring the compo-
nents of L with three different colors. There is an obvious contractible C-complex

FIGURE 7.
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FIGURE 8.

for L', so oy is identically zero. By Proposition 23] the Levine-Tristram signature
of L is given by o (w) = op/ (w,w,w) —2 = —2.

Proof of Proposition 25l First, note that it is sufficient to prove this statement
when L, is a knot. Consider a C-complex S = S; U---U S,4q for L, and
let ¢ be the number of clasps in S, N S,41. A certain number of these clasps
(say, £4) induce a positive linking number between L, and L,i1, while the ¢_
remaining ones induce a negative linking number. By definition, ¢ = ¢, + {_ and
lk(L,, Lyq1) = €4 —¢_. Using transformation (7'2) of Figure Bl it may be assumed
that ¢, and ¢_ are positive. Via handle attachment, it may also be assumed that
Sy, is connected. Finally, one easily checks that the C-complex S can be chosen so
that the knot L, crosses the /_ negative clasps first, and then the ¢, positive
ones. This situation is illustrated in Figure

FIGURE 9.

Let S be the C-complex obtained from S by removing these £ clasps. Since S, and
S,+1 are connected, H(S) = @f;ll Zax; ® Hy(S), with z; the 1-cycles in S, USut1
depicted above. Fix a basis B of H,(S). For any sequence & = (1,...,&,41) of
+1’s, the Seifert matrix A% corresponding to the basis (z1,...,z¢—1) UB of H1(S)

can be written
. <D6M8M+1 C‘Eu)
S = _ T .
(C—#n) A%

Fix an element o’ = (wy,...,w,) of T¥. Since D»“r+! only depends on ¢, and
€u+1, the upper left block of the corresponding Hermitian matrix Hg(w',w,) is
given by

i
[[1t = wil?(AD +XD" + N),

i=1
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where A\ =1—-w,, D=D"" and

-2 1
1
(x) N=(D*t-D)+(D T-D)7T = f (1J—1
-1 2
-1
-1 2

Similarly, the upper right block of Hg(w',w,) is equal to [/, |1 — w;]*(AC™ +
ACT). Finally, observe that each coefficient of AE§ is either independant of €, or
independant of &,41. Therefore, Hg (W' wy) = [APHg (w'), where S =5 U
Spu—1U S and S’ = S L Su+1 To sum up, we have the equality

AD +ADT + N AC +ACT
_ 2
(ox)  Hs(w'swu) H‘l i <>\C’ +A0CHT IS L = wil 2 Hg (o )>'

Let us now turn to the p-colored link L’. The C-complex S can be transformed into
a C-complex 8" = S]U---U S, for L' as follows: set S; = 5; for i < p, and let S},
be the surface obtained from S,, U S, 1 by ‘smoothing’ the ¢ clasps as illustrated
in Figure

FIGURE 10.

Basically, each clasp is replaced by two half-twisted bands joining S,, and S, ;.
This time, H1(S") = @Z 1 Zy; @ @Z | Za!, & Hy(S') with the 1-cycles y; and
depicted above. Using the same method and notations as above, one can compute
the Hermitian matrix Hg/ (') corresponding to the basis (y1,...,ye, @} ..., x)_;)U
B of Hy(S'). It is given by

" NP (Lo @ —1Ip,) AM 0
I - wl AMT AD +ADT /\C +ACt 7
’ 0 O~ +2CHT I 1 — wi| 2 Hg ()
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where I, denotes the (k x k)-identity matrix and
1

1
—1
Using the equalities (x) and (xx) together with the fact that A # 0, it is easy to
check that the matrix Hg/(w') is conjugate to the Hermitian matrix I, & —1I,, @
Hg(w',w,). Hence,
op(w') = sign(Hg (w')) =sign (Hs(w' w,)) + - — {4
= op(w,wy) —lk(Ly, Lyt1),
and null Hg/(w') = null Hg(w',w,). Since [o(S) = Bo(S’), the proposition is
proved. ([l

Note that we shall give an alternative proof of this result in Subsection

2.3. Basic properties of o and 7. We conclude this section with an enumer-
ation of several properties of the signature and nullity. Deeper properties shall be
presented in the following sections. The first proposition follows easily from the
fact that H(w) is Hermitian.

Proposition 2.7. For any (w1,...,w,) € T,
UL(wfl,...,wljl) = op(wi,...,wu),
nL(wfl,...,wgl) = np(wi,...,wpu).

O

Proposition 2.8. Let L be a colored link, and let L' be the colored link obtained
from L by reversing the orientation of every component of the sublink Ly of L.
Then, for all w = (w1,...,w,) in TE,

o (wi,. .. ,wy) = JL(wfl,wg,...7w#),

Ny (wi,...,w,) = nL(wfl,wg,...,wu).
Proof. It S = S1US;U---US,, is a C-complex for L, then S’ = (=51)US2U---US,
is a C-complex for I/. Since A%, = A% with &) = —¢; and ¢} = ¢; for i > 1, the

corresponding Hermitian matrices H' and H are related by H'(wi,wa,...,w,) =
H(wfl,wg,...,wu). O

Corollary 2.9. If —L denotes the colored link L with the opposite orientation, then
o_1 =0J, andn_L:nL. O

So the signature cannot distinguish between a colored link and its inverse. On
the other hand, it is a useful invariant for telling apart a colored link and its mirror
image.

Proposition 2.10. If L denotes the mirror image of the colored link L, then o =
—oyr, and Ny =N,

Proof. If S is a C-complex for L, then the mirror image S’ of S is a C-complex

for L. Therefore, A3, = —A%, and the Hermitian matrices H and H' satisfy
H'(w) = —H(w). O
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Corollary 2.11. If a colored link L is isotopic to its mirror image, then oy is
identically zero. ([

Finally, the signature and nullity behave well under connected and disjoint sums.

Proposition 2.12. Let L' = L1U---UL,_1UL, and L" = L)UL, {1U---UL,, be two
colored links. Consider a colored link L = L1U---UL,,, where L, is a connected sum
of L, and L} along any of their components. Then, for all wi,...,w, € S*\ {1},

O’L(wl, - ,wﬂ) = O'L/(wl, - ,wl,) +0—L//(wy, - ,w#),

nL(wis . wp) = noi(wi,.o,wy) Fnpe (W, . wy).
Proof. Given S’ a C-complex for I/ and S” a C-complex for L”, a C-complex S for
L is given by the band sum of S” and S” along the corresponding components of S/,

and S)/. Since S” and S” have no closed components, this band can be chosen such
that only its ends meet S’ and S”. Clearly, AS = AES,, @ Ag/,l, with ¢’ = (e1,...,¢,)

and €” = (e,,...,€,). The corresponding Hermitian matrices H, H" and H" satisfy
H(wi, ... ,wy) = H 11— wi|*H (w1,...,w,) ® H 11— wi*H" (wy,. .. W)
i>v i<v
Since w; # 1 for all i and 5y(S) = Bo(S’) + Po(S”) — 1, this implies the proposition.
O

Proposition 2.13. Let L' and L"” be colored links with disjoint sets of colors.
Consider the colored link L given by the disjoint sum of L' and L"”. Then,

op(W W) = op (W) +or (W),

np(W,w”) =y (W) +noe (W) + 1.
Proof. Let S’ and S” be C-complexes for L’ and L”. A C-complex S for L is given
by the disjoint union of §’ and S”. Clearly, AY <) = A%, ® A%, so

HW ") =[N -w/PH W) &[] - wj?H" (")
i J
Since Bo(S) = Bo(S’) 4+ Bo(S”), the proposition is proved. O

3. THE ALEXANDER MODULE OF A COLORED LINK

Associated to a p-colored link L with exterior X is a natural Z*-covering X — X.
The aim of this section is to show how the space X can be constructed from a C-
complex for L. This leads to a presentation of the Alexander module of L, that is,
the Z[t{!, ... ,tffl}—module H{(X). This generalizes a celebrated theorem of Seifert,
which corresponds to the case u = 1.

We shall use these results in the next section to derive relations between the

signature, the nullity, and the Alexander invariants of colored links.

3.1. Basics. Let L =L, U---UL, be a colored link, and let X denote its exterior.
The epimorphism m(X) — Z* given by v — (lk(v, L1),...,lk(y,L,)) induces a

regular Z*-covering X — X. The homology of X is a natural module over the ring
Ay = Z[t7", ... 5], where t; denotes the covering transformation corresponding

to an oriented meridian of L;. The A,-module H; ()? ) is called the Alexander
module of the colored link L. Of course, if g = 1, then H;(X) is nothing but the
usual Alexander module of the link L.
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To extract handy information from such a cumbersome invariant as a module
over A,, the standard trick is to consider its elementary ideals. Although these
objects are widely used, their definitions vary according to the authors. Therefore,
we shall now clarify the meaning of these concepts in the present work. Let R be
a noetherian factorial domain, that is, an integral domain in which every ideal is
finitely generated, and every non-zero non-invertible element has a unique factor-
ization. Let P be an m x n matrix with coefficients in R. Let us denote by E,.(P)
the ideal of R generated by all the (m — r) x (m — r) minors of P. By convention,
E.(P)=(0)ifr < 0and E.(P) = Rif r > m. Let A.(P) denote the greatest
common divisor of the elements of F,.(P). (Recall that the greatest common divisor
of ay,...,a, in R is an element d of R which divides a; for all 7, and such that if
¢ € R divides a; for all i, then ¢ divides d.) Since R is a noetherian factorial domain,
A, (P) exists, and is well-defined up to multiplication by a unit of R. Given A and
A’ in R, let us note A=A’ if A = uA’ for some unit u of R. Now, let M be a
module over a factorial ring R. A finite presentation of M is an exact sequence
F4XFE M- 0, where E and F are free R-modules with finite basis. A matrix
of ¢ is a presentation matriz of M. The " elementary ideal of M is the ideal of
R given by E,.(M) := E,.(P), where P is any presentation matrix of M. It is easy
to check that these ideals do not depend on the presentation of M. In particular,
the element A,.(M) := A,.(P) of R is well defined up to multiplication by a unit of
R.

Let us now turn back to colored links. Given a p-colored link L, we just defined
the Alexander module of L as some module Hl()? ) over the ring A,. The r®

elementary ideal E,.(H;(X)) is the r'"* Alezander ideal of L, and is denoted by
E,(L). The polynomial A, (L) := A,.(H; (X)) is called the r'" Alezander polynomial
of L; Ag(L) is called the Alexander polynomial of L, and is denoted by Aj,. Again,
note that A, (L) is only defined up to multiplication by a unit of A,, that is, by

+t7" 4" with integers m;.

3.2. A presentation of the Alexander module using a C-complex. Fix a
colored link L = Ly U---U L,. Consider a C-complex § = S;U---USY, for L
such that each S; is connected and S; N'S; # 0 for all ¢ # j. (Such a C-complex
exists by transformations (7'1) and (72) of Lemma [2:2) For i = 1,..., u, choose
some interior point v; of S; \ Uj# S; N S;. Given a clasp in §; NS; with ¢ < j,
consider an oriented edge in S; U S; joining v; and v; and passing through this
single clasp as described in Figure This leads to a collection of oriented edges
{egj, ... ,efj(-z’])}, where ¢(4, j) denotes the number of clasps in S; N S; (that is: the
number of connected components of S; N.S;). Let K;; C S; US; denote the graph
given by the union of these edges. Finally let K, be the complete graph with

vertices {v; }1<i<, and edges {e%j}l§i<jgu'

Lemma 3.1. The homology of S = S1U---US, is equal to

Hl(s): @ Hl(Si) ® @ Hl(Kij) D HI(KM)-

1<i<p 1<i<j<p

Furthermore, a basis of H1(K;;) is given by <ﬂfj>1§l§c(i,j)—17 where 3; = ef»fefj'l,

Finally, a basis of H\(K,,) is given by (V1ij)a<i<j<u, where Yijx = ej; — ep; + ejy.
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Proof. The C-complex S can be constructed as follows. Consider the complete
graph K,. Add the graphs K;; one by one, for 1 < i < j < u. Finally, paste
S1,82,...,5,. Note that at each step, the pasting is done along a contractible
space. A recursive use of the Mayer-Vietoris exact sequence therefore leads to
the first statement of the lemma. The fact that H;(K;;) = C(Z’j =1z 1 is clear.
Finally, we have the relation ;i = v1jx —71i%+7145. Hence the famlly (Mij)e<i<i<p
generates Hy(K),). Furthermore, 1—rk Hy(K,) = x(K,) = p—(4), sork H1(K,) =

(“gl), and this family is a basis of H;(K,,). 0

Recall the homomorphism € : H;(S) — H;(S®\ S) of Subsection 211

Theorem 3.2. Let L =Ly U---UL, be a colored link, and consider a C-complex
S =51U---US, for L such that each S; is connected and S; N S; # O for all i # j.
Let a: Hi(S) @z, — H1(S3\S)®z A, be the homomorphism of A,,-modules given
by

5“+1
04*251 %tl "'tu2 i€,
where the sum is on all sequences € = (e1,...,€,) of £1’s. Then, the Alezander

module Hy (X ) of L admits the finite presentation
H @z Ay 5 Hi(S?\ S) @z A, — Hi(X) — 0,
where H = EBISZSM Hy(S;) @ @1§i<j§u Hi(K;;) ® ®1§i<j<k§uZ%jk and @ is
given by
e a=1][, .t — 1) ta on Hi(S;) for 1 <i < u;
e a=1J[,.,tn 1) onHl( K;j) for1<i<j<p;
We postpone the proof of this theorem to the end of the section.
For colored links with 1, 2 or 3 colors, this result provides a square presentation

matrix of the Alexander module expressed in terms of the Seifert matrices A¢. More
precisely, we have the following corollaries.

Corollary 3.3 (Seifert [30]). Let A be a Seifert matriz for the link L. Then,
tA — AT is a presentation matriz of the Alexander module of L.

Proof. Theorem B.2] gives the finite presentation
Hi(S)®z A H(S3\ S) @z A — Hy(X) — 0,

where @ = a = tit —i~. By Alexander duality, a matrix of % (resp. i ™) is given by
the transpose of AT (resp. A~). Therefore, tA — AT is a presentation matrix. [

Similarly, we get the following result.

Corollary 3.4 (Cooper [7]). Let S = S1USs be a C-complex for a colored link L =
LiULy. Let A (resp. B) be a matriz of the form o™~ (resp. o~ ) with respect to a
basis of H1(S) adapted to the decomposition H1(S) = H1(S1) ® H1(S2) ® H1(K12).
Then, a presentation matriz of the Alexander module of L is given by

(t1toA —t,B —to BT + AT) . D
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=

FIGURE 11. The 3-colored link of Example

~

L, L, S

N

/\/

——

L;

where D = (D;;) is the diagonal matriz given by

(ta=1)7" f1<i<Bu(Sh),
Diy = (t1 =171 if fi(S1) < i < Bi(S1) + Bu(Se),
1 if B1(S1) + B1(S2) < i < Bi(S),
and B1(-) denotes the first Betti number. O

The case p = 3 is similar, but the complete statement is a little cumbersome.
Instead, let us give an example of such a computation.

Example 3.5. Consider the 3-colored link L given in Figure[IIl A C-complex S for
L is also drawn. Clearly, Hy(S) = Z~. Furthermore, lk(7%,v) = 1 if e1 = g9 = €3,
and all the other linking numbers are zero. Hence, a matrix of a = « is given by
(t1t2t3 — 1) and Hl( ) Ag/(tltgt;g — ].)

For colored links with p > 4 colors, the presentation of Theorem has defi-
ciency (“gl), so the corresponding presentation matrix is not square. This is not a
surprise. Indeed, Crowell and Strauss [8] proved that if an ordered link has p > 4
components and if Ay, # 0, then its Alexander module does not admit any square
presentation matrix. Their proof applies to colored links as well. Therefore, it is
not possible to get a presentation matrix of H 1()? ) using the Seifert matrices A° if
> 3. Nevertheless, it is possible to compute the Alexander invariants up to some
indeterminacy. More precisely, let A}, denote the localization of the ring A, with
respect to the multiplicative system generated by {t; — 1}1<i<,-

Corollary 3.6. Let L be a p-colored link. Consider a C-complex S for L such that
S; is connected for all i and S; N S; # 0 for all i # j. Then the corresponding

matric
l1—e

Aty, ...ty Zal Eutl -~-t,ﬁ A°

is a presentation matriz of the A;—module H, (X) @a, A),. In particular, for all r,
there are non-negative integers m; such that the following equality holds in A, :

o

H(]- - ti)mi AT‘(L) = AT(A(tla v 7t,u))'

i=1
Proof. Let B be a basis of H1(S) adapted to the decomposition given in Lemma
Bl Consider the dual basis B* of Hi(S®\ S) obtained by Alexander duality.
Clearly, the matrix of i€: Hy(S) — Hy(S®\ S) with respect to the bases B, B* is



1240 DAVID CIMASONI AND VINCENT FLORENS

S N N; N R
S. N,

FIGURE 12. The C-complex S and the spaces N and R near a clasp.

the transposed matrix of a: Hy(S) x H; 1(5) — Z with respect to B, that is, a
Seifert matrix A—¢. Consider the basis B = B U <'y”k>2<l<]<k<u of H and the
extension i¢: H — Hy(S3\ S) of i€. The matrix A~¢ of 7° with respect to the bases
B,B* is a matrix with £;(S) rows and £ (S) + (*3") columns. A~¢ is made of the
first 31 (S) columns of A=< Set

e1F1 eutl cutl

B:Zq---fsut12 oty ? AT° and Zsl 5ut1 "‘tu2 ATE.
€

By Theorem 3.2} a presentation matrix of the A,-module H; (X ) is given by P =
ED*I, where D is a diagonal matrix whose diagonal entries are products of fac-
tors of the form ¢; — 1. Therefore, Bisa presentation matrix of the AL—module
H, ()? ) @A, AL. Now, let ;55 denote the column in B corresponding to the element
Vijk of l§, for 1 <i<j<k<p Ifi>1, then v6 = v145 — Y1k + Y155 in Hi(S).
Therefore, €55, = €155 — liax + 15 for all 2 < ¢ < j < k < p. So the (“gl) last
columns of B are linear combinations of the other columns. Hence, B is also a
presentation matrix of Hy(X) ®@a, A}, Since B = (—1)"A(t1,...,t,), the corollary
is proved. (I

Using this result, it is possible to give an intrinsic interpretation of the nullity
7z, (w) for w with rational coordinates. Indeed, consider the character x,: H1(X) —
C* which maps a meridian of L; to w;. If w has rational coordinates, then the image
of x., is a finite cyclic group C;. The homology of the corresponding cyclic covering
X7 — X is a module over Z[C,], and so is C via the inclusion C, C C*. Then,

nrL (w) = dim¢ H; (Xq) ®Z[Cq] C.
We shall give a 4-dimensional proof of this result in Section

3.3. Proof of Theorem As in Section Bl let X denote the exterior of L,
and let N; = S; x [-1,1] be a closed bicollar neighbourhood of S;. Set N =
XNUL, N, Y = X\, int N; and R = NNY. (See Figure[[2for an illustration
of these spaces near a clasp.) Recall that the regular Z#-covering X & X is induced
by the epimorphism m;(X) — Z* given by v — (Ik(v,L1),...,lk(y,Ly)). The
decomposition X = NUY leads to a Mayer-Vietoris exact sequence of A,-modules

Hy(R) Y=Y H (N & H\(Y) — H\(X) — Ho(R) ¥2) Hy(N) @ Ho(Y),

where R (resp. N, Y) stands for p~1(R) (resp. p~1(N), p~1(Y)), and @, ¥, @0, 1o
are inclusion homomorphisms. Note that RN S =~(2). Therefore, given any loop ~
in R, lk(y,L;) =~-S; =0for 1 <4< u. Hence, R 2. R is the trivial Z*-covering
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FIGURE 13.

and H,(R) is isomorphic to H,(R) ® A, where ® = ®z and A = A,. For the same
reason, we can identify H,(Y) with H,(Y) ® A.

We now claim that the homomorphism (yg, —1) is injective. Indeed, S is con-
nected, so R is connected as well, provided pu > 1. In this case, ¥y = idy and
(g0, —tbo) is injective. If u = 1, then Ho(R) ® A = A® A and Hy(N) = A =
Hy(Y) ® A. The matrix of (g, —tg) with respect to some well-chosen bases is

equal to , so the homomorphism is injective. By this claim, we get the

1 t
-1 -1
exact sequence

H(R) @A"Y Hy(N) @ (Hi(Y) © A) — Hi(X) — 0.

Let us assume momentarily that the inclusion homomorphism ¢ is onto. In this
case, the following sequence is exact:

ker p —% Hi(Y)® A — Hy(X) — 0.

Since Hy(Y) = H1(S3\ 9), we are left with the computation of the homomorphism
¢: Hi(R) ® A — H;(N). We shall divide this tedious computation into several
steps.

Computation of Hi(R). Let v; be an interior point of (S; N X) \ ;5 N S;.
For e; = 1, set S* = 5; x {g;} C S; x [-1,1] = N, and let v;* € R denote
the point v; x {g;} € N;. Fix a clasp in S; N'S; with ¢ < j and two signs &;, €;.
Consider an oriented edge in R joining v;’ to v;j , and passing near this single clasp
(see Figure [13).

This leads to a collection Sfjisj of ¢(i, j) oriented edges, where c(i, §) is the number
of clasps in S; N S;. Let Kffj C R denote the graph given by the union of these
edges. Finally, let Kj[ denote the graph with vertices {v;*; 1 <i < p, ¢; = £1} and
edges {e7i""; 1 <i < j <p, ei,e; = £1}, where ¢;;°" is one distinguished element
of 5ffj . As in the proof of Lemma[3.1] observe that R can be constructed as follows.
Consider the graph K/f. Add the graphs K.~ one by one, for 1 <i < j < p, and

then the graphs KZ-;+, K;;f and K:;Jr Finally, paste S;” and S;" for 1 <14 < p. At
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S. SnX

1

FIGURE 14.

SNnX
! SNX

S

1

FIGURE 15.

each step, the pasting is done along a contractible space. Therefore,

Hi(R) = @ (Hi(S7) & Hi(S])
o @(Hl(K D)@ Hi(K;; ) @ Hi(Kj57) @ Hi(K5T))

® Hy(KY).

Computation of Hy (N ) Consider the complete oriented graph K,, defined above
Lemma Bl Add a vertex v;; in the interior of the edge joining v; with v;, and
paste two oriented loops z; and x; based at v;;. The resulting graph, denoted by
I',,, is naturally embedded in SN X C N as illustrated in Figure 4l Similarly, let
I;; € S;NS;NX be the oriented graph obtained from K;; C S; N S; by adding
a vertex in the interior of each edge of Kj;;, and two oriented loops at this vertex.
For 7 < j, consider the loop at v;; given by z;z;x; x . This loop lifts to a loop

~i; in Ty; == p~*(I';;) and to a loop vi; in T,:=p 1( ). We claim that Hy(N)
splits as follows:

Hl(N):®(H1(S)®A (@Hl ij 69I_Il(F ))/('Yij:'%{j)i<j'
[ 1<j

Indeed, N has the homotopy type of SN X, which can be contructed as follows.
Consider the graph I',. Add the graphs I';; for 1 < ¢ < j < p, and then the
surfaces S} for 1 <4 < u, where S; is obtained from S; N X by removing an open
neighbourhood of the clasps as illustrated in Figure

Hence, N has the homotopy type of I‘ U |_|z<J Iy UL, p=1(S}). The first union
I'), UT' 2 is made along I', N T'12 which has the homotopy type of the wedge of the



SIGNATURES OF COLORED LINKS 1243

circles 1 and x5. This yields a Mayer-Vietoris exact sequence of A-modules

0 — Ayio — Hi(T,) © Hi(T12) — Hi(Tu UT12) — A/Zis — AT ® AT,
where Z is the augmentation ideal (t,—1,...,t,—1) and Z;5 the ideal (t;—1,t2—1) of
A. Hence Hy(T, UTy,) = (Hl(fu) @ Hl(fu)) /(712 = 7,4). Using this argument
inductively, we get

Hy(T, U] |Ty) = (@Hl(Fij) ® Hl(ru))/('yij = Vii)i<i-
i<j i<j
The pasting of S/ is performed along a contractible space. Since p=1(S!) = S/ x Z*
and S} has the homotopy type of S;, the claim follows from yet another application
of the Mayer-Vietoris sequence.

Using the computation of Hy(R) and H;(N) above, we see that the inclusion
homomorphism ¢: Hy(R) ® A — H;(N) splits into a direct sum ¢ = D, i @
@D, ;i ®pr. We shall now check that each homomorphism in this sum is onto,
and then compute its kernel. Each kernel will translate into a family of relations
via the inclusion homomorphism v: H;(R) ® A — H;(S3\ S) ® A. Note that up to
multiplication by a unit of A, the latter homomorphism is given by @ = ¢’ ® idy,
where ¥/': Hi(R) — Hy(S?\ 9) is the inclusion homomorphism.

Computation of ;. The homomorphism

is given by o;(z7,y") = t;x +y for x,y € Hi(S;). Therefore, the homomor-
phism ¢; is onto, and its kernel is generated by {(—z~,t;27); x € H1(S;)} as a
A-submodule of (Hy(S;)® Hi(S;")) @ A. Given z € H;(S;) C Hi(S), we have
P(zT) = it(z) and Y(x~) = i~ (z), where iT (resp. i~) is the homomorphism
i€ with £ any sequence of +1’s such that ¢; = +1 (resp. &; = —1). Therefore,
(ker(p;)) = (t;iT —i7)(H1(S;)). The restriction to H(S;) of the homomorphism

i€ only depends on g;. Hence, the restriction to Hi(S;) of the homomorphism
Ghal cptl
a=>_e1-guty 2 ooty ? i€ is equal to (¢t — i) [1,.i(tn —1). This gives
the first set of relations stated in the theorem.
Computation of p;;. Let us now consider the inclusion homomorphism

We need to compute the homology of flj Number the clasps of S; NS; from 1
to ¢(4,j). For 1 <€ < ¢(i,7), consider the loop in I';; starting at v;, going to the
vertex corresponding to the clasp number ¢, then around x;, back to v;, to the
vertex corresponding to the clasp number ¢ + 1, around x; ! and back to v;. This

loop lifts to a loop ¢ in f” One checks by induction on ¢(i,j) > 1 that
c(i,j)—1
H(Ty) = (Hi(Kj oM e @ (A & As) e Ay;.
=1

Recall the basis { fj}g of Hy(K;;) given in Lemma Bl This yields a basis
{(ﬂfj)fisj b of Hl(Kfjgj) for €;,e; = £1. The homomorphism ¢;; is given by

( é]):jr — titj fjg, , ( ;)it — (ti + tg — 1% fj + (Sf — (Sje,

(Bi;)~ T = it B — 65),  (Bi;) T = (6B + 0;).
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Therefore, ¢;; is onto and its kernel is generated by
{(tit; 87, =377, ;87 F,877); B € Hi(Kij)}

For g € Hi(K;;) C Hi(S), ¢(811) =iT+(3) where i*+ = i¢ with ¢ any sequence
of £1’s such that ¢; = ¢; = +1. Similarly, ¥(877) =it (3), Y(B8~1) = i~ T(8)
and ¥(877) = i~ (8). Hence, the image of ker(yp;;) under % is the image of
H;(K;;) under the homomorphism t;t;i*" — ¢;s%~ — ;47 + 47 ~. Since the re-
striction to Hi(K;;) of the homomorphism « is equal to (¢;t;a7 —ti7~ — ;a7 +
i=7) [ 1,14 j(tn — 1), we get the second set of relations stated in the theorem.

Computation of vr. Finally, let us deal (a little faster) with the inclusion ho-
momorphism B

or: Hi(KF) @A — Hy(T,).

By an Euler characteristic argument, the rank of H; (Kff) is equal to 4(‘2‘) —2u+1.
Moreover, a recursive use of the Mayer-Vietoris exact sequence leads to the following
fact: it is possible to present the A-module H; (fu) with 4(4) — 2u + 1 generators
and (%) relations. (The (%) relations correspond to all the possible 3-dimensional

‘cubes’ in Z#*.) One then checks that ¢ is onto. Therefore, each relation in H;(I",)
yields an element in ker(ypg). One shows that the relation coming from the cube
with coordinates 1 < i < j < k < p corresponds to the element

e B L T L P T N B

EiEGEK

in ker(¢x ), where ;7" is the 1-cycle in Hy(KF) joining vf', v’ and vi* in this

J
order. The image under ¢ of this element is equal to [, ; ,.(tn — D a(vijr),

completing the proof of the theorem. (I

4. PIECEWISE CONTINUITY OF THE SIGNATURE AND NULLITY

Let L be a p-colored link. The signature and nullity of L can be understood as
functions
op,n: TH: — 7Z,
where T!' = (S1\ {1})* C CH. In this subsection, we prove the following ‘piecewise
continuity’ result.

Theorem 4.1. Let E,.(L) C A, be the r'" Alezander ideal of L, and set
Y, ={weT! | pw)=0 forallp e E._1(L)}.

This yields a finite sequence T = X9 D X1 D -+ D Xy_1 D Xy = 0 such that, for
all v, ng, is equal to r on X\ 3,11, and oy, is constant on the connected components
Of Er \ ErJrl'

Proof. Let S = S1 U---US, be a C-complex for L. Since o and 7 remain
unchanged by transformations (7'1) and (7'2) (recall Lemma and the proof of
Theorem [Z7]), it may be assumed that S; is connected for all ¢, and S; NS; # O for
all i # j. In this case, Corollary implies that

ET(L) ®A“ A; = ET(A(t)) ®A“ A;“
1—¢ l—ep
where A(t) = A(t1,...,ty) =D €1 €, tlTl o-t, 2 A°. Hence, a given w € T¥
belongs to X, if and only if p(w) = 0 for all p € E,_1(A(t)). Now, recall that
or(w) and 07 (w) are defined as the signature and nullity of the Hermitian matrix
H(w) = [T%,(1 = ©;)A(w). By this equality, p(w) = 0 for all p € E,_1(A(¢)) if
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and only if all the (n — r 4+ 1) X (n — r 4+ 1) minors of H(w) vanish, where n is the
dimension of H(w). This occurs if and only if the nullity of H(w) is greater than
or equal to r. Therefore, w € TL belongs to ¥, if and only if nz(w) > r. This gives
the first part of the theorem. The second part is a consequence of the first point
and of the following claim.

Claim: Let x — H(x) be a continuous path in the space of n-dimensional Hermitian
matrices. If the nullity of H(x) is constant along the path, then the signature of
H(x) is constant as well.

Indeed, consider the continuous path p: [0, 1] — C[)], where p(z) is the charac-
teristic polynomial of H(x). Since H(z) is Hermitian, the roots of p(x) are real.
Furthermore, they depend continuously on the coefficients of p(x). In other words,
the eigenvalues of H(x) are real continuous functions of x. The nullity of H(x)
counts the number of these eigenvalues which are zero. Hence, if this number is
constant, the sign of the eigenvalues cannot change. Therefore, the signature of
H(x) is constant. O

As a corollary, we obtain the following result that extends a well known property
of the Levine-Tristram signature. Note that in the case lk(L;, L;) = 0, it is due to
the second author (see Section 6l and [9] theorems 3.7 and 3.8]).

Corollary 4.2. Let L be a p-colored link, and let C denote the complement in TL'
of the zeroes of its Alexander polynomial. Then, oy, is constant on the connected
components of C' and 1 vanishes on C'.

Proof. By Theorem ] we just need to check that C' = T¥'\ 3y, that is: if w € T,
then p(w) = 0 for all p € Ey(L) if and only if Ar(w) = 0. Corollary implies
that Eo(L) @, A}, = Eo(A(t)) ®a, A,. Since A(t) is a square matrix, Eo(A(t))
is the principal ideal generated by det(A)= [[,(1 —t;)™ - Ar. This proves the
corollary. O

Before concluding this section, let us look back at the 2-colored link L given in
Example 24l By Corollary [3.4] a presentation matrix of its Alexander module is
given by (t1t2+1). Therefore, Eg(L) = (t1to+1) and E,.(L) = Ay for r > 1, leading
to

T? if r <0,
U= {(wi,w2) € T? | wwa +1=0} ifr=1,
0 if r > 2.

By Theorem E] oy, is constant on the connected components of T2 \ ¥; and of
¥1. Furthermore, 77, is equal to 0 on 72\ 37 and equal to 1 on X7. This coincides
with the computations made in Example 2.4

5. ON THE COMPUTATION BY LOCAL MOVES

We now present and generalize an idea of J. Conway (see [0, §7.10] and [26],
Lemma 3.1]) leading to a purely combinatorial computation of o, for many colored
links. Recall that for any p-colored link L, there exists a well-defined invariant
Vi(ti,...,ty) € Z(ty,...,t,) called the Conway potential function of L, which
satisfies:

1 2\ e
VL(tl,n-,tu) - {tltl—l_ Ap(ty) ifp=1,

Ap(t],... t%) if p>1.
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This normalization of the Alexander polynomial was first introduced by J. Conway
[5], and formally defined by R. Hartley [I7]. Note that it is possible to compute
this invariant from a colored link diagram using only combinatorial methods (see

[23]).
Given a complex number z = € with 0 < # < 27, we shall denote by z'/2 the
complex number /2. If w = (wi,...,wy) € TY, then wl/? = (wi/z, e ,w,i/Z).

Also, we shall denote by sgn(A) the sign of the real number A.

Theorem 5.1. a) Let L and L' be two colored links given by diagrams related by a

single change as illustrated in Figure [0 For any w € T such that V. (w'/?) # 0,
. VL(W1/2)

T 8 a real number and

wl/2
or(w) =op (w) + sgn <z W) .

Conversely, for any w € T such that Vi (w'/?) #0,
\VY (w1/2) >
Vi(w2) )
b) Consider colored links L and L" which differ by one of the local moves described
in Figure T If w € T satisfies Vi (w'/?) # 0, then % is a real number

/

W12
op(w) =opr(w)+6-sgn (%) ’

with § = 41 as in Figure [0 Conversely, if w € T! satisfies Vi (w'/?) # 0, then
VL” (w1/2)
Vi(wi/2) )

Given L a link, let Ay (¢) denote its Alexander-Conway polynomial Ap(t) =
(t1/2 — ¢+=Y/2)V(t'/?). The theorem above implies the following result for the
Levine-Tristram signature.

01/(w) = 015 (w) + sgn (

and
o1 () = o(w) — 8- sgn (

Corollary 5.2. Let L and L' be two links related by a single change as illustrated

in Figure [[6. For any w € S\ {1} such that A (w) #0, i AALL’((:)) €R and
- AL(w) )
= ’ + .
or(w) =op (w) + sgn <z N
Furthermore, for any w € TE such that Ap(w) # 0,
B  Ap(w)
o (w) =or(w) + sgn <z AL(w) > .
O
L L L L

FIGURE 16. The local move in part a) of Theorem 5.1l The two
strands are assumed to have the same color.
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A s

AN /

L L// L L//

FIGURE 17. The local moves in part b) of Theorem[5.Il The colors
of the two strands are assumed to be distinct.

Let us postpone the proof of Theorem (.1l to the end of the section. We shall
first discuss to what extent this result leads to an algorithm for the computation of
the signature of a colored link. Let us start with the case of a knot K. Corollary
provides the following combinatorial algorithm for the computation of o (w)
for all but a finite number of w in S*. Consider a diagram for K with n double
points and no ‘nugatory crossings’ (that is, a diagram that remains connected after
the move of Figure[IG). Apply the local move of Figure [I6] to any crossing. We get
a 2-component link L’ given by a connected diagram. Apply the same local move
to any crossing between the two components of L’. (Such a crossing exists since
the diagram is connected.) This yields a knot K" given by a diagram with n — 2
crossings. Corollary gives the equality

or (W) = oxn(w) — sgn (@ 22((:))) ) +sgn (’ %)

for all w such that Ag(w)Ag»(w) # 0. Since both K and K" are knots, AgAgn
is non-zero. Hence, the relation above holds for all but a finite number of w in S*.
We are done by induction on n.

Example 5.3. Let K be the right-hand trefoil knot. Consider the transformations
of K illustrated in Figure One easily computes Ag (t) =t —1+t~1. Moreover,
L' is the positive Hopf link and K" the trivial knot, so Az (t) = t'/2 —t=1/2 and
Ak (t) = 1. This gives

w1/2 _w1/2 L .
. _ et ; /2 _ 1/2))
ok (w) — sgn <z o1t o + sgn (z (w w

1
— -1
Sgn(w—1+w>

On this particularly simple example, Az, never vanishes on S'\ {1}. Hence, Corol-
lary in fact leads to the formula

o (w)

ox(w)=sgn(w—-14+w) -1
which holds for any value of w.

Now, let L = K; U---U K, be a p-component p-colored link. Theorem [5.11 b)
leads to the following result: there exists a p-variable polynomial A such that, for
all w = (w1,...,w,) in T# with A(w) # 0, the computation of o (w) boils down to
the computation of ok, (w;) for i = 1,..., u. And we just saw that for all i, ok, (w;)
can be computed for all but a finite number of w; in S*. However, for some links
L, the polynomial A is always zero and the result above is useless. For example,
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FIGURE 18.

consider an irreducible boundary link L with u > 3 components. Let L’ be any u-
colored link obtained from L by one of the local moves described in Figures [16] and
7l Then, it is easy to check that both V and V., are identically zero. Therefore,
Theorem [E.1]is of no use for the computation of oy, in this particular case.

However, the method described above does lead to an algorithm for links that are
not ‘algebraically split’. Recall that a y-component link L is said to be algebraically
split if there is an ordering of its components Ki,..., K, and an integer 1 < k <
such that (k(K;, K;) =0 for all 1 <i <k < j < u. Using the Torres formula, one
checks that if L is not algebraically split, then V is non-zero. Using this result,
one easily sees that if L is not algebraically split, then the polynomial A described
above can be chosen to be non-zero. Therefore, o, (w) can be computed for all w in
the complement in T# of the zeroes of some non-zero polynomial. Let us illustrate
this with an example.

Example 5.4. Consider the colored link L given in Example24l Also, let L” be the
2-colored positive Hopf link. Since Vi, (t1,t2) = t1ta + tl_ltz_l and Vi (t1,t2) =1,
Theorem BI1b) gives

or(wi,ws) = opr(wi,w2) + sgn (Wi/QW;/Q + wi/ZW;/Q) :

By Theorem [B.I]1 b) again (or since there is a contractible C-complex for L"), the
signature of L” is zero. Setting w; = %1 and wy = €2, we get

aL(Gl, 02) = sgn (COS ((01 + 92)/2)) .
This coincides with the result given in Example 2.4

The proof of Theorem [B.1] rests upon several lemmas.

Lemma 5.5. Let H be a d-dimensional Hermitian matrixz. Then its signature o
and nullity n satisfy o+n = d (mod 2). Furthermore, ifn =0, then 0 = d (mod 4)
if and only if det(H) > 0.

Proof. Let m be the number of negative eigenvalues of H. We have
c+n=(d—-m—-n)—-m+n=d—2m=d (mod 2).
If n = 0, then det(H) > 0 if and only if m is even, that is, if and only if o =
d—2m =d (mod 4). O
Lemma 5.6. Let L be a colored link with v connected components. Then, for all
weTt,
op(w)+nL(w) =v+ Y k(L L;)+1 (mod 2).

i<j



SIGNATURES OF COLORED LINKS 1249

Proof. Let S be a connected C-complex for L. Applying Lemma to the matrix
H(w), we have op(w) + nr(w) = rk H1(S) (mod 2). An elementary Euler charac-
teristic argument shows that rk H;(S) = v + #{clasps of S} + 1 (mod 2). Finally,
the number of clasps of S clearly has the same parity as Zi<j lk(Ls, Ly). (]
Lemma 5.7. Let L be a colored link with v connected components. Then, for any
w e T such that ny(w) =0, we have

op(w)=v+ Z k(Li, L) — sgn(i*V(w'/?))  (mod 4).

1<j

Proof. Let S be a connected C-complex for L. Fix w € T¥ such that ny(w) = 0. If

z; denotes the complex number wl/?

T, we have

e1—1 ep—1

::]:

Hw) = (1—wj) Zsl cepwy 2wy T OA°

j=1
w

= H(E? -1) Z e1--e, 2t -~zfﬂ+1A€
j=1 €
w

= ]G —2)Ba, ..., 2),
j=1

where B(z1,...,z,) denotes the matrix Y _e1---, 2" --- 2 A°. On the other

hand, we know by [4] that the Conway potential function of L is given by

‘7L(t1a""tu> ::(__

TSNS det(—B(ty, .., ),

j=1
where ¢ is the number of clasps of S and £ = ZKJ Ik(L;i, Lj). Let 1 denote the
first Betti number of S. By Lemma 5.5 o7 (w) = 1 (mod 4) if and only if

0 < det(H(w))=det H i —zi) B(z1,...,24))
]:
m
= (=1 H 1 x(S\S; )+51VL( L 2).

Since z; = € with 0 < @ < m, 2z; —Z; = Ai with A\ € R%.. Therefore, o7 (w) =
(mod 4) if and only if 0 < i* V(21,..., 2,), with

“w
a=c—(+28 —2ub+ > (1—x(S\ S)) +B).
j=1
An Euler characteristic argument shows that « = 1 —£+ 3. We know from Lemma
that 81 = v+ ¢+ 1 (mod 2). Via the transformation (72) of Figure[d it may
be assumed that 81 = v+ ¢ — 1 (mod 4). Therefore, o (w) = v+ £ —1 (mod 4)
if and only if i¥V(z1,...,2,) > 0. This fact, together with Lemma [5.6] gives the
result. d

The following lemma is a direct consequence of Theorem Il Nevertheless, we
now give an alternative proof.
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Lemma 5.8. Given any colored link L and any w € TY, np(w) = 0 if and only if
Vi(w'/?) # 0.
Proof. We saw in the proof of Lemma [5.7] that

det :tH 1/2 1/2 va ( 1/2)

for some integers m,;. Note that nL(w) # 0 if and only if det(H(w)) = 0. Since
w;/2 #+ w;/2, the lemma is checked. O
Proof of Theorem Bl a) Let S’ be a connected C-complex for L’. A C-complex S

for L is obtained from S’ by attaching a band with a half-twist. Fix w € T¥. If
H'(w) and H(w) denote the associated Hermitian matrices, then clearly

H v
i) = (")
for some complex vector v and real number A. Therefore,

(%) e (w) = nr(@)| + o (w) —or(w)| = 1.

Let us now assume that Vp,(w!/?) # 0. By LemmalB58 77 (w) = 0. If Vi (w'/?) =
0, then 7 (w) > 0. By equation (%), or/(w) = o (w), so the theorem holds in this
case. Let us now assume that Vp(w'/?) # 0. By Lemma [.8 and equation (%),
we have o (w) = op/(w) + € for some € = £1. Reducing this equation modulo 4,
Lemma [5.7] implies

VAl —sgn(i*Vi (W) = v + 0 — sgn(i” Vi (w'/?) +¢  (mod 4),
where £ =3, Ik(L;, Lj) and ' = 3, Ik(L}, L;). Hence,
e=(w—v)+(—0)+sgn(i” Vi (w"?) — sgn(i"V(w"?)) (mod 4).
Clearly, £ = ¢ and v = v/ + 7 with 7 = +1. Therefore,
e =7+ sgn(i” VL/( 12)) — sgn(i*V,(w?)) (mod 4).
Since € = +1 and 7 = %1, this implies

e=sgn|i'” 772 Vi(w 1/2) = sgn iLL(WI/Q)
9 N (@72) ) T 9 Vi (@i/2) )

so the first equality is checked. The second equality can be derived from this one

using Figure 9
CF K
ANV

FIGURE 19.

b) Given S” a connected C-complex for L”, a C-complex S for L is obtained
from S” by attaching a clasp. As in the proof of a), this leads to the equation
on(w) = o (w) + € for some e = +1 satisfying

e=W—v") 4 (L—0") + sgn(i¥" Vi (w"?)) — sgn(i*V(w"?)) (mod 4).
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This time, v = v and £ = ¢"" 4+ §, with 6 = £1 as described in the statement of the
theorem. Hence,

£ =0+ sgn(i’Vin(w'?)) — sgn(i*V(w?) (mod 4).

Since e = £1 and § = +1, this implies

B iVVL(wl/z) 7 VL(W1/2)
S G ) R S ) )

The last equality is a consequence of this equation. (I

6. THE 4-DIMENSIONAL VIEWPOINT

In this section, we present the signatures o (w) from the point of view of cov-
erings and intersection forms. Roughly speaking, we show that they can be con-
structed as the Atiyah-Singer invariant of a finite abelian covering of the link exte-
rior in S3. In doing this, we also relate our signatures to invariants introduced by
Gilmer [12], Smolinski [31], Levine [21I] and the second author [9].

Definition. Let F' be a union of compact connected oriented smooth surfaces
Fi,...,F, in B*. We shall say that F has boundary L if the following holds:

(i) For all i, F; is smoothly embedded in B* and 0F; = L;.
(#) For all i # j, F; and F; intersect transversally in a finite number of points,
possibly empty.
(#4) For all ¢, j, k pairwise distinct, F; N F; N Fy, is empty.

The existence of a surface F' with boundary L is obvious. For such an F', denote
by Wg (or simply by W) the complement of an open tubular neighborhood of F
in B*. By the exact sequence of the pair (B* B*\ F) and duality, one shows that

H,(WF) is the free abelian group generated by the meridians m4,...,m, of the
components Fi, ..., F, of F. Therefore, the group of characters Hom(H; (W), S!)
can be identified with the p dimensional torus 7%. To the element w = (w1, ... ,wy)

of TH corresponds the character y,, given by x.(m;) = w;.
Let T(S be the subset of T%' constituted by the points with rational coordinates,
ie.
T(S = {(wl, coowy) €TH G wy = 2% with 6, € Qn]Jo, 1[}

Consider an element w of Té‘ . The image of the corresponding character x,, is the
subgroup of C* generated by a = €*7/%, where q is the least common multiple of
the orders of the w;’s. Hence, x,, induces a g-fold cyclic covering W? — W with
a canonical deck transformation 7 generating Cy, the group of the covering. The
cellular chain complex C,(W?) is a Z[Cy]-module, and so is C via the homomor-
phism j: Cy — C* which sends 7 to . The twisted homology of (W,w), denoted
by HZ(W;C), is the homology of the chain complex Ci(W?) ®zc,) C. Note that
C is flat over Z[C,], so

HE(W;C) = Ho(W*) @0, C.

The twisted homology H¥(X;C) of the exterior of L in S? is defined similarly,
using the character of Hi(X) induced by x.,.
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Definition. For w in T«S , let ¢% (or simply ¢*) denote the twisted intersection
form defined by
o4« HY(Wp;C) x HY(Wp;C) — C, o
(r @u,y @) — uv Y (@, Tyl
for x,y € Ha(W1) and u,v € C. Here, (, ) is the intersection form induced by the
orientation of W lifted to W7, and A\ +— X\ is the complex conjugation.

Note that ¢“ is a well-defined Hermitian form. In fact, it is conjugate to the
ordinary intersection form on Hy(W49;C) restricted to the eigenspace of 7 with
eigenvalue « (see Lemma [6.2] below).

This section is mainly devoted to the proof of the following theorem.

Theorem 6.1. Let L be a p-colored link. For any surface F in B* with boundary
L, and for allw € TF,

op(w) = sign(ep),
nr(w) dim HY (X;C) = null(¢%) + dim HY (Wg; C) — dim HY (Wg; C).

6.1. Finite abelian coverings. In this subsection, we relate the twisted intersec-
tion forms of finite abelian coverings and of their cyclic quotients.

As above, let W be the exterior of a surface F' with boundary L (or more
generally, any compact connected oriented 4-dimensional manifold with Hy (W) =

| Z, where the generator of the ith summand is denoted m;). Consider integers
q1,---,qu with ¢; > 1 for all <. The natural projection v: Hi(W) — G = Cy, x

- X Cy, mapping m; to a preferred generator 7; of Cy, induces a finite abelian
covering W7 — W. As usual, H,(W?7) is a module over the group ring Z[G]. Let
S: Hy(W7) x He(W7) — Z|G] be the pairing given by

S(x,y) =Y {x,99)9,

geG

where ( , ) is the intersection form induced by the orientation of W lifted to

W7. Note that S is sesquilinear with respect to the involution of Z[G] induced by
1

g—=g .

Now, consider an element w of Téf with w; of order ¢; for all .. As above,
let ¢ denote the least common multiple of the ¢;’s. The corresponding character
Xw: Hi(W) — C* can be written x,, = j or, oy, where j: C; — C* satisfies
j(r) = a and r,: G — Cy is such that j or, maps 7, = y(m;) to w;. Let
Sw: G — C* denote the character given by j o r,. It induces a homomorphism
of rings Z[G] — C compatible with the involutions of these rings. In particular,
it endows C with a structure of Z[G]-module. Let ¢ (or %) denote the Hermit-
ian form on Hy(W7) ®z¢) C induced by the Z[G]-sesquilinear form S via the ring
homomorphism Z[G] — C. In other words, ¢* is given by

¢w : HQ(W’Y) ®Z[G] C x H2(Wﬂy) ®Z[G] CcC — (Ca
(z@u,y®v) — uﬁzgeG@,gy)Sw(g)-

Lemma 6.2. Given a character s: G — C*, set
E; ={x € Hy(W";C); gz = s(g)x for all g € G}.

Then, ¥* is conjugate to the restriction to Es of the Hermitian intersection form
on Hay(W7;C).
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Proof. First, observe that Ha(W?7) ®z5) C is equal to Hy(W7;C) ®cg C. For all
s € Rg = Hom(G, C*), let 9, be the element of C[G] given by

v IG\Z

geqG

One easily checks that g5 = s(g)Js for all g € G and s € Rg. This gives the
inclusion ¥sHo(W?7;C) C Es. On the other hand, 9,95 = 9, and ¥.9y = 0 if
s # s'. Hence, if x belongs to Fj, then Jyx = 0 for all s # s'. Since > cp Vs =1
(see [29, Lemma 2.1]), we have z = ¥,x and the inclusion E, C ¥,Ho(W7;C) is
proved. In other words, there is a canonical isomorphism of C[G]-modules

Hy(W7;C) ~ @ 9.Hy(W7;C) = P E..
s€Ra s€Ra
Since G acts by isometries, this decomposition is orthogonal with respect to the
intersection form (, ) on Hy(W?7;C). Now, observe that Es ®ciq C = 0 for all
5 # s,, and Es, ®ciq) C = E,,. Therefore, the multiplication Hy(W7;C) —
Y, Ha(W7;C) by ¥, := ¥, induces an isomorphism
H2(W’Y; (C) ®(C[G] C~ Esw'

Since Y¥(z @ u,y @ v) = |Gluv{x,d,y) = |Gluv(J,z,Voy) = |Gl{Jux,d,vy) for
all z,y € Hoy(W7;C) and u,v € C, the lemma is proved. O

If the g;’s are pairwise coprime, then r,: G — Cj is an isomorphism, so W7 =
W4, In this case, Hy(W7) ®z;6 C = H5(W;C), and the forms ¢* and ¢* are
equal. In general, we have the following result, very much in the spirit of [29].

Lemma 6.3. Let w be an element of T6 and consider v and s, such that x, =
Sw 0. Then, the Hermitian forms ¢“ and ¥* are conjugate.

Proof. By the proof of Lemma [62] the multiplication by 9, = ¥, induces an
isomorphism
Hy(W7;C) @ciq) C — 9, H2(W7;C) ®¢ig C,

so that ¥* is conjugate to |G|( , ) restricted to ¥, Ho(W7;C) ®¢jq (C (which is
nothing but E_ ). For the same reason, the multiplication by r(¢,) = Zq Lalr
induces an isomorphism

Hy(W1 C) ®cic,) C — ro(¥o)H2 (W C) @cic,) C,
so that ¢ is conjugate to ¢( , ) restricted to r,,(dJ,)Ha(W; C) ®¢|c,) C.

Set B = ker(s,,) and Ra(B) = {s € Rg|B C ker(s)}. By [29, p. 205], we have

natural isomorphisms of C[G]-modules
Hy(W%C) ~ (3 b)Ha(W7:C) ~ [B] @ 9.Ha(W;0),
beB SERc(B)
where Ho(W4;C) is a C[G]-module via the homomorphism C[G] — C[C,] induced
by r,: G — C,. Since s, belongs to R¢(B), this gives an isomorphism
rw(V)Ha(W? C) = [ B, Ho(WT; C).

Tensoring this isomorphism by C, we see that the intersection form on the
space 7,,(J,) Hao(W?; C) ®cic,] C is conjugate to the intersection form on the space
¥, Hy(W7; C) ®¢ic,) C multiplied by |B|?. Summing up everything, ¢ is conjugate
to ¥* multiplied by qlBl = |B]. O
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6.2. Intersection forms and Seifert forms. For technical reasons, we shall work
with branched coverings instead of regular coverings. As above, let ' C B* be a
surface with boundary L, and let Wy denote its exterior. Given w € T}, let g;
be the order of w;. The regular covering W, — Wy induced by the projection
v: Hi(Wr) — G = Cy, x --- x Cy, can be extended to a covering p: Wy — B!
branched along F, such that p|: p~'(F;) — F; is a G/C,,-covering branched along
F;NF; with branch index g;. The construction of W} is quite clear except near the
intersection points of two components of F', where it can be described as follows.
An intersection point of F; and F} has a neighborhood NN in B* such that the triple
(N, F;, F}) is diffeomorphic to (B% x B2, B? x {0},{0} x B?). Then, p~}(N) is a
disjoint union of balls, and the covering projection restricted to each of these balls
is given by B2x B2 — B2x B%2 ~ N, (21, 20) + (€2™/9 21, ¢*7/% 2,). Note that the
boundary of W} is the covering of S® branched along L induced by the restriction
of v to the homology of the exterior of L.

Clearly, we can define a twisted intersection form ¥ on Ho(W}) @z C as
explained in the previous subsection. Furthermore, we have the following result.

Lemma 6.4. The forms ¢4 and E‘; are conjugate.

Proof. By Lemma[6.2] we just need to check that the inclusion W} C W} induces
an isomorphism of C-vector spaces ¥, Ha(W2;C) ~ 9, Hy(W -;C). This follows
from a standard Mayer-Vietoris argument (see, e.g. [31, Lemma 5] and [6, Lemma
6.3]). O

This subsection is devoted to the proof of the following proposition, which gener-
alizes [34] and [6, Proposition 6.1]. Note that this result implies that our signatures
coincide with invariants introduced by Smolinski [31].

Proposition 6.5. Consider a connected C-complex S C S® for a p-colored link L.
For w € Ty, let H(w) be the corresponding Hermitian matriz (recall Section [2).
If F is the surface with boundary L obtained by pushing S in B*, then H(w) is a
matriz for E‘;

Proof. As the surfaces S; are pushed into B*, they trace out 3-manifolds M; home-
omorphic to S; x [0,1] with L; x [0,1] collapsed to a single copy of L;. It may
be assumed that the M;’s intersect transversally, so each clasp in S; N S; gives a
2-disc in M; N M;. Now, split B* along M = M; U---U M,. The boundary of the
resulting manifold B contains two copies M+ and M~ of M which intersect along
F. Let {gB}4ecq be disjoint copies of B. Consider the 4-dimensional G-manifold
E obtained by pasting these copies along gMijE C gB as follows:

E= |_| gB/(Ting = gM; )i1<i<p, geG-
geqG

(Recall that 7; is a preferred generator of Cy,.) Clearly, the projection £ — FE/G is
nothing but the branched covering Wzﬂ — B*. Furthermore, there is a retraction
by deformation of B onto the cone C(M* U M~) over M+ U M~, which itself
retracts by deformation on the cone C'F over F'. Therefore, W}; = F is homotopy
equivalent to the G-space

Y =] QCF/(TigFi =gF)1<i<p, gea-
geG
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We shall now use this description of W to compute the Z[G]-module Hy(W ) =
H,(Y). Consider a basis of Hy(F') whose elements are given by 1-cycles {eq}aca.
For o € A, let I(a) denote the set of indices ¢ such that e, meets F;. Given such an
eq in F, let Ce, C CF denote the cone over e,, and Ye, the ‘suspension’ defined
by
Yey = H (1—=1;)Ceq CY.
i€l(a)
By construction of Y, Ye, is a 2-cycle in Y. Furthermore, a massive use of the

Mayer-Vietoris exact sequence leads to the following fact: the Z[G]-module Ho(Y)
is given by

Hy(Y) = @D (ZIG) /(14 7+ -+ 78 Viera)) Tea.
a€cA
Using the fact that w; # 1 for i € I(«), we have
Hy(Y)®y6 C = P ((Z[G]/(l + T Tiqj_l)iEI(a)) ®2(G) C) Xea

a€cA

@ CXlegy.

a€cA

Furthermore, since w; # 1 for i ¢ I(«), o = [[i;(1—7;)Ce, is a non-zero multiple
of Ye, in Ho(Y) ®zi6)C. Therefore, a basis of the latter space is given by {74 }aca-

We are left with the computation of the form @? on the elements of this basis.
To do this, we shall deform x, into another 2-cycle z,, as follows. First, note that

l—ep

xa—g €1+ EMT12 o1y 2 Ceg,

where the sum is on all sequences € = (1,...,¢,) of £1’s. Set

Zgl EMTI 2 "'Tu 7 C(i%(en)),

where €/, is the 1-cycle in S corresponding to e, in F', and ¢ is the map defined
in Section @ Clearly, Z, is a 2-cycle and (T, gzg) = (xo,gxg) for all g € G and
B € A. Furthermore, the intersection number between C(i¢(el,)) and gCeg is given
by

k(i (el),e) if g =1,
0 else.

C(i*(eq)) - (9Cep) = {

Since G acts by isometries, this is sufficient in order to determine ¢ (q, xg) =
> gec(Ta,973)s0,(g). The result of this tedious computation is

1—e

Vp(Ta,Ts) = H 1—w;) Zsl Euwl = -~-wl‘2 k(i (er,), €5),

concluding the proof. ([
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6.3. Proof of Theorem [6.11 We need one more result.

Proposition 6.6. For all w in T}, sign (%) does not depend on the choice of the
surface F in B* with boundary L.

Proof. By Lemmas [(.2] and [6:4] ¢4 is conjugate to the restriction to E;  of the
intersection form on Hy (W ; C). Moreover, the signature of the latter form is easily
seen to be given by a linear combination of the g-signatures of Wzﬂ, denoted by
o(9, W) (see [15]). So, we are left with the proof that (g, W) does not depend
on the choice of F. Consider two surfaces F' and F’ with boundary L, and glue
together W}; and fWZw along their common boundary. By Novikov additivity, the
resulting manifold Z satisfies (g, Z) = o(g, W ) — (g, W ). Using the Atiyah-
Singer G-signature theorem [I], one easily checks that o(g, Z) is zero for all g € G
(see [31] p. 216]). This completes the proof. O

Proof of Theorem 6.1l The equality or(w) = sign(¢%) is a direct consequence
of Lemma 6.3 Lemma [6.4] Proposition and Proposition On the other
hand, consider the exact sequence of the pair (Wg,0Wp) with (twisted) com-
plex coefficients. Clearly, a matrix for ¢% is (the transpose of) a matrix for
HY (Wpg;C) — HY (Wp,0Wg; C). This leads to

null (%) = dim HY (0WF; C) — dim HY (Wg; C) + dim HY (Wg, 0WF; C).

By duality, dim HY (Wg,0Wp;C) = dim HY (Wp;C). Finally, a standard Mayer-
Vietoris argument shows that the inclusion X C OWp induces an isomorphism
HY(X;C) = HY(0Wp;C). This gives

dim HY (X;C) = null (¢%) + dim HY (Wg; C) — dim HY (WF; C).

Note that this equation holds for any surface F in B* with boundary L.

We now turn to the proof of the equality nr(w) = dim HyY(X;C), assuming
the notation of the previous subsections. Let F' be a connected C-complex for L
pushed in B*. By Lemma 6.3} Lemma [6.4] and Proposition 6.5, 7, (w) = null (¢%),
so we are left with the proof that HY(Wg;C) = HY(Wp;C) = 0 for such an
F. By the proof of Lemma 6.3, HY(Wp;C) = H.(W}) ®z1) C. Furthermore, a
Mayer-Vietoris argument shows that H, (W) = H, (W}.). Finally, recall that W},
has the homotopy type of a G-space obtained by gluing cones over F' along their
boundary (see the proof of Proposition[6.0]). Since F' is connected and has no closed
component, Hy (W) = Hs(W}.) = 0. This concludes the proof. O

This 4-dimensional interpretation of o (w) can be used to give an alternative
proof (for w € T(S ) of several results obtained in Section 2l For example, Propo-
sitions and imply the independence of o, (w) on the C-complex (Theorem
21).

As promised in Section 2] we shall now give another proof of Proposition
Consider w = (wi,...,wy,w,) € T6+1, and let /' = Fy U---UF,UF,; bea
surface in B* with boundary L. In a closed neighborhood of an intersection point
of Fj, and F, 4, F' is given by two transversal disks with boundary a 2-colored Hopf
link. Let F' = F{ U---U F}, be the surface obtained by replacing these disks by a
cylinder, whose boundary is a 1-colored Hopf link. Clearly, F’ has boundary the
p-colored link L’. Note that the signature of a 2-colored Hopf link is zero, while
the signature of the positive (resp. negative) 1-colored Hopf link is —1 (resp. +1).
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By the additivity of the signature, these local transformations decrease o (w) by
the algebraic intersection number F), - F, 11 = lk(Ly, L41).

6.4. On the Casson-Gordon invariants of 3-manifolds. Let M be an oriented
closed 3-manifold, and let x: Hi(M) — C* be a character of finite order. The
following reformulation of the Atiyah-Singer invariant [I] of (M, x) is due to Casson
and Gordon [2| [B]. Since x is of finite order, its image is the cyclic subgroup of C*
generated by o = €2"™/4_ for some ¢. It induces a g-fold cyclic covering M9 — M
with a canonical deck transformation 7 generating the group C; of the covering.
Since the bordism group Q3(BC,) is equal to Cy, there is a positive integer n such
that n disjoint copies of M bound a compact oriented 4-manifold W over BC,. Let
W2 — W be the induced g¢-fold covering. The deck transformation 7 extends to
a deck transformation of W49, also denoted by 7. As above, let H¥(W;C) denote
the homology of the chain complex C.(W?) ®z¢,) C, where the structure of Z[C,]-
module on C is given by the map C, — C* which sends 7 to a = €*7/%. Finally,
let ©X be the twisted intersection form on HY(W;C).

Definition. The Casson-Gordon invariant of (M, x) is
1
o(M,x) =

- (sign (%) — sign (W)).
The related nullity is defined by n(M, x) = dim H{(M; C).

The fact that (M, x) depends only on the pair (M, x) is a consequence of the
Atiyah-Singer G-signature theorem, and Novikov additivity. Note that one may
also consider branched coverings in order to define or compute this invariant (see,
e.g. [12 Proposition 3.5]).

The aim of this subsection is to relate the Casson-Gordon invariant of a manifold
obtained by surgery on a framed link L to the signature oy, of this link. We have
the following result.

Theorem 6.7. Let M be the 3-manifold obtained by surgery on a framed link L
with v components and linking matriz A. Let x: Hi(M) — C* be the character
mapping the meridian of the i*" component of L to o™, where o = €2/ and n; is
an integer coprime to q. Consider L as a v-colored link and set w = (o™, ... a™).
Then,

1<J

o000 = (72) = T A5) — sign(4) + 5 3la - s

n(M,x) = nww).

Note that if all the n;’s are equal, then this formula together with Proposition
give back Casson and Gordon’s [3, Lemma 3.1]. See also Gilmer [12, Theorem
3.6]. On the other hand, if the matrix A is zero, then or(w) = o(M, x). Hence
our signature extends (a special case of) the invariant introduced by Levine in [21]
for links with A;; = 0 for all ¢ # j. This also relates o (w) with link signatures of
Gilmer [12].

Let us point out an interesting feature of this result before giving its proof. Recall
that all the signatures o, (w) of a fixed colored link L are given by the signature
of a single matrix H evaluated at w. Using Theorem [6.7 one can compute the
Casson-Gordon invariants of all 3-manifolds obtained by surgery on L, for many
characters of finite order, by using this single matrix.
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Proof. Let F = Fy U---UF, be the surface obtained by pushing a connected C-
complex for L in B*. Denote by {p,}, the finite set of double points of F' (coming
from the clasps of the C-complex) and by {By}, a set of small disjoint closed 4-balls
such that p, € int By for all £. We shall denote by Fj,) and Fj s the components
of F which intersect at py. Note that F N B, consists of two transverse discs with
boundary a Hopf link K, C S} = 0B,. Let ¢, = +1 denote the linking number
of the components of K, (that is, the algebraic intersection number of Fj, and
Fi) at pe). Set Q = B*\ ||, int By. Clearly, the character x restricted to the
exterior of L in S? extends to a character on the exterior of F in B*, which itself
restricts to the exterior of Ky in Sj. This restriction maps the meridians of K, to
xX(mje)) = @@ and x(mg)) = a™®.

Now, let U be the 4-manifold obtained by attaching 2-handles B? x B? to Q
as follows. First, attach 2-handles to  along a tubular neighborhood of L C S3
according to the framings {A;; };. Then, for all £, perform a surgery along K, C S}
according to framings ff(z) and f}f(z) which satisfy the following property: the
character on the exterior of Ky in S} extends to the 3-manifold M, obtained by
surgery on the framed link K,. This is the case if and only if the congruences
ff(e)nj(g) + ey = €nje) +f,f(£)nk(g) =0 (mod g¢) hold. By hypothesis, 7 and
ng(e) are invertible modulo ¢, so such framings exist.

Let F/ C intU be the smooth closed surface with v connected components
obtained from F' N by gluing the cores of the 2-handles. Let Ups be the exterior
of F/ in U. From x (that is, from w), one easily constructs a character on Hy(Up)
inducing a twisted intersection form ¢“ on H' (Up+; C). Since OU = M U| |,(—M,),
Gilmer’s [12], Proposition 3.5] gives

v
o(M,x) — ZJ(M[,X) = sign (¢“) — sign (U) + q% Z(q —ng)n; (F} - F)).

£ i=1
(Note that a Mayer-Vietoris argument shows that ¢“ is conjugate to the form
related to the covering of U branched along F”, considered by Gilmer in his formula.)
We shall now compute separately each term of this equation.

Recall that w induces a C, x - -+ x Cy-covering of B* branched along F. By
Proposition [65] o7, (w) is equal to the signature of the corresponding intersection
form E; Furthermore, the signature corresponding to the covering of B, branched
along F'N By is equal to zero. Therefore, Novikov additivity implies that sign (@‘;) is
equal to the signature of the twisted intersection form of the covering of Q2 branched
along F' N (). Finally, a standard Mayer-Vietoris argument shows that adding 2-
handles to a 4-manifold has no effect on its twisted signature, so

sign (¢*) = or(w).

One easily checks that a matrix for the intersection form on H»(U) is given by
A& @,(—Ay), where Ay is the linking matrix of K. Therefore,

sign (U) = sign (A) — Z sign (Ay).
¢

Using [12] Proposition 3.8 and p. 367], we obtain o(My, x) = —e; — sign (Ag) +
q%s@, where the integer sy is given by

se=(a=n;(0))500 f7 () H(a—1m0) k) faey Fee (4 = 500 + (@ = o) nge)) -
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Finally, F}-F] = A;; — Y, ff, where the sum is on all indices ¢ such that j(¢) = i
or k(¢) = i. The first equality of the theorem now follows from the fact that
Do €e =iy Nij-

Since M is obtained from the link complement X by adjoining tori, an easy
Mayer-Vietoris argument gives the equality between the nullities. O

7. CONCORDANCE AND EXISTENCE OF SURFACES IN B*

The properties of oy, (w) and 7y, (w) studied in this section do not hold for all w
in TI. We shall denote by T’ the dense subset of T%" constituted by the elements
w = (w1, ...,w,) which satisfy the following condition: there exists a prime p such
that for all 4, the order of w; is a power of p.

We first prove the invariance of the restriction of oz, and 7z, to T under (colored)
concordance. Then, we show that the signature and nullity provide a lower bound
for the genus of a surface in B* with boundary L (Theorem [7.2)). Finally subsection
deals with an analogous result concerning surfaces in S* whose intersection
with a standardly embedded 3-sphere is equal to the colored link L. These results
generalize celebrated theorems of Murasugi-Tristram and Kauffman-Taylor.

Definition. Two colored links L and L’ with v components are said to be con-
cordant if there exists a collection of smooth disjoint cylinders 71, ...,T, properly
embedded in S® x [0, 1], such that for all i, T} is a concordance between components
of L and L’ of the same color.

Theorem 7.1. For allw € Th, o1 (w) and 1 (w) are concordance invariants.

This result follows from the fact that the exterior of the concordance is a homol-
ogy cobordism. The detailed proof can be found in [9, Theorem 4.15] for the case
of colored links with {k(L;, L;) = 0 for all ¢ # j. It obviously extends to the general
case. Note that this theorem can also be viewed as a consequence of [14, Theorem
9].

7.1. Surfaces with double points and Murasugi-Tristram inequality.

Theorem 7.2. Suppose that F = FyU---UF,, in B* has boundary L (in the sense
of Section [0)). Set By = ), vk H\(F;), and let c be the number of double points of
F. Then, for allw € Th,

lop ()| + np(w) —p+1| < B1 +c.

The case ¢ = 0 can be found in [9, Theorem 5.19]. The proof of this generalization
is very similar. We refer to the upcoming paper [27] for an interesting application
of this result to the study of real algebraic plane curves.

Proof. Let W denote the exterior of F in B*. The non-vanishing homology groups
of Wy are given by

Ho(Wg) =7, H/(Wg) =7Z" and Hy(Wp) = 7",

Set 3y = dim Hy (Wp,C). Clearly, 55 = 8§ = 0. Since w belongs to T}, the order
of the associated cyclic covering of W is a power of prime. Therefore, we can
make use of Gilmer’s results [I2]. In particular, by [12] Proposition 1.4], 5% = 0.
It follows that

By =087 =x(Wp)=1—p+pB1+ec
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Therefore,
Isign (“)| +null (o*) < B =Y +1—p+ 1 +ec
By Theorem 6.1, sign (¢*) = o (w) and null (¢*) + 8¢ = np(w), leading to

lop(w)| +np(w) <267 +1—p+B1+c.

By [12} Proposition 1.5], 8¢ < u—1, so |op(w)| +nr(w) — p+1 < B1 + ¢, giving
the first part of the inequality. On the other hand, 5% = 91 (w) — null ¥ < 5 (w),
0 lop(w)| —np(w) + 1 — 1 < B1 + ¢, completing the proof of the theorem. O

7.2. The slice genus.

Definition. Let S® denote the standard embedding of the 3-sphere in S*. The
slice genus gs(L) of a p-colored link L is the minimal genus of a closed oriented
smooth surface P = PyU---UP, C 5% such that P;NS3 = L; for all i. A p-colored
link is said to be slice if its slice genus is zero.

Note that for such a surface to exist, we must have (k(L;, L;) = 0 for all i # j.
This definition should be understood as a unification of several well-known notions
of ‘sliceness.” Indeed, consider the case = 1. A 1-colored link is slice if it is the
cross-section of a smooth 2-sphere in S*, that is, using Fox’s terminology [11], if it
is slice in the ordinary sense. On the other hand, consider a v-colored link with v
components. Such a colored link is slice if it is the cross-section of v smooth disjoint
2-spheres in S%. According to Fox, such a link is called slice in the strong sense.

The signature and nullity provide a lower bound for the slice genus of a colored
link. Indeed, we have the following generalization of [I8, Theorem 3.13].

Theorem 7.3. For all w in Tj,
loL(w)] < gs(L) + min(0, 7z (w) +1 — p).

Proof. Consider a closed oriented smooth surface P = PyU- - P, in S such that
P,NS3 = L; for all i. It may be assumed that each P; is connected. Let W be the
exterior of P in S*. By duality, the homology of W is given by

Ho(W) =127, H(W) =7Z", Hy(W) =7 and H3(W) = Z*,

where g denotes the genus of P. As in the previous section, any w in T induces
a character x,: H1(W) — C* of prime power order sending the meridian of P; to
w;. For simplicity, we simply write H¥ (W) for H¥(W;C).

Let X be the exterior of L in S3. The sphere S2 standardly embedded in S*
splits P into two surfaces F; and Fy with F} N Fy = L. The manifold W can be
described as a union W7 U Wy with W1 N W5 = X, where W; is the complement of
an open tubular neighborood of F; in B* for i = 1,2. The character x,, restricts to
characters on Hy (W;). Let ¢¢ be the intersection form on the corresponding twisted
homology HY (W;). By Theorem 6] o, (w) = sign (¢¥) for i = 1,2. Clearly, ¢¥ is
dual to the inclusion homomorphism j;: HY (W;) — HY (W;, M;), where M; stands
for OW;. It follows that |op(w)| < dim K, where K; = HY(W;)/ ker(j;).

By the Mayer-Vietoris exact sequence with twisted coefficients, we have an iso-
morphism

H‘;(Wl,Ml) D H‘;(WQ,MQ) =~ HLQU(VV, Ml U Mz)
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which fits into the following commutative diagram, where the lines are exact:

01 DO
00— K1 @ Ky — HE(Wy, My) & HY (Wa, Ma) =22 HY (My) & HY (Ms)

|- |
HY (W) HE (W, My U M) 0 H¥ (M, U Ms,).

Therefore, K1 & Ky = Ker(0; @ ;) C Ker(y o (01 @ 02)) ~ Ker(9d). This implies
that dim K7 4 dim K> < 85, so 2|or(w)| < 4. The equation

L—=2p+29=x(W)=-p7+ 065 — 53

leads to
2o (w)| <1 -2+ 29+ 67 + 55

By [12, Propositions 1.4 and 1.5] , 5% < dim H5(W) = p and ¢ (W) < dim Hy (W)
—1=p—1. It follows that |or(w)| < g and the first part of the inequality is
proved.

To check the second part, let us denote by p; the number of components of F;
and by (1 (F;) the rank of Hy (F;). Since P = F{UF, and F1NFy = L, the additivity
of the Euler characteristic implies

p 4 po — Br(Fr) — f1(Fp) = 2 — 2g.
We then apply Theorem to the surfaces F} and F3, giving
loL(W)| = n(w) + pi — 1 < Bu(F),
for i = 1,2. These three equations easily give
loL(w)l < g+nLw)+1—p,
which implies the second part of the inequality. (I

Corollary 7.4. If a pu-colored link L is slice, then op(w) =0 and np(w) > p—1
for all w in Tp. O

The case p = 1 gives the following result.

Corollary 7.5. If a link is slice in the ordinary sense, then or(w) = 0 for all w
roots of the unity of prime power order. (Il

On the other hand, if g is the maximum number of colors, we get:

Corollary 7.6. If a link with v components is slice in the strong sense, then
or(wi,...,wy) =0 and ng(wi,...,w,) 2 v —1 for all (wy,...,w,) € TF. O

Finally, let ¥ denote the zero in T} of the first non-vanishing Alexander ideal
of L. By Theorem 1] the signature and nullity of L are continuous functions on
TH\Y . By density of T, all the results stated in this section hold for w in T\ X,

Let us conclude this paper with one last didactic example.

Example 7.7. In [I1], Fox presents the link illustrated in Figure It is a very
simple link which is slice in the ordinary sense, but not in the strong sense. We shall
compute the signatures of this link in order to test the results of this section. Let us
order its components as illustrated to obtain a 3-colored link L. There is an obvious
C-complex for L which has the homotopy type of a circle. The corresponding Seifert
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FIGURE 20.

matrices are given by A° = (—1) if ¢ = (1,—1,1), and A° = (0) else. Therefore,
we obtain

or(wi,ws,ws3) = sgn R((wy — 1)(@2 — 1) (w3 — 1)),

where sgn denotes the sign function. By Corollary [[.6] the 3-colored link L is not
slice in the strong sense (which is obvious since the linking numbers don’t vanish).
On the other hand, Proposition implies that the Levine-Tristram signature of
the underlying link L’ is equal to

o (w) =sgnR(w—-1)+1=0.

This is the expected result since L’ is slice in the ordinary sense.
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